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Abstract 

 Modelling can substantially contribute to the development of Stirling engines technology and help 

understanding the fundamental processes of the real cycle for further performance improvement. In the 

present work, an enhanced thermodynamic model for Gamma-type Stirling engine simulation was 

developed based on the reconfiguration of non-ideal adiabatic analysis. The developed model was 

validated against experimental measurements on Stirling engine prototype (ST05 CNC), available at 

University of Birmingham. Good agreement was found between the model and experiment in predicting 

the indicated power, shaft power and thermal efficiency at different operating conditions. A parametric 

study was carried out to investigate the effect of phase angle, gas type, regenerator matrix type and dead 

volume on engine performance. The feasibility of utilizing the stored cold energy of LN2 to maximize the 

shaft power was also presented. Results showed that shaft power can be significantly enhanced by 49% 

for helium and 35% for nitrogen when cooling temperature is lowered to -50 °C while heating 

temperature remains constant at 650°C.  

 

Keywords: Enhanced, Thermodynamic, Modelling, Simulation, Gamma-type, Stirling Engine 

 

Nomenclature 

   Internal wetted area (m2)          Shuttle heat loss (J) 

   Heater internal wetted area (m2) R Gas constant (J/kg. K) 

    Connecting pipe internal wetted area (m2)   Crank radius (m) 

    Cooler internal wetted area (m2) Re Reynolds number 

   Regenerator internal wetted area (m2)    Ideal heater gas temperature (K) 

   Gas heat capacity at constant pressure (J/kg. K)    Ideal cooler gas temperature (K) 

   Gas heat capacity at constant volume (J/kg. K)    Ideal regenerator gas temperature (K) 

CVC Compression clearance volumes (m3)    Expansion space temperature (K) 

CVE Expansion clearance volumes (m3)    Compression space temperature (K) 

   Displacer diameter (m)     Conditional temperature expansion cell / heater (K) 

   Regenerator hydraulic diameter (m)      Conditional temperature compression cell / pipe (K) 
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E Mechanism effectiveness     Heater wall temperature (K) 

   Darcy friction factor     Cooler wall temperature (K) 

   Reynolds friction factor     Ideal heater gas temperature (K) 

   Heater heat transfer coefficient (W/m2. K)     Ideal cooler gas temperature (K) 

    Pipe heat transfer coefficient (W/m2. K)   Gas velocity (m/s) 

    Cooler transfer coefficient (W/m2. K)    Compression volume variation, (m3) 

  Colburn J-factor    Expansion volume variation, (m3) 

   Displacer annular gap (m)      Connecting pipe void volume (m3) 

  Gas thermal conductivity (W/m. K)     Cooler void volume (m3) 

   Displacer thermal conductivity (W/m. K)    Regenerator void volume (m3) 

   Regenerator thermal conductivity (W/m. K)     Compression swept volumes (m3) 

   Regenerator effective length (m)     Expansion swept volumes (m3) 

m Total mass of gas (kg)    Forced work (W) 

   Mass flow rate (kg/s)       Pumping loss (W) 

  Engine speed (rpm)   
  Shaft power (W) 

    Number of transfer units    Shaft work (J) 

   Nusselt number    Displacer piston displacement (m) 

p Instantaneous gas pressure, Pa    Power piston displacement (m) 

pch Charge pressure, Pa    Displacer stroke (m) 

   Peclet number Greek letter 

   Prandtle number   Porosity 

       Actual heat transferred to heater (J)   Angular velocity (rad/s) 

        Conduction heat loss (J)   Specific heat ratios 

   Heat transferred to heater (J)   Crank angle, rad 

   Heat transferred to cooler (J)   Absolute gas viscosity (Pa. s) 

   Heat transferred to regenerator (J)    Crank radius to expansion connecting rod ratio 

        Regenerator heat loss (J)    Crank radius to compression connecting rod ratio 

       Maximum regenerator heat loss (J)   Gas density (kg/m3) 

       Minimum regenerator heat loss (J)   

 

 

1. Introduction 

Alternative sources of energy are being sought to preserve fossil fuels as well as to reduce the greenhouse 

effects. In this regard, renewable energy resources (such as biomass, solar, geothermal and wind energy) 

are deemed to be the promising solution in as much as they are clean, efficient, and sustainable [1]. 

Recently, there has been a revival of attention by researchers and developers towards Stirling engines as 

they are externally heated engines, thermally regenerative, simple in construction, virtually quiet, safe in 

operation, and intrinsically flexible to adopt any heat source such as solar, biomass, geothermal energy or 

even an industrial waste [2].  

Ideally, Stirling engines work on a highly efficient thermodynamic cycle. The gas inside the engine 

undergoes four processes; two isothermal heat-exchange processes (expansion and compression) and two 

isochoric heat-exchange processes (heating and cooling). However, the real cycle is considerably 
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penalized due to the irreversibility and non-ideality of transport mechanisms occurring inside the different 

components of the engine. 

Stirling engines are mechanically arranged into three configurations, as shown in figure 1, namely, alpha, 

beta and gamma. For all of the three configurations, the cycle is thermodynamically similar. In alpha 

Stirling, hot and cold pistons mounted in separate cylinders placed on each side of the regenerator. The V 

arrangement and the yoke drive (Ross linkage) are often applied to this type of engine.  

 

 

Figure 1: Schematic diagram of Stirling engine arrangements. 

 

The beta Stirling consists of power piston and displacer incorporated in the same cylinder. One 

mechanical disadvantage is that a drive rod from the displacer extends through the piston. On the other 

hand, higher compression, efficiency, and power can be obtained due to lower dead volume.  The 

rhombic drive is often applied to this type of engine.  

In gamma Stirling, the power piston and displacer are located in separate cylinders. The power piston, 

which is located at the cold side of the cylinder, compresses or expands the gas being pushed into the 

cylinder. This configuration of the engine is mechanically more efficient than the others [3]. However, it 

has higher dead volumes specifically the connecting pipe that connects both the compression space and 

the lower part of the expansion space. The standard crank drive is often applied to this type of engine. 
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The regenerator is a key component of the engine, it is an internal heat exchanger that acts as a thermal 

sponge that absorbs and releases heat during the cycle, thus, enhancing engine power and efficiency. The 

heat being absorbed and restored to the gas in the regenerator during one cycle is typically four times the 

heat that passes through the heater during one cycle [4].  

Without a regenerator, such an engine requires a heater with five times the amount of heat needed to 

generate the same power it did with a regenerator. The conventional regenerator types adopted in Stirling 

engines are wire mesh or random fibre. Some advantageous features exist in the wire matrix such as; high 

convective heat transfer between the solid and the gas due to the extended surface area of wires and this is 

similar to a cross flow over repeated cylinder-shaped wires and low axial conduction in flow direction 

However, the disadvantage of this type of regenerator is the high flow friction resulting from flow 

separation, eddies associated with stagnation areas that can degrade the engine performance. The 

regenerator has to have several features for better performance that might be contradicting and this 

requires a great effort for designers and developers to find the optimum configuration based on; minimum 

pressure drop, maximum convective heat transfer and minimum axial conduction in flow direction [5].   

There have been numerous numerical models in open literature to analyse and optimize Stirling engines. 

In their hierarchal order, they are classified as zeroth-, first-, second-, third- and forth- order models. Zero 

order analysis is based on an empirical correlation to predict the power output of an engine. Beale [6] 

proposed a correlation based on extensive experimental work of certain layouts of Stirling engines. Later, 

West [7], developed this approach to predict the power output, using a generalized Beale number at 

different operational parameters.  

The first order analysis was first introduced by Schmidt [8] who developed a closed-form analytical 

approach to predict the engine power for the case of sinusoidal volume variation based on the assumption 

of isothermal working spaces. Usually, the power and efficiency predicted by Schmidt analysis, are 

overestimated by a margin of 30% or even more [9]. 

Urielli and Berchowitz [10], improved the modelling accuracy further by developing the non-ideal 

adiabatic analysis. The engine is simplified into five cell units including the three heat exchangers (heater, 

cooler and regenerator), with the assumption that both expansion and compression spaces are adiabatic. 
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This implies evaluating and subtracting power and thermal losses from ideal cycle analysis. This 

approach is widely used as it is fast and returns a reasonably accurate results within a 20% of deviation. 

The third order analysis proposed by Finkelstein [11], is a nodal analysis which includes applying the 

conservation of mass, momentum and energy at nodal points of the engine. This approach adds more 

complexity by coupling different energy losses into the governing equations. Therefore, this model may 

not be suitable for optimization purposes due to the increased computational time. The fourth-order 

analysis or namely computational fluid dynamics (CFD) analysis can return accurate results of engine 

performance predictions. However, this approach is quite challenging and computationally expensive to 

model the engine as a whole. 

Martini [12] published experimental data on a beta-type Stirling engine (GPU3), which is widely 

referenced in literature for the validation of analysis methods. Timoumi [13] developed a model for 

GPU3 based on a second- order analysis with a deviation of 15%. He considered different losses in the 

model such as shuttle losses, flow resistance, heat conduction losses and hysteresis gas losses. Cheng [14] 

developed a non-ideal adiabatic model for a domestic-scale 300-W Stirling engine with 20% deviation 

when compared to experimental results. He investigated the effect of wire mesh number on engine 

performance and an optimum value was found.    

Recent researchers, [15,16,17] incorporated finite speed thermodynamics with adiabatic analysis or 

polytrophic analysis with deviation of 16% from experimental results.  However, most previous works 

relied on validating models based on a limited experimental data such as comparing with indicated power 

alone or shaft power alone. Without extensive experimental data, it is hard to develop a reliable 

thermodynamic model for further understanding of the real cycle.  

Modelling gamma-type Stirling engines with non-ideal adiabatic analysis was widely reported in 

literature. However, in all previous models, the connecting pipe that connects both the lower part of the 

expansion space and the compression space is always omitted from analysis. This dead volume 

(connecting pipe) is higher in this type of engine compared to other engine configurations. Therefore, the 

gas mass that transfers from the compression cell to the cooler back and forth is not correctly computed 

and hence the heat exchange in other spaces of the engine, based on Reynolds number, is under-
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estimated. On the other hand, this causes a deviation in minimum and maximum cyclic pressures and 

hence a deviation between the calculated average cyclic pressure from the model simulation and the 

predefined charge pressure. 

 

In this work, the development and validation of an enhanced thermodynamic model based on non-ideal 

adiabatic analysis for gamma-type Stirling engine is presented. Modelling the engine is reconfigured with 

six engine cells to include the connecting pipe into the analysis. Random fibre correlations for flow 

friction and heat transfer, based on oscillatory flow testing, are adopted to model the regenerator.  The 

real pistons motion is adopted and hence the real volume variation is included in the model. The pumping 

losses in the heat exchangers are evaluated depending on the type of flow regime. Meanwhile, thermal 

losses such as shuttle and conduction losses are accounted for. Moreover, mechanical losses are also 

included to predict the shaft power.  

 

2. Engine Description  

The engine is a gamma-type that was first designed by Dieter Viebach in 1992 in Germany to promote 

microgeneration with biomass fuels and since then was opened for research development [18]. The 

engine, shown in figure 2, is instrumented with eight k-type thermocouples fitted in different locations of 

the engine for local temperature measurements; compression space, cooling water inlet, cooling water 

outlet, cooler working gas, regenerator cold end, regenerator hot end, heater working gas and heater wall. 

High-pressure sensor fitted in the compression space, for instantaneous pressure measurements and 

dynamometer for brake power measurement. The engine operational details are summarized in table 1. 

Uncertainty analysis is performed on engine measured parameters using the method presented in [19], and 

the results are tabulated in table 2. All sources of uncertainties may be linked to the inaccuracies of 

sensors, data acquisition system, junctions and electrical disturbance. The highest uncertainty, 2.87%, is 

recorded for the thermal efficiency due to the relative uncertainties in measuring cooling water flow rate, 

inlet water cooling temperature, outlet water cooling temperature and shaft power. 
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Figure 2: Engine components: 1- Heater, 2- Displacer piston, 3- Regenerator, 4-Cooler, 5-Connecting 

pipe, 6-Power piston. 

 

Table 1: Engine details. 
Parameter Value 

Nominal rotational speed (rpm) 500 

Stroke (mm) 75 

Power piston bore (mm) 85 

Displacer piston bore (mm) 96 

Charge pressure (bar) 10 

Working gas N2 

Heater type Tubular 

Cooler type Finned water jacket 

Regenerator type Random fibre 

Wire diameter (Micron) 31 

Porosity 0.9 
Hot source temperature (°C) 650 

Inlet water temperature (°C) 15 

Water flow rate (L/min) 3.5 

Water cooling power (kW) 2.3 

Compression ratio 1.3 

 

 

 

Table 2: Uncertainty analysis for measured parameters. 

Device Manufacturer Measurement Full Scale Accuracy Uncertainty 

Torque-gauge Lorenz  Torque 1-50 N.m 0.05N.m 0.1% 

Thermocouple, k-type Thermibel Temperature -200-250 °C 2.5 °C 1% 

Thermocouple, k-type Thermibel Temperature -200-1100 °C 10 °C 0.9% 

High pressure sensor Kistler Pressure 0-20 bar 0.04 bar 0.2% 

Incremental encoder Lorenz Velocity 0-1500 rpm 4.2rpm 0.28% 

Flowmeter Influx Flowrate 1-10 L/min 0.25 L/min 2.5% 

- - Indicated power - - 0.2% 

- - Shaft power - - 0.3% 

- - Thermal efficiency - - 2.87% 
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3. Thermodynamic Model 

The engine is reconfigured as six cells with the expansion and compression cells considered to be 

adiabatic in which no heat is transferred to the surrounding. Energy is transported across the cells 

interfaces by means of enthalpy change in terms of mass flow and upstream temperature. As depicted in 

figure 3, (c, k1, k2, r, h, e) represent the six engine cells; compression space, connecting pipe, cooler, 

regenerator, heater and expansion space, respectively. While (ck1, k1k2, k2r, rh, he) represent the five 

interfaces between cells. The system can be regarded as quasi-steady flow by neglecting the acceleration 

effects of the five mass flow variables. This can reduce the problem into a set of ordinary differential 

equations that can be solved simultaneously. Solving these equations can be more simplified by 

formulating them as an initial-value problem. Due to the cyclic nature of the system, the initial values can 

be arbitrary defined, and then integrating the equations over several cycles until the cyclic steady state is 

reached. The flow chart of the developed algorithm, written in Matlab environment, is provided in figure 

4. 

 

 

 

Figure 3: Schematic diagram of reconfigured adiabatic model with six engine cells. 
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Figure 4: Flow chart of the developed algorithm. 
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The engine is fitted with a conventional crank mechanism. The real motion of the hot-end and cold-end 

pistons is adopted from [20] and can be calculated, respectively, by  

            
 

  

        
                                                                                                      

                   
 

  

        
        

 

 
                                                                  

Then, volume variation of expansion and compression spaces are evaluated, in terms of expansion and 

compression swept volumes, VSE and VSC, respectively, and crank radius to connecting rod ratios,    and 

  , respectively by 

       
   

 
        

 

  

        
                                                                                     

       
   

 
        

 

  

        
          

   

 
               

 

  

        
        

 

 
                                                                          

The pressure is assumed to be uniform throughout the engine spaces. Applying the mass conservation law 

to the interior spaces of the engine leads to evaluating the instantaneous engine pressure, 

 

      
  
  

 
   

  

 
   

  

 
  
  

 
  

  

 
  
  

                                                                                                            

The total mass of engine gas can be calculated in terms of the charge pressure and expansion swept 

volume from eqn. (4) based on Schmidt theory as  

                                                                                                                                                

Where B and S are constants dependent on geometrical and operational conditions of the engine. 

The regenerator temperature is assumed to vary linearly between hot and cold end temperatures and hence 

can be evaluated using the logarithmic mean temperature difference as 
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Applying equation of state, the mass variation through the connecting pipe, cooler, regenerator and heater 

are determined by 

 

    
   

   

                                                                                                                                                     

 

Meanwhile, the mass accumulation in the compression and expansion cells can be determined as 

 

                                                                                                                                                   

                                                                                                                                                   

 

Where, the conditional temperatures,      and     are dependent on the flow direction as 

 

                                                                                                                                            

                                                                                                                                             

 

Thus, the mass flow rate at each of the cells interfaces can be evaluated by  

 

                                                                                                                                                                 

                                                                                                                                                        

                                                                                                                                                         

                                                                                                                                                           

                                                                                                                                                            

 

The pressure variation is obtained from Eq. (3) as 
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The cyclic temperatures of expansion and compression spaces are calculated using the equation of state in 

the differential form 

 

                                                                                                                                    

 

From first law of thermodynamics, the heat transfer to the cooler, regenerator and heater can be obtained 

as 

                 
  

 
                                                                                                                

     
      

 
                                                                                                                                     

     
      

 
                                                                                                                                    

 

The indicated work, heat absorbed by the heater and heat rejected from the cooler can be integrated over 

the cycles  
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Since the regenerator is imperfect, the actual heat transfer to the regenerator is dependent on its 

effectiveness and this can be obtained using the number of transfer units, NTU of the regenerator matrix 

 

                                                                                                                                                          

 

The NTU can be determined in terms of Nusselt number, Nu of the regenerator matrix using the Scaling 

Parameter Approach, 

 

                                                                                                                                                     

 

The correlations for flow friction and heat transfer in the random fibre regenerator matrix were based on 

oscillatory flow testing results which are presented in more detail by Geodon [21]. 

 

    
  

  
                                                                                                                                                        

                                                                                                                                                          

 

Thus the heat loss in the regenerator due to imperfect regeneration can be determined based on 

regenerator effectiveness as 

 

                                                                                                                                                  

 

The actual gas temperatures in the heater and the cooler including the connecting pipe can be expressed in 

terms of the imperfect regeneration and heat exchange between the walls and the gas in these spaces as 

follows 
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The heat transfer coefficients in heater, connecting pipe and cooler, hh, hk1 and hk2, respectively are based 

on Colburn J-factor found in Kays and London [22] 

 

 

                                                                                                                                                            

 

Where, 

If Re < 3000 

                                                                                                                                                 

 

If 3000<Re< 4000 

                                                                                                                                                                        

 

If 4000<Re<7000 

                                                                                                                                                 

 

If 7000<Re<10000 

                                                                                                                                                                        

 

If Re>10000 
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The internal conduction losses in the regenerator and the shuttle losses due to oscillatory motion of the 

displacer are included to calculate the actual heat transferred to the heater 

         
    

  
                                                                                                                                             

          
     

     

    
                                                                                                                               

                                                                                                                                                     

 

The work loss due to pressure drop in connecting pipe, cooler, regenerator and heater can be obtained by 

                                                                                                                                                                  

The pressure drop for all heat exchangers can be expressed by an equation that satisfies the momentum 

conservation for positive and reversed flow such as 

              
  

    
                                                                                                                        

The Reynolds friction factor, fr, can be determined from Darcy friction factors and Reynolds number. 

      
  
 
                                                                                                                                                                

Eqn.(20a) is used to quantify the pressure drop in the regenerator, while, the pressure drop in connecting 

pipe, cooler and heater is determined using friction factor evaluated by [23] 

 

If Re < 2000 

 

   
  

  
                                                                                                                                                                     

 

If 2000 < Re < 20000 
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If Re >20000 

 

                                                                                                                                                                  

 

The forced work per cycle,   , shown in figure 5, can be evaluated by integrating the product of (p-pch) 

and dV over the portions of the cycle but with negative sign. 

 

 

Figure 5: Schematic diagram of forced work. 

 

 

                                                                                                                                                           

 

The engine shaft work per cycle    can then be calculated in terms of the indicated work and the forced 

work based on Senft’s theory [24] as, 
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Where, E is the mechanism effectiveness. For a heat engine, the mechanical effectiveness typically varies 

between 0.7 and 0.9. In present work, the mechanism effectiveness of the engine is calibrated to 

experiment and found to be 0.75. the shaft power of the engine (  
 ) can be obtained in terms of the shaft 

work and the engine speed as. 

 

  
     

 

  
                                                                                                                                                             

 

Similarly, the engine torque can be expressed as 

 

   
  
 

 
                                                                                                                                                                     

 

Finally, the thermal efficiency of the engine, can be calculated in terms of the shaft power and the actual 

heat input as 

 

     
  
 

       

                                                                                                                                                           

 

 

4. Model validation 

In this section, a comparison of the results of the simulated engine and experiment are presented.  The 

operational conditions of the engine were listed previously in table 1. The indicated PV diagrams are 

compared to experiment at the two extremes of hot end temperatures and charge pressures as shown in 

figure 6 and 7 at engine nominal speed.  
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Figure 6: Comparison of indicated PV diagrams of N2 between the present model and experiment at 

Fixed charge pressure (10bar) and different heater temperatures, (a) at 450 °C and (b) at 650 °C. 

 

  

Figure 7: Comparison of indicated PV diagrams of N2 between the present model and experiment at 

Fixed heater temperature (650 °C) and different charge pressures, (a) at 4 bar and (b) at 10 bar. 

 

It can be seen that the minimum and the maximum pressures predicted by the model are very similar to 

experimental results. This suggests that calculating the instantaneous pressure based on gas equation of 

state is reasonably accurate. However, the gap areas in indicated PV diagrams between model 

experimental results are observed. The indicated PV diagram obtained from experiment is based on actual 

pressure drop in all spaces of the engine. Meanwhile, the pressure drop in the current model is decoupled 

from the indicated PV diagram and added in the final evaluation of engine performance. In general, the 
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maximum deviation in predicting the indicated power is 15% compared to experimental results observed 

at lower hot end temperature.  

 

In figure 8, a comparison between model and experimental results in predicting shaft power and engine 

thermal efficiency at different hot end temperatures is presented. As can be seen, power increases with 

increasing the hot end temperature. The maximum shaft power reads 470 W at 500 rpm for both model 

and experimental results at the maximum hot end temperature of 650 °C. In general, the shaft power is 

over-predicted with a maximum deviation of 15% which occurs at lower hot end temperature of 450 °C. 

For engine efficiency, the trend is similar with a maximum value of 16.9 % achieved at maximum hot end 

temperature of 650 °C. A 7.5 % maximum deviation is depicted at lower hot end temperature. 

 

Figure 8: Comparison of N2 results between the present model and experiment at constant charge 

pressure (10bar) and different heater temperatures, (a) shaft power and (b) engine efficiency. 

 

In figure 9, the shaft power predicted at different charge pressures are very similar to the experimental 

results. In terms of thermal efficiency, the trend is similar to experiment. However, efficiency is over-

predicted with a maximum deviation of 8% which occurs at charge pressures of 7 and 8 bar. This may be 

attributed to the uncertainty in measuring the flow rate and inlet and outlet cooling temperatures, which in 

had affected the calculation of thermal efficiency, accordingly.   
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Figure 9: Comparison of N2 results between the present model and experiment at constant heater 

temperature (650 °C) and different charge pressures, (a) shaft power and (b) engine efficiency. 
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maximum at an optimum speed and then falls down. This is attributed to that pressure drop is more 

pronounced at higher speeds due to elevated frictional losses. The optimum speed, predicted and from 

experiment, is very similar which reads 600 rpm at hot end temperature of 650 °C compared to 500 rpm 

at hot end temperature of 450°C. 
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Figure 10: Comparison of N2 results of shaft power versus engine speed between the present model and 

experiment at constant charge pressure (10bar) and different heater temperatures (450 °C and 650 °C). 

 

5. Results and discussion 

 

Once the model was validated with experiment, a parametric study was carried out to investigate the 

effect of phase angle, matrix type, gas type and low cooling temperature on engine performance. 

 

  

5.1 Effect of phase angle 

In most gamma-type Stirling engines, the phase angle can be adjusted for maximum shaft power based on 

the operating conditions.  The optimum phase angle is usually assumed to be 90° for practical purposes 

[25]. However, the results shown in figure 11, shows that maximum shaft power of 525 W occurs at 

phase angle of 100° compared to 503 W at angle of 90°. On the other hand, maximum thermal efficiency 

is still near at 90° angle.  

 

 

Figure 11: Effect of phase angle on engine performance, (a) shaft power and (b) engine efficiency. 
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5.2 Effect of matrix type 

The engine is originally fitted with random fibre regenerator (type 3). Three configurations, listed in table 

3, were investigated. 

 

Table 3: Random fibre configurations 

Type Commercial name Wire diameter,    Porosity, % Material 

1 1 mil Brunswick 27.4 82 stainless steel 

2 12 micron Bekaert 13.4 89.7 stainless steel 

3 31 micron Bekaert 31 90 stainless steel 

 

The difference in engine performance using different regenerator fillings is demonstrated in figure 12. 

Both shaft power and thermal efficiency increased with engine speed till the optimum speed for all 

configurations. It can be seen that type 3 is superior to type 1 and type 2, with shaft power produced 

503W, 316 W and 255W, respectively. Type 1 has the highest wire diameter and porosity so that the heat 

transfer rate is increased due to the increased surface area. This explains why the shaft power is increased 

when using type 3. On the other hand, type 1 combines moderate wire diameter and porosity. The 

optimum speed occurs when the negative effects of elevated pressure drop is balanced with the positive 

effects of increased heat transfer. The optimum speed for type 2, type 1 and type 3 occurs at 400 rpm, 500 

rpm and 600 rpm, respectively. For the thermal efficiency, the optimum speed occurs at 300 rpm, 400 

rpm and 500 rpm for type 2, type 1 and type 3, respectively. 
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Figure 12: Effect of regenerator matrix on engine performance, (a) shaft power and (b) engine efficiency. 

 

5.3 Effect of gas type 

Most developed Stirling engines can run fast when charged with helium than with air [26]. Helium 

possesses higher power density due to its low viscosity and higher thermal conductivity. In this regard, 

the effect of gas type on engine performance at different engine speeds was presented in figure 13. The 

charge pressure and hot end temperature were maintained at their maximum values of 10 bar and 650 °C, 

respectively. It is observed that when helium is used, the shaft power exhibits superior values than 

nitrogen at higher engine speeds. Up to speed of 500 rpm, no significant difference of shaft power is 

observed between the two gases. At 1100 rpm engine produces maximum power of 712 W when using 

helium compared to 503 W at 600 rpm when using nitrogen. The thermal efficiency drops steeply from 

16.5% to 3% when using nitrogen between 500 to 1000 rpm. Meanwhile, thermal efficiency using helium 

drops steadily from 16.3% to 8.4% between 700 to 1500 rpm. 
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Figure 13: Effect of gas type on engine performance, (a) shaft power and (b) engine efficiency. 
 

 

5.4 Effect of low temperature cooling 

Cryogenic fluids including liquid air/LN2 have been acknowledged as energy storage vectors with high 

storage density of 0.77 [MJ/kg]. Surplus electricity (off-peak) and/or the renewable energy sources can be 

used to liquefy air/N2 in which can be stored and transported using the well-developed cryogenic industry 

infrastructure. In this work, the feasibility of utilizing the stored cold energy of LN2 to maximize the shaft 

power of the engine was investigated. Figure 14 shows the effect of low cooling temperature, in the range 

of (15 ˚C to -150 ˚C), on the shaft power and thermal efficiency for nitrogen and helium as working 

gases. In all figures [ a, b, c and d], both shaft power and thermal efficiency increase with lowering the 

cooling temperature for helium and nitrogen. As cooling temperature decreases, the minimum cyclic 

pressure is reduced giving rise to the average cyclic pressure thus producing higher power density. 

Similarly shaft power and thermal efficiency is increased when hot end temperature is increased from 450 

˚C to 650 ˚C.   As heating temperature is increased from 450 ˚C to 650 ˚C, a 49% enhancement of shaft 

power is achieved for helium at -50 ˚C reaching 1kW and 35% for Nitrogen reaching 700 W. This 

compares to a 35% enhancement of thermal efficiency for helium at -50 ˚C reaching 18.8% and 23% 

enhancement for Nitrogen reaching 19.7% when compared to that at normal cooling temperature of 15 

˚C.  
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Figure 14: Effect of cold end temperature on engine performance at different hot end temperatures for 
helium (a, b) and nitrogen (c, d). 
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623 W at pipe diameter of 16 mm. The thermal efficiency is similarly enhanced by 5% reaching 16.9% 

but at different optimum diameter of 20 mm. 

 
 

Figure 15: Effect of cold end temperature on engine performance at different hot end temperatures, (a) 

shaft power and (b) engine efficiency. 

 

6. Conclusion 

An enhanced thermodynamic model based on non-ideal adiabatic analysis, is developed to simulate 

gamma-type Stirling engine (ST05-CNC). The engine is reconfigured with six engine cells to include the 

connecting pipe for better accuracy.  Random fibre correlations for flow friction and heat transfer, based 

on oscillatory flow testing were used to model the regenerator.  The real pistons motion was adopted and 

hence the real volume variation was included in the model. The pumping losses in the heat exchangers 

were evaluated depending on the type of flow regime. Thermal losses such as shuttle and conduction 

losses are accounted for as well as the mechanical losses to estimate the shaft power. A maximum 

deviation of 15% was found between model and experimental results. The maximum deviation of the 

model prediction is lower than that of some published work with similar methodology and analysis. 

The model was further used to investigate the effect of phase angle, gas type, regenerator matrix type, 

dead volume and low cooling temperature on engine performance. A 20% enhancement in shaft power 

was achieved as the connecting pipe diameter was reduced by a 50%. This is in a good agreement with a 

previously published work on a gamma-type Stirling engine. Also, the low cooling effect on shaft power 

15 

15.2 

15.4 

15.6 

15.8 

16 

16.2 

16.4 

16.6 

16.8 

17 

450 

470 

490 

510 

530 

550 

570 

590 

610 

630 

650 

10 15 20 25 30 35 

Th
e

rm
al

 e
ff

ic
ie

n
cy

, %
 

Sh
af

t 
p

o
w

e
r,

 W
 

Connecting pipe diameter, mm  

Psh 

eff 



  

Revised manuscript 
 

27 
 

is addressed in this work and the shaft power was found to be significantly enhanced by 49% for helium 

and 35% for nitrogen when cooling temperature is lowered to -50 °C while heating temperature remains 

constant at 650 °C.  

 

 The theoretical results obtained from the model, (helium as a working gas, connecting pipe reduction, 

and phase angle adjustment), will be verified with further experimental testing to demonstrate the impact 

of engine improvements on its performance.  
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Highlights 

 

 Enhanced thermodynamic model for gamma-type Stirling engine was developed. 

 Validation against experiments was performed. 

 Influence of different parameters on engine performance was investigated. 

 Deeper insight into engine improvements was highlighted. 

 Effect of low temperature cooling on engine performance was addressed. 

 


