
 
 

On the characters of the Sylow p-subgroups of
untwisted Chevalley groups Y_n(p^a)
Magaard, Kay; Himstedt, F; Le, Tung

DOI:
10.1112/S1461157016000401

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Magaard, K, Himstedt, F & Le, T 2016, 'On the characters of the Sylow p-subgroups of untwisted Chevalley
groups Y_n(p^a)', London Mathematical Society. Journal of Computation and Mathematics, vol. 19, no. 2, pp.
303-359. https://doi.org/10.1112/S1461157016000401

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Final Version of Record available online at: https://doi.org/10.1112/S1461157016000401
© The Author(s) 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1112/S1461157016000401
https://research.birmingham.ac.uk/portal/en/publications/on-the-characters-of-the-sylow-psubgroups-of-untwisted-chevalley-groups-ynpa(6fdb7434-ec9c-48b7-be78-78a1b083d15b).html


Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

On the characters of the Sylow p-subgroups of untwisted
Chevalley groups Yn(p

a)

Frank Himstedt, Tung Le and Kay Magaard

Abstract

Let UYn(q) be a Sylow p-subgroup of an untwisted Chevalley group Yn(q) of rank n defined
over Fq where q is a power of a prime p. We partition the set Irr(UYn(q)) of irreducible characters
of UYn(q) into families indexed by antichains of positive roots of the root system of type Yn.
We focus our attention on the families of characters of UYn(q) which are indexed by antichains
of length 1. Then for each positive root α we establish a one to one correspondence between
the minimal degree members of the family indexed by α and the linear characters of a certain
subquotient Tα of UYn(q). For Yn = An our single root character construction recovers amongst
other things the elementary supercharacters of these groups. Most importantly though this
paper lays the groundwork for our classification of the elements of Irr(UEi(q)), 6 ≤ i ≤ 8 and
Irr(UF4(q)).

1. Introduction

Let p be a prime, q = pa and Yn(q) be a finite quasisimple group of untwisted rank n defined
over the field Fq. By UYn(q) we denote a Sylow p-subgroup of Yn(q) and by Irr(X) we denote
the set of ordinary irreducible characters of the group X.

This paper lays the groundwork for our study of Irr(UEi(q)) where 6 ≤ i ≤ 8, and
Irr(UF4(q)). Our approach is to construct the characters explicitly using as primary parameters
the underlying root system and the field. Our focus here is on the families of characters which
we parameterize by a single root. For the classical groups, these families can be described
recursively via character correspondences which can be achieved using Lemma 2.1. Establishing
similar character correspondences for families parameterized by more than one root requires
iterated applications of Lemma 2.1. Given the length of the current paper we treat the recursive
method in a sequel.

The solution of the dual problem, the determination of the conjugacy classes of UYn(q), has
been achieved for rank up to 8, but not all of E8, in [13], [14] and [15] by Goodwin, Mosch,
and Röhrle. Combining these results with the results of this paper and its planned sequel opens
the way for the construction of the generic character tables of these groups. For the groups
UD4(q) this is presently being carried out by Goodwin, Le, and Magaard, see [11].

One motivation for constructing the generic character tables of UYn(q) is to aid in the
construction of the cross characteristic representations and in the determination of the
decomposition numbers of the exceptional groups of Lie type. Following Okuyama and Waki
[31], [37] and Himstedt, Huang and Noeske [19], [20], [22], we see that characters of parabolic
subgroups are a useful tool in the computation of the decomposition numbers of finite groups
of Lie type in the cross characteristic case.

A second motivation is to explain exactly why the primes 3 and 5 are bad for the exceptional
groups of Lie type from the point of view of the representation theory of UYn(q). A partial
explanation is supplied in Le, Magaard [28] where families of characters are exhibited whose
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degree is not a power of q = 3a or q = 5a. This generalizes a construction for UD4(q) in [21],
where it is shown that there exists exactly one family of characters whose behavior at the prime
2 is different than for odd primes. At present we do not know how many families of UEi(q)
characters behave differently at bad primes than at others.

A third motivation is the conjecture of Higman [18] from 1960 that the number of elements of
Irr(UAr) is a polynomial in Z[q] and the generalization to other classical groups. This problem
has led to the development of supercharacter theories. By grouping conjugacy classes into so
called superclasses and characters into supercharacters these theories allow one to construct
supercharacter tables which may be viewed as summarized versions of ordinary character
tables. These theories were introduced by Diaconis and Isaacs [6] for algebra groups such
as UAn(q). Subsequently André and Neto [2] developed supercharacter theories for UBn(q),
UCn(q), UDn(q). A common key feature in these theories is that the supercharacters are
constructed as tensor products of elementary characters. An open problem in this area is the
question of how to split non elementary supercharacters into ordinary irreducible characters.
In his thesis Le [27] shows that the splitting of supercharacters into irreducibles is governed by
certain pattern subgroups of UYn and thus it would suffice to know that Higman’s conjecture
holds for pattern subgroups. While Higman’s conjecture has been verified for n ≤ 13 by Vera-
Lopez and Arregi [36], it was shown by Halasi in [16] and Halasi and Pálfy [17] that it does not
hold for pattern groups in general. Pak and Soffer’s recent preprint [32] gives strong evidence
for why Higman’s conjecture may fail for n ≥ 59 while also verifying that the conjecture holds
for n ≤ 16.

Our approach for classifying the irreducible characters of UYn(q) is based on an analysis of
the supports of the centers of the characters and character correspondences. We proceed as
follows. Let Φ be a root system of type Yn and let Φ+ denote the set of positive roots with
respect to some choice of simple roots. The group UYn is generated by the root subgroups Xα

where α ∈ Φ+. For χ ∈ Irr(UYn) we define a set rs(χ), see Definition 4, which consists of those
elements β ∈ Φ+ whose root subgroup Xβ lies in Z(χ) but not in Ker(χ). Subsets of Φ+ which
arise in this way are called representable. We show that the number N(Φ) of representable
sets in Φ+ is a sum of (generalized) Narayana numbers and that N(Φ) is equal to the number
of antichains in the poset of positive roots of Φ as well as the number of clusters in a cluster
algebra of type Φ, see Proposition 5.9.

We say that a character χ is a single root character if its representable set is non-empty
and as small as possible, that is |rs(χ)| = 1. Each family of single root characters contains a
collection of characters of minimal degree which we call midafi characters and each collection
contains a special element that we call standard midafi. In case the root system is of type An
our standard midafi characters are called elementary characters by André [1]; see also [6].
For the root systems of types Bn, Cn and Dn our midafi characters differ from those defined
in André and Neto [2]. To see this we note that all of our standard midafi characters are
irreducible, whereas not all the elementary characters defined by André and Neto are.

For α ∈ Φ+ we define

Irr(UYn(q))α := {χ ∈ Irr(UYn(q)) | rs(χ) = {α}},

the set of single root characters lying over α and the set

Irrmida(UYi)α := {µ ∈ Irr(UYn(q))α | µ is midafi}.

The observation that Xβ must act faithfully on any module affording χ for all β ∈ Φ+

such that α− β ∈ Φ+ leads to the definition of the hook h(α) of α, see Definition 9. For χ ∈
Irr(UYn(q))α let k(α) := {κ ∈ Φ+ | Xκ ⊆ Ker(χ)}. We show that, for fixed α, the set k(α) ⊆ Φ+

does not depend on χ, that h(α) ∩ k(α) = ∅ and that in general β + γ ∈ h(α) ∪ k(α) for all
β, γ ∈ h(α). Also we will see that typically Hα := 〈Xγ | γ ∈ h(α)〉 acts as special group on
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any module affording χ. As a result we obtain that χ(1) = cqd with d = (|h(α)| − 1)/2. When
c = 1, then χ is a midafi.

More generally, using our Reduction Lemma 2.1, we can interpret c as the degree of an
irreducible character of a suitable quotient Tα of a certain subgroup Sα < UYn(q). Our main
theorems can now be stated under mild hypotheses on the prime p, see Hypothesis 1.

Theorem 1.1. Let Φn be an irreducible root system of type An, Bn, n ≥ 2, Cn, n ≥ 3
or Dn, n ≥ 4 and Fq a finite field of characteristic p such that Hypothesis 1 holds. For every
positive root α ∈ Φ+

n the map

Ψ : Irr(Tα)× Irr(Xα)∗ → Irr(UYn)α, (µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UYn

is a one to one correspondence.

Theorem 1.2. Let i ∈ {2, 4, 6, 7, 8} and let Φi be a root system of type G2, F4 or Ei
respectively and Fq a finite field of characteristic p such that Hypothesis 1 holds. For every
positive root α ∈ Φ+

i the map

Ψ : Irrlin(Tα)× Irr(Xα)∗ → Irrmida(UYi)α, (µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UYi

is a one to one correspondence.

In case Φ is classical, we provide information on the structure of Tα for every α ∈ Φ+,
whereas for Φ exceptional we determine for every α ∈ Φ+

i the number of midafis for α and
their degrees.

To explain why it is that our results differ for classical and exceptional groups we need to
address the issue of how Tα is constructed. We partition the set h(α) \ {α} into two subsets of
equal size a(α) and `(α) which we call the arm, respectively the leg of h(α). Then we define the
source s(α) := Φ+ \ a(α). A priory we have 2|a(α)| choices for the sets a(α) and `(α). However,
if our choice for the arm and leg satisfies the following conditions

(1) s(α) is closed under addition of roots, and that
(2) λ+ σ ∈ `(α) ∪ k(α) for all λ ∈ `(α) and all σ ∈ s(α) such that λ+ σ ∈ Φ+,

then we can achieve the hypotheses of Lemma 2.1 to establish the correspondence in
Theorem 1.1. In this case the group Sα := 〈Xσ | σ ∈ s(α)〉 contains the normal subgroup
Kα := 〈Xλ | λ ∈ k(α)〉 such that Sα, the image of Sα in UYn(q)/Kα, contains a normal
subgroup Lα := 〈Xλ | λ ∈ `(α)〉 such that Sα/Lα = Tα ×Xα.

Conditions (1) and (2) can always be achieved when Φ is classical or of type G2. When Φ is
exceptional, then condition (1) can always be achieved. However when Φ is of type E8, then
condition (2) cannot be achieved for 46 of the 120 roots of Φ+. The numbers for types E7, E6

and F4 are 11 out of 63, 2 out of 36, and 2 out 24, respectively. Nevertheless we have

Theorem 1.3. Let i ∈ {2, 4, 6, 7, 8} and let Φi be a root system of type G2, F4 or Ei
respectively and Fq a finite field of characteristic p such that Hypothesis 1 holds. For every
positive root α ∈ Φ+

i for which conditions (1) and (2) above can be achieved the map

Ψ : Irr(Tα)× Irr(Xα)∗ → Irr(UYi)α, (µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UYi

is a one to one correspondence.

We remark that if p > 3 then Hypothesis 1 is satisfied for the groups UG2(q) and in this
case every irreducible character of UG2(q) has degree 1, q or q2 and all irreducible characters
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of degree > 1 are midafis. We remark further that the number of possible choices for a(α) so
that (1) and (2) above are satisfied is (|h(α)| − 1)/2 in type An and much smaller in all other
cases.

In case no choice of a(α) achieves condition (2) we pick from those choices which satisfy
condition (1) the one that minimizes the index of Lα in its normal closure in Sα. This amounts
to minimizing the size of

`(α) := {τ ∈ s(α) | There exist λ ∈ `(α) and σi ∈ s(α) such that τ = λ+
∑
i

σi}.

Let L̃α := 〈Xµ | µ ∈ `(α)〉. Then L̃α is normal in Sα and finally we can define the group Tα

in the statement of Theorem 1.2 via Sα/L̃α ∼= Tα ×Xα.
With the machinery set up in this paper we are able to give full descriptions of the character

correspondences for the exceptional groups. It should be noted that if Xα projects faithfully
into a classical quotient of UYn(q), then condition (2) can always be achieved. Of the 120
positive roots of E8 exactly 53 have the property that Xα projects faithfully into a classical
quotient. In 46 of the 67 remaining cases condition (2) cannot be achieved. (For F4, E6 and
E7 the numbers are 2 out of 10, 2 out of 7, and 11 out of 23, respectively.) Compounding
this is the fact that in those cases where condition (2) cannot be achieved, the descriptions of
the single root characters involve up to possibly 15 (generally as many as there are subhooks
listed in Table A.2) recursive applications of our Reduction Lemma 2.1 and are thus beyond
the scope of this article.

An algorithmic treatment of the single root characters will appear in forthcoming articles.
The case Φ of type F4 is considered by Goodwin, Le, Magaard, and Paolini in [12], where
we see that our machinery also generalizes to the case of multiple root characters which we
encounter in root systems of exceptional Lie type.

The paper is organized as follows. In Section 2 we fix notation and prove Lemma 2.1 which is
fundamental to our construction of characters. In Section 3 we define closed patterns (additively
closed subsets of roots) and the corresponding pattern subgroups, and establish some of their
basic properties. This is used in Sections 4 and 5 to define the key terms of this paper, such
as hooks, root kernels, representable sets and to establish their basic properties. We show that
the number of representable sets is equal to the number of antichains in the poset of positive
roots. In Section 6 we study single root characters to lay the foundations for establishing our
correspondences. For the classical root systems our main theorem is established in Section 7
and for the exceptional root systems in Section 8.

2. Notation and a reduction lemma

In this preliminary section we fix our notation and prove the key lemma which is needed to
establish the character correspondences in Sections 7 and 8.

2.1. Character theoretic setting

For any finite group U let Irr(U) be the set of complex irreducible characters of U and
Irrlin(U) := {χ ∈ Irr(U) | χ(1) = 1} the set of linear characters. Let (·, ·)U or (·, ·) be the usual
scalar product on the space of C-valued class functions of U . We write 1U or 1 for the trivial
character of U and set Irr(U)∗ := Irr(U) \ {1U}. Suppose that N is a normal subgroup of U
and that H is a (not necessarily normal) subgroup of U . If χ is a character of U and λ is a
character of H and ψ is a character of the factor group U/N , we write λU for the character of
U induced by λ and χ|H for the restriction of χ to H and InflUU/Nψ for the inflation of ψ to U .
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For λ ∈ Irr(H) we set

Irr(U, λ) := {χ ∈ Irr(U) | (χ, λU ) > 0} and

Irr(U/N, λ) := {χ ∈ Irr(U, λ) |N ⊆ Ker(χ)},

where Ker(χ) denotes the kernel of χ. The following lemma provides a character correspondence
between finite groups and certain subgroups.

Lemma 2.1. Let H be a subgroup of a finite group U and X a set of representatives for
U/H. Furthermore, let Y , Z be subgroups of H and λ ∈ Irr(Z) such that

(a) Z ⊆ Z(U),
(b) Y EH,
(c) Z ∩ Y = {1},
(d) ZY E U ,
(e) for the extension λ̃ ∈ Irr(ZY ) = Irr(Z × Y ) of λ with Y ⊆ Ker(λ̃) we have xλ̃ 6= λ̃ for

all x ∈ X \H.
Then the map Φ : Irr(H/Y, λ)→ Irr(U, λ) ∩ Irr(U,1Y ), χ 7→ χU is bijective. If additionally

(f) |X| = |Y |
holds, then Irr(U, λ) ∩ Irr(U,1Y ) = Irr(U, λ).

Proof. Suppose that (a)-(e) are true. By (c),(d),(e) the character λ̃ is an irreducible
character of the normal subgroup ZY of U so that we can apply Clifford theory. For all h ∈ H,
y ∈ Y , z ∈ Z we have hλ̃(zy) = λ̃(zhyh) = λ̃(zy) by (a) and (b). So H is contained in the inertia
subgroup IU (λ̃), and from (e) we get H = IU (λ̃). By Clifford theory [25, Theorem (6.11)] the
map

Φ : Irr(H, λ̃)→ Irr(U, λ̃), χ 7→ χU

is a bijection. Since Irr(H, λ̃) = Irr(H/Y, λ) and Irr(U, λ̃) = Irr(U, λ) ∩ Irr(U,1Y ) the first claim
follows.

Assume additionally that (f) holds. By (a), (e) and (f) the character λ has at least |X| = |Y |
distinct extensions to ZY = Z × Y . It follows that λ has exactly |Y | distinct extensions to
ZY = Z × Y and that these are permuted transitively by the conjugation action of U . One of
these extensions is λ̃. Thus each µ ∈ Irr(ZY ) with µ|Z = λ is conjugate in U to λ̃. Hence

Irr(U, λ) ⊆ Irr(U, λ̃) = Irr(U, λ) ∩ Irr(U,1Y ) ⊆ Irr(U, λ).

2.2. Lie theoretic setting

We fix a power q = pa of a prime p and write Fq for a field with q elements. Let Yn(q) be
an untwisted Chevalley group defined over Fq, constructed from a simple Lie algebra with the
irreducible root system Φ of Dynkin type Y and rank n as described in [4, Section 4.4]. So
Yn(q) is generated by elements xα(t) for α ∈ Φ and t ∈ Fq. Let Xα := 〈xα(t) | t ∈ Fq〉 be the
root subgroup corresponding to a root α ∈ Φ.

We fix a set ∆ = {δ1, . . . , δn} of simple roots and write Φ+ for the corresponding set of
positive roots. So each α ∈ Φ+ can be written as α =

∑n
i=1miδi where the coefficients mi ≥ 0

are integers. We write ht(α) :=
∑n
i=1mi for the height of α.

Let UYn(q) or UYn be the subgroup generated by {xα(t) |α ∈ Φ+, t ∈ Fq}. So UYn is a
maximal unipotent subgroup and a Sylow p-subgroup of Yn(q). For example, it is well-known
that UA5(q) is isomorphic to the subgroup of SL6(q) consisting of all upper unitriangular
matrices. Let ≤ be a total ordering on Φ+. Then each element u ∈ UYn can be written uniquely
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as

u =
∏
α∈Φ+

xα(tα), (2.1)

where the product is taken over all positive roots in increasing order. The multiplication of
the elements of UYn is determined by commutator relations after fixing the signs of certain
structure constants corresponding to the so-called extraspecial pairs of roots; see [4, Sections 4.2
and 5.2] for details.

We say that a non-empty subset Ψ ⊆ Φ is a root subsystem if σα(Ψ) = Ψ for all reflections
σα corresponding to roots α ∈ Ψ. Let Ψ be a root subsystem of Φ of Dynkin type Y ′ and
rank n′ and let ZΨ be the Z-span of Ψ. We define Ψ+ := Ψ ∩ Φ+ and UΨ :=

∏
α∈Ψ+ Xα where

the product is taken over all α ∈ Ψ+ in increasing order. If ZΨ ∩ Φ = Ψ then the commutator
relations and the properties of the structure constants in [4, p.58-59] imply that UΨ is a
subgroup of UYn isomorphic to UY ′n′ .

Recall that we can define a partial order � on Φ+ as follows (see [23, 10.1]): For roots
α, β ∈ Φ+ we write α ≺ β if β − α is a non-zero sum of positive roots and we write α � β if
α ≺ β or α = β. The following lemma is a special case of [35, Lemma 3.2].

Lemma 2.2. For all α, β ∈ Φ+ with α ≺ β there are roots γi ∈ Φ+ such that α = γ0 ≺ γ1 ≺
γ2 ≺ · · · ≺ γs−1 ≺ γs = β and γi − γi−1 ∈ ∆ for all i = 1, 2, . . . , s.

Proof. The lemma follows from [35, Lemma 3.2].

A chain in Φ+ is a subset C = {γ1, γ2, . . . , γs} ⊆ Φ+ such that γi ≺ γi+1 for all 1 ≤ i ≤ s− 1.
We say that C is unrefinable if there is no root γ ∈ Φ+ \ C such that γi ≺ γ ≺ γi+1 for some i.
By Lemma 2.2 unrefinable chains have the property that the difference of consecutive elements
is a simple root. By [23, Lemma 10.4A] the highest positive root of Φ is the unique maximal
element of the poset (Φ+,�).

3. Pattern subgroups

In [26, Section 2], Isaacs defines pattern subgroups of the subgroup Um(q) of GLm(Fq)
consisting of the upper unitriangular matrices. Since Um(q) is isomorphic to UAm−1(q) these
pattern subgroups can be identified with subgroups of UAm−1(q) in a natural way. The
following definition generalizes the notion of pattern subgroups to other Dynkin types. We
assume the setting described in Section 2. In particular, q is a power of a prime p and Yn(q) is
an untwisted Chevalley group defined over Fq with the irreducible root system Φ. The set of
positive roots is denoted by Φ+ and UYn(q) or UYn is the subgroup of Yn(q) generated by the
root subgroups Xα for α ∈ Φ+.

Definition 1. Let S be a subset of Φ+.
(a) The set S is called a closed pattern if for all roots α, β ∈ S we have α+ β ∈ S or

α+ β 6∈ Φ+.
(b) For a closed pattern S let P (S) be the subgroup of UYn generated by the root subgroups

Xα for α ∈ S. We call P (S) the pattern subgroup corresponding to S.

Note that when we have a total ordering ≤ on Φ+ and a closed pattern S then (2.1), [4,
Lemma 3.6.3] and the commutator relations imply that P (S) =

∏
α∈S Xα where the product
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is taken over the roots in S in increasing order. Obviously, each root subgroup Xα for α ∈ Φ+

and the trivial subgroups UYn = P (Φ+) and {1} = P (∅) are pattern subgroups.

Definition 2. Let M,N be subsets of a closed pattern S ⊆ Φ+.
(a) We say that M is a closed subpattern of S if M is a closed pattern.
(b) The closed pattern generated by M is the intersection of all closed patterns contain-

ing M .
(c) We say that M normalizes N if for all α ∈M , β ∈ N we have α+ β ∈ N or α+ β 6∈ Φ+.

We say that N is normal in S if S normalizes N . In this case we write N E S and call
P (S)/P (N) the quotient pattern group of P (S) corresponding to N . We say that N is
normal if N is normal in Φ+.

(d) The normal closure of M in S is the intersection of all normal closed subpatterns of S
containing M .

Obviously, the closed pattern generated by M ⊆ Φ+ is the smallest closed pattern containing
M and the normal closure of N in S is the smallest normal closed subpattern of S containing
M . Note that the normal closed patterns are exactly the (upper) order ideals of the root poset
(Φ+,�) in the sense of [35].

Remark 1. If N E S then (2.1), [4, Lemma 3.6.3] and the commutator relations imply
that N is a closed subpattern of S and P (N) E P (S). In particular, P (S)/P (N) is a well-
defined factor group. Let π : P (S)→ P (S)/P (N) be the canonical projection and γ ∈ S \N .
Since π maps the root subgroup Xγ injectively into P (S)/P (N) we often identify Xγ with
π(Xγ).

To avoid degeneracies in the commutator relations we will often assume the following
hypothesis.

Hypothesis 1. If the Dynkin diagram of Φ has a double or triple edge assume that
• p > 2 if Φ is of type Bm or Cm (m ≥ 2) or F4,
• p > 3 if Φ is of type type G2.

Next, we consider the connection between normal closed patterns and normal subgroups.
For x, y ∈ UYn we set [x, y] := x−1y−1xy. Part (c) of the following lemma is stated in [3] for
connected reductive groups; see also [7, 1.12, 1.13]. Since we need it for finite groups we sketch
a proof.

Lemma 3.1. Let α, β ∈ Φ+ such that α+ β ∈ Φ+. We assume that Hypothesis 1 is satisfied
and set Φ>0

α,β := {iα+ jβ ∈ Φ+ | i, j ∈ Z>0}.
(a) For all s, t ∈ Fq there are constants cijαβ ∈ Fq such that c11αβ 6= 0 and

xα(s)−1xβ(t)−1xα(s)xβ(t) =
∏
i,j>0

xiα+jβ(cijαβ · (−t)isj), (3.1)

where the product is taken over all i, j ∈ Z>0, such that iα+ jβ ∈ Φ+ and the terms
in the product are ordered from left to right so that i+ j is increasing.

(b) The set Φ>0
α,β is a closed pattern and a subset of the normal closure of {α+ β} in the

closed pattern generated by α and β.
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(c) ([3, Remarque 2.5]) [Xα, Xβ ] =
∏

γ∈Φ>0
α,β

Xγ .

Note that because Φ>0
α,β is a closed pattern the product in (c) does not depend on the order

of the factors.

Proof. (a) By assumption, Φ is irreducible. Let Φα,β := Φ ∩ (Zα+ Zβ). Since α+ β ∈ Φ
we know from [4, Lemma 3.6.3] that Φα,β is a root system of type A2, B2 or G2. Let −mα+
β, . . . , β, . . . ,m′α+ β be the α-string through β. Then (3.1) holds with c11αβ = ±(m+ 1) by
[4, Corollary 5.2.3 and Sections 4.1, 4.3]. We have to show that c11αβ 6= 0.

Suppose that Φ has type An, Dn, E6, E7 or E8. Since all roots of Φ have the same length,
Φα,β has type A2 and hence m = 0; see [23, 9.3]. Thus c11αβ = ±1 and c11αβ 6= 0. Suppose that
Φ has type Bn, Cn or F4. Again the lengths of the roots imply that Φα,β has type A2 or B2 and
so m ∈ {0, 1} by [23, 9.3]. Thus c11αβ = ±1 or c11αβ = ±2 and so c11αβ 6= 0 by Hypothesis 1.
Finally suppose that Φ has type G2. Then Φα,β has type A2 or G2 and so m ∈ {0, 1, 2} by [23,
9.3]. Thus c11αβ = ±1,±2 or ±3. Thus c11αβ 6= 0 because p > 3.

(b), (c) Obviously, Φ>0
α,β is a closed pattern and thus

∏
γ∈Φ>0

α,β
Xγ is a subgroup of UYn.

The commutator relations imply that [Xα, Xβ ] ⊆
∏
γ∈Φ>0

α,β
Xγ . Since Φα,β has type A2, B2 or

G2 we see that Φ>0
α,β is one of the following sets: {α+ β}, {α+ β, 2α+ β}, {α+ β, α+ 2β},

{α+ β, 2α+ β, α+ 2β}, {α+ β, 2α+ β, 3α+ β, 3α+ 2β}, {α+ β, α+ 2β, α+ 3β, 2α+ 3β}.
We only treat the most complicated case Φ>0

α,β = {α+ β, 2α+ β, 3α+ β, 3α+ 2β}. Because
2α+ β = α+ (α+ β), 3α+ β = α+ (2α+ β) and 3α+ 2β = β + (3α+ β) the statement in
part (b) follows.

To prove the statement in (c) note that [Xα, Xβ ] E 〈Xα, Xβ〉; see [24, Hilfssatz III.1.6 (b)].
By (a) we have [Xα, Xβ ] = Xα+β mod X2α+βX3α+βX3α+2β . Thus, there are d, d′, d′′ ∈ Fq
such that u := xα+β(1)x2α+β(d)x3α+β(d′)x3α+2β(d′′) ∈ [Xα, Xβ ]. Again it follows from (a)
that [Xα, u] = X2α+β mod X3α+βX3α+2β so there are elements f, f ′ ∈ Fq such that u′ :=
x2α+β(1)x3α+β(f)x3α+2β(f ′) ∈ [Xα, Xβ ]. Again from (a) we get that [Xα, u

′] = X3α+β mod
X3α+2β and then u′′ := x3α+β(1)x3α+2β(g) ∈ [Xα, Xβ ] for some g ∈ Fq. From (a) we get
[Xβ , u

′′] = X3α+2β ⊆ [Xα, Xβ ]. Now we can work backwards and get X3α+β ⊆ [Xα, Xβ ] and
then X2α+β ⊆ [Xα, Xβ ] and finally Xα+β ⊆ [Xα, Xβ ] proving (c).

Corollary 3.2. Let N ⊆ S ⊆ Φ+ be closed patterns and suppose that Hypothesis 1 holds.
Then N E S if and only if P (N) E P (S).

Proof. By Remark 1 we already know that N E S implies P (N) E P (S) even without the
condition on p. Now suppose that P (N) E P (S) and let α ∈ S, β ∈ N such that α+ β ∈ Φ+. By
Lemma 3.1 (c) we have Xα+β ⊆ [Xα, Xβ ] ⊆ [Xα, P (N)] ⊆ P (N). The remark after Definition 1
and the uniqueness in (2.1) imply that α+ β ∈ N .

Without Hypothesis 1, the converse in Corollary 3.2 is not true in general: Suppose that Φ
has type B2 and that {α, β} is a set of simple roots. If p = 2 then Xα+β E UB2(q) but the
closed pattern {α+ β} is not normal.

The following lemmas are of theoretical and computational use. They show that derived
subgroups and centers of quotient pattern groups are compatible with the root structure.
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Lemma 3.3. Let N ⊆ S ⊆ Φ+ be closed patterns such that N E S and assume that
Hypothesis 1 holds. Then D := ({α+ β | α, β ∈ S} ∩ Φ+) ∪N is a normal closed subpattern
of S and [P (S)/P (N), P (S)/P (N)] = P (D)/P (N). In particular, the derived subgroup of a
pattern subgroup is also a pattern subgroup.

Proof. Since S is a closed pattern and N ⊆ S we have N ⊆ D ⊆ S. For all α ∈ S,
β ∈ D ⊆ S with α+ β ∈ Φ+ we have α+ β ∈ {α+ β | α, β ∈ S} ∩ Φ+ ⊆ D. Hence D is a
normal closed subpattern of S and P (N) ⊆ P (D) E P (S). It follows from Lemma 3.1 (c)
that P (D)/P (N) ⊆ [P (S)/P (N), P (S)/P (N)]. The commutator relations and Lemma 3.1 (b)
show that (P (S)/P (N))/(P (D)/P (N)) is abelian. Thus P (D)/P (N) is the derived subgroup
of P (S)/P (N).

Lemma 3.4. Let N ⊆ S ⊆ Φ+ be closed patterns such that N E S and assume that
Hypothesis 1 holds. Then

Z := {α ∈ S | for all γ ∈ S : α+ γ 6∈ Φ+ or α+ γ ∈ N} ∪N
is a normal closed subpattern of S and Z(P (S)/P (N)) = P (Z)/P (N). In particular, the center
Z(P (S)/P (N)) is isomorphic to a direct product of root subgroups.

Proof. Suppose that α ∈ S and β ∈ Z such that α+ β ∈ Φ+. By the definition of Z and
the normality of N in S we have α+ β ∈ N ⊆ Z and hence Z is a normal closed subpattern
of S containing N . The commutator relations and Lemma 3.1 (b) imply that P (Z)/P (N) ⊆
Z(P (S)/P (N)).

Now suppose that uP (N) ∈ Z(P (S)/P (N)) \ {1}. According to (2.1) we write

u = xα1(t1) · · ·xαs(ts)xαs+1(ts+1) · · ·xαs′ (ts′)
where αi ∈ S \N and ti 6= 0 for i = 1, . . . , s′ and m := ht(α1) = · · · = ht(αs) < ht(αs+1) ≤
ht(αs+2) ≤ · · · ≤ ht(αs′). We show that αi ∈ Z for i = 1, . . . , s′ by downwards induction on
m.

If m = max{ht(α) | α ∈ Φ+} then s = s′ = 1 and α1 + γ 6∈ Φ+ for all γ ∈ S and thus α1 ∈ Z.
Assume that m < max{ht(α) | α ∈ Φ+}. Let γ ∈ S and M be the normal subgroup of P (S)
generated by all Xα to roots α ∈ S such that α ∈ N or ht(α) > m+ ht(γ). By Lemma 3.1 (a)
there exist t̃1, . . . , t̃s ∈ Fq \ {0}, ũ ∈M such that

xγ(1)−1uxγ(1) = xα1(t1)xα1+γ(t̃1) · · ·xαs(ts)xαs+γ(t̃s)xαs+1(ts+1) · · ·xαs′ (ts′)ũ,
where we set xαi+γ(t̃i) := 1 if αi + γ 6∈ Φ+. It follows from the uniqueness in (2.1) that
αi + γ 6∈ Φ+ or αi + γ ∈ N for i = 1, . . . , s and therefore α1, . . . , αs ∈ Z. By induction we get
αs+1, . . . , αs′ ∈ Z completing the proof.

Definition 3. Let N ⊆ S ⊆ Φ+ be closed patterns such that N E S. Assume that
Hypothesis 1 holds and let Z be the closed subpattern of S defined in Lemma 3.4. We call the
set rz(P (S)/P (N)) := Z \N the root center of P (S)/P (N).

4. Root kernels and root centers

We keep the setting from the previous sections. In particular, q is a power of a prime p
and Yn(q) is an untwisted Chevalley group defined over Fq with an irreducible root system Φ.
In this section we associate with each irreducible character χ of a pattern subgroup P (S) of
UYn(q) certain sets of roots and pattern subgroups of P (S).
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We assume throughout this section that Hypothesis 1 holds.

Definition 4. Let S ⊆ Φ+ be a closed pattern. For χ ∈ Irr(P (S)) we set

rk(χ) := {α ∈ S | Xα ⊆ Ker(χ)},
rz(χ) := {α ∈ S | Xα ⊆ Z(χ)},
rs(χ) := rz(χ) \ rk(χ),

and call rk(χ) the root kernel, rz(χ) the root center and rs(χ) the central root support of χ.
Associated with these sets of roots are the following groups:

rKer(χ) := 〈Xα | α ∈ rk(χ)〉 ⊆ P (S),

rZ(χ) := 〈Xα | α ∈ rz(χ)〉 ⊆ P (S),

rS(χ) := rZ(χ)/rKer(χ) ⊆ P (S)/rKer(χ).

The next lemma shows that root kernels and root centers behave in much the same way as
the usual kernels and centers of irreducible characters. It also implies that rS(χ) is indeed a
factor group.

Lemma 4.1. Let S ⊆ Φ+ be a closed pattern and χ ∈ Irr(P (S)). Then:
(a) rk(χ) and rz(χ) are closed patterns which are normal in S.
(b) rKer(χ) and rZ(χ) are normal subgroups of P (S).
(c) The factor groups P (S)/rKer(χ), P (S)/rZ(χ) are quotient pattern groups.
(d) rZ(χ)/rKer(χ) = Z(P (S)/rKer(χ)).

Proof. (a) Let α ∈ S and β ∈ rk(χ) such that α+ β ∈ Φ+. By definition, we have Xβ ⊆
Ker(χ) E P (S). Thus Lemma 3.1 (c) implies Xα+β ⊆ [Xα, Xβ ] ⊆ Ker(χ) and so α+ β ∈ rk(χ).
It follows that rk(χ) is a closed pattern which is normal in S. The proof for rz(χ) is analogous.

(b), (c) follow from (a) and Remark 1.

(d) By part (a) and Lemma 3.4 there is a closed pattern Z such that rk(χ) ⊆ Z ⊆ S
and P (Z)/rKer(χ) = Z(P (S)/rKer(χ)). Obviously, Z ⊆ rz(χ). Let α ∈ S and β ∈ rz(χ). By
Lemma 3.1 (c) we haveXα+β ⊆ [Xα, Xβ ] ⊆ [Xα, Z(χ)] ⊆ Ker(χ). Hence α+ β ∈ rk(χ) E S and
Lemma 3.1 (b) implies that iα+ jβ ∈ rk(χ) for all positive integers i, j. Hence, [Xα, Xβ ] = 1
modulo rKer(χ) by Lemma 3.1 (c) and we can conclude rz(χ) ⊆ Z.

Without Hypothesis 1 the statements in Lemma 4.1 are not always true. Suppose that Φ
has type B2 and that {α, β} is a set of simple roots, where α is short. If p = q = 2 then N :=
{xα(d1)xβ(d2)xα+β(d3)x2α+β(d3) | d1, d2, d3 ∈ Fq} is a normal subgroup of UB2(2) of index 2.
Let χ ∈ Irr(UB2(2)) be the nontrivial linear character with Ker(χ) = N . Then rk(χ) = {α, β}
and this is no closed pattern.

Lemma 4.2. Let N E Φ+ and Σ = {α1, . . . , αs} = rz(UYn/P (N)).
(a) The closed pattern N is the unique maximal element of the set {M E Φ+ |M ∩ Σ = ∅}.
(b) For all irreducible characters χ ∈ Irr(UYn) the following are equivalent:

(i) rs(χ) = Σ.
(ii) χ is a constituent of λUYn for some linear character λ of P (Σ ∪N) satisfying P (N) ⊆

Ker(λ) and λ|Xαi 6= 1Xαi for i = 1, 2, . . . , s.
If the conditions (i) and (ii) hold then N = rk(χ).
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Proof. (b) By definition we have N E Φ+ and Σ ∩N = ∅. We identify Xαi with its image
in UYn/P (N), so Z(UYn/P (N)) = Xα1

× · · · ×Xαs .
(i) ⇒ (ii) Suppose that rs(χ) = Σ and let M be a normal closed pattern with M ∩ Σ = ∅.

If M 6⊆ rk(χ) then we choose β ∈M \ rk(χ) such that ht(β) is maximal. Let α ∈ Φ+. Since
M E Φ+ the maximality of ht(β) implies that α+ β 6∈ Φ+ or α+ β ∈ rk(χ) and therefore β ∈
rz(χ) by Lemma 3.4 and Lemma 4.1 (d). Thus β ∈ rz(χ) \ rk(χ) = rs(χ) = Σ, a contradiction.
Hence M ⊆ rk(χ). In particular, we have N ⊆ rk(χ) and we can identify χ with some χ̃ ∈
Irr(UYn/P (N)). Because rs(χ) = Σ we have Xαi 6⊆ Ker(χ̃) for all i. Thus there is a linear
character λ̃ ∈ Irr(Xα1

× · · · ×Xαs) with λ̃|Xαi 6= 1Xαi for all i such that χ̃ is a constituent of

λ̃UYn/P (N). Hence λ := Infl
P (Σ∪N)
P (Σ∪N)/P (N)λ̃ has properties described in (ii).

(ii) ⇒ (i) Let χ be a constituent of λUYn for some linear character λ of P (Σ ∪N) with
P (N) ⊆ Ker(λ) and λ|Xαi 6= 1Xαi for i = 1, 2, . . . , s. By construction, we have N ⊆ rk(χ) and
Σ ∩ rk(χ) = ∅. Assume thatN 6= rk(χ). Then there is β ∈ rk(χ) \N such that ht(β) is maximal.
Let α ∈ Φ+. Since rk(χ) E Φ+ the maximality of ht(β) implies that α+ β 6∈ Φ+ or α+ β ∈ N
and therefore β ∈ rz(UYn/P (N)) by Lemma 3.4. Hence β ∈ Σ, a contradiction. Thus rk(χ) =
N . Lemma 4.1 (d) implies that rs(χ) = Σ so that (i) holds.

(a) Let χ be an irreducible constituent of λUYn where λ is a linear character of P (Σ ∪N)
as in (b) (ii). We have already seen in the proof of (i) ⇒ (ii) that N is an element of the set
{M E Φ+ |M ∩ Σ = ∅} and that each element M of this set is a subset of rk(χ). In the proof
of (ii) ⇒ (i) we showed that rk(χ) = N . This completes the proof of the lemma.

5. Representable sets

We keep the setting from the previous sections. In particular, q is a power of a prime p and
Yn(q) is an untwisted Chevalley group defined over Fq with an irreducible root system Φ. In
this section we use the central root support rs(χ) of characters χ of a pattern subgroup P (S)
of UYn(q) to obtain a partition of Irr(P (S)) which is well-adapted to the Lie theoretic setting.

We assume throughout this section that Hypothesis 1 holds.

Definition 5. Let Σ ⊆ Φ+. We say that the set Σ is representable if there exists χ ∈
Irr(UYn) such that rs(χ) = Σ. In this case we define

Irr(UYn)Σ := {χ ∈ Irr(UYn) | rs(χ) = Σ}.

Obviously, Irr(UYn) is partitioned by the sets Irr(UYn)Σ where Σ ranges over the rep-
resentable subsets of Φ+. The next lemma gives a characterization of the representable
sets.

Lemma 5.1. For a subset Σ ⊆ Φ+ the following are equivalent:
(a) The set Σ is representable.
(b) There is a closed pattern N E Φ+ such that Σ = rz(UYn/P (N)).
(c) There is a unique closed pattern N E Φ+ such that Σ = rz(UYn/P (N)).

Proof. (a)⇒ (b) Suppose that Σ is representable and let χ ∈ Irr(UYn) such that rs(χ) = Σ.
We set N := rk(χ). Then Σ = rz(UYn/P (N)) by Lemma 4.1 (a), (d) with S = Φ+.

(b) ⇒ (c) follows from Lemma 4.2 (a).

(c) ⇒ (a) Choose a linear character λ ∈ P (Σ ∪N) as in Lemma 4.2 (b) (ii) and let χ ∈
Irr(UYn) be a constituent of λUYn . By Lemma 4.2 (b) we have rs(χ) = Σ and (a) follows.
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Definition 6. Let Σ ⊆ Φ+ be representable.

(a) We write k(Σ) for the unique normal closed pattern with

Σ = rz(UYn/P (k(Σ))).

(b) We say that a character χ ∈ Irr(UYn/P (k(Σ))) is almost faithful with respect to Σ if
Xα 6⊆ Ker(χ) for all α ∈ Σ.

The following remark is an immediate consequence of Lemmas 4.1 (d) and 5.1.

Remark 2. Let Σ ⊆ Φ+ be representable. Then:

(a) k(Σ) is the largest element of the set {M E Φ+ |M ∩ Σ = ∅}.
(b) Inflation induces a one to one correspondence between the set of almost faithful

irreducible characters of UYn/P (k(Σ)) and Irr(UYn)Σ.
(c) Irr(UYn)Σ = {χ ∈ Irr(UYn) | rk(χ) = k(Σ)}.

Next, we investigate some elementary properties of k(Σ).

Lemma 5.2. Let Σ ⊆ Φ+ be representable. For all α ∈ Σ and γ ∈ Φ+ we have α+ γ 6∈ Φ+

or α+ γ ∈ k(Σ).

Proof. This follows from the definition of k(Σ) and Lemma 3.4.

Definition 7. For α ∈ Φ+ let n0(α) := {α} and for i ≥ 1

ni(α) := {β + γ |β ∈ ni−1(α), γ ∈ Φ+} ∩ Φ+.

Finally, we set n(α) :=
⋃
i≥1 ni(α).

Note that α 6∈ n(α) since the union is over all i ≥ 1. In fact, n(α) is the normal closure of
{α} in Φ+ with α removed. Also note that by construction, for all β ∈ n(α) and γ ∈ Φ+ we
have β + γ 6∈ Φ+ or β + γ ∈ n(α); hence n(α) E Φ+.

Lemma 5.3. If Σ ⊆ Φ+ is representable then
⋃
α∈Σ n(α) ⊆ k(Σ).

Proof. Let α ∈ Σ. By Lemma 5.2 we have n1(α) ⊆ k(Σ). Suppose that i > 1. Let γ ∈ Φ+

and β ∈ ni−1(α) such that β + γ ∈ Φ+. By induction, β ∈ k(Σ). Since k(Σ) E Φ+ we get β +
γ ∈ k(Σ) and the claim follows.

In the following we show that for each α ∈ Φ+ the set {α} is representable and we obtain a
recursive description of k({α}).

Definition 8. Let α ∈ Φ+. We define k0(α) := n(α) and for i ≥ 1

ki(α) := (rz(UYn/P (ki−1(α))) \ {α}) ∪ ki−1(α).

Finally, we set k(α) :=
⋃
i≥0 ki(α).
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Note that ki(α) E Φ+ for all i ≥ 0. This is clear for i = 0 since n(α) E Φ+. Suppose that
i > 0. By induction ki−1(α) E Φ+. Let β ∈ ki(α) and γ ∈ Φ+ such that β + γ ∈ Φ+. Thus
β ∈ rz(UYn/P (ki−1(α))) or β ∈ ki−1(α). In both cases we have β + γ ∈ ki−1(α) ⊆ ki(α). Hence
ki(α) E Φ+. It follows that k(α) is well-defined and that k(α) E Φ+.

Lemma 5.4. For all α ∈ Φ+ the set {α} is representable and k({α}) = k(α).

Proof. We have just seen that k(α) E Φ+ and by definition of k(α) we have α 6∈ k(α). Since
n1(α) ⊆ n(α) ⊆ k(α) we have {α} ⊆ rz(UYn/P (k(α))). Suppose that β ∈ rz(UYn/P (k(α))).
Then β + γ 6∈ Φ+ or β + γ ∈ k(α) for all positive roots γ. By the definition of k(α) we have
β ∈ ki(α) for some i or β = α. Because rz(UYn/P (k(α))) ∩ k(α) = ∅ we have β = α. Hence
{α} = rz(UYn/P (k(α))) so that condition (b) of Lemma 5.1 is satisfied with N = k(α) and the
claim follows.

Next, we define a set w(α) ⊆ Φ+ \ k(α). The definition of w(α) requires the concept of hooks.

Definition 9. Let α ∈ Φ+. We call the set

h(α) := {γ ∈ Φ+ |α− γ ∈ Φ+ ∪ {0}}

the hook corresponding to α. A subset h′(α) ⊆ h(α) is called a subhook of h(α) if α ∈ h′(α)
and α− γ ∈ h′(α) ∪ {0} for all γ ∈ h′(α).

The terminology hooks is motivated by the case that Φ is of type An; see [21, Section 3].
The following definition is in some sense dual to that of k(α).

Definition 10. Let α ∈ Φ+. We define w0(α) := {α} and for i ≥ 1

wi(α) :=
⋃

β∈wi−1(α)

h(β).

Finally, we set w(α) :=
⋃
i≥0 wi(α).

The set w(α) has the following interpretation in terms of the root poset (Φ+,�):

Lemma 5.5. For all α ∈ Φ+ we have w(α) = {β ∈ Φ+ | β � α}.

Proof. ⊆ Let β ∈ w(α). Then there is some i such that β ∈ wi(α). We use induction on i
to show that β � α. If i = 0 we have β = α � α so that we can assume i > 0. Hence there is a
root γ ∈ wi−1(α) such that β ∈ h(γ) and by induction we have β � γ � α and therefore β � α.

⊇ Let β ∈ Φ+ with β � α. We can assume that β 6= α. By Lemma 2.2 there are γi ∈ Φ+

such that α = γ0 � γ1 � γ2 � · · · � γs−1 � γs = β and γi − γi+1 is a simple root for all i. In
particular, γi+1 ∈ h(γi) for all i. It follows that γi ∈ wi(α) and hence β ∈ ws(α) ⊆ w(α).

If αh ∈ Φ+ is the highest root then Lemma 5.5 and the remarks after Lemma 2.2 imply that
w(αh) = Φ+.

Lemma 5.6. For each α ∈ Φ+ we have: w(α) ∩ k(α) = ∅ and w(α) ∪ k(α) = Φ+.
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Proof. We show wi(α) ∩ k(α) = ∅ for all i ≥ 0 by induction on i. By definition of n(α)
and k(α) we have α 6∈ k(α) so that we can assume i > 0. Suppose that β ∈ wi(α) ∩ k(α). By
definition of wi(α) there is γ ∈ wi−1(α) such that β ∈ h(γ). Since β ∈ k(α) and k(α) E Φ+ we
get γ ∈ k(α) which is impossible by induction. This proves w(α) ∩ k(α) = ∅.

We now show that m(α) := Φ+ \ w(α) is a normal closed pattern. Let β ∈ m(α) and
γ ∈ Φ+ with β + γ ∈ Φ+. If β + γ ∈ w(α) then β ≺ β + γ � α. Hence β � α and β ∈ w(α),
a contradiction. Thus m(α) is a normal closed pattern not containing α. Since Σ := {α}
is representable the maximality property of k(α) = k({α}) in Remark 2 (a) implies that
m(α) ⊆ k(α) and therefore Φ+ ⊆ w(α) ∪ k(α).

In analogy with k(α) and k(Σ) we want to replace the root α in w(α) by arbitrary
representable sets Σ.

Definition 11. For subsets Σ ⊆ Φ+ we define w(Σ) :=
⋃
α∈Σ w(α).

In particular, we have w({α}) = w(α). Statement (b) in the following proposition generalizes
Lemma 5.6 to arbitrary representable sets Σ.

Proposition 5.7. If Σ ⊆ Φ+ is representable then
(a) k(Σ) =

⋂
α∈Σ k(α),

(b) w(Σ) ∩ k(Σ) = ∅ and w(Σ) ∪ k(Σ) = Φ+.

Proof. Suppose that β ∈ w(Σ) ∩ k(Σ). Then there is α ∈ Σ such that β ∈ w(α) and hence
β ≺ α. By Lemma 2.2 there are roots γi ∈ Φ+ such that β = γ0 ≺ γ1 ≺ γ2 ≺ · · · ≺ γs−1 ≺ γs =
α and γi − γi−1 is a simple root for all i. It follows that the roots γi belong to the normal closure
M of {β} in Φ+. Since β ∈ k(Σ) and k(Σ) E Φ+ we get α = γs ∈M ⊆ k(Σ). Thus α ∈ Σ ∩ k(Σ),
a contradiction to Remark 2 (a). Hence w(Σ) ∩ k(Σ) = ∅.

From Definition 11 and Lemma 5.6 we get

k(Σ) ⊆ Φ+ \ w(Σ) = Φ+ \ (
⋃
α∈Σ

w(α)) =
⋂
α∈Σ

(Φ+ \ w(α)) =
⋂
α∈Σ

k(α). (5.1)

For all α ∈ Σ we have k(α) E Φ+ and α 6∈ k(α). Thus we have
⋂
α∈Σ k(α) E Φ+ and(⋂

α∈Σ k(α)
)
∩ Σ = ∅. From Remark 2 (a) we can conclude

⋂
α∈Σ k(α) ⊆ k(Σ). Hence we have

equality in (5.1) and the claims (a) and (b) follow.

In the following we give an interpretation of representable sets in terms of the root poset
(Φ+,�). This allows us to deduce the number of representable sets of size k for all k from
results in [9] and references therein. Recall that Φ is an irreducible root system of rank n. An
antichain of the poset (Φ+,�) is a subset A ⊆ Φ+ such that the elements of A are pairwise
incomparable. A variation of the next proposition for pattern subgroups if Φ is of type An was
already obtained by Isaacs in [26, Theorem 3.1].

Proposition 5.8. For a subset Σ ⊆ Φ+ the following are equivalent:
(a) Σ is representable.
(b) Σ is an antichain of the root poset (Φ+,�).

Proof. (a) ⇒ (b) Suppose that Σ is a representable set and that α, β ∈ Σ with α 6= β. We
need to show that α and β are not comparable, so suppose otherwise. Without loss we may
assume α ≺ β. The remarks after Definition 7 and Lemma 5.3 imply that β ∈ n(α) ⊆ k(Σ),
hence k(Σ) ∩ Σ 6= ∅ contradicting Remark 2 (a). Thus α and β are incomparable showing that
every representable set is an antichain.
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(b) ⇒ (a) Let Σ be an antichain. We claim that N := Φ+ \ w(Σ) is a normal closed pattern.
Let α ∈ Φ+ and β ∈ N with α+ β ∈ Φ+. If α+ β 6∈ N then α+ β ∈ w(Σ). Hence there is
γ ∈ Σ such that α+ β ∈ w(γ). By Lemma 5.5 we have β � α+ β � γ. Thus β � γ and then
β ∈ w(γ) ⊆ w(Σ) which is impossible since β ∈ N = Φ+ \ w(Σ). This shows that N E Φ+.

Let α be a maximal element of w(Σ) with respect to�. The definition of w(Σ) and Lemma 5.5
imply that α ∈ Σ. Conversely, let α ∈ Σ and suppose that there is γ ∈ w(Σ) such that α ≺ γ.
By the definition of w(Σ) there is β ∈ Σ such that γ ∈ w(β) and hence γ � β by Lemma 5.5. It
follows that α ≺ β contradicting the fact that Σ is an antichain. Thus α is a maximal element
of w(Σ). This shows that the elements of Σ are exactly the maximal elements of w(Σ). We
get from Lemma 3.4 that Σ = rz(UYn/P (N)) so that condition (b) of Lemma 5.1 is satisfied.
Hence Σ is representable.

We can now apply results of Cellini and Papi and Shi on the number of antichains in root
posets.

Proposition 5.9. Let Nk(Φ) := |{Σ ⊆ Φ+ | Σ is representable and |Σ| = k}| be the num-
ber of representable subsets of size k of Φ+ and N(Φ) :=

∑
kNk(Φ) the number of all

representable subsets of Φ. Then:
(a) Nk(Φ) = 0 for all k > n, i.e., |Σ| ≤ n for all representable subsets Σ of Φ+.
(b) For all k the number Nk(Φ) is the coefficient of tk in the polynomial N(Φ, t), where

N(Φ, t) is given by Table 1.

Table 1. Generating functions N(Φ, t) for the numbers Nk(Φ).

N(An, t) =
∑n
k=0

1
n+1

(n+1
k

)(n+1
k+1

)
tk

N(Bn, t) =
∑n
k=0

(n
k

)2
tk

N(Cn, t) =
∑n
k=0

(n
k

)2
tk

N(Dn, t) = 1 + tn +
∑n−1
k=1

[(n
k

)2 − n
n−1

(n−1
k−1

)(n−1
k

)]
tk

N(E6, t) = 1 + 36t + 204t2 + 351t3 + 204t4 + 36t5 + t6

N(E7, t) = 1 + 63t + 546t2 + 1470t3 + 1470t4 + 546t5 + 63t6 + t7

N(E8, t) = 1 + 120t + 1540t2 + 6120t3 + 9518t4 + 6120t5

+1540t6 + 120t7 + t8

N(F4, t) = 1 + 24t + 55t2 + 24t3 + t4

N(G2, t) = 1 + 6t + t2

(c) N(Φ) =
∏n
i=1

ei+h+1
ei+1 , where e1, e2, . . . , en are the exponents of the Weyl group W of Φ

and h is the Coxeter number of W . The numbers N(Φ) for the various root systems are
given by Table 2.

Table 2. The numbers N(Φ).

An Bn, Cn Dn E6 E7 E8 F4 G2

1
n+2

(2n+2
n+1

) (2n
n

)
3n−2
n

(2n−2
n−1

)
833 4160 25080 105 8
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Proof. (c) We know from Proposition 5.8 that Nk(Φ) is the number of antichains of size k
of (Φ+,�). The antichains of (Φ+,�) are precisely given by Cellini and Papi in [5]. Also they
obtain the closed formula for the number N(Φ). We note that the numbers N(Φ) were also
obtained by Shi [34] on a case by case basis. This is part (c).

(a), (b) The Narayana polynomials and their coefficients were obtained by Panyushev in [33];
this is part (b) and also gives part (a).

The numbers Nk(Φ) are called (generalized) Narayana numbers in Fomin and Reading [9].
The numbers N(Φ) seem to have wider significance. For example they appeared in a paper by
Djoković [8] on the enumeration of conjugacy classes of elements of finite order in compact and
complex semisimple Lie groups. Incidentally the numbers N(Φ) also count clusters in cluster
algebras and related objects; see [9] and the references therein. For other interesting connections
between classical combinatorial objects and the characters of UAn(q) see Marberg [29].

6. Single root characters

We keep the setting from the previous sections. In particular, q is a power of a prime p and
Yn(q) is an untwisted Chevalley group defined over Fq with an irreducible root system Φ.

We assume throughout this section that Hypothesis 1 holds.

For N = Φ+ we have rz(UYn/P (N)) = ∅. It follows from Lemma 5.1 that ∅ is representable
and that Irr(UYn)∅ = {1UYn}.

In what follows we investigate Irr(UYn)Σ when |Σ| = 1. We have already seen in Lemma 5.4
that {α} is representable for all α ∈ Φ+ and we gave a recursive description of k({α}) = k(α)
in Definition 8.

Definition 12. For α ∈ Φ+ we set Irr(UYn)α := Irr(UYn){α}. We say that a character
χ ∈ Irr(UYn)α is a single root character lying over α and that it is almost faithful at α. A
midafi character or just midafi for α is a character χ ∈ Irr(UYn)α such that χ(1) = min{ψ(1) |
ψ ∈ Irr(UYn)α}. We set

Irrmida(UYn)α := {χ ∈ Irr(UYn)α | χ is a midafi for α}.

Note that q is fixed in Definition 12. The term midafi is an abbreviation for minimal degree
almost faithful irreducible. The origin of this terminology is the thesis [27] of the second author
where the term was first used in the case that Φ has Dynkin type An. To study single root
characters we will use the concept of arms and legs.

Definition 13. Let α ∈ Φ+ and a(α), `(α) ⊆ h(α).
(a) We say that a(α) is an arm and `(α) is the corresponding leg of h(α) if the hook h(α)

is the disjoint union h(α) = {α} ∪ a(α) ∪ `(α) and
1) |a(α)| = |`(α)| and
2) for each β ∈ a(α) there is a unique γ ∈ `(α) with β + γ = α.

(b) If a(α) is an arm of h(α) we call the set s(α) := Φ+ \ a(α) of roots the source
corresponding to α. If additionally s(α) is a closed pattern then we call Sα := P (s(α)),
the source group corresponding to α.

The terminology of hooks, arms and legs is motivated by the case that Φ is an irreducible
root system of type An; see [21, Section 3.3] and [27, Section 2.3].
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Note that Lemma 5.6 implies that we always have k(α) ⊆ s(α). We point out that the
definition above allows for 2m choices for the set a(α), where m = (|h(α)| − 1)/2. Relative to
a choice of a(α) the sets `(α) and s(α) are unique. We discuss this in more detail at the end
of this section. The next lemma is needed for the classification of the midafi characters when
UYn is of exceptional type and n ≥ 4.

Definition 14. Let α ∈ Φ+. We call a subset a′(α) of a subhook h′(α) of h(α) an arm of
h′(α) if there is an arm a(α) of h(α) with a′(α) = a(α) ∩ h′(α). In this case we call `′(α) :=
h′(α) \ (a′(α) ∪ {α}) the corresponding leg of h′(α).

The following technical lemma will be used in Section 8. A stronger version for type An is
implicitly contained in [27]. Recall that a p-group H is special if Z(H) = [H,H] = Φ(H). If H
is special with |H| = q2m+1 and Z(H) is elementary abelian of order q = pa, then we say that
H is special of type q1+2m.

Lemma 6.1. Let α, β ∈ Φ+. Let h(α) be the hook corresponding to α with arm a(α) and
leg `(α), let h′(β) be a subhook of h(β) with arm a′(β) and leg `′(β) and let h′αβ be the closed
pattern generated by h(α) ∪ h′(β) ∪ k(α). We define `′αβ := {α, β} ∪ `(α) ∪ k(α). Assume that
the following holds:

(a) h(α) ∪ k(α), h′(β) ∪ k(α), Φ+ \ a(α) are closed patterns.
(b) h′αβ \ a(α) normalizes `(α) ∪ k(α).
(c) (h(α) ∪ k(α)) ∩ h′(β) = ∅.
(d) The group Hα := P (h(α) ∪ k(α))/P (k(α)) is special of type q1+2|a(α)| with [x,Hα] =

Z(Hα) for all x ∈ Hα \ Z(Hα).
(e) The group H ′β := P (h′(β) ∪ k(α))/P (k(α)) is special of type q1+2|a′(β)| with [x,H ′β ] =

Z(H ′β) for all x ∈ H ′β \ Z(H ′β).

Set H ′αβ := P (h′αβ)/P (k(α)) and L′αβ := P (`′αβ)/P (k(α)) and let µ ∈ Irr(L′αβ) with Xα, Xβ 6⊆
Ker(µ) and

∏
γ∈`(α)Xγ ⊆ Ker(µ). Then each ψ ∈ Irr(H ′αβ , µ) has degree ψ(1) ≥ q|a(α)|+|a′(β)|.

Proof. To apply the Reduction Lemma 2.1 we introduce the following notation (only for
this proof):

• U := H ′αβ ,
• H := P (h′αβ \ a(α))/P (k(α)),
• X :=

∏
γ∈a(α)Xγ ,

• Y := P (`(α) ∪ k(α))/P (k(α)),
• Z := Xα,
• λ := µZ and λ̃ := µZY .

Since k(α) is a normal closed pattern U is a quotient pattern group and it follows from (a) that
H is a subgroup of U . We know from Lemma 5.4 and Definition 6 (a) that Z is a subgroup of
U with Z ⊆ Z(U). It follows from assumption (b) that Y EH and we have Z ∩ Y = {1}. By
(2.1) the set X is a set of representatives for U/H. From assumption (b) and Lemma 3.3 we
get ZY E U . Since

∏
γ∈`(α)Xγ ⊆ Ker(µ) we have Y ⊆ Ker(λ̃) and by (a), (d) we have uλ̃ 6= λ̃

for all u ∈ X \ {1}. We also have |X| = |Y |. Thus we can apply Lemma 2.1.
Let ψ ∈ Irr(H ′αβ , µ). We consider the restriction ψH of ψ to H. Since Y EH the char-

acter ψH has a constituent χ ∈ Irr(H/Y, λ) with Xβ 6⊆ Ker(χ). We define H ′β := P (h′(β) ∪
k(α))/P (k(α)). Note that assumption (c) implies that H ′β is a subgroup of H. It follows

from assumption (e) that χ(1) = χH′β (1) ≥ q|a′(β)|. By Frobenius reciprocity ψ is a constituent
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of χU . Since χU is irreducible by Lemma 2.1 we have ψ = χU and hence ψ(1) = χU (1) =
q|a(α)| · χ(1) ≥ q|a(α)|+|a′(β)|.

Using the theory developed in Sections 2-6 we can now study the single root characters
of UYn for all irreducible root systems Φ. In the following two sections we give a proof of
Theorems 1.1-1.3 on a case-by-case basis and construct the midafi characters in Irr(UYn)α for
all Dynkin types Y , all ranks n and all positive roots α. We now outline our approach, details
will be given in Sections 7 and 8.

Let Φ be an irreducible root system and α ∈ Φ+. By construction, the size of the
corresponding hook is of the form |h(α)| = 1 + 2k for some nonnegative integer k. Hence,
there are 2k possible choices for the arm a(α) and the leg `(α), and in general, we could not
find a canonical choice. An important fact, which will be proved in Sections 7 and 8, is that
one can always choose an arm a(α) of h(α) with the following property:

(1) The source s(α) = Φ+ \ a(α) is a closed pattern.

In this case we can work with the source group Sα = P (s(α)) and it follows from Lemma 5.6
that `(α) ∪ k(α) ⊆ s(α). For us a good choice for a(α) is one in which condition (1) and the
condition

(2) The set `(α) ∪ k(α) is a normal closed subpattern of s(α).

are met. If for a root α ∈ Φ+ and for some choice of a(α) we achieve conditions (1) and (2),
then we define

Tα := Sα/P ({α} ∪ `(α) ∪ k(α)).

We now show that conditions (1), (2) together with conditions (3) and (4) below suffice to
establish the description of Irr(UYn)α in terms of character correspondences as stated in
Theorems 1.1 and 1.3.

Proposition 6.2. Let Φ be an irreducible root system of type Yn. Suppose that for some
root α ∈ Φ+ of ht(α) > 1 and some choice of a(α) the following are true:

(1) The source s(α) is a closed pattern.
(2) `(α) ∪ k(α) E s(α).
(3) h(α) ∪ k(α) is a closed pattern and a(α) normalizes {α} ∪ `(α) ∪ k(α).
(4) For each element y ∈ (

∏
γ∈a(α)Xγ) \ {1} there is some root β ∈ `(α) such that

{[y, xβ(t)] | t ∈ Fq} = Xα.

Then the map Ψα : Irr(Tα)× Irr(Xα)∗ → Irr(UYn)α, with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UYn

is a one to one correspondence with the property Ψα(µ, λ)(1) = q|a(α)| · µ(1). Moreover

Sα/P (`(α) ∪ k(α)) ∼= Tα ×Xα.

Proof. We apply the Reduction Lemma 2.1. The role of U is played by the quotient pattern
group UYn/P (k(α)) and the role of H is played by Sα/P (k(α)). The role of X is played by∏
γ∈a(α)Xγ , the role of Y is played by

∏
γ∈`(α)Xγ and the role of Z is played by Xα, where

we identify the root subgroups Xγ with their images in UYn/P (k(α)).
Condition (a) of Lemma 2.1 is satisfied by Definition 6 (a) and Lemma 5.4. Hypothesis (2)

implies that condition (b) of Lemma 2.1 is satisfied. Combining hypotheses (2) and (3) implies
that a(α) normalizes {α} ∪ `(α) ∪ k(α) and {α} ∪ `(α) ∪ k(α) E s(α). As Φ+ = s(α) ∪ a(α) we
now see that condition (d) of Lemma 2.1 is satisfied. Conditions (c) and (f) in Lemma 2.1 hold
by the definition of a(α) and `(α).
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We still have to check condition (e) of Lemma 2.1. Let λ ∈ Irr(Xα)∗ and let λ̃ be the inflation
of λ to ZY = Xα × P (`(α) ∪ k(α))/P (k(α)). Suppose that there is 1 6= x ∈ (

∏
γ∈a(α)Xγ) \ {1}

such that xλ̃ = λ̃. Because the linear character λ is nontrivial on Xα there is some t ∈ Fq
such that λ̃(xα(t)) = λ(xα(t)) 6= 1. By hypothesis (4) there is β ∈ `(α) and t′ ∈ Fq such that
[x, xβ(t′)−1] = xα(t). Hence

xλ̃(xβ(t′)) = λ̃(x−1xβ(t′)xxβ(t′)−1xβ(t′)) = λ̃(xα(t))λ̃(xβ(t′)) 6= λ̃(xβ(t′)),

contradicting xλ̃ = λ̃. Thus we have xλ̃ 6= λ̃ for all x ∈ (
∏
γ∈a(α)Xγ) \ {1}. Now the correspon-

dence follows from Lemma 2.1.
Finally we observe that hypotheses (1), (2) combined with Lemmas 3.3 and 5.1 imply that

Sα/P (`(α) ∪ k(α)) ∼= Tα ×Xα,

completing the proof.

We remark that generally the hypotheses (3) and (4) are easily verified and do not present
a serious obstacle.

If Φ is a classical root system, i.e., Φ is of type An, Bn, Cn or Dn, then we show in Section 7
that it is always possible to make a choice for the arm of a root such that the hypotheses of
Proposition 6.2 are satisfied and for these Dynkin types we are able to derive some information
on the structure of Tα.

However when Φ is of exceptional type and rank ≥ 4, then there exist roots in Φ for which
no choice of the arm achieves the hypotheses of Proposition 6.2. For the exceptional types of
root systems one can always choose a(α) such that hypothesis (1) holds, but then, in general,
`(α) ∪ k(α) is no longer normal in s(α). In this case we replace `(α) by a subset ¯̀(α) ) `(α)
such that ¯̀(α) ∪ k(α) E s(α), {α} ∪ ¯̀(α) ∪ k(α) E Φ+ and such that the quotient pattern group
P (¯̀(α) ∪ k(α))/P (k(α)) is abelian. Among all choices of the arm a(α) such that condition (1)
holds and such that ¯̀(α) has the properties just described we take one such that |¯̀(α)| is
minimal. For this choice we show, by restriction to a suitable subgroup, that each χ ∈ Irr(UYn)α
with ¯̀(α) \ `(α) 6⊆ rk(χ) has a degree greater than q|a(α)|. The Reduction Lemma 2.1 then gives
a one to one correspondence

Ψ : Irrlin(Tα)× Irr(Xα)∗ → Irrmida(UYn)α,

where Tα := Sα/P ({α} ∪ ¯̀(α) ∪ k(α)). Hence for all irreducible root systems Φ (the classical
ones and the exceptional ones) and all positive roots α we obtain a one to one correspondence

Ψ : Irrlin(Tα)× Irr(Xα)∗ → Irrmida(UYn)α.

This leads to a construction of all midafis in Irr(UYn)α and allows us to compute their number
and their degrees if Φ is of exceptional type. For each positive root α we call the q − 1 irreducible
characters of UYn in Ψ({1Tα} × Irr(Xα)∗) the standard mifadis corresponding to α.

7. Hook subgroups and midafis in classical groups

In this section we prove Theorem 1.1. We will use the explicit construction of the root systems
Φ of types An, Bn, Cn and Dn given in [23, 12.1]. As before, we use the following convention
to keep the notation simple: Suppose that N ⊆ S ⊆ Φ+ are closed patterns such that N E S.
Since for each γ ∈ S \N the root subgroup Xγ is mapped injectively into the quotient pattern
group P (S)/P (N) we will often identify Xγ with its image XγP (N).

We assume throughout this section that Hypothesis 1 holds.
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7.1. Type A

Let n be a positive integer. We construct a root system of type An as in [23, Section 12.1]:
Let e1, e2, . . . , en+1 ∈ Rn+1 be the usual orthonormal unit vectors which form a basis of Rn+1.
Then Φ := {ei − ej | 1 ≤ i 6= j ≤ n+ 1} is a root system of type An and the set {α1, . . . , αn},
where αi := ei − ei+1, is a set of simple roots. The corresponding set of positive roots is Φ+ =
{ei − ej | 1 ≤ i < j ≤ n+ 1}.

Let α = ei − ej ∈ Φ+. Obviously, the hook corresponding to α is

h(α) = {α} ∪ {ei − es, es − ej | i < s < j}. (7.1)

The next lemma describes the closed patterns n(α) and k(α) for all positive roots α.

Lemma 7.1. Let Φ be a root system of type An as described above. For all positive roots
α = ei − ej the following are true:

(a) n(α), k(α) E Φ+,
(b) n(α) = {es − et | 1 ≤ s ≤ i and j ≤ t ≤ n+ 1} \ {α},
(c) k(α) = {es − et | 1 ≤ s < i or j < t ≤ n+ 1}.

Proof. Part (a) was already shown in Section 5.

(b) By definition n0(α) = {ei − ej}. Let γ = ek − el ∈ Φ+. Then α+ γ ∈ Φ+ if and only if l = i
or k = j. In the first case we have α+ γ = ek − ej and in the second case we have α+ γ =
ei − el. Thus,

n1(α) = {ek − ej | 1 ≤ k < i} ∪ {ei − el | j < l ≤ n+ 1}.

Now let γ = es − et ∈ Φ+ and k < i. Then γ + ek − ej ∈ Φ+ if and only if t = k or s = j. In the
first case we have γ + ek − ej = es − ej ∈ n1(α) and in the second case we have γ + ek − ej =
ek − et where k < i and t > j. Similarly, γ + ei − el ∈ Φ+ if and only if t = i or s = l. In the
first case we have γ + ei − el = es − el where s < i and l > j and in the second case we have
γ + ei − el = ei − et ∈ n1(α). It follows that

n2(α) \ n1(α) = {es − et | 1 ≤ s < i and j < t ≤ n+ 1}.

Finally, we see that for all γ ∈ Φ+ and β ∈ n2(α) \ n1(α) we have β + γ ∈ n2(α) and therefore
n(α) = n1(α) ∪ n2(α) and (b) follows.

(c) Let β = es − et ∈ Φ+ where i ≤ s < t ≤ j. Then we have β ∈ h(ei − et) and ei − et ∈
h(α) and hence β ∈ w(α). Hence {es − et | i ≤ s < t ≤ j} ⊆ w(α) and Lemma 5.6 implies that
k(α) ⊆ {es − et | 1 ≤ s < i or j < t ≤ n+ 1} =: M .

We claim that M E Φ+. Let β = es − et ∈M , γ = ek − el ∈ Φ+ with β + γ ∈ Φ+. By the
definition of M we have s < i or t > j. Suppose that s < i. We have t = k or s = l. If t = k
then β + γ = es − el with s < i and hence β + γ ∈M . If s = l then β + γ = ek − et with k <
l = s < i and again β + γ ∈M . Suppose that t > j. Again we have t = k or s = l. If t = k then
β + γ = es − el with l > k = t > j and hence β + γ ∈M . If s = l then β + γ = ek − et with
t > j and again β + γ ∈M . Thus we have M E Φ+. By the definition of M we have α 6∈M .
Hence Remark 2 (a) implies that M ⊆ k(α). Thus k(α) = M and (c) follows.

In the following we study the hooks for type An more closely. We define the arm a(α) and
the leg `(α) of h(α) as follows:

a(α) := {ei − es | i < s < j} and `(α) := {es − ej | i < s < j}.
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Recall that a p-group P is special if Φ(P ) = [P, P ] = Z(P ) is elementary abelian or if P itself
is elementary abelian. As in [21] we say that P is special of type q1+2a if P is special with
|P | = q2a+1 and |Z(P )| = q.

We will show below that for each α ∈ Φ+ the hook h(α) is a closed pattern. We call the
pattern subgroup Hα := P (h(α)) the hook subgroup corresponding to α.

Lemma 7.2. Let Φ be a root system of type An as described at the beginning of this
section. For all α = ei − ej ∈ Φ+ the following are true:

(a) The hook h(α), the arm a(α) and the leg `(α) are closed patterns.
(b) The canonical projection π : UAn → UAn/P (k(α)) maps the hook subgroup Hα =

P (h(α)) injectively into UAn/P (k(α)) and π(Hα) is normal in UAn/P (k(α)).
(c) The pattern subgroups P (a(α)) and P (`(α)) are elementary abelian.
(d) If ht(α) > 1 then the hook subgroup Hα is special of type q1+2(j−i−1) and [y,Hα] =

Z(Hα) = Xα for all y ∈ Hα \ Z(Hα). More specifically: For each y ∈ Hα \ Z(Hα) there
is some β ∈ h(α) such that {[y, xβ(t)] | t ∈ Fq} = Xα.

Proof. (a), (c): Let β, γ ∈ h(α). Then we have β + γ ∈ Φ+ if and only if {β, γ} = {ei −
es, es − ej} for some i < s < j and in this case β + γ = α ∈ h(α). In particular, we have β + γ 6∈
Φ+ if β, γ ∈ a(α) or if β, γ ∈ `(α). This implies (a) and (c).

(b) By Lemma 5.6 we have h(α) ∩ k(α) ⊆ w(α) ∩ k(α) = ∅. Since Hα, P (k(α)) are pattern
subgroups we get that the restriction of π to Hα is injective.

Let β ∈ h(α) and γ = ek − el ∈ Φ+ so that k < l. Suppose first that β = ei − es for some
i < s ≤ j. Then β + γ ∈ Φ+ if only if s = k or l = i. In the first case we have β + γ = ei − el ∈
h(α) ∪ k(α). In the second case we have β + γ = ek − es ∈ k(α) because k < i. Now suppose
that β = es − ej for some i ≤ s < j. Then β + γ ∈ Φ+ if only if s = l or k = j. In the first
case we have β + γ = ek − ej ∈ h(α) ∪ k(α). In the second case we have β + γ = es − el ∈ k(α)
because l > j. This proves (b).

(d) Suppose that ht(α) > 1. We have seen in the proof of (a) and (c) that for all β, γ ∈ h(α)
we have β + γ ∈ Φ+ if and only if {β, γ} = {ei − es, es − ej} for some i < s < j and in this
case β + γ = α ∈ h(α). It follows from Lemmas 3.3 and 3.4 that Z(Hα) = [Hα, Hα] = Xα. So
Hα is special. Now let y ∈ Hα \ Z(Hα). Note that Hα \ Z(Hα) 6= ∅ since ht(α) > 1. We write
y =

∏
γ∈h(α) xγ(tγ) as in (2.1). Because y 6∈ Xα there is some γ ∈ h(α) \ {α} such that tγ 6= 0.

Thus, β := α− γ ∈ h(α) and we get from Lemma 3.1 (a) that {[y, xβ(t)] | t ∈ Fq} = Xα.

The following lemma prepares a reduction result for Irr(UAn)α, the set of single root
characters of UAn corresponding to positive roots α.

Lemma 7.3. Let Φ be a root system of type An as described at the beginning of this
section. For all α = ei − ej ∈ Φ+ the following are true:

(a) The source s(α) is a closed pattern.
(b) `(α) ∪ k(α) E s(α).
(c) `(α) ∪ {α} ∪ k(α) E Φ+.

Proof. (a) Let β = ek − el, γ = ek′ − el′ ∈ s(α). Suppose that β + γ ∈ a(α). Then β + γ =
ei − es for some i < s < j. Thus k = i or k′ = i. We can assume that k = i and then k′ = l
and l′ = s. But then β = ei − el where l = k′ < l′ = s < j and hence β ∈ a(α), a contradiction.
Thus β + γ 6∈ Φ+ or β + γ ∈ s(α).
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(b) Let β = es − ej ∈ `(α) where i < s < j and let γ = ek − el ∈ s(α). Then β + γ ∈ Φ+ if only
if s = l or k = j. In the first case we have β + γ = ek − ej ∈ `(α) ∪ k(α) because k 6= i. In the
second case we have β + γ = es − el ∈ k(α) because l > j. This proves (b).

(c) We know from Definition 6 (a) and Lemma 5.4 that {α} ∪ k(α) E Φ+ and we have seen
in (b) that s(α) normalizes `(α) ∪ k(α). By Lemmas 3.3 and 7.2 (d) the arm a(α) normalizes
`(α) ∪ {α}. Since Φ+ = s(α) ∪ a(α) the claim in (c) follows.

By Lemma 7.3 (a) and (b) we can consider the source group Sα = P (s(α)) and its quotient
pattern group Sα/P (`(α) ∪ k(α)). It follows from Lemma 3.3 that we can identify the root
subgroup Xα with the quotient pattern group Sα/P (s(α) \ {α}). Lemmas 3.3 and 5.1 imply
that

Sα/P (`(α) ∪ k(α)) ∼= Tα ×Xα

where

Tα := P (s(α) \ {α})/P (`(α) ∪ k(α)).

The group Tα is generated by the images of Xγ in UAn/P (`(α) ∪ k(α)) where γ is an element
of

(s(α) \ {α}) \ (`(α) ∪ k(α)) = Φ+ \ (a(α) ∪ {α} ∪ `(α) ∪ k(α))

= Φ+ \ (h(α) ∪ k(α)) = {es − et | i < s < t < j}.

The set {es − et | i < s < t < j} ⊆ Φ+ is a closed pattern, and if j − i− 2 > 0 it generates a
root subsystem of type Aj−i−2 of Φ. Thus

Tα ∼= P ({es − et | i < s < t < j}) ∼= UAj−i−2.

We can now give a recursive description for the single root characters of UAn:

Proposition 7.4. Let Φ be a root system of type An as described above. For each root
α = ei − ej ∈ Φ+ where 1 ≤ i < j ≤ n the map Ψα : Irr(Tα)× Irr(Xα)∗ → Irr(UAn)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UAn

is a one to one correspondence with the property Ψα(µ, λ)(1) = qj−i−1 · µ(1). We have Tα ∼=
UAj−i−2 if j − i− 2 > 0 and Tα = {1} otherwise.

Proof. The content of Lemmas 7.3 and 7.2 (a) is that hypothesis (1), (2) and (3) of
Proposition 6.2 are satisfied, and the content of Lemma 7.2 (d) is that hypothesis (4) of
Proposition 6.2 is satisfied. This proves the correspondence.

7.2. Type B

Let n ≥ 2 be an integer. We construct a root system of type Bn as in [23, Section 12.1]:
Let e1, e2, . . . , en ∈ Rn be the usual orthonormal unit vectors which form a basis of Rn. Then
Φ := {±(ei ± ej) | 1 ≤ i 6= j ≤ n} ∪ {±ei | 1 ≤ i ≤ n} is a root system of type Bn and the set
{α1, . . . , αn}, where αi := ei − ei+1 for i = 1, 2, . . . , n− 1 and αn := en, is a set of simple roots.
The corresponding set of positive roots is Φ+ = {ei ± ej | 1 ≤ i < j ≤ n} ∪ {ei | 1 ≤ i ≤ n}.

The highest long root with respect to this base is e1 + e2 whereas the highest short root
is e1. We note that the long roots of Φ form a Dn-subsystem. Also we recall that the Chevalley
commutator relations imply that if α is short and β is long with α+ β ∈ Φ+, then [Xα, Xβ ] ⊆
Xα+βX2α+β , where α+ β is short and 2α+ β is long, and that when both α and β are short
with α+ β ∈ Φ+, then [Xα, Xβ ] ⊆ Xα+β , where α+ β is long.
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From the explicit description of the root systems (or from the Dynkin diagram) we see that
{α2, α3, . . . , αn} generates a root subsystem Φ1′ of type Bn−1 and that {α1, α2, . . . , αn−1} gen-
erates a root subsystem Φn′ of type An−1. We set Φ+

1′ := Φ1′ ∩ Φ+, Ψ+
1′ := Φ+ \ Φ+

1′ and Φ+
n′ :=

Φn′ ∩ Φ+, Ψ+
n′ := Φ+ \ Φ+

n′ . The sets Ψ+
1′ and Ψ+

n′ are normal closed patterns. In fact, P (Ψ+
1′)

and P (Ψ+
n′) are the unipotent radicals of the standard parabolic subgroups corresponding to

{α2, α3, . . . , αn} and {α1, α2, . . . , αn−1}, respectively. Furthermore, the sets Φ+
1′ and Φ+

n′ are
closed patterns and P (Φ+

1′)
∼= UBn/P (Ψ+

1′)
∼= UBn−1 and P (Φ+

n′)
∼= UBn/P (Ψ+

n′)
∼= UAn−1.

Let α ∈ Φ+ and χ ∈ Irr(UBn)α. Suppose that α ∈ Φ+
1′ . It follows from Lemma 5.4 and

Remark 2 (a), (c) that P (Ψ+
1′) ⊆ Ker(χ). Thus, we can identify χ with a single root character

of P (Φ+
1′)
∼= UBn/P (Ψ+

1′)
∼= UBn−1. In this way, the classification and construction of the

elements of Irr(UBn)α are reduced to the case Bn−1. Similarly, if α ∈ Φ+
n′ we can identify χ

with a single root character of P (Φ+
n′) and thereby get a reduction to the case An−1 which has

already been treated in Section 7.1. Hence, we only have to consider positive roots α which are
not contained in Φ+

1′ ∪ Φ+
n′ , i.e., the roots e1 + ei where 1 < i ≤ n and the root e1.

Lemma 7.5. Let Φ be a root system of type Bn as described above. For all positive roots
of the form α = e1 + ei we have:

h(α) = {e1 + ei, e1, ei} ∪ {e1 − es, es + ei | 1 < s < i} ∪ {e1 ± es, ei ∓ es | i < s ≤ n}.

Proof. First we observe that clearly e1, ei ∈ h(e1 + ei), and that no other combination of
short roots can add to α.

Next let β = es ± et, γ = es′ ∈ Φ+. We see immediately that β + γ 6∈ Φ+ or β + γ is a short
root and therefore β + γ 6= α. Hence, β, γ 6∈ h(α).

Finally let β = es ± et, γ = es′ ± et′ ∈ Φ+ with s < t and s′ < t′ and β + γ = α. We see
immediately that one of the two ± signs has to be a + sign and that the other one has to be
a − sign and that t = t′. Furthermore, we can assume s = 1 and s′ = i. Hence

(β, γ) ∈ {(e1 − es, es + ei) | 1 < s < i or i < s ≤ n} ∪ {(e1 + es, ei − es) | i < s ≤ n}

and the claim follows.

We are now able to determine the patterns n(α) and k(α).

Lemma 7.6. Let Φ be a root system of type Bn as described above. For all positive roots
of the form α = e1 + ei the following are true:

(a) n(α), k(α) E Φ+.
(b) n(α) = {e1 + es | 1 < s < i}.
(c) k(α) = {es + et | 1 ≤ s < t < i}.

Proof. Part (a) was already shown in Section 5.

(b) By definition n0(α) = {e1 + ei}. Let γ ∈ Φ+. For γ = es or γ = ek + el we have α+ γ 6∈ Φ+.
Therefore, α+ γ ∈ Φ+ if and only if γ = es − ei for some 1 < s < i and in this case we have

α+ γ = e1 + es. Thus, n1(α) = {e1 + es | 1 < s < i}. Again, if γ ∈ Φ+ is of the form γ = ek
then γ + (e1 + es) 6∈ Φ+. But if γ = ek ± el ∈ Φ+ then γ + (e1 + es) ∈ Φ+ if and only if γ =
et − es for some 1 < t < s and in this case we have γ + (e1 + es) = e1 + et. Thus n2(α) ⊆ n1(α)
and then n(α) = n1(α) and (b) follows.

(c) Let β = es. If s = 1, then β ∈ h(α) ⊆ w(α). If s > 1, then β + (e1 − es) = e1 ∈ h(α) implies
that β ∈ w(α).
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Let β = es + et ∈ Φ+ where s < t and t ≥ i. If s = 1 then β ∈ h(α) ⊆ w(α). If s > 1 then
β ∈ h(e1 + et) and e1 + et ∈ h(α), hence β ∈ w(α).

Now let β = es − et ∈ Φ+ where s < t. If s = 1, then β ∈ h(e1) and e1 ∈ h(α). Thus, β ∈
w(α). If s > 1, then β ∈ h(e1 − et) and e1 − et ∈ h(e1) and e1 ∈ h(α). Hence β ∈ w(α).

It follows from Lemma 5.6 that

k(α) ⊆ {es + et | 1 ≤ s < t < i} =: M.

We claim that M E Φ+. Let β = es + et ∈M , γ ∈ Φ+ with β + γ ∈ Φ+. It follows that γ is
of the form γ = ek − es with k < s < t < i or γ = ek − et with k < t < i. In the first case we
have β + γ = ek + et with k < t < i, in the second case we have β + γ = ek + es with k, s < i.
Thus, β + γ ∈M in both cases. Thus we have M E Φ+. By the definition of M we have α 6∈M .
Hence Remark 2 (a) implies that M ⊆ k(α). Thus k(α) = M and (c) follows. This completes
the proof.

For α = e1 + ei ∈ Φ+ we define the arm a(α) and the leg `(α) of h(α) as follows:

a(α) := {ei} ∪ {ei ± es | i < s} ∪ {e1 − es | 1 < s < i} and

`(α) := {e1} ∪ {e1 ± es | i < s} ∪ {es + ei | 1 < s < i}.

As for type An, we will show below that for each α ∈ Φ+ the hook h(α) is a closed pattern
and call Hα := P (h(α)) the hook subgroup corresponding to α.

Lemma 7.7. Let Φ be a root system of type Bn as described at the beginning of this
section. For all α = e1 + ei ∈ Φ+ the following are true:

(a) The hook h(α), the arm a(α) and the leg `(α) are closed patterns.
(b) The canonical projection π : UBn → UBn/P (k(α)) maps the hook subgroup Hα =

P (h(α)) injectively into UBn/P (k(α)).
(c) The pattern subgroups P (a(α)) and P (`(α)) are elementary abelian.
(d) If ht(α) > 1 then the hook subgroup Hα is special of type q1+2(2n−i−1) and [y,Hα] =

Z(Hα) = Xα for all y ∈ Hα \ Z(Hα). More specifically: For each y ∈ Hα \ Z(Hα) there
is some β ∈ h(α) such that {[y, xβ(t)] | t ∈ Fq} = Xα.

Proof. (a), (c): Let β, γ ∈ h(α). Then we have β + γ ∈ Φ+ if and only if {β, γ} = {e1 −
es, es + ei} for some s 6= i, or {β, γ} = {e1 + es, ei − es} for some s > i, or {β, γ} = {e1, ei}
and in all of these cases β + γ = α ∈ h(α). In particular, we have β + γ 6∈ Φ+ if β, γ ∈ a(α) or
if β, γ ∈ `(α). This implies (a) and (c).

(b) By Lemma 5.6 we have h(α) ∩ k(α) ⊆ w(α) ∩ k(α) = ∅. Since Hα, P (k(α)) are pattern
subgroups we get that the restriction of π to Hα is injective.

(d) Suppose that ht(α) > 1. We have seen in the proof of (a) and (b) that for all β, γ ∈ h(α)
we have β + γ ∈ Φ+ if and only if {β, γ} = {e1 − es, es + ei} for some s 6= i or {β, γ} = {e1 +
es, ei − es} for some s > i or {β, γ} = {e1, ei} and in all of these cases β + γ = α ∈ h(α). It
follows from Lemmas 3.3 and 3.4 that Z(Hα) = [Hα, Hα] = Xα. SoHα is special. The remaining
part of the proof of (d) is analogous to the proof of Lemma 7.2 (d).

Lemma 7.8. Let Φ be a root system of type Bn as described at the beginning of this
section. For all α = e1 + ei ∈ Φ+ the following are true:

(a) The source s(α) is a closed pattern.
(b) `(α) ∪ k(α) E s(α).
(c) `(α) ∪ {α} ∪ k(α) E Φ+.
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Proof. (a) Let β ∈ a(α) and γ, γ′ ∈ Φ+ such that β = γ + γ′. To prove that s(α) is a pattern
it suffices to show that γ ∈ a(α) or γ′ ∈ a(α).

Suppose that β = ei. Then {γ, γ′} = {ei − es, es} for some i < s and hence γ ∈ a(α) or γ′ ∈
a(α). Suppose next that β = e1 − es where 1 < s < i. Then {γ, γ′} = {e1 − el, el − es} for some
1 < l < s < i and hence γ ∈ a(α) or γ′ ∈ a(α). Now suppose that β = ei + es where i < s ≤
n. Then {γ, γ′} = {ei + el, es − el} for some i < l ≤ n or {γ, γ′} = {es + el, ei − el} for some
i < l ≤ n or {γ, γ′} = {es, ei}. Hence in all three cases γ ∈ a(α) or γ′ ∈ a(α). Finally, suppose
that β = ei − es where i < s ≤ n. Then {γ, γ′} = {ei − el, el − es} for some i < l < s ≤ n and
again γ ∈ a(α) or γ′ ∈ a(α).

(b) Let β ∈ `(α) and γ ∈ s(α) such that β + γ ∈ Φ+. We have to show that β + γ ∈ `(α) ∪ k(α).
If β = es + ei where 1 < s < i then γ has to be of the form γ = ek − el where k < l. Thus
β + γ = ek + ei where 1 < k < i or β + γ = es + ek where s, k < i. In the first case β + γ ∈
`(α) and in the second case β + γ ∈ k(α). Now suppose that β = e1 + es where s > i. Then
γ has to be of the form γ = ek − el where k < l and β + γ = e1 + ek where k 6= 1, i. Hence
β + γ ∈ k(α) ∪ `(α).

Now suppose that β = e1 − es where s > i and γ = ek + el where k < l or γ = el. Then
β + γ = e1 + ek where k 6= 1, i or β + γ = e1 + el where l 6= 1, i or β + γ = e1. Hence β + γ ∈
k(α) ∪ `(α). Finally, suppose that β = e1 − es where s > i and γ = ek − el where k < l. Then
β + γ = e1 − el where l > i. Thus β + γ ∈ `(α). Finally, suppose that β = e1. Then β + γ =
e1 + el where l 6= 1, i. Hence β + γ ∈ `(α) ∪ k(α), proving (b).

(c) In light of (b) it suffices to prove that a(α) normalizes `(α) ∪ {α} and this was already
shown in Lemma 7.7 (d). Hence (c) follows.

Remark 3. Note that, in contrast to type An, we did not claim in Lemma 7.7 that π(Hα)
is normal in UBn/P (k(α)). In fact, for all 2 < i < n the patterns h(α) and h(α) ∪ k(α) are not
normal because (e2 − ei) + (ei − en) 6∈ h(α) ∪ k(α).

We can now establish our desired correspondence for long root subgroups of root systems of
type Bn.

Proposition 7.9. Let Φ be a root system of type Bn as described above. For each α =
e1 + ei ∈ Φ+ where 1 < i ≤ n the map Ψα : Irr(Tα)× Irr(Xα)∗ → Irr(UBn)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UBn

is a one to one correspondence with the property Ψα(µ, λ)(1) = q2n−i−1 · µ(1).

Proof. The content of Lemmas 7.8 and 7.7 (a) is that hypothesis (1), (2) and (3) of
Proposition 6.2 are satisfied, and the content of Lemma 7.7 (d) is that hypothesis (4) of
Proposition 6.2 is satisfied. This proves the correspondence.

Our next result gives structural information concerning the group Tα. To this end we define
closed patterns

bi,j := {et, er ± es | r, s, t 6∈ {i, j}, and r < s}

where 1 ≤ i < j ≤ n and,

ob(e1 + ei) := {e1 − ei, . . . , ei−1 − ei}.
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Lemma 7.10. Let Φ be a root system of type Bn as described at the beginning of this
subsection. For all α = e1 + ei ∈ Φ+ the following is true:

(a) Sα/P (`(α) ∪ k(α)) ∼= Sα/P (`(α))P (k(α)) ∼= Tα ×Xα.
(b) Tα ∼= P (b1,i)/P (b1,i ∩ k(α)) n P (ob(α))/P (ob(α) ∩ k(α)).
(c) If i < n then kob(α) := b1,i \ {er − es | 1 < r < s < i} is a closed pattern that is normal

in b1,i and P (kob(α)) centralizes P (ob(α))/P (ob(α) ∩ k(α)).
(d) If i ∈ {2, 3}, then kob(α) = b1,i, k(α) = n(α) and

Tα ∼= UBn−2 × (UA1)i−1.

(e) If i > 3 then P (b1,i)/P (b1,i ∩ k(α)) is isomorphic to a quotient pattern group of UBn−2.
(f) If i > 3 then P (b1,i)/P (kob(α) ∪ (k(α) ∩ b1,i)) ∼= UAi−3.

Proof. (a) follows from the definition of Tα and Lemma 7.8 (b) and (c).

(b) By inspection, b1,i ∩ ({α} ∪ a(α)) = ∅ and ob(α) ∩ ({α} ∪ a(α)) = ∅. Hence, b1,i ∪ ob(α) ∪
`(α) ∪ k(α) ⊆ s(α) \ {α}. Thus

P (b1,i ∪ ob(α))P (`(α) ∪ k(α))/P (`(α) ∪ k(α)) ⊆ Tα. (7.2)

By definition, ob(α) ∪ b1,i ∪ k(α) ∪ h(α) = Φ+ and therefore

b1,i ∪ ob(α) ∪ k(α) ∪ `(α) ⊇ Φ+ \ ({α} ∪ a(α)) = s(α) \ {α},

and it follows that we have equality in (7.2). For all β ∈ ob(α) and γ ∈ b1,i we have β + γ 6∈ Φ+

or β + γ ∈ ob(α) and hence P (b1,i) normalizes P (ob(α)). By definition of ob(α) we have
ob(α) ∩ b1,i = ∅ and thus Tα is the semidirect product of P (b1,i)P (`(α) ∪ k(α))/P (`(α) ∪ k(α))
and P (ob(α))P (`(α) ∪ k(α))/P (`(α) ∪ k(α)). Because b1,i ∩ `(α) = ∅ and ob(α) ∩ `(α) = ∅ we
have P (b1,i) ∩ P (`(α) ∪ k(α)) = P (b1,i ∩ k(α)) and P (ob(α)) ∩ P (`(α) ∪ k(α)) = P (ob(α) ∩
k(α)) which implies (b).

(c) The only way to write er − es, where 1 < r < s < i, as a sum of two positive roots is er −
es = β + γ where {β, γ} = {er − et, et − es} for some r < t < s. Since b1,i is a closed pattern
and β, γ 6∈ kob(α) it follows that kob(α) is a closed pattern which is normal in b1,i. Suppose
that β = er ± er′ ∈ b1,i and γ = es − ei ∈ ob(α). Then β + γ ∈ ob(α) only if β = er − es where
1 < r < s < i, i.e., if β 6∈ kob(α). This proves (c).

(d) For i ∈ {2, 3} we have {er − es | 1 < r < s < i} = ∅. Hence kob(α) = b1,i and the semidirect
product in (b) is a direct product. Now Lemma 7.6 (b) and (c) imply that k(α) = n(α).
Furthermore |ob(α)| = i− 1 and ob(α) ∩ k(α) = ∅. Since P (ob(α)) is elementary abelian we
get P (ob(α))/P (ob(α) ∩ k(α)) ∼= (UA1)i−1. Because b1,i ∩ k(α) = ∅ and b1,i generates a root
subsystem of Φ of type Bn−2 we get P (b1,i)/P (b1,i ∩ k(α)) ∼= UBn−2.

(e) follows from the fact that b1,i generates a root subsystem of Φ of type Bn−2.

(f) By definition of kob(α) the set b1,i is the disjoint union of kob(α) and the set {er − es | 1 <
r < s < i}. The latter generates a root subsystem of Φ of type Ai−3. This completes the proof.

Finally we consider the highest short root α := e1. A simple calculation shows that:

Lemma 7.11. h(e1) = {e1, e1 − ei, ei | 2 ≤ i ≤ n}.
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We define

`(e1) := {e1 − ei | 2 ≤ i ≤ n} and

a(e1) := {ei | 2 ≤ i ≤ n},

and remark that `(e1) is a closed pattern whereas a(e1) is a closed pattern only modulo k(α).

Lemma 7.12. The following are true:
(a) n(e1) = {e1 + er | 1 < r ≤ n} and k(e1) = {er + es | 1 ≤ r < s ≤ n}.
(b) k(e1) is a normal closed pattern in Φ+.
(c) {e1} ∪ `(e1) ∪ k(e1) E h(e1) ∪ k(e1).
(d) The group P (h(e1) ∪ k(e1))/P (k(e1)) is special of order q1+2(n−1). Moreover modulo

P (k(e1)) [y,He1 ] = Z(He1) = Xe1 for all y ∈ He1 \ Z(He1).
(e) s(e1) is a closed pattern.
(f) `(e1) ∪ k(e1) E s(e1) and s(e1)/({e1} ∪ `(e1) ∪ k(e1)) is a closed pattern of type An−2.
(g) T e1

∼= UAn−2, Se1/P (`(e1) ∪ k(e1)) ∼= T e1 ×Xe1 .
(h) The map Ψe1 : Irr(T e1)× Irr(Xe1)∗ → Irr(UBn)e1 with

(µ, λ) 7→ (Infl
Se1
T e1

µ · Infl
Se1
Xe1

λ)UBn

is a one to one correspondence with the property Ψe1(µ, λ)(1) = qn−1 · µ(1).

Proof. (b) was already shown in Section 5.

(a) The fact that e1 + er is the sum of the two short roots e1 and er both of which lie in
h(e1) shows that n1(α) = {e1 + er | 1 < r ≤ n} ⊆ n(α). Now if γ + ν ∈ Φ+ for γ ∈ Φ+ and
ν ∈ n1(α), then γ = er − es and γ + ν ∈ n1(α) so that n(α) = n1(α) is as claimed.

We note that w(e1) = Φ+ \ k(e1). Now we already noted that the only way to express er as
a sum of positive roots is as (er − es) + es. Similarly the only way to express e1 − es as a sum
of positive roots is as (e1 − er) + (er − es) where r < s. Thus we see that w(e1) = {ei | 1 ≤ i ≤
n} ∪ {ei − ej | 1 ≤ i < j ≤ n} and thus k(e1) is as claimed.

(c) follows from the observation that er + (e1 − es) ∈ Φ+ only if r = s in which case the sum
is equal to e1.

(d) follows from the observation that the sum of any pair of roots from a(e1) lies in k(e1) which
means that a(e1) is a pattern modulo k(e1). The proof of the second statement of (d) is as the
proof of Lemma 7.7 (d).

To prove part (e) we note that s(e1) contains all long roots of Φ+ and the root e1. The long
roots are the positive roots of a Dn root system and thus from a closed pattern. If γ is a long
root, then e1 + γ 6∈ Φ+. This shows (e).

To see the second part of (f) note that {er − es | 1 < r < s ≤ n} = Φ+ \ (k(e1) ∪ h(e1)). To see
the normality of the leg note that (e1 − er) + β ∈ Φ+ only if β ∈ {er − es, er + et | r < s, r 6=
t}. Hence (e1 − er) + β = e1 − es or e1 + et ∈ `(e1) ∪ k(e1), which is our claim.

Now (g) follows from (f).

Finally (e), (f), (c) and (d) are the hypotheses of Proposition 6.2 and thus (h) follows.

7.3. Type D

Let n ≥ 4 be an integer. We construct a root system of type Dn as in [23, Section 12.1]: Let
e1, e2, . . . , en ∈ Rn be the usual orthonormal unit vectors which form a basis of Rn. Then Φ :=
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{±(ei ± ej) | 1 ≤ i 6= j ≤ n} is a root system of type Dn and the set {α1, . . . , αn}, where αi :=
ei − ei+1 for i = 1, 2, . . . , n− 1 and αn := en−1 + en, is a set of simple roots. The corresponding
set of positive roots is Φ+ = {ei ± ej | 1 ≤ i < j ≤ n}.

From the explicit description of the root systems (or the Dynkin diagram) we see that
{α2, α3, . . . , αn} generates a root subsystem Φ1′ of type Dn−1, that {α1, α2, . . . , αn−2, αn} gen-
erates a root subsystem Φ(n−1)′ of type An−1, and that {α1, α2, . . . , αn−1} generates a root sub-
system Φn′ of type An−1. We set Φ+

1′ := Φ1′ ∩ Φ+, Ψ+
1′ := Φ+ \ Φ+

1′ , Φ+
(n−1)′ := Φ(n−1)′ ∩ Φ+,

Ψ+
(n−1)′ := Φ+ \ Φ+

(n−1)′ , and Φ+
n′ := Φn′ ∩ Φ+, Ψ+

n′ := Φ+ \ Φ+
n′ . The sets Ψ+

1′ , Ψ+
(n−1)′ , and Ψ+

n′

are normal closed patterns. In fact, P (Ψ+
1′), P (Ψ+

(n−1)′) and P (Ψ+
n′) are the unipotent radicals

of the standard parabolic subgroups corresponding to {α2, α3, . . . , αn}, {α1, α2, . . . , αn−2, αn},
and {α1, α2, . . . , αn−1}, respectively. Furthermore, the sets Φ+

1′ , Φ+
(n−1)′ and Φ+

n′ are closed

patterns and P (Φ+
1′)
∼= UDn/P (Ψ+

1′)
∼= UDn−1 and P (Φ+

n′)
∼= UDn/P (Ψ+

n′)
∼= UAn−1.

Let α ∈ Φ+ and χ ∈ Irr(UDn)α. Suppose that α ∈ Φ+
1′ . It follows from Lemma 5.4 and

Remark 2 (a), (c) that P (Ψ+
1′) ⊆ Ker(χ). Thus, we can identify χ with a single root character

of P (Φ+
1′)
∼= UDn/P (Ψ+

1′)
∼= UDn−1. In this way, the classification and construction of the

elements of Irr(UDn)α is reduced to the case Dn−1. Similarly, if α ∈ Φ+
(n−1)′ or α ∈ Φ+

n′ we can

identify χ with a single root character of P (Φ+
(n−1)′) respectively P (Φ+

n′) and thereby obtain
a reduction to the case An−1 which has already been treated in Section 7.1. Hence, we only
have to consider positive roots α which are not contained in Φ+

1′ ∪ Φ+
(n−1)′ ∪ Φ+

n′ , i.e., the roots
e1 + ei, where 1 < i < n. We observe that Φ is a subsystem of the root system of type Bn
described in Section 7.2. Thus most of what follows is a simple consequence of restricting from
type Bn to type Dn.

Lemma 7.13. Let Φ be a root system of type Dn as described above. For all positive roots
of the form α = e1 + ei where 1 < i < n we have:

h(α) = {α} ∪ {e1 − es, es + ei | 1 < s < i} ∪ {e1 ± es, ei ∓ es | i < s ≤ n}.

Proof. This follows from Lemma 7.5 via restriction.

Next we determine the closed patterns n(α) and k(α).

Lemma 7.14. Let Φ be a root system of type Dn as described above. For all positive roots
of the form α = e1 + ei where 1 < i < n the following is true:

(a) The sets n(α) and k(α) are normal closed patterns in Φ+.
(b) n(α) = {e1 + es | 1 < s < i}.
(c) k(α) = {es + et | 1 ≤ s < t < i}.

Proof. This follows from Lemma 7.6 via restriction.

Let α ∈ Φ+. As already mentioned above, if α ∈ Φ+
(n−1)′ ∪ Φ+

n′ then the hook h(α), the arm

a(α) and the leg `(α) are defined as for type An. Also if α ∈ Φ+
1′ then we can assume recursively

that h(α), a(α) and `(α) are already defined. For α = e1 + ei, where 1 < i < n, we define the
arm and the leg as in Section 7.2 via restriction:

a(α) := {e1 − es | 1 < s < i} ∪ {ei ± es | i < s ≤ n} and

`(α) := {es + ei | 1 < s < i} ∪ {e1 ± es | i < s ≤ n}.
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As for types An and Bn, we will see that for each α ∈ Φ+ the hook h(α) is a closed pattern.
We set Hα := P (h(α)) and call it the hook subgroup corresponding to α.

Lemma 7.15. Let Φ be a root system of type Dn as described at the beginning of this
section. For all α = e1 + ei ∈ Φ+ the following are true:

(a) The hook h(α), the arm a(α) and the leg `(α) are closed patterns.
(b) The pattern subgroups P (a(α)) and P (`(α)) are elementary abelian.
(c) |a(α)| = |`(α)| = 2n− i− 2.
(d) If ht(α) > 1 then the hook subgroup Hα is special of type q1+2(2n−i−2) and [y,Hα] =

Z(Hα) = Xα for all y ∈ Hα \ Z(Hα). More specifically: For each y ∈ Hα \ Z(Hα) there
is some β ∈ h(α) such that {[y, xβ(t)] | t ∈ Fq} = Xα.

Proof. This follows from Lemma 7.7 via restriction.

Lemma 7.16. Let Φ be a root system of type Dn as described at the beginning of this
section. For all α = e1 + ei ∈ Φ+ the following are true:

(a) The source s(α) is a closed pattern.
(b) `(α) ∪ k(α) E s(α).
(c) `(α) ∪ {α} ∪ k(α) E Φ+.

Proof. This follows from Lemma 7.8 via restriction.

Proposition 7.17. Let Φ be a root system of type Dn as described above. For each
α = e1 + ei ∈ Φ+ where 1 < i < n the map Ψα : Irr(Tα)× Irr(Xα)∗ → Irr(UDn)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UDn

is a one to one correspondence with the property Ψα(µ, λ)(1) = q2n−i−2 · µ(1).

Proof. The content of Lemma 7.16 is that hypothesis (1), (2) and (3) of Proposition 6.2
are satisfied, and the content of Lemma 7.15 (d) is that hypothesis (4) of Proposition 6.2 is
satisfied. This proves the correspondence.

We conclude this section by giving structural information concerning the group Tα. For all
1 < i < n and α = e1 + ei we define

d1,i := {er ± es | 1 < r < s ≤ n and r 6= i 6= s} and

ob(α) := Φ+ \ (n(α) ∪ h(α) ∪ d1,i) = {er − ei | 1 ≤ r < i} and

kob(α) := d1,i \ {er − es | 1 < r < s < i}.

Note that d1,i and ob(e1 + ei) are closed patterns for all 1 < i < n and that P (ob(α)) is
elementary abelian. Furthermore, we have ob(α) ∩ k(α) = ∅.

Lemma 7.18. Let Φ be a root system of type Dn as described at the beginning of this
section. For all α = e1 + ei ∈ Φ+ the following are true:

(a) Sα/P (`(α) ∪ k(α)) ∼= Sα/P (`(α))P (k(α)) ∼= Tα ×Xα.
(b) Tα ∼= P (d1,i)/P (d1,i ∩ k(α)) n P (ob(α))/P (ob(α) ∩ k(α)).
(c) If i < n, then kob(α) is a closed pattern that is normal in d1,i and P (kob(α)) centralizes

P (ob(α))/P (ob(α) ∩ k(α)).
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(d) If i = n then P (ob(α))/P (ob(α) ∩ k(α)) = {1}.
(e) If i ∈ {2, 3} and i = n then Tα = {1}.
(f) If i ∈ {2, 3} and i < n then kob(α) = d1,i, k(α) = n(α) and

Tα ∼= UDn−2 × (UA1)i−1.

(g) If i > 3 then P (d1,i)/P (d1,i ∩ k(α)) is isomorphic to a quotient pattern group of UDn−2.
(h) If i > 3 then P (d1,i)/P (kob(α) ∪ (k(α) ∩ d1,i)) ∼= UAi−3.

Proof. This follows from Lemma 7.10 via restriction.

7.4. Type C

Let n ≥ 3 be an integer. We construct a root system of type Cn as in [23, Section 12.1]:
Let e1, e2, . . . , en ∈ Rn be the usual orthonormal unit vectors which form a basis of Rn. Then
Φ := {±(ei ± ej) | 1 ≤ i 6= j ≤ n} ∪ {±2ei | 1 ≤ i ≤ n} is a root system of type Cn and the set
{α1, . . . , αn}, where αi := ei − ei+1 for i = 1, 2, . . . , n− 1 and αn := 2en, is a set of simple roots.
The corresponding set of positive roots is Φ+ = {ei ± ej | 1 ≤ i < j ≤ n} ∪ {2ei | 1 ≤ i ≤ n}.

The highest long root with respect to this base is 2e1 = 2α1 + · · ·+ 2αn−1 + αn whereas
the highest short root is e1 + e2. We note that the long roots of Φ form a An1 -subsystem. Let
α, β ∈ Φ+ with α+ β ∈ Φ+. We recall that the Chevalley commutator relations imply that if α
is short and β is long, then [Xα, Xβ ] ⊆ Xα+βX2α+β , where α+ β is short and 2α+ β is long,
and that when both α and β are short, then [Xα, Xβ ] ⊆ Xα+β , where α+ β is short.

From the explicit description of the root systems (or from the Dynkin diagram) we see that
{α2, α3, . . . , αn} generates a root subsystem Φ1′ of type Cn−1 and that {α1, α2, . . . , αn−1} gen-
erates a root subsystem Φn′ of type An−1. We set Φ+

1′ := Φ1′ ∩ Φ+, Ψ+
1′ := Φ+ \ Φ+

1′ and Φ+
n′ :=

Φn′ ∩ Φ+, Ψ+
n′ := Φ+ \ Φ+

n′ . The sets Ψ+
1′ and Ψ+

n′ are normal closed patterns. In fact, P (Ψ+
1′)

and P (Ψ+
n′) are the unipotent radicals of the standard parabolic subgroups corresponding to

{α2, α3, . . . , αn} and {α1, α2, . . . , αn−1}, respectively. Furthermore, the sets Φ+
1′ and Φ+

n′ are
closed patterns and P (Φ+

1′)
∼= UCn/P (Ψ+

1′)
∼= UCn−1 and P (Φ+

n′)
∼= UCn/P (Ψ+

n′)
∼= UAn−1.

Let α ∈ Φ+ and χ ∈ Irr(UCn)α. Suppose that α ∈ Φ+
1′ . It follows from Lemma 5.4 and

Remark 2 (a), (c) that P (Ψ+
1′) ⊆ Ker(χ). Thus, we can identify χ with a single root center

character of P (Φ+
1′)
∼= UCn/P (Ψ+

1′)
∼= UCn−1. In this way, the classification and construction

of the elements of Irr(UCn)α is reduced to the case Cn−1. Similarly, if α ∈ Φ+
n′ we can identify

χ with a single root center character of P (Φ+
n′) and thereby get a reduction to the case An−1

which has already been treated in Subsection 7.1. Hence, we only have to consider positive
roots α which are not contained in Φ+

1′ ∪ Φ+
n′ , i.e., the roots e1 + ei where 1 < i ≤ n and the

root 2e1. We begin with single root characters lying above the highest root 2e1.

Lemma 7.19. Let Φ be a root system of type Cn as described above. For α = 2e1 we have

h(α) = {2e1, e1 + es, e1 − es | 2 ≤ s ≤ n}. (7.3)

Proof. We observe that the sum of two long roots is never in Φ+. Next we observe that the
sum of a long and a short root is either short or not in Φ+. Thus if 2e1 = β + γ, then both β
and γ are short. This implies that β = e1 ± es and hence γ = e1 ∓ es. This proves our claim.

We define the arm a(2e1) and the leg `(2e1) of h(2e1) as follows

a(2e1) := {e1 − es | 1 < s ≤ n} and `(2e1) := {e1 + es | 1 < s ≤ n}.
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Lemma 7.20. The following are true:
(a) n(2e1) = k(2e1) = ∅.
(b) `(α) ∪ {α}E h(α).
(c) The group P (h(2e1)) is special of order q1+2(n−1). Moreover [y,H2e1 ] = Z(H2e1) = X2e1

for all y ∈ H2e1 \ Z(H2e1).
(d) s(2e1) is a closed pattern.
(e) `(2e1) E s(2e1) and P (`(2e1)) is elementary abelian.
(f) s(2e1) \ ({2e1} ∪ `(2e1)) is a closed pattern of type UCn−1, T 2e1

∼= UCn−1, and
S2e1/P (`(2e1)) ∼= T 2e1 ×X2e1 .

Proof. As 2e1 is the highest root of Φ+ part (a) is clear. Also we note that 2e1 is the unique
long root in h(2e1). The short roots in h(α) are all of the form e1 ± er with r > 1 and thus sum
of two of these lies in Φ+ if and only if that sum is 2e1. This combined with Lemma 3.3 proves
part (b) and the first half of part (c). The proof of the Lemma 7.2 (d) carries over verbatim to
prove the second part of (c).

Now let β := e1 − es ∈ a(2e1) and suppose that β = γ + γ′ with γ, γ′ ∈ Φ+. As β ∈ Φn′ ,
we see that without loss γ = e1 − er and γ′ = er − es with 1 < r < s. As γ ∈ a(2e1) this
proves part (d). Now if e1 + er, e1 + es ∈ `(2e1), then e1 + er + e1 + es = 2e1 + er + es 6∈ Φ+,
and thus the Chevalley commutator relations imply that P (`(2e1)) is elementary abelian. If
e1 + es ∈ `(2e1) and β ∈ s(2e1), then e1 + es + β ∈ Φ+ only if β = er − es where r < s and
then e1 + es + β ∈ `(2e1) proving (e).

Finally we observe that

s(2e1) \ ({2e1} ∪ `(2e1)) = {2ei | 2 ≤ i ≤ n} ∪ {er ± es | 2 ≤ r < s ≤ n}

from which the claims in (f) follow.

Proposition 7.21. Let Φ be a root system of type Cn as described above. For the root
α := 2e1 ∈ Φ+ the map Ψα : Irr(Tα)× Irr(Xα)∗ → Irr(UCn)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UCn

is a one to one correspondence with Ψα(µ, λ)(1) = qn−1 · µ(1), where Tα ∼= UCn−1.

Proof. The content of Lemma 7.20 (d), (e), (b) and (c) is that hypothesis (1), (2), (3) and
(4) of Proposition 6.2 are satisfied. This proves the correspondence. The statement about the
structure of Tα is the content of Lemma 7.20 (f).

Next we consider the short roots α = e1 + ei which are not contained in Φ+
1′ ∪ Φ+

n′ .

Lemma 7.22. Let Φ be a root system of type Cn as described above. For all positive roots
of the form α = e1 + ei we have:

h(α) = {α} ∪ {e1 − es, es + ei | 1 < s < i} ∪ {e1 ± es, ei ∓ es | i < s ≤ n} ∪ {2ei, e1 − ei}.

Proof. Let β = 2et, β
′ = es′ ± et′ ∈ Φ+ with β + β′ = α. Then β′ = e1 − ei and β = 2ei.

Next let β = es ± et, β′ = es′ ± et′ ∈ Φ+ such that β + β′ = α. We see immediately that one
of the two ± signs has to be a + sign and that the other one has to be a − sign and that t = t′.
Furthermore, we can assume s = 1 and s′ = i. Hence

(β, β′) ∈ {(e1 − es, es + ei) | 1 < s < i or i < s ≤ n} ∪ {(e1 + es, ei − es) | i < s ≤ n}

and the claim follows.
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The contents of Remark 2 (c) and Lemma 5.4 is that if χ ∈ Irr(XU)α, then rk(χ) = k(α).
Also recall that Lemma 5.6 states w(α) ∩ k(α) = ∅ for each α ∈ Φ+. Using these two facts, we
can now describe the closed patterns n(α) and k(α).

Lemma 7.23. Let Φ be a root system of type Cn as described above and let α = e1 + ei.
The following are true:

(a) The sets n(α) and k(α) are normal closed patterns in Φ+.
(b) n(α) = {e1 + es | 1 < s < i} ∪ {2e1}.
(c) k(α) = n(α) ∪ {er + es | 1 < r < s < i} ∪ {2er | 1 < r < i}.

Proof. Part (a) was established in Section 5.

(b) By definition n0(α) = {e1 + ei}. Let γ = ek ± el ∈ Φ+. Then α+ γ ∈ Φ+ if and only if
γ = es − ei for some 1 < s < i or γ = e1 − ei. In the first case we have α+ γ = e1 + es where
1 < s < i and in the second case α+ γ = 2e1. Now if γ′ = 2er, then γ′ + δ 6∈ Φ+ for all δ = er +
et. Thus, n1(α) = {e1 + es | 1 < s < i} ∪ {2e1}. Again, if γ = ek ± el ∈ Φ+ then γ + (e1 + es) ∈
Φ+ if and only if γ = et − es for some 1 < t < s and in this case we have γ + (e1 + es) = e1 + et.
Thus n2(α) = n1(α) and therefore n(α) = n1(α) and (b) follows.

(c) Let β = es + et ∈ Φ+ where s < t and t ≥ i. If s = 1 then β ∈ h(α) ⊆ w(α). If s > 1 then
β ∈ h(e1 + et) and e1 + et ∈ h(α), hence β ∈ w(α).

Let β = 2es with i < s, then β + (e1 − es) = e1 + es ∈ h(α) ⊆ w(α).
Now let β = es − et ∈ Φ+ where s < t. If s = 1 then β ∈ h(α) ⊆ w(α). If s > 1 and t 6= i

then β ∈ h(e1 − et) and e1 − et ∈ h(α). Hence β ∈ w(α). If s > 1 and t = i then β ∈ h(e1 − ei),
e1 − ei ∈ h(α) and so we have β ∈ w(α). It follows from Lemma 5.6 that k(α) ⊆ {es + et | 1 ≤
s < t < i} ∪ {2es | s < i} =: M .

We claim that M E Φ+. Let β = es + et ∈M , γ ∈ Φ+ with β + γ ∈ Φ+. It follows that γ is
of the form γ = ek − es with k < s < t < i or γ = ek − et with k < t < i. In the first case we
have β + γ = ek + et with k < t < i, in the second case we have β + γ = ek + es with k, s < i.
Thus, β + γ ∈M in both cases. Let β = 2es ∈M , γ ∈ Φ+ with β + γ ∈ Φ+. It follows that
γ is of the form γ = ek − es with k < s < i and that β + γ = ek + es with k < s < i, hence
β + γ ∈M .

Thus we have M E Φ+. By the definition of M we have α 6∈M . Hence Remark 2 (a) implies
that M ⊆ k(α). Thus we have k(α) = M and (c) follows. This completes the proof.

We define

`(e1 + ei) := {e1 ± es | i < s ≤ n} ∪ {e1 − ei} ∪ {es + ei | 1 < s < i}

and

a(e1 + ei) := {ei ∓ es | i < s ≤ n} ∪ {2ei} ∪ {e1 − es | 1 < s < i}.

As before we will show that for each α ∈ Φ+ the hook h(α) is a closed pattern modulo k(α).
Call Hα := P (h(α) ∪ k(α))/P (k(α)) the hook subgroup corresponding to α, always bearing in
mind that we calculate modulo P (k(α)).

Lemma 7.24. Let Φ be a root system of type Cn as described at the beginning of this
subsection. For all α = e1 + ei ∈ Φ+ the following are true:

(a) The hook h(α) ∪ k(α) and the leg `(α) ∪ k(α) are closed patterns.
(b) {α} ∪ `(α) ∪ k(α) E h(α) ∪ k(α).
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(c) P (a(α)) is a pattern subgroup. It is isomorphic to a product of an elementary abelian
group of order qi−2 and a special group of order q1+2(n−i). The center of the special
group is X2ei .

(d) |a(α)| = 2n− i− 1.
(e) If ht(α) > 1, then for each y ∈ (

∏
γ∈a(α)Xγ) \ {1} there is some β ∈ `(α) such that

{[y, xβ(t)] | t ∈ Fq} = Xα.

Proof. (a), (b): Let β, γ ∈ h(α). We have β + γ ∈ Φ+ if and only if {β, γ} = {e1 − es, es +
ei} for some s 6= i or {β, γ} = {e1 − ei, es + ei} for some s 6= i or {β, γ} = {e1 + es, ei − es} for
some s > i or {β, γ} = {ei + es, ei − es} for some s > i or {β, γ} = {e1 − ei, ei − es} for some
s > i or {β, γ} = {e1 + es, e1 − es} for some s > i or {β, γ} = {2ei, e1 − ei}. In all of these cases
β + γ ∈ h(α) ∪ k(α), and it follows that h(α) ∪ k(α) is a closed pattern. We also see that for
all β, γ ∈ `(α) with β + γ ∈ Φ+ we have β + γ ∈ k(α). Hence `(α) ∪ k(α) is a closed pattern
and (a) follows.

If β ∈ h(α) and γ ∈ `(α), then either β + γ ∈ {α, 2e1} or β + γ 6∈ Φ+, and (b) follows.

Also for β, γ ∈ a(α) we see that β + γ ∈ {2ei} if β, γ ∈ a(α) \ {e1 − es | s < i} and that
β, γ 6∈ Φ+ if β, γ ∈ {e1 − es | s < i}. This shows (c).

(d) follows from (c).

Lastly suppose that ht(α) > 1. We have seen in the proof of (a) and (b) that for all β, γ ∈
h(α) we have β + γ ∈ Φ+ if and only if {β, γ} = {e1 − es, es + ei} for some s 6= i or {β, γ} =
{e1 − ei, es + ei} for some s 6= i or {β, γ} = {e1 + es, ei − es} for some s > i or {β, γ} = {ei +
es, ei − es} for some s > i or {β, γ} = {e1 − ei, ei − es} for some s > i or {β, γ} = {e1 + es, e1 −
es} for some s > i or {β, γ} = {2ei, e1 − ei}. In all of these cases β + γ ∈ {α} ∪ {e1 ± es | i <
s ≤ n} ∪ {2ei} ∪ k(α). It follows that Z(Hα) = Xα and that P ({α} ∪ `(α) ∪ k(α))/P (k(α)) is
normal and elementary abelian. Now let y =

∏
γ∈h(α) xγ(tγ) ∈ (

∏
γ∈a(α)Xγ) \ {1}. Because

y 6= 1 there is some γ ∈ a(α) \ {α} such tγ 6= 0. If γ 6= 2ei then we pick β := α− γ ∈ h(α) and
we get from Lemma 3.1 (a) that {[y, xβ(t)] | t ∈ Fq} = Xα = Z(Hα). If y ∈ X2eiP ({α} ∪ `(α) ∪
k(α)) \ P ({α} ∪ `(α) ∪ k(α)), then we pick β := e1 − ei and again we get that {[y, xβ(t)] | t ∈
Fq} = Xα = Z(Hα).

Next we show

Lemma 7.25. Let Φ be a root system of type Cn as described at the beginning of this
subsection. For all α = e1 + ei ∈ Φ+ the following is true:

(a) The source s(α) is a closed pattern and k(α) ⊆ s(α).
(b) `(α) ∪ k(α) E s(α).

Proof. (a) By Lemma 5.6 we have k(α) ∩ a(α) ⊆ k(α) ∩ w(α) = ∅. Hence k(α) ⊆ Φ+ \
a(α) = s(α). Let β ∈ a(α) and γ, γ′ ∈ Φ+ such that β = γ + γ′.

To prove that s(α) is a pattern it suffices to show that γ ∈ a(α) or γ′ ∈ a(α). Suppose
that β = e1 − es where 1 < s < i. Then {γ, γ′} = {e1 − el, el − es} for some 1 < l < s < i and
hence γ ∈ a(α) or γ′ ∈ a(α). Now suppose that β = ei + es where i < s ≤ n. Then {γ, γ′} =
{ei + el, es − el} for some i < l ≤ n or {γ, γ′} = {es + el, ei − el} for some i < l ≤ n. Hence
in both cases γ ∈ a(α) or γ′ ∈ a(α). Next, suppose that β = ei − es where i < s ≤ n. Then
{γ, γ′} = {ei − el, el − es} for some i < l < s ≤ n and again γ ∈ a(α) or γ′ ∈ a(α). Finally,
suppose that β = 2ei, then {γ, γ′} = {ei + es, ei − es} for some i < s ≤ n. But then we have
γ, γ′ ∈ a(α). This proves (a).
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(b) Let β ∈ `(α), γ ∈ s(α). First suppose that β = e1 + es where i < s ≤ n. Then β + γ ∈ Φ+

only if γ = er − es with i 6= r < s (as ei − es ∈ a(α)) and thus β + γ = e1 + er ∈ k(α) ∪ `(α).
Next suppose that β = e1 − es where i < s ≤ n. Then β + γ ∈ Φ+ only if γ = er + es with

i 6= r (as ei + es ∈ a(α)) or γ = es − er with s < r. Thus β + γ = e1 + er ∈ k(α) ∪ `(α) or β +
γ = e1 − er ∈ `(α).

Next suppose that β = es + ei where s < i. Then β + γ ∈ Φ+ only if γ = er − es with r < s
or γ = er − ei with r < i. Thus β + γ ∈ {er + es | r < s < i} ∪ {er + ei | r < i} ⊆ k(α) ∪ `(α).

Finally suppose that β = e1 − ei. Then β + γ ∈ Φ+ only if γ = e1 + ei or ei + er with r < i
or ei − er with r > i. As γ ∈ s(α) we see that γ = e1 + ei or ei + er with r < i. Thus β + γ ∈
{2e1} ∪ {e1 + er | r < i} ∪ {e1 − er | r > i} ⊆ k(α) ∪ `(α).

Now (b) follows.

Proposition 7.26. Let Φ be a root system of type Cn as described above. For each
α = e1 + ei ∈ Φ+ where 1 < i ≤ n the map Ψα : Irr(Tα)× Irr(Xα)∗ → Irr(UCn)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UAn

is a one to one correspondence with the property Ψα(µ, λ)(1) = q2n−i−1 · µ(1).

Proof. The content of Lemma 7.25 (a), (b) is that hypothesis (1) and (2) of Proposition 6.2
are satisfied, and the content of Lemma 7.24 (b) and (e) is that hypotheses (3) and (4) of
Proposition 6.2 is satisfied. This proves the correspondence.

We now derive some structural information about Tα. To this end we define closed patterns

ci,j := {2et, er ± es | r, s, t 6∈ {i, j}, and r < s}

where 1 ≤ i < j ≤ n and

ob(e1 + ei) := {e2 − ei, . . . , ei−1 − ei} and kob = c1,i \ {er − es | 1 < r < s < i}.

Also we define Tα := Sα/P ({α} ∪ `(α) ∪ k(α)).

Lemma 7.27. If α = e1 + ei, then Sα/P (`(α) ∪ k(α)) ∼= Sα/P (`(α)) ∼= Tα ×Xα and Tα is
a semidirect product of P (ob(α)) with P (c1,i)/P (c1,i ∩ k(α)), where c1,i is as above. Moreover
the following are true.

(a) The kernel of the action of P (c1,i) on P (ob) is P (kob).
(b) For i > 3, P (c1,i/(c1,i ∩ k(α))) ∼= UCn−2/Zi−2(UCn−2),
(c) For i > 3, P (c1,i)/P (kob) ∼= UAi−3,
(d) If i = 2, then kob = c1,2, ob = ∅, k(α) = n(α) = {2e1}, and Tα ∼= UCn−2.
(e) If i = 3, then kob = c1,3, k(α) = {2e1, 2e2, e1 + e2}, and

Tα ∼= UCn−2/Z(UCn−2)×Xe2−e3 .

Proof. The fact that Sα/P (`(α)) ∼= Tα ×Xα follows from the definition of Tα and parts (a)
and (b) of Lemma 7.25.

(a) The set ob(α) is the set of roots of Φ+ which are not contained in k(α) ∪ h(α) ∪ c1,i.
Notice that ob(α) is normalized by c1,i; proving the first part of (a).

For the second part we observe that no root of c1,i has ei in its support. Thus the only roots
from c1,i that can be added to an element of ob(α) to yield an element of Φ+ are of the form
er − es where 1 < r < s < i. This yields the second part of (a).

(b) We note that c1,i ⊆ Φ+
1′ and so our claim follows from Part (c) of Lemma 7.23.
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(c) We observe that r, s 6= 1, i then (er − es) + (ek − ei) ∈ Φ+ if and only if 1 < r < s = k.
Next we note that (er + es) + (ek − ei) 6∈ Φ+ for all r, s 6= 1, i and that er + (ek − ei) 6∈ Φ+ for
all r 6= 1, i. Thus (c) follows.

(d) and (e) follow from (a), and Lemma 7.23.

We can now complete the proof of Theorem 1.1.

Proof. (of Theorem 1.1) The theorem follows from Propositions 7.4, 7.9, Lemma 7.12 (h)
and Propositions 7.17, 7.21 and 7.26.

8. Single root midafis of exceptional groups

In this section we deal with the case that the root system Φ is irreducible of type E6, E7, E8,
F4 or G2 and prove Theorems 1.2 and 1.3. We will use the explicit construction of these root
systems given in [23, Section 12.1]. We assume the setting and notation from Sections 2-6.

We assume throughout this section that Hypothesis 1 holds.

8.1. Types E6, E7, E8

We deal with the types E6 and E7 by considering suitable root subsystems of a root system
of type E8. The root system of type E8 is constructed as follows (see [23, Section 12.1]): Let
e1, e2, . . . , e8 ∈ R8 be the usual orthonormal unit vectors which form a basis of R8 and let Φ8

be the union of the sets {±(ei ± ej) | 1 ≤ i 6= j ≤ 8} and

{1

2
(±e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 ± e8) | the number of minus signs is even}.

Then Φ8 is is a root system of type E8 and the set {α1, . . . , α8}, where

α1 :=
1

2
(e1 + e8 − e2 − e3 − e4 − e5 − e6 − e7), α2 := e1 + e2, α3 := e2 − e1,

α4 := e3 − e2, α5 := e4 − e3, α6 := e5 − e4, α7 := e6 − e5, α8 := e7 − e6,

is a set of simple roots. The corresponding set of positive roots is

Φ+
8 = {ei ± ej | 1 ≤ j < i ≤ 8} ∪ {1

2
(±e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 + e8)}

where the number of minus signs of the coefficients of the vectors in the second set is even.
The subsystem of Φ8 generated by {α1, . . . , α6} is a root system of type E6 which we denote

by Φ6, whereas the subsystem generated by {α1, . . . , α7} is a root system of type E7 which
we denote by Φ7. For i ∈ {6, 7}, the set {α1, . . . , αi} is a set of simple roots for Φi and Φ+

i :=
Φ+

8 ∩ Φi is the corresponding set of positive roots. For α ∈ Φ+
i we always take k(α) with respect

to Φ8 in this section.
We number the positive roots of Φ8 according to Table A.1. This table contains the following

information: The first column fixes the notation for the positive roots of Φ8. The second column
lists the coefficients mj when the root αi =

∑8
j=1mjαj is written as a linear combination of

the simple roots α1, . . . , α8. The third column expresses the root αi as a linear combination of
the vectors e1, . . . , e8 and the last column contains the height ht(αi). For example, the positive
root α69 is

α69 = 1 · α1 + 2 · α2 + 2 · α3 + 3 · α4 + 2 · α5 + 1 · α6 + 0 · α7 + 0 · α8

=
1

2
(e1 + e2 + e3 + e4 + e5 − e6 − e7 + e8)
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and we have ht(α69) = 11. In particular, we have

UE6 =
∏
α∈Φ+

6

Xα, UE7 =
∏
α∈Φ+

7

Xα and UE8 =
∏
α∈Φ+

8

Xα.

Let i ∈ {6, 7}. By factoring out the unipotent radical
∏
γ∈Φ+

8 \Φ
+
i
Xγ we can identify the

group UEi with a factor group of UE8 in a natural way and it follows from Remark 2 that for
each α ∈ Φ+

i we have Φ+
8 \ Φ+

i ⊆ k(α).
To formulate the next result we introduce the following set of positive roots:

Rnormal
6/7/8 := Φ+

8 \ {α45, α53, α57, α59, α60, α64, α67, α70, α71, α72, α73, α76, α77,

α78, α80, α83, α84, α85, α86, α87, α88, α89, α90, α91, α92, α94, α95, α98,

α99, α100, α102, α103, α104, α105, α106, α107, α108, α109, α110, α111,

α113, α114, α115, α116, α117, α118}.

The next proposition includes a construction of all single root midafis of the groups UE6, UE7,
UE8 and proves Theorems 1.2 and 1.3 for root systems Φ of type E6, E7 and E8. The proof of
the proposition is based on computer calculations. These calculations are carried out with the
help of computer programs which we have implemented in CHEVIE [10], [30].

We proceed as follows: Let i ∈ {6, 7, 8} and let α ∈ Φ+
i . We choose an arm a(α) =

{αi1 , αi2 , . . . , αir} of the hook h(α) such that the indices i1, i2, . . . , ir are given by the second
column of Table A.2 in the appendix. The corresponding leg is `(α) = {α− γ | γ ∈ a(α)} and
the source is s(α) = Φ+

i \ a(α). By computer calculations using CHEVIE we will show that
s(α) is a closed pattern. We know from Lemma 3.3 that we can identify the root subgroup Xα

with the quotient pattern group Sα/P (s(α) \ {α}) of the source group Sα = P (s(α)).
Suppose that α ∈ Φ+

i \Rnormal
6/7/8 . Let ¯̀(α) := `(α) ∪ {aj1 , αj2 , . . . , αjt} where the indices

j1, j2, . . . , jt are the maxima of the sets of integers given in the third column of Table A.2. By
computer calculations using CHEVIE we will show that ¯̀(α) ∪ k(α) E s(α), that the quotient
pattern group P (¯̀(α) ∪ k(α))/P (k(α)) is abelian and that ¯̀(α) ∪ {α} ∪ k(α) E Φ+

i . Hence, we
obtain the quotient pattern group

Tα := Sα/P ({α} ∪ ¯̀(α) ∪ k(α)).

Now suppose that α ∈ Φ+
i ∩Rnormal

6/7/8 . Again using CHEVIE we will show that `(α) ∪ k(α) E
s(α) and that `(α) ∪ {α} ∪ k(α) E Φ+

i so that we can consider the quotient pattern group

Tα := Sα/P ({α} ∪ `(α) ∪ k(α)).

Proposition 8.1. Let i ∈ {6, 7, 8} and let Φi be a root system of type Ei as described
above. For each positive root α ∈ Φ+

i the following are true:

(a) If α ∈ Φ+
i \Rnormal

6/7/8 then Ψα : Irrlin(Tα)× Irr(Xα)∗ → Irrmida(UEi)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UEi

is a one to one correspondence.
(b) If α ∈ Rnormal

6/7/8 then Ψα : Irr(Tα)× Irr(Xα)∗ → Irr(UEi)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UEi

is a one to one correspondence.

The number |Irrmida(UEi)α| of midafis for α is given in the second and the fifth column of
Table 3 and the degree χ(1) for χ ∈ Irrmida(UEi)α is given in the third and the sixth column
of Table 3.
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Remark 4. Let i ∈ {6, 7, 8} and let α ∈ Φ+
i be a positive root. By definition, all midafis

χ ∈ Irrmida(UEi)α have the same degree; this is the number given in the third and the sixth
column of Table 3. For example: |Irrmida(UE8)α115 | = q8(q − 1) and each χ ∈ Irrmida(UE8)α115

has the degree χ(1) = q23.
The roots in Φ+

6 , Φ+
7 \ Φ+

6 , Φ+
8 \ Φ+

7 , respectively, are separated from each other by horizontal
lines in Table 3 and Table A.2.

Table 3: Numbers and degrees of the midafis for roots αi ∈ Φ+
8 .

Root Number of midafis Degree Root Number of midafis Degree
α1 q − 1 1 α2 q − 1 1
α3 q − 1 1 α4 q − 1 1
α5 q − 1 1 α6 q − 1 1
α9 q − 1 q α10 q − 1 q
α11 q − 1 q α12 q − 1 q
α13 q − 1 q α16 q(q − 1) q2

α17 q(q − 1) q2 α18 q(q − 1) q2

α19 q(q − 1) q2 α20 q(q − 1) q2

α23 q2(q − 1) q3 α24 q2(q − 1) q3

α25 q4(q − 1) q3 α26 q2(q − 1) q3

α27 q2(q − 1) q3 α30 q5(q − 1) q4

α31 q3(q − 1) q4 α32 q3(q − 1) q4

α33 q5(q − 1) q4 α37 q5(q − 1) q5

α38 q6(q − 1) q5 α40 q5(q − 1) q5

α44 q4(q − 1) q6 α45 q7(q − 1) q6

α48 q4(q − 1) q6 α51 q6(q − 1) q7

α52 q6(q − 1) q7 α57 q6(q − 1) q8

α63 q6(q − 1) q9 α69 q5(q − 1) q10

α7 q − 1 1 α14 q − 1 q
α21 q(q − 1) q2 α28 q2(q − 1) q3

α34 q3(q − 1) q4 α35 q3(q − 1) q4

α39 q4(q − 1) q5 α41 q6(q − 1) q5

α46 q7(q − 1) q6 α49 q6(q − 1) q6

α53 q8(q − 1) q7 α55 q6(q − 1) q7

α58 q7(q − 1) q8 α59 q8(q − 1) q8

α61 q5(q − 1) q8 α64 q8(q − 1) q9

α66 q7(q − 1) q9 α70 q8(q − 1) q10

α71 q7(q − 1) q10 α75 q7(q − 1) q11

α76 q8(q − 1) q11 α80 q7(q − 1) q12

α82 q7(q − 1) q12 α85 q7(q − 1) q13

α89 q7(q − 1) q14 α93 q7(q − 1) q15

α97 q6(q − 1) q16

α8 q − 1 1 α15 q − 1 q
α22 q(q − 1) q2 α29 q2(q − 1) q3

α36 q3(q − 1) q4 α42 q4(q − 1) q5

α43 q4(q − 1) q5 α47 q5(q − 1) q6

α50 q7(q − 1) q6 α54 q8(q − 1) q7

α56 q7(q − 1) q7 α60 q9(q − 1) q8

α62 q7(q − 1) q8 α65 q8(q − 1) q9
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Table 3 (cont.)
Root Number of midafis Degree Root Number of midafis Degree
α67 q9(q − 1) q9 α68 q7(q − 1) q9

α72 q9(q − 1) q10 α73 q9(q − 1) q10

α74 q6(q − 1) q10 α77 q9(q − 1) q11

α78 q9(q − 1) q11 α79 q8(q − 1) q11

α81 q8(q − 1) q12 α83 q10(q − 1) q12

α84 q8(q − 1) q12 α86 q9(q − 1) q13

α87 q9(q − 1) q13 α88 q9(q − 1) q13

α90 q9(q − 1) q14 α91 q8(q − 1) q14

α92 q9(q − 1) q14 α94 q9(q − 1) q15

α95 q9(q − 1) q15 α96 q8(q − 1) q15

α98 q9(q − 1) q16 α99 q9(q − 1) q16

α100 q8(q − 1) q16 α101 q8(q − 1) q17

α102 q9(q − 1) q17 α103 q9(q − 1) q17

α104 q8(q − 1) q18 α105 q9(q − 1) q18

α106 q8(q − 1) q18 α107 q8(q − 1) q19

α108 q9(q − 1) q19 α109 q8(q − 1) q20

α110 q9(q − 1) q20 α111 q9(q − 1) q21

α112 q8(q − 1) q21 α113 q8(q − 1) q22

α114 q8(q − 1) q22 α115 q8(q − 1) q23

α116 q8(q − 1) q24 α117 q8(q − 1) q25

α118 q8(q − 1) q26 α119 q8(q − 1) q27

α120 q7(q − 1) q28

Proof. (of Proposition 8.1) The proof is carried out by computer programs which we have
implemented in CHEVIE. In particular, for all computations with roots we use these CHEVIE
programs.

(a) We demonstrate the proof only for α = α115 ∈ Φ+
8 \Rnormal

6/7/8 . The proof for the other

roots in Φ+
i \Rnormal

6/7/8 is similar. Let α = α115. Using the data in Table A.1 we see that the
hook corresponding to α is

h(α) = {γ ∈ Φ+
8 | There is γ′ ∈ Φ+

8 such that γ + γ′ = α115.}
= {α2, α3, α9, α17, α23, α25, α30, α33, α38, α41, α44, α46, α50, α51, α54,

α57, α58, α64, α65, α69, α71, α72, α75, α78, α80, α81, α84, α85, α86, α90,

α91, α93, α95, α97, α98, α100, α101, α102, α104, α105, α107, α108, α109,

α112, α113, α114, α115}.

According to Table A.2 we make the following choice for the arm and the leg of the hook h(α):

a(α) = {α2, α3, α9, α17, α23, α25, α30, α33, α38, α41, α44, α46, α50, α51, α54, α57,

α58, α64, α65, α71, α72, α78, α84},
`(α) = {α69, α75, α80, α81, α85, α86, α90, α91, α93, α95, α97, α98, α100, α101, α102,

α104, α105, α107, α108, α109, α112, α113, α114}.

Using CHEVIE we verify that s(α) = Φ+
8 \ a(α) is a closed pattern and using Definition 8 we

get k(α) = {α116, α117, α118, α119, α120}. In particular, we have `(α) ∪ k(α) ⊆ s(α). The normal
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closure of `(α) ∪ k(α) in s(α) is ¯̀(α) ∪ k(α) where

¯̀(α) = {α89, α94, α99, α103, α106, α110, α111} ∪ `(α)

and using CHEVIE we verify that ¯̀(α) ∪ {α} ∪ k(α) E Φ+
8 . Also by a direct calculation we see

that h(α) ∪ k(α) is a closed pattern. We set

Sα := P (s(α)) and Hα := P (h(α) ∪ k(α))/P (k(α)).

We claim that Hα is special of type q1+2|a(α)| = q1+2·23 and that [x,Hα] = Z(Hα) = Xα for all
x ∈ Hα \ Z(Hα). The proof is analogous to that of Lemma 7.2 (d): A direct calculation shows
that for all γ, γ′ ∈ h(α) with γ + γ′ ∈ Φ+

8 we have γ + γ′ ∈ {α} ∪ k(α). It follows that Xα ⊆
Z(Hα) and [Hα, Hα] ⊆ Xα. Now let x ∈ Hα \Xα. We write x =

∏
γ∈h(α) xγ(tγ) as in (2.1).

Because x 6∈ Xα there is some γ ∈ h(α) \ {α} such that tγ 6= 0. Thus, γ′ := α− γ ∈ h(α) and
we get from Lemma 3.1 (a) that {[x, xγ′(t)] | t ∈ Fq} = Xα = Z(Hα) = [x,Hα] = [Hα, Hα] =
Φ(Hα). So Hα is special of type q1+2|a(α)| = q1+2·23. Note that this argument also shows that
a(α) ∪ k(α) and `(α) ∪ k(α) are closed patterns and that the quotient pattern groups P (a(α) ∪
k(α))/P (k(α)) and P (`(α) ∪ k(α))/P (k(α)) are abelian groups.

To apply the Reduction Lemma 2.1 and Lemma 6.1 we introduce the following notation
(only for this proof):
• U := UE8/P (k(α)),
• H := Sα := Sα/P (k(α)) ⊆ U ,
• Z := Xα ⊆ U ,
• X :=

∏
γ∈a(α)Xγ ⊆ U ,

• Y := P (¯̀(α) ∪ k(α))/P (k(α)) ⊆ U ,
• Irr(U)α := {χ ∈ Irr(U) | Xα 6⊆ Ker(χ)},

where Xγ denotes the image of Xγ in U .
We have just seen that X is an abelian group and it follows from (2.1) that X is a set

of representatives for U/H. A direct calculation shows that for all γ, γ′ ∈ ¯̀(α) such that γ +
γ′ ∈ Φ+

8 we have γ + γ′ ∈ k(α). Thus Y is abelian. By Lemma 5.4 and Definition 6 (a) we
have Z ⊆ Z(U). We have Y EH and ZY E U because ¯̀(α) ∪ k(α) E s(α) and ¯̀(α) ∪ {α} ∪
k(α) E Φ+

8 . Furthermore we have Y ∩ Z = {1} because α 6∈ ¯̀(α). Hence, the conditions (a)-
(d) in Lemma 2.1 are satisfied. Suppose that λ ∈ Irr(Z)∗ and let λ̃ be the inflation of λ to
ZY = Z × Y . Suppose that there is x ∈ X \ {1} such that xλ̃ = λ̃. Hence we have λ̃(ux) =
λ̃(u) for all u ∈ ZY . In particular, λ̃(ux) = λ̃(u) for all u ∈ Lα := P (`(α) ∪ k(α))/P (k(α)) and
therefore λ̃([u, x]) = 1 for all u ∈ Lα. It follows that [u, x] ∈ Ker(λ̃) for all u ∈ Lα and then also
[x, u] = [u, x]−1 ∈ Ker(λ̃) for all u ∈ Lα. Since X is abelian and Z ⊆ Z(U) we get that [x, u] ∈
Ker(λ̃) for all u ∈ XZLα = Hα and hence Z = [x,Hα] ⊆ Ker(λ̃). Thus 1 = λ̃(Z) = λ(Z) which
is impossible since λ is nontrivial. Hence, also condition (e) of Lemma 2.1 is satisfied.

It follows from Lemmas 3.3 and 5.1 that H/Y ∼= Tα ×Xα where

Tα := Sα/P ({α} ∪ ¯̀(α) ∪ k(α)),

and the Reduction Lemma 2.1 gives a one to one correspondence

Ψ̃α : Irr(Tα)× Irr(Xα)∗ → Irr(U)α ∩ Irr(U,1Y ), (µ, λ) 7→ (InflH
Tα
µ · InflHXαλ)U .

We are interested in the characters χ ∈ Irr(U)α such that the degree χ(1) is minimal. Let d :=
min{χ(1) | χ ∈ Irr(U)α} and Irrmida(U)α := {χ ∈ Irr(U)α | χ(1) = d}. For every λ ∈ Irr(Xα)∗

we have

Ψ̃α(µ, λ)(1)

{
= [U : H] = q|a(α)| = q23 if µ is linear,

> q23 if µ is nonlinear.
(8.1)

Let χ ∈ Irr(U)α \ Irr(U,1Y ). We claim that χ(1) > q23. There are exactly q − 1 irreducible
characters of Hα not having Xα in their kernel, namely the characters (InflXα×LαXα

λ)Hα where
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λ ∈ Irr(Xα)∗. Each such character has degree q|a(α)| = q23. Since Xα 6⊆ Ker(χ) it follows that
χ ∈ Irr(U,1Lα). Thus the restriction χ|ZY has an irreducible constituent µ̃ ∈ Irr(ZY,1Lα).
Note that µ̃ is a linear character since Y and ZY = Z × Y are abelian. Since χ ∈ Irr(U)α,
ZY E U and Z ⊆ Z(U) we have Xα 6⊆ Ker(µ̃) and since χ 6∈ Irr(U,1Y ) we have µ̃|Y 6= 1Y . It
follows that there is some root

β ∈ ¯̀(α) \ `(α) = {α89, α94, α99, α103, α106, α110, α111}

such that Xβ 6⊆ Ker(µ̃). We only demonstrate the case β = α106. The other cases are similar.
We choose the subhook h′(β) = {α5, α103, β = α106} according to Table A.2. A direct

calculation shows that h′(β) ∪ k(α) is a closed pattern so that condition (a) of Lemma 6.1
is satisfied. The fact α5 + α103 = β implies that the group H ′β := P (h′(β) ∪ k(α))/P (k(α))
satisfies condition (e) of Lemma 6.1. We have already seen above that Hα satisfies condition
(d) of Lemma 6.1 and also condition (c) is obviously satisfied. As in Lemma 6.1 let h′αβ be the
closed pattern generated by h(α) ∪ h′(β) ∪ k(α) so that

h′αβ = {α2, α3, α5, α9, α17, α23, α25, α30, α33, α38, α41, α44, α46, α50, α51, α54,

α57, α58, α64, α65, α69, α71, α72, α75, α78, α80, α81, α84, α85, α86, α90,

α91, α93, α95, α97, α98, α100, α101, α102, α103, α104, α105, α106, α107,

α108, α109, α112, α113, α114, α115, α116, α117, α118, α119, α120}.

A direct calculation shows that h′αβ \ a(α) normalizes `(α) ∪ k(α) so that also condition (b)
of Lemma 6.1 is satisfied. Define `′αβ := {α, β} ∪ `(α) ∪ k(α) and L′αβ := P (`′αβ)/P (k(α)) as
in Lemma 6.1. Let µ := µ̃|L′αβ . Since µ̃ is a linear character we have µ ∈ Irr(L′αβ) and the
properties of µ̃ imply that µ satisfies the assumptions in Lemma 6.1. Because µ is a constituent
of χ|L′αβ there is a constituent ψ ∈ Irr(H ′αβ , µ) of χ|H′αβ and Lemma 6.1 gives us χ(1) ≥ ψ(1) ≥
q|a(α)|+1 > q23. In particular, we get that the degree χ(1) is not minimal among the degrees of
the irreducible characters in Irr(U)α.

Using a similar argument for the other roots β ∈ ¯̀(α) \ `(α) we get that χ(1) > q23 for all
χ ∈ Irr(U)α \ Irr(U,1Y ). It follows that d = q23 and

Irrmida(U)α = {χ ∈ Irr(U)α | χ(1) = q23} ⊆ Irr(U)α ∩ Irr(U,1Y ).

Hence Ψ̃α maps Irrlin(Tα)× Irr(Xα)∗ one to one onto the set of irreducible characters in
Irr(U)α of minimal degree. Identifying the irreducible characters of U with their inflations to
UE8 we see that the map Ψα defined in part (a) of the proposition maps Irrlin(Tα)× Irr(Fq)∗
one to one onto Irrmida(UE8)α. This completes the proof of part (a) of the proposition.

(b) We demonstrate the proof only for α = α112 ∈ Φ+
8 ∩Rnormal

6/7/8 . The proof for the other

roots in Φ+
i ∩Rnormal

6/7/8 is similar. Let α = α112. Using the data in Table A.1 we see that the
hook corresponding to α is

h(α) = {γ ∈ Φ+
8 | There is γ′ ∈ Φ+

8 such that γ + γ′ = α112.}
= {α2, α10, α17, α18, α25, α26, α32, α33, α34, α40, α41, α42, α48, α49, α50, α55,

α56, α61, α62, α68, α69, α74, α75, α80, α81, α85, α86, α89, α90, α91, α93, α94,

α95, α98, α99, α100, α102, α103, α105, α106, α108, α110, α112}.

According to Table A.2 we make the following choice for the arm and the leg of the hook h(α):

a(α) = {α2, α10, α17, α18, α25, α26, α32, α33, α34, α40, α41, α42, α48, α49, α50,

α55, α56, α61, α62, α68, α74},
`(α) = {α69, α75, α80, α81, α85, α86, α89, α90, α91, α93, α94, α95, α98, α99, α100,

α102, α103, α105, α106, α108, α110}.
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Using CHEVIE we verify that s(α) = Φ+
8 \ a(α) is a closed pattern and using Definition 8 we

get

k(α) = {α97, α101, α104, α107, α109, α111, α113, α114, α115, α116, α117, α118,

α119, α120}.

In particular, `(α) ∪ k(α) ⊆ s(α). Using CHEVIE we verify that `(α) ∪ k(α) E s(α), that `(α) ∪
{α} ∪ k(α) E Φ+

8 and that for all γ, γ′ ∈ `(α) with γ + γ′ ∈ Φ+
8 we have γ + γ′ ∈ k(α). Let

a(α) = {αi1 , αi2 , . . . , αir} where i1 < i2 < · · · < ir. Again using CHEVIE we see that for all
j, k ∈ {1, 2, . . . , r} with k > j we have αik + (α− αij ) 6∈ Φ+

8 or αik + (α− αij ) ∈ k(α). We set
Sα := P (s(α)). To apply the Reduction Lemma 2.1 we introduce the following notation (only
for this proof):

• U := UE8/P (k(α)),
• H := Sα := Sα/P (k(α)) ⊆ U ,
• Z := Xα ⊆ U ,
• X :=

∏
γ∈a(α)Xγ ⊆ U ,

• Y := P (`(α) ∪ k(α))/P (k(α)) ⊆ U ,
• Irr(U)α := {χ ∈ Irr(U) | Xα 6⊆ Ker(χ)},

where Xγ denotes the image of Xγ in U .
It follows from (2.1) that X is a set of representatives for U/H. By Lemma 5.4 and

Definition 6 (a) we have Z ⊆ Z(U). We have Y EH and ZY E U because `(α) ∪ k(α) E s(α)
and `(α) ∪ {α} ∪ k(α) E Φ+

8 . Furthermore we have Y ∩ Z = {1} because α 6∈ `(α). Hence, the
conditions (a)-(d) in Lemma 2.1 are satisfied.

Suppose that λ ∈ Irr(Z)∗. Let λ̃ be the inflation of λ to ZY = Z × Y . Note that λ̃ is a linear
character. Suppose that there is x ∈ X \ {1} such that xλ̃ = λ̃. Because λ is nontrivial on Xα

there is t ∈ Fq such that λ̃(xα(t)) = λ(xα(t)) 6= 1. It follows from Lemma 3.1 (a) that there is
some root γ ∈ `(α) and an element t′ ∈ Fq such that [x, xγ(t′)−1] = xα(t). Hence

xλ̃(xγ(t′)) = λ̃(x−1 · xγ(t′) · x · xγ(t′)−1 · xγ(t′)) = λ̃(xα(t))λ̃(xγ(t′)) 6= λ̃(xγ(t′)),

contradicting xλ̃ = λ̃. Hence, the condition (e) of Lemma 2.1 holds. The condition (f) of
Lemma 2.1 is also satisfied because |X| = q|a(α)| = |Y |. It follows from Lemmas 3.3 and 5.1
that H/Y ∼= Tα ×Xα where

Tα := Sα/P ({α} ∪ ¯̀(α) ∪ k(α)).

Now the Reduction Lemma 2.1 gives the one to one correspondence

Ψ̃α : Irr(Tα)× Irr(Xα)∗ → Irr(U)α, (µ, λ) 7→ (InflH
Tα
µ · InflHXαλ)U .

Identifying the irreducible characters of U with their inflations to UE8 gives the one to
one correspondence Ψα defined in part (b) of the proposition. Note that the bijection Ψα

maps Irrlin(Tα)× Irr(Xα)∗ onto Irrmida(UEi)α. This completes the proof of part (b) of the
proposition.

Using Lemma 3.3 we can easily compute |Irrlin(Tα)| = |Tα/[Tα, Tα]| and get

|Irrmida(UE8)α| = |Ψα(Irrlin(Tα)× Irr(Xα)∗)| = |Irrlin(Tα)| · |Irr(Fq)∗|
= |Irrlin(Tα)| · (q − 1).

For every χ ∈ Irrmida(UE8)α we have χ(1) = Ψα(µ, λ)(1) for some linear character µ of Tα and
λ ∈ Irr(Xα)∗ and hence

χ(1) = Ψα(µ, λ)(1) = [UE8 : Sα] · µ(1) · λ(1) = q|a(α)|.

This gives the entries in Table 3 and completes the proof of Proposition 8.1.
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Remark 5. Let i ∈ {6, 7, 8} and let α ∈ Φ+
i be a positive root.

(a) We could not find a canonical choice for the arm a(α). However, in some sense the
choices in Table A.2 are best possible; see Remark 7.

(b) For roots α ∈ Φ+
i ∩Rnormal

6/7/8 Proposition 8.1 (b) reduces the classification of the midafis

in Irr(UEi)α to the character theory of the subquotient Tα. We illustrate by the example
α = α112 = 1

2 (e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8) for i = 8 how information on the
structure of Tα can be obtained. The following are true:
(1) n(α) = {e8 + ej | 1 ≤ j ≤ 7} = {α113, α115, α116, α117, α118, α119, α120},
(2) k(α) = {e8 ± ej | 1 ≤ j ≤ 7} = {α97, α101, α104, α107, α109, α111, α113,

α114, α115, α116, α117, α118, α119, α120},
(3) a(α) = {ei + ej | 1 ≤ j < i ≤ 7} = {α2, α10, α17, α18, α25, α26, α32, α33,

α34, α40, α41, α42, α48, α49, α50, α55, α56, α61, α62, α68, α74},
(4) `(α) = { 1

2 (±e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 + e8) | exactly two signs
are negative} = {α69, α75, α80, α81, α85, α86, α89, α90, α91, α93,
α94, α95, α98, α99, α100, α102, α103, α105, α106, α108, α110}.

Equations (3) and (4) are the result of the calculation recorded in Table A.2. The other
equations can be confirmed by our CHEVIE programs, but they can also be proved by
hand: (1) follows from the equation

e8 ± ej =
1

2
(±e1 ± · · · ± ej−1 ± ej ± ej+1 · · · ± e7 + e8)

+
1

2
(∓e1 ∓ · · · ∓ ej−1 ± ej ∓ ej+1 · · · ∓ e7 + e8).

For (2) we observe that Z(UE8/P (n(α))) = Xα, Xe8−e1 . Factoring out Xe8−e1 and
repeating yields the claim after seven iterations.
We now define the following subsets of Φ+

8 :

a6 := {ei − ej | 1 ≤ j < i ≤ 7} = {α3, α4, α5, α6, α7, α8, α11, α12, α13, α14,

α15, α19, α20, α21, α22, α27, α28, α29, α35, α36, α43},

v := {1

2
(±e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 + e8) | exactly two + signs}

= {α1, α9, α16, α24, α31, α39, α47},

f := {1

2
(±e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 + e8) | exactly four + signs}

= {α23, α30, α37, α38, α44, α45, α46, α51, α52, α53, α54, α57, α58, α59, α60,

α63, α64, α65, α66, α67, α70, α71, α72, α73, α76, α77, α78, α79, α82,

α83, α84, α87, α88, α92, α96}.

With this notation we observe that s(α) = k(α) ∪ {α} ∪ a6 ∪ v ∪ f ∪ `(α). Also let K
denote the standard D7-parabolic subgroup of E8(q) with Levi decomposition K =
QoD (with respect to our choice of the root datum). Then

Z(Q) = P (k(α)), Q/Z(Q) = P ({α} ∪ v ∪ f ∪ `(α) ∪ k(α))/P (k(α))

and 〈Xγ | γ ∈ a(α) ∪ a6 ∪ (−a6)〉 is a maximal parabolic subgroup of D with A6-Levi
factor A := 〈Xγ | γ ∈ a6 ∪ (−a6)〉 and unipotent radical P (a(α)). We remark that Z(Q)
is the natural module and Q/Z(Q) is a half-spin module for D. Hence both are
elementary abelian. With these facts at our disposal we can now observe:
(1) Hα = P (h(α)) is a special group which is normalized by P (a6),
(2) P (v) := P (v ∪ k(α))/P (k(α)) and P (f) := P (f ∪ k(α))/P (k(α)) are elementary

abelian and centralize each other,
(3) P (`(α)) := P (`(α) ∪ k(α))/P (k(α)) is normalized by P (a6) and centralized by

P (v)× P (f),
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(4) A normalizes P (v) and P (f),
(5) P (v) is the natural module for A and P (f) is the alternating cube of the natural

module,
(6) Tα = (P (v)× P (f)) o P (a6),
(7) P (v ∪ a6) ∼= UA7(q).

8.2. Type F4

We construct a root system of type F4 as in [23, Section 12.1]: Let e1, e2, e3, e4 ∈ R4 be
the usual orthonormal unit vectors which form a basis of R4. Then Φ4 := {±(ei ± ej) | 1 ≤ i 6=
j ≤ 4} ∪ {±ei | 1 ≤ i ≤ 4} ∪ { 1

2 (±e1 ± e2 ± e3 ± e4)} is a root system of type F4 and the set
{α1, . . . , α4}, where α1 := e2 − e3, α2 := e3 − e4, α3 := e4, and α4 := 1

2 (e1 − e2 − e3 − e4), is
a set of simple roots. The corresponding set of positive roots is

Φ+
4 = {ei ± ej | 1 ≤ i < j ≤ 4} ∪ {ei | 1 ≤ i ≤ 4} ∪ {1

2
(e1 ± e2 ± e3 ± e4)}.

We number the positive roots of Φ4 according to Table A.3. This table contains the following
information: The first column fixes the notation for the positive roots of Φ4. The second column
lists the coefficients mj when the root αi =

∑4
j=1mjαj is written as a linear combination of

the simple roots α1, α2, α3, α4. The third column expresses the root αi as a linear combination
of the vectors e1, e2, e3, e4 and the last column contains the height ht(αi). For example, the
positive root α19 is

α19 = 1 · α1 + 2 · α2 + 3 · α3 + 1 · α4 =
1

2
(e1 + e2 + e3 + e4)

and we have ht(α19) = 7.
The construction of the single root midafis of the group UF4 is similar to the one for UEi:

Let Rnormal
4 := Φ+

4 \ {α20, α22} and let α ∈ Φ+
4 . We choose an arm a(α) = {αi1 , αi2 , . . . , αir} of

the hook h(α) such that the indices i1, i2, . . . , ir are given by the second column of Table A.4
in the appendix. We define and construct the leg `(α), the source s(α), the source group Sα,
the enlarged leg ¯̀(α) and the quotient pattern group Tα of Sα in the same way as for UEi
(distinguishing the two cases α 6∈ Rnormal

4 and α ∈ Rnormal
4 ).

Proposition 8.2. Let Φ4 be a root system of type F4 as described above. For each positive
root α ∈ Φ+

4 the following are true:
(a) If α ∈ Φ+

4 \Rnormal
4 then Ψα : Irrlin(Tα)× Irr(Xα)∗ → Irrmida(UF4)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UF4

is a one to one correspondence.
(b) If α ∈ Rnormal

4 then Ψα : Irr(Tα)× Irr(Xα)∗ → Irr(UF4)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UF4

is a one to one correspondence.
The number |Irrmida(UF4)α| of midafis for α is given in the second and the fifth column of
Table 4 and the degree χ(1) for χ ∈ Irrmida(UF4)α is given in the third and the sixth column
of Table 4.
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Table 4: Numbers and degrees of the midafis of UF 4.

Root Number of midafis Degree Root Number of midafis Degree
α1 q − 1 1 α2 q − 1 1
α3 q − 1 1 α4 q − 1 1
α5 q − 1 q α6 q − 1 q
α7 q − 1 q α8 q(q − 1) q2

α9 q(q − 1) q α10 q(q − 1) q2

α11 q3(q − 1) q2 α12 q2(q − 1) q3

α13 q(q − 1) q3 α14 q2(q − 1) q3

α15 q5(q − 1) q4 α16 q2(q − 1) q2

α17 q4(q − 1) q5 α18 q4(q − 1) q3

α19 q3(q − 1) q6 α20 q4(q − 1) q4

α21 q3(q − 1) q7 α22 q4(q − 1) q5

α23 q4(q − 1) q6 α24 q3(q − 1) q7

Proof. The proof consists of computer calculations carried out by the CHEVIE programs
mentioned in Section 8.1. The proof is analogous to the proof of Proposition 8.1 with Table A.2
replaced by Table A.4.

8.3. Type G2

We construct a root system of type G2 as in [23, Section 12.1]: Let e1, e2, e3 ∈ R3 be the
usual orthonormal unit vectors which form a basis of R3. Then Φ2 := ±{e1 − e2, e2 − e3, e1 −
e3, 2e1 − e2 − e3, 2e2 − e1 − e3, 2e3 − e1 − e2} is a root system of type G2 and the set {α1, α2},
where α1 := e1 − e2 and α2 := −2e1 + e2 + e3, is a set of simple roots. In particular, α1 is a
short root and α2 is a long root. The corresponding set of positive roots is

Φ+
2 = {α1, α2, α3 := α1 + α2, α4 := 2α1 + α2, α5 := 3α1 + α2, α6 := 3α1 + 2α2}.

The construction of the single root midafis of the group UG2 is similar to the case α ∈ Rnormal
i

for UEi: We define arms of the hooks for the positive roots as follows

a(α1) := a(α2) := ∅, a(α3) := a(α4) := a(α5) := {α1}, a(α6) := {α2, α3}

with corresponding legs `(αi). Let α ∈ Φ+
2 . It is easy to see that s(α) := Φ+

2 \ a(α) is a closed
pattern and that `(α) ∪ {α} ∪ k(α) E Φ+

2 so that we can consider the quotient pattern group
Tα := P (s(α))/P ({α} ∪ `(α) ∪ k(α)).

Proposition 8.3. Let Φ2 be a root system of type G2 as described above. For each positive
root α ∈ Φ+

2 the map Ψα : Irr(Tα)× Irr(Xα)∗ → Irr(UG2)α with

(µ, λ) 7→ (InflSα
Tα
µ · InflSαXαλ)UEi

is a one to one correspondence. The number |Irrmida(UG2)α| of midafis for the root α is given
in the second and the fifth column of Table 5 and the degree χ(1) for χ ∈ Irrmida(UG2)α is
given in the third and the sixth column of Table 5.
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Table 5: Numbers and degrees of the midafis of UG2.

Root Number of midafis Degree Root Number of midafis Degree
α1 q − 1 1 α2 q − 1 1
α3 q − 1 q α4 q(q − 1) q
α5 q2(q − 1) q α6 q(q − 1) q2

Proof. The proof is analogous to the proof of Propositions 8.1 and 8.2 (but the calculations
can be carried out by hand).

Remark 6. It turns out that the group Tα is elementary abelian for all α ∈ Φ+
2 so that

we have Irr(UG2)α = Irrmida(UG2)α for all α ∈ Φ+
2 . It follows that the only characters χ ∈

Irr(UG2) which are not single root characters and are not covered by Proposition 8.3 are the
trivial character and the linear characters χ ∈ Irr(UG2) with |rs(χ)| = 2.

Remark 7. Let i ∈ {2, 4, 6, 7, 8} and Φi a root system of type G2, F4, E6, E7, E8,
respectively, with set of positive roots Φ+

i as in 8.1-8.3. We use the notation from 8.1-8.3.
The arms a(α) in Tables A.2, A.4 and Section 8.3 are chosen such that for all α ∈ Φ+

i the
following condition is satisfied:

(1) The source s(α) = Φ+
i \ a(α) is a closed pattern.

For all roots α ∈ Φ+
i ∩Rnormal

i the choice of a(α) in Tables A.2, A.4 and Section 8.3 implies
that the corresponding leg `(α) satisfies the following condition

(2) `(α) ∪ k(α) E s(α).
Now suppose that α ∈ Φ+

i \Rnormal
i (where Rnormal

2 := Φ+
2 ). In this case there is no choice

of a(α) such that (1) and (2) are satisfied simultaneously. For each choice of a(α) with
corresponding leg `(α) such that condition (1) is satisfied let M be the normal closure of
`(α) ∪ k(α) in s(α) and define ¯̀(α) := M \ k(α) so that ¯̀(α) ) `(α). For all α ∈ Φ+

i \Rnormal
i

the choice of a(α) in Tables A.2 and A.4 implies that ¯̀(α) has the following properties:
(3) ¯̀(α) ∪ k(α) E s(α), {α} ∪ ¯̀(α) ∪ k(α) E Φ+ and the quotient pattern group P (¯̀(α) ∪

k(α))/P (k(α)) is abelian.
Among all choices of the arm a(α) such that conditions (1) and (3) hold the choice in Tables A.2
and A.4 minimizes |¯̀(α)|. This is achieved as follows: Let

Πα := {(αj , αj′) ∈ Φ+
i × Φ+

i | αj + αj′ = α and j < j′}.

Among all pairs (αj , αj′) ∈ Πα we choose the (unique) pair where the first index j is maximal
(since the roots of each root system are labeled by increasing height this guarantees that both
ht(αi) and ht(αj) are “not too small”). Write (γ, γ′) for this pair of roots.

For each choice of a(α) we have heart(α) := Φ+
i \ h(α) ⊆ Φ+

i \ a(α) = s(α). Let Nγ be the
normal closure of {γ} in the closed pattern generated by heart(α) ∪ {γ} and Nγ′ the normal
closure of {γ′} in the closed pattern generated by heart(α) ∪ {γ′}. Suppose that the arm a(α)
is chosen such that the conditions (1) and (2) or that the conditions (1) and (3) hold. Then we
have either γ ∈ `(α) or γ′ ∈ `(α). In the first case we have Nγ ∩ h(α) ⊆ `(α) and in the second
case Nγ′ ∩ h(α) ⊆ `(α). Hence in both cases we have Nγ ∩Nγ′ ∩ h(α) ⊆ `(α). This reduces the
number of possible choices for `(α) and hence a(α) such that the conditions (1) and (2) or the
conditions (1) and (3) are satisfied considerably.
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Then we do an exhaustive search over the remaining possibilities to filter out those choices
which satisfy conditions (1) and (2). If there is such a choice then we know that α ∈ Rnormal

i

and we choose a(α) such that conditions (1) and (2) hold. If there is no such choice then we
know that α ∈ Φ+

i \Rnormal
i and we run through all possibilities satisfying conditions (1) and

(3) and choose a(α) so that |¯̀(α)| is minimal.
We consider the example i = 8 (that is, Φi is of type E8) and α = α115. The hook h(α)

was already determined in the proof of Proposition 8.1. We have |h(α)| = 47. Hence there are
2(|h(α)|−1)/2 = 223 = 8388608 possible choices for the arm a(α). The pair (αj , αj′) ∈ Πα with
maximal first index j is (γ, γ′) = (α75, α78). Using the CHEVIE programs we get

Nγ ∩Nγ′ ∩ h(α) = {α86, α90, α91, α95, α98, α100, α101, α102, α104, α105, α107,

α108, α109, α112, α113, α114}.

It follows that there are at most 223−|Nγ∩Nγ′∩h(α)| = 223−16 = 27 = 128 possible choices such
that conditions (1) and (2) or (1) and (3) are satisfied. Testing these 128 possibilities we see
that there is no choice of a(α) such that the conditions (1) and (2) are satisfied simultaneously.
Thus α ∈ Φ+

8 \Rnormal
6/7/8 . Furthermore we see that for all choices of a(α) such that the conditions

(1) and (3) are satisfied simultaneously we have |¯̀(α) \ `(α)| ≥ 7. Hence the choice of a(α) in
Table A.2 minimizes |¯̀(α)|.

8.4. Proof of Theorems 1.2 and 1.3

We can now complete the proof of the main results stated in the introduction:

Proof. (of Theorem 1.2) Let Φi be a root system of type E6, E7, E8, F4 or G2 as in
Sections 8.1-8.3 and α ∈ Φ+

i . If i 6= 2 and α ∈ Φ+
i \Rnormal

i then the statement of the theorem
follows from Proposition 8.1 (a) and Proposition 8.2 (a).

Suppose that i = 2 or that α ∈ Rnormal
i . Considering degrees we see that the one to one

correspondences Ψα in Propositions 8.1 (b) and 8.2 (b) and in Proposition 8.3 map Irrlin(Tα)×
Irr(Xα)∗ onto Irrmida(UYi)α. This completes the proof of Theorem 1.2.

Proof. (of Theorem 1.3) The theorem follows from Propositions 8.1 (b), 8.2 (b) and
Proposition 8.3.

Acknowledgements. We thank the referee for a careful reading of the manuscript as for
saving the authors from incorrect attributions concerning the numbers N(Φ) .

Appendix

Table A.1: Positive roots in the root system Φ8 of type E8.

Root Linear combination Linear combination of e1, . . . , e8 Height
of simple roots
α1α2α3α4α5α6α7α8

α1 1 0 0 0 0 0 0 0 1
2 (e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8) 1

α2 0 1 0 0 0 0 0 0 e1 + e2 1
α3 0 0 1 0 0 0 0 0 −e1 + e2 1
α4 0 0 0 1 0 0 0 0 −e2 + e3 1
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Table A.1 (cont.)
Root α1α2α3α4α5α6α7α8 Linear combination of e1, . . . , e8 Height
α5 0 0 0 0 1 0 0 0 −e3 + e4 1
α6 0 0 0 0 0 1 0 0 −e4 + e5 1
α7 0 0 0 0 0 0 1 0 −e5 + e6 1
α8 0 0 0 0 0 0 0 1 −e6 + e7 1
α9 1 0 1 0 0 0 0 0 1

2 (−e1 + e2 − e3 − e4 − e5 − e6 − e7 + e8) 2
α10 0 1 0 1 0 0 0 0 e1 + e3 2
α11 0 0 1 1 0 0 0 0 −e1 + e3 2
α12 0 0 0 1 1 0 0 0 −e2 + e4 2
α13 0 0 0 0 1 1 0 0 −e3 + e5 2
α14 0 0 0 0 0 1 1 0 −e4 + e6 2
α15 0 0 0 0 0 0 1 1 −e5 + e7 2
α16 1 0 1 1 0 0 0 0 1

2 (−e1 − e2 + e3 − e4 − e5 − e6 − e7 + e8) 3
α17 0 1 1 1 0 0 0 0 e2 + e3 3
α18 0 1 0 1 1 0 0 0 e1 + e4 3
α19 0 0 1 1 1 0 0 0 −e1 + e4 3
α20 0 0 0 1 1 1 0 0 −e2 + e5 3
α21 0 0 0 0 1 1 1 0 −e3 + e6 3
α22 0 0 0 0 0 1 1 1 −e4 + e7 3
α23 1 1 1 1 0 0 0 0 1

2 (e1 + e2 + e3 − e4 − e5 − e6 − e7 + e8) 4
α24 1 0 1 1 1 0 0 0 1

2 (−e1 − e2 − e3 + e4 − e5 − e6 − e7 + e8) 4
α25 0 1 1 1 1 0 0 0 e2 + e4 4
α26 0 1 0 1 1 1 0 0 e1 + e5 4
α27 0 0 1 1 1 1 0 0 −e1 + e5 4
α28 0 0 0 1 1 1 1 0 −e2 + e6 4
α29 0 0 0 0 1 1 1 1 −e3 + e7 4
α30 1 1 1 1 1 0 0 0 1

2 (e1 + e2 − e3 + e4 − e5 − e6 − e7 + e8) 5
α31 1 0 1 1 1 1 0 0 1

2 (−e1 − e2 − e3 − e4 + e5 − e6 − e7 + e8) 5
α32 0 1 1 2 1 0 0 0 e3 + e4 5
α33 0 1 1 1 1 1 0 0 e2 + e5 5
α34 0 1 0 1 1 1 1 0 e1 + e6 5
α35 0 0 1 1 1 1 1 0 −e1 + e6 5
α36 0 0 0 1 1 1 1 1 −e2 + e7 5
α37 1 1 1 2 1 0 0 0 1

2 (e1 − e2 + e3 + e4 − e5 − e6 − e7 + e8) 6
α38 1 1 1 1 1 1 0 0 1

2 (e1 + e2 − e3 − e4 + e5 − e6 − e7 + e8) 6
α39 1 0 1 1 1 1 1 0 1

2 (−e1 − e2 − e3 − e4 − e5 + e6 − e7 + e8) 6
α40 0 1 1 2 1 1 0 0 e3 + e5 6
α41 0 1 1 1 1 1 1 0 e2 + e6 6
α42 0 1 0 1 1 1 1 1 e1 + e7 6
α43 0 0 1 1 1 1 1 1 −e1 + e7 6
α44 1 1 2 2 1 0 0 0 1

2 (−e1 + e2 + e3 + e4 − e5 − e6 − e7 + e8) 7
α45 1 1 1 2 1 1 0 0 1

2 (e1 − e2 + e3 − e4 + e5 − e6 − e7 + e8) 7
α46 1 1 1 1 1 1 1 0 1

2 (e1 + e2 − e3 − e4 − e5 + e6 − e7 + e8) 7
α47 1 0 1 1 1 1 1 1 1

2 (−e1 − e2 − e3 − e4 − e5 − e6 + e7 + e8) 7
α48 0 1 1 2 2 1 0 0 e4 + e5 7
α49 0 1 1 2 1 1 1 0 e3 + e6 7
α50 0 1 1 1 1 1 1 1 e2 + e7 7
α51 1 1 2 2 1 1 0 0 1

2 (−e1 + e2 + e3 − e4 + e5 − e6 − e7 + e8) 8
α52 1 1 1 2 2 1 0 0 1

2 (e1 − e2 − e3 + e4 + e5 − e6 − e7 + e8) 8
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Table A.1 (cont.)
Root α1α2α3α4α5α6α7α8 Linear combination of e1, . . . , e8 Height
α53 1 1 1 2 1 1 1 0 1

2 (e1 − e2 + e3 − e4 − e5 + e6 − e7 + e8) 8
α54 1 1 1 1 1 1 1 1 1

2 (e1 + e2 − e3 − e4 − e5 − e6 + e7 + e8) 8
α55 0 1 1 2 2 1 1 0 e4 + e6 8
α56 0 1 1 2 1 1 1 1 e3 + e7 8
α57 1 1 2 2 2 1 0 0 1

2 (−e1 + e2 − e3 + e4 + e5 − e6 − e7 + e8) 9
α58 1 1 2 2 1 1 1 0 1

2 (−e1 + e2 + e3 − e4 − e5 + e6 − e7 + e8) 9
α59 1 1 1 2 2 1 1 0 1

2 (e1 − e2 − e3 + e4 − e5 + e6 − e7 + e8) 9
α60 1 1 1 2 1 1 1 1 1

2 (e1 − e2 + e3 − e4 − e5 − e6 + e7 + e8) 9
α61 0 1 1 2 2 2 1 0 e5 + e6 9
α62 0 1 1 2 2 1 1 1 e4 + e7 9
α63 1 1 2 3 2 1 0 0 1

2 (−e1 − e2 + e3 + e4 + e5 − e6 − e7 + e8) 10
α64 1 1 2 2 2 1 1 0 1

2 (−e1 + e2 − e3 + e4 − e5 + e6 − e7 + e8) 10
α65 1 1 2 2 1 1 1 1 1

2 (−e1 + e2 + e3 − e4 − e5 − e6 + e7 + e8) 10
α66 1 1 1 2 2 2 1 0 1

2 (e1 − e2 − e3 − e4 + e5 + e6 − e7 + e8) 10
α67 1 1 1 2 2 1 1 1 1

2 (e1 − e2 − e3 + e4 − e5 − e6 + e7 + e8) 10
α68 0 1 1 2 2 2 1 1 e5 + e7 10
α69 1 2 2 3 2 1 0 0 1

2 (e1 + e2 + e3 + e4 + e5 − e6 − e7 + e8) 11
α70 1 1 2 3 2 1 1 0 1

2 (−e1 − e2 + e3 + e4 − e5 + e6 − e7 + e8) 11
α71 1 1 2 2 2 2 1 0 1

2 (−e1 + e2 − e3 − e4 + e5 + e6 − e7 + e8) 11
α72 1 1 2 2 2 1 1 1 1

2 (−e1 + e2 − e3 + e4 − e5 − e6 + e7 + e8) 11
α73 1 1 1 2 2 2 1 1 1

2 (e1 − e2 − e3 − e4 + e5 − e6 + e7 + e8) 11
α74 0 1 1 2 2 2 2 1 e6 + e7 11
α75 1 2 2 3 2 1 1 0 1

2 (e1 + e2 + e3 + e4 − e5 + e6 − e7 + e8) 12
α76 1 1 2 3 2 2 1 0 1

2 (−e1 − e2 + e3 − e4 + e5 + e6 − e7 + e8) 12
α77 1 1 2 3 2 1 1 1 1

2 (−e1 − e2 + e3 + e4 − e5 − e6 + e7 + e8) 12
α78 1 1 2 2 2 2 1 1 1

2 (−e1 + e2 − e3 − e4 + e5 − e6 + e7 + e8) 12
α79 1 1 1 2 2 2 2 1 1

2 (e1 − e2 − e3 − e4 − e5 + e6 + e7 + e8) 12
α80 1 2 2 3 2 2 1 0 1

2 (e1 + e2 + e3 − e4 + e5 + e6 − e7 + e8) 13
α81 1 2 2 3 2 1 1 1 1

2 (e1 + e2 + e3 + e4 − e5 − e6 + e7 + e8) 13
α82 1 1 2 3 3 2 1 0 1

2 (−e1 − e2 − e3 + e4 + e5 + e6 − e7 + e8) 13
α83 1 1 2 3 2 2 1 1 1

2 (−e1 − e2 + e3 − e4 + e5 − e6 + e7 + e8) 13
α84 1 1 2 2 2 2 2 1 1

2 (−e1 + e2 − e3 − e4 − e5 + e6 + e7 + e8) 13
α85 1 2 2 3 3 2 1 0 1

2 (e1 + e2 − e3 + e4 + e5 + e6 − e7 + e8) 14
α86 1 2 2 3 2 2 1 1 1

2 (e1 + e2 + e3 − e4 + e5 − e6 + e7 + e8) 14
α87 1 1 2 3 3 2 1 1 1

2 (−e1 − e2 − e3 + e4 + e5 − e6 + e7 + e8) 14
α88 1 1 2 3 2 2 2 1 1

2 (−e1 − e2 + e3 − e4 − e5 + e6 + e7 + e8) 14
α89 1 2 2 4 3 2 1 0 1

2 (e1 − e2 + e3 + e4 + e5 + e6 − e7 + e8) 15
α90 1 2 2 3 3 2 1 1 1

2 (e1 + e2 − e3 + e4 + e5 − e6 + e7 + e8) 15
α91 1 2 2 3 2 2 2 1 1

2 (e1 + e2 + e3 − e4 − e5 + e6 + e7 + e8) 15
α92 1 1 2 3 3 2 2 1 1

2 (−e1 − e2 − e3 + e4 − e5 + e6 + e7 + e8) 15
α93 1 2 3 4 3 2 1 0 1

2 (−e1 + e2 + e3 + e4 + e5 + e6 − e7 + e8) 16
α94 1 2 2 4 3 2 1 1 1

2 (e1 − e2 + e3 + e4 + e5 − e6 + e7 + e8) 16
α95 1 2 2 3 3 2 2 1 1

2 (e1 + e2 − e3 + e4 − e5 + e6 + e7 + e8) 16
α96 1 1 2 3 3 3 2 1 1

2 (−e1 − e2 − e3 − e4 + e5 + e6 + e7 + e8) 16
α97 2 2 3 4 3 2 1 0 −e7 + e8 17
α98 1 2 3 4 3 2 1 1 1

2 (−e1 + e2 + e3 + e4 + e5 − e6 + e7 + e8) 17
α99 1 2 2 4 3 2 2 1 1

2 (e1 − e2 + e3 + e4 − e5 + e6 + e7 + e8) 17
α100 1 2 2 3 3 3 2 1 1

2 (e1 + e2 − e3 − e4 + e5 + e6 + e7 + e8) 17
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Table A.1 (cont.)
Root α1α2α3α4α5α6α7α8 Linear combination of e1, . . . , e8 Height
α101 2 2 3 4 3 2 1 1 −e6 + e8 18
α102 1 2 3 4 3 2 2 1 1

2 (−e1 + e2 + e3 + e4 − e5 + e6 + e7 + e8) 18
α103 1 2 2 4 3 3 2 1 1

2 (e1 − e2 + e3 − e4 + e5 + e6 + e7 + e8) 18
α104 2 2 3 4 3 2 2 1 −e5 + e8 19
α105 1 2 3 4 3 3 2 1 1

2 (−e1 + e2 + e3 − e4 + e5 + e6 + e7 + e8) 19
α106 1 2 2 4 4 3 2 1 1

2 (e1 − e2 − e3 + e4 + e5 + e6 + e7 + e8) 19
α107 2 2 3 4 3 3 2 1 −e4 + e8 20
α108 1 2 3 4 4 3 2 1 1

2 (−e1 + e2 − e3 + e4 + e5 + e6 + e7 + e8) 20
α109 2 2 3 4 4 3 2 1 −e3 + e8 21
α110 1 2 3 5 4 3 2 1 1

2 (−e1 − e2 + e3 + e4 + e5 + e6 + e7 + e8) 21
α111 2 2 3 5 4 3 2 1 −e2 + e8 22
α112 1 3 3 5 4 3 2 1 1

2 (e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8) 22
α113 2 3 3 5 4 3 2 1 e1 + e8 23
α114 2 2 4 5 4 3 2 1 −e1 + e8 23
α115 2 3 4 5 4 3 2 1 e2 + e8 24
α116 2 3 4 6 4 3 2 1 e3 + e8 25
α117 2 3 4 6 5 3 2 1 e4 + e8 26
α118 2 3 4 6 5 4 2 1 e5 + e8 27
α119 2 3 4 6 5 4 3 1 e6 + e8 28
α120 2 3 4 6 5 4 3 2 e7 + e8 29

Table A.2: Arms and subhooks for roots α ∈ Φ+
8 .

Root Arm a(α) Subhooks h′(β)
α1

α2

α3

α4

α5

α6

α9 3
α10 4
α11 4
α12 5
α13 6
α16 1, 4
α17 2, 3
α18 2, 5
α19 3, 5
α20 4, 6
α23 1, 2, 10
α24 1, 5, 12
α25 2, 3, 5
α26 2, 6, 13
α27 3, 6, 13
α30 1, 2, 5, 9
α31 1, 6, 9, 13
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Table A.2 (cont.)
Root Arm a(α) Subhooks h′(β)
α32 4, 10, 11, 12
α33 2, 3, 6, 13
α37 1, 4, 10, 12, 18
α38 1, 2, 6, 9, 13
α40 4, 6, 10, 11, 17
α44 3, 9, 11, 16, 17, 19
α45 1, 4, 6, 10, 16, 20 {2, 24, 30}, {2, 27, 33}
α48 5, 12, 13, 18, 19, 20
α51 3, 6, 9, 11, 16, 17, 23
α52 1, 5, 12, 13, 18, 20, 26
α57 3, 5, 9, 13, 19, 24, 25, 30 {6, 32, 40}, {1, 40, 45}
α63 4, 11, 12, 16, 19, 20, 24, 27, 31
α69 2, 10, 17, 18, 23, 25, 26, 30, 32, 33
α7

α14 6
α21 5, 7
α28 4, 7, 12
α34 2, 7, 10, 14
α35 3, 7, 11, 14
α39 1, 7, 9, 14, 16
α41 2, 3, 7, 14, 21
α46 1, 2, 7, 9, 14, 21
α49 4, 7, 10, 11, 14, 17
α53 1, 4, 7, 10, 14, 16, 23 {11, 21, 35}, {2, 35, 41}
α55 5, 7, 12, 18, 19, 25, 32
α58 3, 7, 9, 11, 14, 16, 17, 23
α59 1, 5, 7, 12, 18, 21, 28, 34 {9, 20, 31}, {2, 31, 38},

{4, 38, 45}
α61 6, 13, 14, 20, 21, 26, 27, 28
α64 3, 5, 7, 9, 19, 21, 24, 25, 30 {11, 34, 49}, {11, 38, 51},

{1, 49, 53}
α66 1, 6, 13, 14, 20, 21, 26, 28, 34
α70 4, 7, 11, 12, 16, 19, 24, 32, 37, 44 {10, 21, 34}, {3, 34, 41},

{1, 41, 46}
α71 3, 6, 9, 13, 14, 21, 27, 31, 33, 38 {7, 40, 49}, {1, 49, 53},

{5, 49, 55}, {1, 55, 59}
α75 2, 7, 10, 17, 18, 23, 25, 30, 32, 37, 44
α76 4, 6, 11, 14, 16, 20, 27, 28, 31, 35, 39 {12, 33, 48}, {1, 48, 52},

{7, 48, 55}, {3, 52, 57},
{1, 55, 59}, {3, 59, 64}

α80 2, 6, 10, 14, 17, 23, 26, 33, 38, 40, 45, 51 {7, 48, 55}, {1, 55, 59},
{3, 59, 64}, {4, 64, 70}

α82 5, 12, 13, 19, 20, 21, 24, 27, 28, 31, 35, 39
α85 2, 5, 13, 18, 21, 25, 26, 30, 33, 34, 38, 41, 46 {12, 51, 63}, {7, 63, 70},

{6, 70, 76}
α89 4, 10, 12, 18, 20, 26, 28, 32, 34, 37, 40, 45, {5, 51, 57}, {5, 58, 64},

49, 53 {6, 64, 71}
α93 3, 11, 17, 19, 25, 27, 32, 33, 35, 40, 41, 48,
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Table A.2 (cont.)
Root Arm a(α) Subhooks h′(β)

49, 55, 61
α97 1, 9, 16, 23, 24, 30, 31, 37, 38, 39, 44, 45, 46,

51, 52, 53
α8

α15 7
α22 6, 8
α29 5, 8, 13
α36 4, 8, 12, 15
α42 2, 8, 10, 15, 18
α43 3, 8, 11, 15, 19
α47 1, 8, 9, 15, 16, 22
α50 2, 3, 8, 15, 22, 29
α54 1, 2, 8, 9, 15, 22, 29
α56 4, 8, 10, 11, 15, 17, 22
α60 1, 4, 8, 10, 15, 16, 22, 23 {11, 29, 43}, {2, 43, 50}
α62 5, 8, 12, 15, 18, 19, 25, 32
α65 3, 8, 9, 11, 15, 16, 17, 22, 23
α67 1, 5, 8, 12, 15, 18, 24, 30, 37 {19, 22, 43}, {2, 43, 50},

{4, 50, 56}
α68 6, 8, 13, 20, 26, 27, 33, 40, 48
α72 3, 5, 8, 9, 15, 19, 24, 25, 29, 30 {11, 38, 51}, {11, 42, 56},

{7, 51, 58}, {1, 56, 60}
α73 1, 6, 8, 13, 20, 22, 26, 29, 36, 42 {9, 28, 39}, {2, 39, 46},

{4, 46, 53}, {5, 53, 59}
α74 7, 14, 15, 21, 22, 28, 29, 34, 35, 36
α77 4, 8, 11, 12, 15, 16, 19, 24, 32, 37, 44 {10, 29, 42}, {3, 42, 50},

{1, 50, 54}
α78 3, 6, 8, 9, 13, 22, 27, 29, 31, 33, 38 {11, 42, 56}, {11, 46, 58},

{1, 56, 60}, {5, 56, 62},
{5, 58, 64}, {1, 62, 67}

α79 1, 7, 14, 15, 21, 22, 28, 29, 34, 36, 42
α81 2, 8, 10, 15, 17, 18, 23, 25, 30, 32, 37, 44
α83 4, 6, 8, 11, 16, 20, 22, 27, 31, 40, 45, 51 {10, 29, 42}, {3, 42, 50},

{1, 50, 54}, {12, 50, 62},
{1, 62, 67}, {12, 58, 70},
{3, 67, 72}

α84 3, 7, 9, 14, 15, 21, 22, 29, 35, 39, 41, 46 {8, 49, 56}, {1, 56, 60},
{5, 56, 62}, {1, 62, 67},
{6, 62, 68}, {1, 68, 73}

α86 2, 6, 8, 10, 17, 22, 23, 26, 33, 38, 40, 45, 51 {15, 48, 62}, {1, 62, 67},
{3, 67, 72}, {18, 58, 75},
{4, 72, 77}

α87 5, 8, 12, 13, 19, 20, 24, 27, 31, 48, 52, 57, 63 {15, 26, 42}, {3, 42, 50},
{1, 50, 54}, {4, 50, 56},
{1, 56, 60}, {3, 60, 65}

α88 4, 7, 11, 14, 15, 16, 22, 28, 35, 39, 49, 53, 58 {8, 34, 42}, {3, 42, 50},
{1, 50, 54}, {8, 55, 62},
{1, 62, 67}, {6, 62, 68},
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Table A.2 (cont.)
Root Arm a(α) Subhooks h′(β)

{3, 67, 72}, {1, 68, 73},
{3, 73, 78}

α90 2, 5, 8, 13, 18, 25, 26, 29, 30, 33, 38, 48, 52, 57 {10, 43, 56},{1, 56, 60},
{3, 60, 65}, {10, 64, 75},
{12, 65, 77},{6, 75, 80},
{6, 77, 83}

α91 2, 7, 10, 14, 15, 17, 22, 23, 34, 41, 46, 49, 53, 58 {8, 55, 62}, {1, 62, 67},
{6, 62, 68}, {3, 67, 72},
{1, 68, 73}, {4, 72, 77},
{3, 73, 78}, {4, 78, 83}

α92 5, 7, 12, 15, 19, 21, 24, 28, 29, 35, 36, 39, 43, {13, 49, 61},{1, 61, 66},
47 {8, 61, 68}, {3, 66, 71}

{1, 68, 73}, {4, 71, 76},
{3, 73, 78}, {4, 78, 83}

α94 4, 8, 10, 12, 18, 20, 26, 32, 37, 40, 45, 48, 52, 63, {11, 29, 43}, {1, 43, 47},
69 {2, 43, 50}, {1, 50, 54},

{11, 54, 65}, {5, 65, 72},
{6, 72, 78}

α95 2, 5, 7, 15, 18, 21, 25, 29, 30, 34, 41, 46, 55, 59, {8, 49, 56}, {1, 56, 60},
64 {3, 60, 65}, {8, 61, 68},

{1, 68, 73}, {8, 70, 77},
{3, 73, 78}, {10, 71, 80},
{8, 76, 83}, {8, 80, 86},
{8, 82, 87}, {14, 77, 88}

α96 6, 13, 14, 20, 21, 22, 27, 28, 29, 31, 35, 36, 39, 43,
47

α98 3, 8, 11, 17, 19, 25, 27, 32, 33, 40, 44, 48, 51, 57, {9, 36, 47}, {2, 47, 54},
63, 69 {4, 54, 60}, {5, 60, 67},

{6, 67, 73}
α99 4, 7, 10, 12, 15, 18, 28, 32, 34, 36, 37, 42, 49, 53, {8, 58, 65}, {8, 61, 68},

55, 59 {5, 65, 72}, {1, 68, 73},
{11, 66, 76}, {8, 71, 78},
{2, 76, 80}, {5, 76, 82},
{8, 76, 83}, {14, 72, 84},
{2, 82, 85}, {2, 83, 86},
{5, 83, 87}, {2, 87, 90}

α100 2, 6, 13, 14, 21, 22, 26, 29, 33, 34, 38, 41, 42, 46, {20, 58, 76}, {5, 76, 82},
50, 54 {8, 76, 83}, {5, 83, 87},

{7, 83, 88}, {5, 88, 92}
α101 1, 8, 9, 16, 23, 24, 30, 31, 37, 38, 44, 45, 51, 52,

57, 63, 69
α102 3, 7, 11, 15, 17, 19, 25, 32, 35, 41, 43, 44, 49, 50, {9, 61, 71}, {4, 71, 76},

55, 56, 62 {8, 71, 78}, {14, 67, 79},
{2, 76, 80}, {5, 76, 82},
{4, 78, 83}, {2, 82, 85},
{2, 83, 86}, {5, 83, 87},
{4, 85, 89}, {2, 87, 90},
{4, 90, 94}
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Table A.2 (cont.)
Root Arm a(α) Subhooks h′(β)
α103 4, 6, 10, 14, 20, 22, 26, 28, 34, 36, 40, 42, 45, 49, {13, 58, 71}, {8, 71, 78},

53, 56, 60 {12, 71, 82}, {7, 78, 84},
{2, 82, 85}, {8, 82, 87},
{2, 87, 90}, {7, 87, 92},
{2, 92, 95}

α104 1, 7, 9, 15, 16, 23, 24, 30, 37, 39, 44, 46, 53, 58, {8, 66, 73}, {3, 73, 78},
59, 64, 70, 75 {4, 78, 83}, {2, 83, 86},

{5, 83, 87}, {2, 87, 90},
{4, 90, 94}, {3, 94, 98}

α105 3, 6, 11, 14, 17, 22, 27, 33, 35, 40, 41, 43, 49, 50, {13, 53, 66}, {8, 66, 73},
51, 56, 58, 65 {7, 73, 79}, {13, 70, 82},

{2, 82, 85}, {8, 82, 87},
{4, 85, 89}, {2, 87, 90},
{7, 87, 92}, {4, 90, 94},
{2, 92, 95}, {4, 95, 99}

α106 5, 12, 13, 18, 20, 21, 26, 28, 29, 34, 36, 42, 48, {8, 64, 72}, {4, 72, 77},
52, 55, 59, 61, 66 {6, 72, 78}, {2, 77, 81},

{4, 78, 83}, {7, 78, 84},
{2, 83, 86}, {4, 84, 88},
{2, 88, 91}

α107 1, 6, 9, 14, 16, 22, 23, 31, 38, 39, 45, 46, 47, 51, {13, 70, 82}, {2, 82, 85},
53, 54, 58, 60, 65 {8, 82, 87}, {4, 85, 89},

{2, 87, 90}, {7, 87, 92},
{3, 89, 93}, {4, 90, 94},
{2, 92, 95}, {3, 94, 98},
{4, 95, 99}, {3, 99, 102}

α108 3, 5, 13, 19, 21, 25, 27, 29, 33, 35, 41, 43, 48, 50, {6, 59, 66}, {6, 67, 73},
55, 57, 62, 64, 72 {6, 70, 76}, {7, 73, 79},

{2, 76, 80}, {6, 77, 83},
{2, 83, 86}, {7, 83, 88},
{12, 80, 89}, {2, 88, 91},
{8, 89, 94}, {7, 94, 99},
{6, 99, 103}

α109 1, 5, 9, 13, 21, 24, 29, 30, 31, 38, 39, 46, 47, 52, {8, 70, 77}, {2, 77, 81},
54, 57, 59, 64, 66, 71 {6, 77, 83}, {2, 83, 86},

{7, 83, 88}, {12, 80, 89},
{2, 88, 91}, {3, 89, 93},
{8, 89, 94}, {3, 94, 98},
{7, 94, 99}, {3, 99, 102},
{6, 99, 103}, {3, 103, 105}

α110 4, 11, 12, 19, 20, 27, 28, 32, 35, 36, 40, 43, 48, {10, 57, 69}, {7, 69, 75},
49, 55, 56, 61, 62, 68, 74 {6, 75, 80}, {8, 75, 81},

{5, 80, 85}, {6, 81, 86},
{5, 86, 90}, {7, 86, 91},
{5, 91, 95}, {6, 95, 100}

α111 1, 4, 12, 16, 20, 24, 28, 31, 36, 37, 39, 45, 47, {6, 72, 78}, {6, 75, 80},
52, 53, 59, 60, 63, 66, 67, 70 {8, 75, 81}, {7, 78, 84},

{5, 80, 85}, {6, 81, 86},
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Table A.2 (cont.)
Root Arm a(α) Subhooks h′(β)

{5, 86, 90}, {7, 86, 91},
{11, 85, 93}, {5, 91, 95},
{8, 93, 98}, {6, 95, 100},
{7, 98, 102}, {6, 102, 105},
{5, 105, 108}

α112 2, 10, 17, 18, 25, 26, 32, 33, 34, 40, 41, 42, 48,
49, 50, 55, 56, 61, 62, 68, 74

α113 1, 2, 10, 18, 23, 26, 30, 34, 37, 38, 42, 45, 46, {17, 82, 93}, {8, 93, 98},
52, 53, 54, 59, 60, 66, 67, 73, 79 {7, 98, 102}, {6, 102, 105},

{5, 105, 108}, {4, 108, 110}
α114 3, 9, 11, 16, 19, 24, 27, 31, 35, 39, 43, 44, 47, {8, 75, 81}, {6, 81, 86},

51, 57, 58, 63, 64, 70, 71, 76, 82 {5, 86, 90}, {7, 86, 91},
{4, 90, 94}, {5, 91, 95},
{4, 95, 99}, {6, 95, 100},
{4, 100, 103}, {5, 103, 106}

α115 2, 3, 9, 17, 23, 25, 30, 33, 38, 41, 44, 46, 50, 51, {10, 82, 89}, {8, 89, 94},
54, 57, 58, 64, 65, 71, 72, 78, 84 {7, 94, 99}, {6, 99, 103},

{5, 103, 106},{11, 106, 110},
{1, 110, 111}

α116 4, 10, 11, 16, 17, 23, 32, 37, 40, 44, 45, 49, 51, {2, 82, 85}, {2, 87, 90},
53, 56, 58, 60, 63, 65, 70, 76, 77, 83, 88 {2, 92, 95},{2, 96, 100},

{12, 100, 106},{3, 106, 108},
{1, 108, 109}

α117 5, 12, 18, 19, 24, 25, 30, 32, 37, 44, 48, 52, 55, {13, 88, 96}, {2, 96, 100},
57, 59, 62, 63, 64, 67, 69, 70, 72, 75, 77, 81 {4, 100, 103}, {3, 103, 105},

{1, 105, 107}
α118 6, 13, 20, 26, 27, 31, 33, 38, 40, 45, 48, 51, 52, {2, 88, 91}, {2, 92, 95},

57, 61, 63, 66, 68, 69, 71, 73, 76, 78, 82, 83, 87 {4, 95, 99}, {3, 99, 102},
{1, 102, 104}

α119 7, 14, 21, 28, 34, 35, 39, 41, 46, 49, 53, 55, 58,
59, 61, 64, 66, 70, 71, 75, 76, 80, 82, 85, 89, 93,
97

α120 8, 15, 22, 29, 36, 42, 43, 47, 50, 54, 56, 60, 62,
65, 67, 68, 72, 73, 74, 77, 78, 79, 81, 83, 84, 86,
87, 88

Table A.3: Positive roots in the root system Φ4 of type F4.

Root Linear combination Linear combination of e1, e2, e3, e4 Height
of simple roots
α1α2α3α4

α1 1 0 0 0 e2 − e3 1
α2 0 1 0 0 e3 − e4 1
α3 0 0 1 0 e4 1
α4 0 0 0 1 1

2 (e1 − e2 − e3 − e4) 1
α5 1 1 0 0 e2 − e4 2
α6 0 1 1 0 e3 2
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Table A.3 (cont.)
Root α1α2α3α4 Linear combination of e1, e2, e3, e4 Height
α7 0 0 1 1 1

2 (e1 − e2 − e3 + e4) 2
α8 1 1 1 0 e2 3
α9 0 1 2 0 e3 + e4 3
α10 0 1 1 1 1

2 (e1 − e2 + e3 − e4) 3
α11 1 1 2 0 e2 + e4 4
α12 1 1 1 1 1

2 (e1 + e2 − e3 − e4) 4
α13 0 1 2 1 1

2 (e1 − e2 + e3 + e4) 4
α14 1 2 2 0 e2 + e3 5
α15 1 1 2 1 1

2 (e1 + e2 − e3 + e4) 5
α16 0 1 2 2 e1 − e2 5
α17 1 2 2 1 1

2 (e1 + e2 + e3 − e4) 6
α18 1 1 2 2 e1 − e3 6
α19 1 2 3 1 1

2 (e1 + e2 + e3 + e4) 7
α20 1 2 2 2 e1 − e4 7
α21 1 2 3 2 e1 8
α22 1 2 4 2 e1 + e4 9
α23 1 3 4 2 e1 + e3 10
α24 2 3 4 2 e1 + e2 11

Table A.4: Arms and subhooks for roots α ∈ Φ+
4 .

Root Arm a(α) Subhooks h′(β)
α1

α2

α3

α4

α5 2
α6 3
α7 4
α8 1, 3
α9 3
α10 2, 4
α11 1, 3
α12 1, 4, 7
α13 3, 4, 7
α14 2, 5, 6
α15 1, 3, 4, 7
α16 4, 7
α17 2, 4, 5, 6, 8
α18 1, 4, 7
α19 3, 6, 7, 8, 9, 10
α20 2, 4, 5, 10 {1, 13, 15}
α21 3, 4, 6, 7, 8, 10, 13
α22 3, 7, 9, 11, 13 {6, 12, 17}, {4, 17, 20}
α23 2, 6, 9, 10, 13, 16
α24 1, 5, 8, 11, 12, 14, 15
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