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Universality and quantized response in bosonic mesoscopic tunneling

Shaoyu Yin and Benjamin Béri
School of Physics & Astronomy, University of Birmingham,

Edgbaston, Birmingham, B15 2TT, United Kingdom
(Dated: July 2015)

We show that tunneling involving bosonic wires and/or boson integer quantum Hall (bIQH) edges
is characterized by features that are far more universal than those in their fermionic counterpart.
Considering a pair of minimal geometries, we examine the tunneling conductance as a function of
energy (e.g., chemical potential bias) at high and low energy limits, finding a low energy enhancement
and a universal high versus zero energy relation that hold for all wire/bIQH edge combinations.
Beyond this universality present in all the different topological (bIQH-edge) and nontopological
(wire) setups, we also discover a number of features distinguishing the topological bIQH edges,
which include a current imbalance to chemical potential bias ratio that is quantized despite the lack
of conductance quantization in the bIQH edges themselves. The predicted phenomena require only
initial states to be thermal and thus are well suited for tests with ultracold bosons forming wires
and bIQH states. For the latter, we highlight a potential realization based on single component
bosons in the recently observed Harper-Hofstadter bandstructure.

PACS numbers: 05.30.Jp, 85.30.Mn, 73.43.-f, 73.43.Jn

I. INTRODUCTION

Tunneling setups are valuable probes of quantum mat-
ter with a scope that includes strong correlation features,
e.g., the suppression of tunneling in electronic quantum
wires [1]; topological phenomena, e.g., zero bias features
of Majorana fermions [2, 3]; and even the combination of
these, e.g., universal exponents and fractional charge for
fractional quantum Hall (FQH) edge modes [4].

Most past work has focused on fermionic systems, con-
sidering the electronic conductance in the solid state.
Bosonic systems, however, are now attracting much inter-
est. Theoretically, this is in large part due to predictions
of novel, symmetry protected topological phases (SPTs)
[5, 6] that, as bosonic counterparts of electronic topo-
logical insulators, provide topological paradigms with-
out requiring fractional quasiparticles (i.e., they are
“nonfractionalized”[7]). Experimentally, much of the in-
terest is due to breakthroughs in ultracold atomic sys-
tems, including recent progress with measuring particle
conductance [8] (where after the success with fermionic
atoms, we anticipate analogous bosonic studies), and
with creating (both fermionic and bosonic) topological
bandstructures[9, 10].

In this paper, we present two key advances. The first of
these is the discovery of a striking degree of universality
characterising bosonic nonfractionalised tunneling. To
establish this result we consider a set of topological and
nontopological setups composed of one dimensional (1D)
channels of repulsive bosons (boson “wires”) and/or the
1D edge states of boson integer quantum Hall (bIQH)
states [5, 11], the simplest 2D bosonic SPTs protected
by particle number conservation. Specifically, we focus
on the T-junctions and quantum point contacts (QPCs)
in Fig. 1 which are the minimal tunneling setups that
admit as subsystems both boson wires and bIQH edge
states. The universality we find is in the tunneling con-

FIG. 1. Sketch of the tunneling setups and the conductance.
Left: T-junction. The lower (l) subsystem is a half-infinite
wire, the upper (u) is a wire, or a bIQH edge (or a spurious
wire-like edge of a nontopological phase). Middle: QPC with
bIQH edge or wire (wire-like) subsystems. For both setups,
shading indicates the 2D bulk (absent for wire-like subsys-
tems). Our QPC results also hold for “inverse QPCs” with
the 2D bulk located between the two subsystems (i.e., in the
blank instead of the shaded area). Right: conductance ver-
sus the characteristic energy scale E (e.g, temperature, µbias)
valid for all setups on the left and in the middle. ∆< 1 and
∆′>1 are interaction dependent parameters.

ductance G which, as a function of the energy scale E
(e.g., temperature or chemical potential bias µbias), for
both geometries and all wire/bIQH edge combinations,
is enhanced as E decreases, with the high and zero en-
ergy behavior linked by a universal relation (Fig. 1, right
panel).

While the universality we find establishes a key signa-
ture of bosonic mesoscopic quantum transport, it also
implies challenges in using the conductance to distin-
guish bIQH states from nontopological gapped phases
with spurious wire-like edge modes[12]. Our second inno-
vation, therefore, is to devise schemes whereby tunneling
transport can provide clear signatures of bIQH states.
The signatures we find include a current imbalance to

chemical potential bias ratio quantized as
δJρ

µbias
= q

h at

low energies in a QPC setup, which holds even though
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the clean bIQH edges we consider lack conductance quan-
tization [13, 14]. Here q ∈ Z, which sets the bulk Hall
conductivity σ = 2q

h , is the topological invariant char-
acterizing the bIQH state. (We define conductivity and
conductance as particle current against chemical poten-
tial bias, in terms of which the conductance quantum is
1/h.)

Our results assume three main criteria: i) clean wires
and bIQH edges; ii) short ranged repulsive interactions
in wires; and iii) the system to reach a steady state, after
coupling the subsystems, so that an energy-dependent
conductance can emerge. These are geared towards ul-
tracold atomic systems, where the first two criteria are
naturally met, and the last one is also feasible given
the recent progress in quantum transport with neutral
atoms [8]. As we will explain, ultracold atoms, at the
same time, may provide the currently most promising
avenue for realising bIQH states; in particular, as we will
point out, a bIQH state with q = 1 can arise with single-
component strongly repulsive bosons in the recently ob-
served Harper-Hofstadter bandstructure [9].

Before moving to the details of the analysis, it is in-
structive to compare our findings to their fermionic [1]
and fractionalized [4] analogues and to the q=1 bIQH re-
sult in Ref. [14]. The enhancement we find is in stark con-
trast to the suppression for repulsive (and, for QPCs, also
attractive) fermions and fermionic/bosonic FQH edges
in the same geometries. The contrast is also salient be-
tween hard-core bosons and free fermions: though they
are very similar in 1D, tunneling, just at a point, is al-
ready away enough from a pure 1D setting for bosonic
tunneling enhancement to replace the energy indepen-
dent free fermion behavior. A similar enhancement, char-
acterizing q=1 bIQH QPCs, was highlighted in Ref. 14.
Our results show that this is part of a universal behavior
that arises for any q, including the q = 0 case of non-
topological wire-like modes or boson wires. Another in-

teresting difference to fermions is in
δJρ

µbias
, which is not

quantized in fermionic integer quantum Hall QPCs: due
to the chirality of the edge modes it is instead given by
the (nonuniversal) tunneling conductance.

The paper is organized as follows. In Sec. II we discuss
the theoretical description of our systems in terms of Lut-
tinger liquid theory, a language that allows one to discuss
boson wires and bIQH edge states on the same footing.
In Sec. III we obtain results on the tunneling conductance
in the setups of Fig. 1, with the universal high-energy–
zero-energy relation as one of our key findings. In Sec. IV
we discuss bIQH signatures in the low energy power laws
and in the particle and current densities, including the

quantization
δJρ

µbias
= q

h . In Sec. V we discuss perspectives

for experimentally observing our predictions in ultracold
atomic systems, and also highlight a possible route to-
wards bIQH states in terms of single component bosons
in Harper-Hofstadter bands. We conclude in Sec. VI.

II. LUTTINGER LIQUID FORMULATION

We now introduce the framework for the analysis un-
derlying our results. We focus on the low energy physics,
i.e., we work below a high energy cutoff D0 set by the
average density n0 for wires, or the gap for bIQH states.
Starting with boson wires, the physics is that of left and
right moving density waves. This is captured by a Lut-
tinger liquid description [15] using two bosonic fields ϕ1,2,
with ϕ1 encoding the fluctuations nρ(x) = 1

2π∂xϕ1(x)
of the particle density relative to n0, and ϕ2 being the
phase. The well-known canonical conjugacy of density
and phase can be expressed by

[ϕj(x), ϕk(y)] = iπK−1
jk sgn(x− y), K = σ1, (1)

where σ1 is the first Pauli matrix.
BIQH edges also support a left and a right moving

mode and also form Luttinger liquids with fields ϕ1,2
satisfying Eq. (1). The key difference to boson wires is
how ϕ1,2 enter the particle density: as follows from the
Chern-Simons theory (the “Landau theory” of quantum
Hall phases [16]), one has nρ(x) =

1
2πq

T∂xϕ(x) with the

integer vector q = (1, q)T [5]. Note that this expression
includes the boson wire (nontopological) case as q = 0.

Taking advantage of these effective theories, we can
discuss wire and bIQH systems on the same footing. The
Hamiltonian is

H1D =
ℏ
4π

∫
dx

∑
jk

∂xϕjVjk∂xϕk, (2)

where V is a symmetric positive definite matrix encod-
ing the details of the confinement (or bandstructure in
the wire case) and intermode interactions, and which
leads to left and right moving modes with velocities
vR/L =

√
V11V22 ± V12. For wires, in the reflection sym-

metric case (V12=0)[15], we recover the usual Luttinger
Hamiltonian with sound velocity v =

√
V11V22 and Lut-

tinger parameter g = 1
2

√
V22

V11
. For the short range re-

pulsive interactions considered here, we have g≥1, with
g = 1 being the hard-core limit; in general, g is set by
v, n0, and the compressibility κ as g = πℏvn2

0κ [15]. In
what follows we will assume V12 = 0 for wires, but for
wire-like nontopological edges V12 ̸= 0 will be allowed.
In the bIQH cases, without loss of generality, we assume
q > 0 and take V11 < V22. In the q = 1 case this choice
only implies working away from the special V11 = V22
point (reaching which would require careful fine tuning
of confinement details); for q > 1 it follows from requir-
ing the dominant edge mode interaction to be through
the particle density, which is a reasonable assumption
given that microscopic density-density interactions can
stabilize bIQH states [11, 17, 18] (see also Sec. V for a
discussion).

The commutator Eq. (1) together with the form
of nρ(x) establishes the operators creating/removing
a given number of particles (or “charge”)[16]: from



3

[nρ(x), e
−iλTϕ(y)] = qTK−1λδ(x− y)e−iλTϕ(y), we have

ψ†
λ(x) ∼ e−iλTϕ with λ = (λ1, λ2)

T , creating charge
Qλ = qTK−1λ. From the Chern-Simons theory it
follows[16] that λj are integers and therefore so is Qλ;
the theory has no fractional quasiparticles. The Hamil-
tonian for tunneling between the upper (u) and lower (l)
subsystems can therefore be written as

Ht=
∑

λ(u),λ(l)

tλ(u),λ(l)
ei(λ

T
(l)ϕ

(l)−λT
(u)ϕ

(u)) + h.c., (3)

where the summation is over all tunneling processes in-
volving ψλ(l)

and ψλ(l)
with tλ(u),λ(l)

as the tunnel am-
plitudes, subject to the constraint of charge conservation

Qλ(u)
+Qλ(l)

= qT
(u)K

−1
(u)λ(u) + qT

(l)K
−1
(l) λ(l) = 0, (4)

In Eq. (3) the fields are taken at x = 0, the position of the
contact. In T-junctions, for the half-infinite wires ending
at x=0 we have the boundary condition ϕ1(x→ 0) = 0
[19].
In what follows we show that even with this coarse

level of detail in the Hamiltonian specification, as befits
a phenomenology such as the Luttinger liquid and Chern-
Simons theories, one can obtain useful predictions high-
lighting universal features shared between boson wires
and bIQH edge modes and clear observable signatures
that distinguish these phases.

III. TUNNELING CONDUCTANCE

We start by studying how the tunneling behavior
changes upon lowering the energy scale E (e.g, temper-
ature kBT or bias µbias) of interest. In the theoretical
description, E plays the role of the infrared cutoff. The
problem is conveniently analyzed using the renormaliza-
tion group (RG). This will allow us to identify the most
relevant (in the RG sense) term in Eq. (3) which sets the
high energy tail and, by providing an emergent boundary
condition, the zero energy limit of the tunneling conduc-
tance G. Subsequently, we will study the effect of the
leading perturbations that emerge near the zero energy
limit, which will allow us to establish the stability of the
ground state implied by the zero energy boundary con-
dition (a strong coupling fixed point of the RG) and find
the low energy power law conductance corrections.

A. High energy regime

Treating Ht as a perturbation, under an RG elim-
ination of the window (D0

b , D0) below the bare high
energy cutoff D0, the couplings scale as tλ(u),λ(l)

=

t
(0)
λ(u),λ(l)

b
1−∆λ(u),λ(l) , defining the scaling dimension

∆λ(u),λ(l)
. Since b > 1, the dominant (most relevant

in the RG sense) process is the one with the smallest
∆λ(u),λ(l)

.

Following standard steps [13, 15, 16] we find
∆λ(u),λ(l)

= ∆λ(u)
+ ∆λ(l)

where ∆λ is the scaling di-

mension of one e±iλTϕ factor in Eq. (3). For the end of

a half infinite wire ∆λ =
Q2

λ

2g , while for a bIQH edge or

the bulk of a wire ∆λ = 1
2

√
V22

V11
λ21 +

1
2

√
V11

V22
(Qλ − qλ1)

2.

We find that the dominant term corresponds to λ(l) =

−λ(u) = (0,±1)T , independent of q. It describes the
single particle (|Qλ(u,l)

| = 1) process

Ht0 = t0e
i(ϕ

(l)
2 −ϕ

(u)
2 ) + h.c. (5)

with scaling dimension ∆ = 1
2

√
V

(u)
11

V
(u)
22

+ 1
2g(l)

for T-

junctions, and ∆ = 1
2

√
V

(u)
11

V
(u)
22

+ 1
2

√
V

(l)
11

V
(l)
22

for QPCs. Im-

portantly, ∆ < 1: the tunnel coupling increases under
RG as the energy scale is lowered (it is RG relevant).
This increase translates to the high energy tail of the
conductance enhancement in Fig. 1, G ∼ E2(∆−1), which

is valid for E ≫ E∗ = D0

(
|t(0)0 |
D0

) 1
1−∆

with E∗ being

the characteristic energy scale for the breakdown of the
weak couping (small t0) description. The power laws
here and below hold when E is much larger than other
infrared energy scales (e.g., µbias ≫ kBT for E = µbias

or kBT ≫ µbias for E = kBT ).

B. Zero energy limit and universality

That the high energy tail of G is of the same schematic
form for all junctions is a consequence of Fermi’s golden
rule[1]. However, it is less expected that, in all cases,
∆ also sets the zero energy limit G(E → 0) = 1

h∆ . We
now establish this universal result, assuming that the zero
energy physics is governed by Ht0 at strong coupling.

The key observation is that withHt0 only, we can relate
our setups to a junction between two half-infinite wires.
In that case, ∆ = 1

2g(u)
+ 1

2g(l)
and G = 1

h∆ follows from

results [1, 20] on fermion Luttinger liquids with ∆ < 1,
because the wire Hamiltonian, the tunnel coupling, and
the correlation functions (current-current correlators cal-
culated, e.g., in the lower subsystem) underlying G at
zero energy are defined by the same expressions in the bo-
son and (bosonized) fermion cases. The basis of mapping
T-junctions and QPCs to a junction of two half-infinite
wires is the so-called unfolding (see Fig. 2): in this de-
scription the left and right moving modes of the two half-
infinite wires are joined up at x = 0 (are “unfolded”)[19]

so that the junction consists of two right movers ϕ
(u,l)
R on

the full line, coupled at x = 0. In terms of these, the wire

Hamiltonians are H
(u,l)
1D = ℏv(u,l)

4π

∫
dx(∂xϕ

(u,l)
R )2, with

[ϕ
(j)
R (x), ϕ

(k)
R (y)] = iπδjksgn(x − y), and the coupling is

Ht0 = t0 exp[i(
√
2∆(u)ϕ

(u)
R −

√
2∆(l)ϕ

(l)
R )] + h.c.
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FIG. 2. Mapping T-junctions and QPCs to linear junctions.
Diagram (a) shows the unfolding for linear junctions; dia-
grams (b) and (c) show the transformations for T-junctions
and QPCs. Dashed lines indicate the decoupled modes.

Turning now to T-junctions, using that left and right
movers are eigenmodes of H1D [Eq. (2)] and thus are
coupled only at x = 0, one can flip the left mover
component on the upper (bIQH or wire) side and

rescale x to formally treat ϕ
(u)
2 in Eq. (5) as the com-

bination of two right movers with the same veloci-
ties. One can then introduce this combination as a
new right-mover field ϕ

(u)
R1 (and the orthogonal com-

bination as ϕ
(u)
R2 ). In terms of these, the upper side

Hamiltonian is H
(u)
1D = ℏv

4π

∑
α=1,2

∫
dx(∂xϕ

(u)
Rα)

2, with

[ϕ
(u)
Rα(x), ϕ

(u)
Rβ(y)] = iπδαβsgn(x − y), and the coupling

is Ht0 = t0 exp[i(
√
2∆(u)ϕ

(u)
R1 −

√
2∆(l)ϕ

(l)
R )] + h.c where

ϕ
(l)
R is the unfolded right mover on the lower (half-infinite

wire) side. Notice that the field ϕ
(u)
R2 decouples. From the

perspective of the lower side, the upper side (through

ϕ
(u)
R1 ) acts effectively as another half-infinite wire with

Luttinger parameter set by ∆(u). Calculating the zero
energy conductance from the lower side current-current
correlators, we therefore find G = 1

h∆ with ∆ for the
T-junction. Of course, the same conductance should
be found if it is calculated from the upper side corre-
lators. This immediately shows that G = 1

h∆ also holds
for QPCs: performing now the same steps on the lower
side, from the perspective of the upper side a QPC looks
the same as a T-junction, with the lower side Luttinger
parameter set by ∆(l). This completes our proof that

G = 1
h∆ holds for all junctions at zero energy.

C. Low energy power laws

To complete the analysis of the low energy behavior we
calculate the dominant scaling dimension ∆′ near strong
coupling (t0 → ∞). If ∆′ > 1 is found, the strong
coupling fixed point is stable and the conductance dis-
plays low energy power laws given by δG ∼ E2(∆′−1)

(for E ≪ E∗). We obtain ∆′ using a method analogous
to Refs. [19, 21]: we identify the spectrum of allowed
perturbations via the x → 0 limit of charge conserving
operators subject to the boundary condition implied by
t0 → ∞. From this we obtain ∆′ as the smallest in the
consequent spectrum of scaling dimensions.

Starting with linear junctions, for completeness, we
find ∆′ = 1

∆ similarly to fermionic results[1]. For T-

junctions we also find ∆′ = 1
∆ unless γ =

√
V

(u)
22

V
(u)
11

sat-

isfies g(l) −
√
g2(l) − q2 < γ < g(l) +

√
g2(l) − q2 (for

g(l) > q), in which case ∆′ =
q2+γ2+2γg(l)

2(γ+g(l))
. For QPCs,

taking the same interactions on the upper and lower sides

for brevity, we find ∆′ = 1
∆ for 1

q <
√

V11

V22
< 1 and

∆′ = 3+∆2q2

4∆ for
√

V11

V22
< 1

q (with 1
q = ∞ for q = 0).

Importantly, for the interactions considered here ∆′ > 1:
the strong coupling fixed point is stable. (This also holds
for QPCs with unequal upper and lower side interac-
tions.) It is interesting to note that for boson wire T-
junctions and QPCs characterised by g(u) = g(l), both
the zero temperature conductance and the low energy
power laws agree with those of multi-junctions of semi-
infinite boson wires [22] and fermionic topological Kondo
systems [23, 24] with the latter related to the former by
bosonization [24].

D. Comparison to fermion Luttinger liquids

As we emphasized in the Introduction, the behavior we
find is in stark contrast to the fermionic case. Given that
1D fermions also admit a Luttinger liquid description,
one may wonder where this striking difference originates.
It is firstly noticeable that, though for fermions q and K
are the same as for boson wires, fermions with repulsive,
attractive, or no interactions have g < 1, g > 1, or g = 1,
respectively. However, as the fermionic comparisons in
the Introduction indicate, this difference in interaction
parameters is not the critical reason for the markedly
different bosonic tunneling behavior. The key difference
is in the tunneling terms where for fermionic single parti-
cle processes exchange statistics forces λ1,(u/l) in Eq. (3)
to be half-integer [16]. This renders Ht0 (which has
λ1,(u/l) = 0) invalid for fermions, resulting in markedly
different behavior.

IV. BIQH SIGNATURES

The universality of the conductance, while a striking
signature of bosonic nonfractionalised tunneling, implies
challenges for detecting bIQH states via conductance
measurements. Indeed, the only feature of G that we
found to be capable of detecting the topological invariant
q is the low energy power law, which becomes q depen-
dent in the cases with ∆′ ̸= 1/∆. Though challenging, a
protocol for measuring q via G is as follows: if ∆′ ̸= ∆ is
measured, q can be extracted from our expression for ∆′

using data on ∆ for a symmetric QPC, or on both ∆ and
g(l) for a T-junction. Here ∆ can be determined by G
at zero or high energy, and g(l) of the boson wire can be
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obtained [15] either via data on the microscopic interac-
tions or measurements of density correlations. Note that
in T-junctions, the lower side boson wires can always be
tuned to reach ∆′ ̸= 1

∆ by increasing g(l) (i.e., weakening
the repulsive interactions). While a q dependent conduc-
tance power law is already a well defined bIQH feature,
as we explain below, tunneling setups also provide signa-
tures that are more qualitative and experimentally more
feasible.
Intuitively, by solid-state analogy, the Hall resistance

RH in a four terminal arrangement would be a natu-
ral candidate. With cold atoms, however, measuring the
Hall voltage VH , and having locally thermalized Hall cur-
rent carrying edge modes for its clear interpretation may
be challenging. Surprisingly, even these issues aside, RH

is of limited utility in tunneling setups, as it turns out to
vanish for a clean edge for T → 0 due to Ht0 remaining
the only coupling. This can be seen as follows: firstly,
due to the commutation relation Eq. (1), Ht0 [Eq. (5)]
tunnels only into mode ϕ1, thus measuring VH via a tun-
nel contact probes µ1 (the chemical potential for ϕ1) and
the current for ϕ2 satisfies ∂xJ2 = 0 in a steady state.
Secondly, in a thermal state J2 = µ1/h [25]. Therefore,
µ1 is constant along the whole edge, implying that VH
and thus RH vanishes. In fact, the observation that Ht0

tunnels only to ϕ1 explains all the similarities between
bIQH edges and boson wires we encountered: if tunnel
junctions are the only sources of data (e.g., via G or as
voltage probes), apart from small corrections due to the
perturbations near strong coupling, one effectively probes
only the ϕ1 (i.e., the first) component of q which is q in-
dependent.
A bIQH state being a Hall system, a transport cur-

rent should however, regardless of details, induce some
imbalance in charge density δnρ and current δJρ be-
tween opposite edges which should be q dependent. Not
requiring voltage measurement, nor thermalized edges,
these observables are natural replacements to RH for cold
atomic settings. As we now show, tunneling setups are
particularly advantageous for measuring δnρ and δJρ as
nonuniversalities due to intermode interactions can be
eliminated. The key quantities are summarised in Fig. 3.
The equations of motion relate the currents J and den-
sities n = ∂xϕ

2π of the two edge modes as J = K−1V n
[25]. When Ht0 dominates, in a steady state we have
∂xJ1 = Iδ(x) and ∂xJ2 = 0 up to small corrections,
where I is the particle current between the subsystems.
Integrating across the contact we find

δnρ

I
=

1 + q
√

V11

V22

2vR
−

1− q
√

V11

V22

2vL
(6)

for the charge imbalance δnρ = nρ,R − nρ,L between the
right and the left edge segments. The deviation of δnρ

from 1
2 (v

−1
R − v−1

L ) is a qualitative bIQH signature. In

the special case V11

V22
= q−2, the left moving mode, akin to

an edge dipole mode, carries no particle density. In this
case, instead of the comparison to 1

2 (v
−1
R − v−1

L ), a clear

FIG. 3. Charge densities nρ,R/L and currents Jρ,R/L under-
lying predictions Eqs. (6) and (7). We measure nρ,R/L and

Jρ,R/L relative to their equilibrium values at µ(u/l). The right
moving direction (R arrows) is taken relative to the Hall state

chirality. For δJρ=J
(u)
ρ,R−J

(l)
ρ,L we find

δJρ

µbias
= q

h
at low ener-

gies. The intuitive picture is in terms of chargeQ
(u/l)

R/L solitons.

bIQH signature is provided by the density disturbances
propagating only to the right.

Eq. (6) can also be derived using an intuitive picture:

first, one can show that QR/L =
1±q

√
V11
V22

2 is the charge
of the right or the left moving soliton that arises due to
injecting a unit charge into ϕ1 (i.e., a singleHt0 transport
event). Then, identifying I as the injection rate, we have

nρ,R/L =
QR/L

vR/L
I as the charge density to the right/left of

the contact, thus explaining Eq. (6).

In a T-junction we have
√

V11

V22
= 2∆− g−1

(l) thus q can

be extracted from
δnρ

I using vR/L, ∆, and g(l). Measuring
n
(u/l)

ρ,R/L

I , vR/L and ∆, one can also extract q using a QPC.
QPCs, however, also provide a more elegant option via
the current Jρ,L/R = vL/Rnρ,L/R. In terms of δJρ =

J
(u)
ρ,R − J

(l)
ρ,L we find

δJρ

I = q∆. At low temperatures and

in the linear regime one has I = Gµbias = µbias

h∆ up to
small power law corrections, which gives

δJρ
µbias

=
q

h
, (7)

the quantization announced in the Introduction. Note
that Eq. (7) does not require a symmetric QPC.

V. EXPERIMENTAL PERSPECTIVES

We now turn to some considerations on testing our pre-
dictions in ultracold atomic systems, discussing routes to-
wards realising boson wires and bIQH states and towards
nonequilibrium measurements of G, δnρ and δJρ.

A. Boson wires and a Harper–Hofstadter-model
based bIQH state

The boson wires for our tunneling setups can be re-
alized by strongly repulsive bosonic atoms in 1D optical
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confinement, e.g., by suitably adapting the wire arrays
in Ref. 26, or, in an approach particularly suited for our
geometries, by utilizing the holographic optical traps of
Ref. 27. A realization of a bIQH state was originally
proposed [11] and later numerically demonstrated [17]
for two-component bosons in the lowest Landau level.
Optical lattice systems of current experiments [9, 10],
however, may provide a bIQH option already with single-
component particles. This is easiest seen for q=1: K=σ1
and q = (1, 1) is in the composite fermion series [28]
for bosons in a periodic potential [18, 29], correspond-
ing to the case when composite fermions fill bands of
total Chern number |C| = 2 (as K is 2× 2) with the
attachment of a single flux quantum per particle [trans-
forming K0=−112 of filled bands of Chern number −2 to
K=−112+

(
1 1
1 1

)
= σ1] [30]. Interestingly, this state was

numerically observed [18] in an FQH study of hard-core
bosons in the Harper-Hofstadter bandstructure, where
a ground state captured by a composite fermion trial
wavefunction with the above attached flux and compos-
ite fermion Chern number (as extracted from the many
body Chern number using the results of Ref. 29) was
demonstrated, thereby providing the earliest instance of
a bIQH phase (see also Ref. 31). FQH results on the same
model also suggest that well-defined edge modes may be
possible under realistic conditions [32]. The cold atom
realisation of the Harper-Hofstadter bandstructure [9] is
thus particularly promising from the bIQH perspective.
Recently, bIQH states were also predicted in optical flux
lattices [33] and in models with correlated hopping [34].

B. Transport observables via steady state
measurements

Testing our transport predictions requires a steady
state but only needs initial states to be thermal. This
suggests approaches inspired by Ref. 8: with Ht off, one
prepares the upper and lower subsystems initially decou-
pled, in thermal states with a common temperature, and
with µbias between them. Then, one turns Ht on to let
the full system evolve. In the steady state, we expect [35]

∂I
∂µbias

=G[E = max(kBT, µbias)] when one of the two en-

ergy scales {kBT, µbias} is much larger than the other.
The imbalance δnρ can be measured by standard meth-
ods for detecting particle density. The recent demonstra-
tion of detecting local lattice currents [36] also provides
prospects for observing δJρ.

VI. CONCLUSION

In conclusion, we have shown that bosonic nonfrac-
tionalized tunneling displays emblematic universal fea-
tures. Tunneling is enhanced upon lowering the energy,
with the high energy power law G ∼ E2(∆−1) tied to
the zero energy limit G = 1

h∆ . This universal relation
holds for all the interactions and geometries we consid-
ered, and is valid regardless of the topological nature of
the modes. While the tunneling conductance of wires and
bIQH edges thus share remarkable universal features, we
have also shown how the characteristic topological invari-
ant q of the bIQH states is revealed in tunneling via the
low energy power laws δG ∼ E2(∆′−1) (in the regimes
that ∆′ ̸= 1/∆), the charge imbalance Eq. (6), and the

quantization
δJρ

µbias
= q

h . Our predictions, requiring only

initial states to be thermal, are well suited for cold atom
experiments. Testing our wire results would be a natu-
ral first direction in exploring bosonic mesoscopic quan-
tum transport. With the rapid experimental progress
towards bIQH host bandstructures, using our results to
detect bIQH states is another intriguing perspective. Our
work can also stimulate theoretical explorations of gener-
alizations of our results to multimode (e.g., multi-species)
wires and SPTs beyond bIQH states.
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