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Abstract

Locally finite groups having the property that every non-cyclic subgroup contains

its centralizer are classified.

Keywords: Self-centralizing subgroup, Frobenius group, locally finite group

2010 MSC: 20F50, 20E34, 20D25

1. Introduction

A subgroup H of a group G is self-centralizing if the centralizer CG(H) is

contained in H. In [1] it has been remarked that a locally graded group in which

all non-trivial subgroups are self-centralizing has to be finite; therefore it has to

be either cyclic of prime order or non-abelian of order being the product of two5

different primes.

In this article, we consider the more extensive class X of all groups in which

every non-cyclic subgroup is self-centralizing. In what follows we use the term

X-groups in order to denote groups in the class X. The study of properties of

X-groups was initiated in [1]. In particular, the first four authors determined the10

structure of finite X-groups which are either nilpotent, supersoluble or simple.
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In this paper, Theorem 2.1 gives a complete classification of finite X-groups.

We remark that this result does not depend on classification of the finite simple

groups rather only on the classification of groups with dihedral or semidihedral

Sylow 2-subgroups. We also determine the infinite soluble X-groups, and the15

locally finite X-groups the results being presented in Theorems 3.6 and 3.7. It

turns out that these latter groups are suitable finite extensions either of the

infinite cyclic group or of a Prüfer p-group, Zp∞ , for some prime p.

We follow [2] for basic group theoretical notation. In particular, we note that

F ∗(G) denotes the generalized Fitting subgroup of G, that is the subgroup of G20

generated by all subnormal nilpotent or quasisimple subgroups of G. The latter

subgroups are the components of G. We see from [2, Section 31] that distinct

components commute. The fundamental property of the generalized Fitting

subgroup that we shall use is that it contains its centralizer in G [2, (31.13)].

We denote the alternating group and symmetric group of degree n by Alt(n) and25

Sym(n) respectively. We use standard notation for the classical groups. The

notation Dih(n) denotes the dihedral group of order n and Q8 is the quaternion

group of order 8. The term quaternion group will cover groups which are often

called generalized quaternion groups. The cyclic group of order n is represented

simply by n, so for example Dih(12) ∼= 2×Dih(6) ∼= 2×Sym(3). Finally Mat(10)30

denotes the Mathieu group of degree 10. The Atlas [3] conventions are used for

group extensions. Thus, for example, p2:SL2(p) denotes the split extension of

an elementary abelian group of order p2 by SL2(p).
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2. Finite X-groups

In this section we determine all the finite groups belonging to the class X.

The main result is the following.40

Theorem 2.1. Let G be a finite X-group. Then one of the following holds:

(1) If G is nilpotent, then either

(1.1) G is cyclic;

(1.2) G is elementary abelian of order p2 for some prime p;

(1.3) G is an extraspecial p-group of order p3 for some odd prime p; or45

(1.4) G is a dihedral, semidihedral or quaternion 2-group.

(2) If G is supersoluble but not nilpotent, then, letting p denote the largest

prime divisor of |G| and P ∈ Sylp(G), we have that P is a normal subgroup

of G and one of the following holds:

(2.1) P is cyclic and either50

(2.1.1) G ∼= D n C, where C is cyclic, D is cyclic and every non-trivial

element of D acts fixed point freely on C (so G is a Frobenius

group);

(2.1.2) G = D n C, where C is a cyclic group of odd order, D is a

quaternion group, and CG(C) = C × D0 where D0 is a cyclic55

subgroup of index 2 in D with G/D0 a dihedral group; or

(2.1.3) G = D n C, where D is a cyclic q-group, C is a cyclic q′-

group (here q denotes the smallest prime dividing the order of G),

1 < Z(G) < D and G/Z(G) is a Frobenius group;

(2.2) P is extraspecial and G is a Frobenius group with cyclic Frobenius60

complement of odd order dividing p− 1.

(3) If G is not supersoluble and F ∗(G) is nilpotent, then either (3.1) or (3.2)

below holds.

(3.1) F ∗(G) is elementary abelian of order p2, F ∗(G) is a minimal normal

subgroup of G and one of the following holds:65

(3.1.1) p = 2 and G ∼= Sym(4) or G ∼= Alt(4); or
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(3.1.2) p is odd and G = G0 n N is a Frobenius group with Frobenius

kernel N and Frobenius complement G0 which is itself an X-group.

Furthermore, either

(3.1.2.1) G0 is cyclic of order dividing p2 − 1 but not dividing p− 1;70

(3.1.2.2) G0 is quaternion;

(3.1.2.3) G0 is supersoluble as in (2.1.2) with |C| dividing p− ε where

p ≡ ε (mod 4);

(3.1.2.4) G0 is supersoluble as in (2.1.3) with D a 2-group, CD(C) a

non-trivial maximal subgroup of D and |C| odd dividing p− 175

or p+ 1;

(3.1.2.5) G0
∼= SL2(3);

(3.1.2.6) G0
∼= SL2(3).2 and p ≡ ±1 (mod 8); or

(3.1.2.7) G0
∼= SL2(5) and 60 divides p2 − 1.

(3.2) F ∗(G) is extraspecial of order p3 and one of the following holds:80

(3.2.1) G ∼= SL2(3) or G ∼= SL2(3).2 (with quaternion Sylow 2-subgroups

of order 16); or

(3.2.2) G = K n N where N is extraspecial of order p3 and exponent

p with p an odd prime, K centralizes Z(N) and is cyclic of odd

order dividing p+ 1. Furthermore, G/Z(N) is a Frobenius group.85

(4) If F ∗(G) is not nilpotent, then either

(4.1) F ∗(G) ∼= SL2(p) where p is a Fermat prime, |G/F ∗(G)| ≤ 2 and G

has quaternion Sylow 2-subgroups; or

(4.2) G ∼= PSL2(9), Mat(10) or PSL2(p) where p is a Fermat or Mersenne

prime.90

Furthermore, all the groups listed above are X-groups.

We make a brief remark about the group SL2(3).2 and the groups appearing

in part (4.1) of Theorem 2.1 in the case G > F ∗(G). To obtain such groups,

take F = SL2(p2), then the groups in question are isomorphic to the normalizer

in F of the subgroup isomorphic to SL2(p). We denote these groups by SL2(p).295
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to indicate that the extension is not split (there are no elements of order 2 in

the outer half of the group).

We shall repeatedly use the fact that if L is a subgroup of an X-group X, then

L is an X-group. Indeed, if H ≤ L is non- cyclic , then CL(H) ≤ CX(H) ≤ H.

The following elementary facts will facilitate our proof that the examples100

listed are indeed X-groups.

Lemma 2.2. The finite group X is an X-group if and only if CX(x) is an

X-group for all x ∈ X of prime order.

Proof. If X is an X-group, then, as X is subgroup closed, CX(x) is an X-group

for all x ∈ X of prime order. Conversely, assume that CX(x) is an X-group for105

all x ∈ X of prime order (and hence of any order). Let H ≤ X be non- cyclic .

We shall show CX(H) ≤ H. If CX(H) = 1, then CX(H) ≤ H and we are done.

So assume x ∈ CX(H) and x 6= 1. Then H ≤ CX(x) which is an X-group. Hence

x ∈ CCX(x)(H) ≤ H. Therefore CX(H) ≤ H, and X is an X-group.

Lemma 2.3. Suppose that X is a Frobenius group with kernel K and complement110

L. If K and L are X-groups, then X is an X-group.

Proof. Let x ∈ X have prime order. Then, as K and L have coprime orders,

x ∈ K or x is conjugate to an element of L. But then, since X is a Frobenius

group, either CX(x) ≤ K or CX(x) is conjugate to a subgroup of L. Since

K and L are X-groups, CX(x) is an X-group. Hence X is an X-group by115

Lemma 2.2.

The rest of this section is dedicated to the proof of Theorem 2.1; therefore G

always denotes a finite X-group. Parts (1) and (2) of Theorem 2.1 are already

proved in [1, Theorems 2.2, 2.4, 3.2 and 3.4]. However, our statement in (2.1.3)

adds further detail which we now explain. So, for a moment, assume that120

G is supersoluble, q is the smallest prime dividing |G|, D is a cyclic q-group

and C is a cyclic q′-group. In addition, 1 6= Z(G) = CD(C). Assume that

d ∈ D \ Z(G). Then, as d 6∈ Z(G), C is not centralized by d. By coprime

action, C = [C, d]× CC(d) and so Y = [C, d]〈d〉 is centralized by CC(d). As Y

5



is non-abelian and CC(d)∩ Y = 1, we deduce that CC(d) = 1. Hence G/Z(G) is125

a Frobenius group. This means that we can assume that (1) and (2) hold and,

in particular, we assume that G is not supersoluble.

The following lemma provides the basic case subdivision of our proof.

Lemma 2.4. One of the following holds:

(i) F ∗(G) is elementary abelian of order p2 for some prime p.130

(ii) F ∗(G) is extraspecial of order p3 for some prime p.

(iii) F ∗(G) is quasisimple.

Proof. Suppose first that F ∗(G) is nilpotent. Then its structure is given in part

(1) of Theorem 2.1. Suppose that F ∗(G) is cyclic. Since CG(F ∗(G)) = F ∗(G),

we have G/F ∗(G) is isomorphic to a subgroup of Aut(F ∗(G)). Because the135

automorphism group of a cyclic group is abelian, we have that G is supersoluble.

Therefore, by our assumption concerning G, F ∗(G) is not cyclic. Hence F ∗(G)

is either elementary abelian of order p2 for some prime p, is extraspecial of order

p3 for some odd prime p or F ∗(G) is a dihedral, semidihedral or quaternion 2-

group. Since the automorphism groups of dihedral, semidihedral and quaternion140

groups of order at least 16 are 2-groups, we deduce that when p = 2 and F ∗(G)

is non-abelian, F ∗(G) is extraspecial. This proves the lemma when F ∗(G) is

nilpotent.

If F ∗(G) is not nilpotent, then there exists a component K ≤ F ∗(G). As

F ∗(G) = CF∗(G)(K)K and K is non-abelian, we have F ∗(G) = K and this is145

case (iii).

Lemma 2.5. Suppose that p is a prime and F ∗(G) is extraspecial of order p3.

Then one of the following holds:

(i) G ∼= SL2(3), G ∼= SL2(3).2 (with quaternion Sylow 2-subgroups of order

16); or150

(ii) G = NK where N is extraspecial of order p3 of exponent p with p an

odd prime, K centralizes Z(N) and is cyclic of odd order dividing p+ 1.

Furthermore, G/Z(N) is a Frobenius group.
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Proof. Let N = F ∗(G). We have that N is extraspecial of order p3 by assumption.

Suppose first that p = 2, then we have N ∼= Q8 as the dihedral group of155

order 8 has no odd order automorphisms and G is not a 2-group . Since

Aut(Q8) ∼= Sym(4), G/Z(N) is isomorphic to a subgroup of Sym(4) containing

Alt(4). If G/Z(N) ∼= Alt(4), then G = NT ∼= SL2(3) where T is a cyclic

subgroup of order 3. When G/Z(N) ∼= Sym(4), taking T ∈ Syl3(G), we have

NT ∼= SL2(3), NG(T ) has order 12 and NG(T )/Z(N) ∼= Sym(3). Since NG(T )160

is an X-group and NG(T ) is supersoluble, we see that NG(T ) is a product DT

where D is cyclic of order 4 by (2.1.3). Because the Sylow 2-subgroups of G

are either dihedral, semidihedral or quaternion and D 6≤ N , we see that ND is

quaternion. Thus G ∼= SL2(3).2 as claimed in (i).

Assume that p is odd. We know that the outer automorphism group of N is165

isomorphic to a subgroup of GL2(p) and CAut(N)(Z(N))/Inn(N) is isomorphic

to a subgroup of SL2(p). Since p is odd and the Sylow p-subgroups of G

are X-groups, we have N ∈ Sylp(G) and G/N is a p′-group by part (1) of

Theorem 2.1. Set Z = Z(N). Since G/N and N have coprime orders, the

Schur Zassenhaus Theorem says that G contains a complement K to N . Set170

K1 = CK(Z). Then K1 commutes with Z and so K1 is cyclic. If K1 = 1, then

|K| divides p− 1 and we find that G is supersoluble, which is a contradiction.

Hence K1 6= 1. Let x ∈ K1. Then [N, x] and CN (x) commute by the Three

Subgroups Lemma. Hence CN (x) centralizes [N, x]〈x〉 which is non-abelian. It

follows that [N, x] = N and CN (x) = Z. If 〈x〉 does not act irreducibly on N/Z,175

then there exists Z < N1 < N which is 〈x〉-invariant. If N1 is cyclic, then, as

〈x〉 centralizes Ω1(N1) = Z, 〈x〉 centralizes N1 > Z, a contradiction. If N1 is

elementary abelian, then, as 〈x〉 centralizes Z, [N1, 〈x〉] has order at most p

by Maschke’s Theorem. If [N1, 〈x〉] 6= 1, then [N1, 〈x〉]〈x〉 is non-abelian and

Z centralizes [N1, 〈x〉]〈x〉, a contradiction. Hence 〈x〉 centralizes N1 contrary180

to CN (〈x〉) = Z. We conclude that every element of K1 acts irreducibly on

N/Z(N). In particular, since K1 is isomorphic to a subgroup of SL2(p), we

have that K1 is cyclic of odd order dividing p + 1. Furthermore, as K1 acts

irreducibly on N/Z(N), N has exponent p.
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By the definition of K1, |K/K1| divides |Aut(Z)| = p − 1. Assume that185

K 6= K1 and let y ∈ K \K1 have prime order r. Then r does not divide |K1|

and Z〈y〉 is non-abelian. Since K1 centralizes Z, we have CK1
(y) = 1. Let

w ∈ K1 have prime order q. Then 〈y〉〈w〉 is non-abelian and acts faithfully on

V = N/Z. Therefore [2, 27.18] implies that CN (y) 6= 1. As CN (y) ∩ Z = 1 and

CN (y) centralizes Z〈y〉, we have a contradiction. Hence K = K1. Finally, we190

note that NK/Z(N) is a Frobenius group.

It remains to show that the groups listed are X-groups. We consider the

groups listed in (ii) and leave the groups in (i) to the reader. Assume that

H ≤ G is non-cyclic. We shall show that CG(H) ≤ H. If H ≥ N , then

CG(H) ≤ CG(N) ≤ N ≤ H and we are done. Suppose that H ≤ N . Then,195

as N is extraspecial of exponent p, H is elementary abelian of order p2 and

CN (H) = H. Since G/N is cyclic of odd order dividing p + 1, we see that

NG(H) = N and so CG(H) = CN (H) = H and we are done in this case.

Suppose that H 6≤ N and N 6≤ H. Let h ∈ H \ N . Then, as |G/N | divides

p+ 1 and is odd, we either have H ∩N = N or H ∩N = Z. So we must have200

H ∩N = Z = Z(G). Now H/Z ∼= G/N is cyclic of order dividing p+ 1 and so

we get that H is cyclic, a contradiction. Thus G is an X-group.

Lemma 2.6. Suppose that N = F ∗(G) is elementary abelian of order p2. Then

one of the following holds:

(i) p = 2, G ∼= Sym(4) or Alt(4); or205

(ii) p is odd and G = NG0 is a Frobenius group with Frobenius kernel N and

Frobenius complement G0 which is itself an X-group. Furthermore, either

(a) G0 is cyclic of order dividing p2 − 1 but not dividing p− 1;

(b) G0 is quaternion;

(c) G0 is supersoluble as in part (2.1.2) of Theorem 2.1 with |C| dividing210

p− ε where p ≡ ε (mod 4);

(d) G0 is supersoluble as in part (2.1.3) of Theorem 2.1 with D a 2-group,

CD(C) a non-trivial maximal subgroup of D and |C| odd dividing

p− 1 or p+ 1;

8



(e) G0
∼= SL2(3);215

(f) SL2(3).2 and p ≡ ±1 (mod 8); or

(g) G0
∼= SL2(5) and 60 divides p2 − 1.

Furthermore, all the groups listed are X-groups.

Proof. We have N has order p2, is elementary abelian and G/N is isomorphic

to a subgroup of GL2(p). If p = 2, then we quickly obtain part (i). So assume220

that p is odd.

Suppose that p divides the order of G/N . Let P ∈ Sylp(G). Then P is

extraspecial of order p3 and P is not normal in G. Hence by [4, Theorem 2.8.4]

there exists g ∈ G such that G ≥ K = 〈P, P g〉 ∼= p2:SL2(p). Let Z = Z(P ), t

be an involution in K, K0 = CK(t) and P0 = P ∩K0. Then, as t inverts N ,225

K0
∼= SL2(p), P0 has order p and centralizes Z〈t〉, which is a contradiction as

Z〈t〉 ∼= Dih(2p). Hence G/N is a p′-group.

Suppose that x ∈ G \ N . If CN (x) 6= 1, then CN (x) centralizes [N, x]〈x〉

which is non-abelian, a contradiction. Thus CN (x) = 1 for all x ∈ G \ N . It

follows that G is a Frobenius group with Frobenius kernel N . Let G0 be a230

Frobenius complement to N . As G0 ≤ G, G0 is an X-group. Recall that the

Sylow 2-subgroups of G0 are either cyclic or quaternion and that the odd order

Sylow subgroups of G0 are all cyclic [5, V.8.7].

Assume that N is not a minimal normal subgroup of G. Then G/N is

conjugate in GL2(p) to a subgroup of the diagonal subgroup. Therefore G is235

supersoluble, which is a contradiction. Hence N is a minimal normal subgroup

of G and G0 is isomorphic to an irreducible subgroup of GL2(p). This completes

the general description of the structure of G. It remains to determine the

structure of G0.

If G0 is nilpotent, then Theorem 2.1 (1) applies to give G0 is either quaternion240

or cyclic. In the latter case, as G0 acts irreducibly on N it is isomorphic to a

subgroup of the multiplicative group of GF(p2) and is not of order dividing p− 1.

This gives the structures in (ii) (a) and (b).

If G0 is supersoluble, then the structure of G0 is described in part (2.1) of

9



Theorem 2.1, as GL2(p) contains no extraspecial subgroups of odd order. We245

adopt the notation from (2.1). By [5, V.8.18 c)], Z(G0) 6= 1. Hence (2.1.1)

cannot occur. Case (2.1.2) can occur and, as C commutes with a cyclic subgroup

of order at least 4 and G0 is isomorphic to a subgroup of GL2(p), |C| divides

p− 1 if p ≡ 1 (mod 4) and |C| divides p+ 1 if p ≡ 3 (mod 4). In the situation

described in part (2.1.3) of Theorem 2.1, the groups have no 2-dimensional250

faithful representations unless q = 2 and CD(C) has index 2. In this case |C| is

an odd divisor of p− 1 or p+ 1.

Suppose that G0 is not supersoluble. Refereing to Lemma 2.4 and using the

fact that the Sylow subgroups of G0 are either cyclic or quaternion, we have

that F ∗(G0) is either quaternion of order 8 or F ∗(G0) is quasisimple. In the first255

case we obtain the structures described in parts (b), (e) and (f) from Lemma 2.5

where for part (f) we note that we require SL2(p) to have order divisible by 16.

If F ∗(G0) is quasisimple, then Zassenhaus’s Theorem [6, Theorem 18.6, p.

204] gives G0 = WM where W ∼= SL2(5) and M is metacyclic. Since G0 is an

X-group, this means that M ≤W and G0
∼= SL2(5). Since SL2(5) is isomorphic260

to a subgroup of GL2(p) only when p = 5 or 60 divides p2 − 1 and p 6= 5 part

(g) holds.

That Sym(4) and Alt(4) are X-groups is easy to check. The groups listed in

(ii) are X-groups by Lemma 2.3.

The finite simple X-groups are determined in [1]. We have to extend the265

arguments to the cases where F ∗(G) is simple or quasisimple. This is relatively

elementary.

Lemma 2.7. Suppose that F ∗(G) is simple. Then G ∼= SL2(4), PSL2(9),

Mat(10) or PSL2(p) where p is a Fermat or Mersenne prime.

Proof. Set H = F ∗(G). As X is subgroup closed, H is an X-group and so H270

is one of the groups listed in the statement by Theorem 3.7 of [1]. Hence we

obtain H ∼= SL2(4), PSL2(9) or PSL2(p) for p a Fermat or Mersenne prime.

Suppose that G > H. If H ∼= SL2(4), then G ∼= Sym(5) and the subgroup

2 × Sym(3) witnesses the fact that Sym(5) is not an X-group. Suppose H ∼=

10



PSL2(9) ∼= Alt(6). If G ≥ K ∼= Sym(6), then G contains Sym(5) which is275

impossible. ThereforeG ∼= PGL2(9) orG ∼= Mat(10). In the first case, G contains

a subgroup Dih(20) ∼= 2×Dih(10) which is impossible. Thus G ∼= Mat(10) and

this group is easily shown to satisfy the hypothesis as all the centralizer of

elements of prime order are X-groups.

If H ∼= PSL2(p), p a Fermat or Mersenne prime, then G ∼= PGL2(p) and280

contains a dihedral group of order 2(p+ 1) and one of order 2(p− 1). One of

these is not a 2-group and this contradicts G being an X-group.

Lemma 2.8. Suppose that F ∗(G) is quasisimple but not simple. Then F ∗(G) ∼=

SL2(p) where p is a Fermat prime, |G/H| ≤ 2 and G has quaternion Sylow

2-subgroups.285

Proof. Let H = F ∗(G) and Z = Z(H). Since H centralizes Z, we have Z is

cyclic. Let S ∈ Syl2(H). If Z 6≤ S, then S must be cyclic. Since groups with a

cyclic Sylow 2-subgroup have a normal 2-complement [2, 39.2], this is impossible.

Hence Z ≤ S. In particular, Z(G) 6= 1 as the central involution of H is central

in G. It follows also that all the odd order Sylow subgroups of G are cyclic. By290

part (1) of Theorem 2.1, S is either abelian, dihedral, semidihedral or quaternion.

If S is abelian, then S/Z is cyclic and again we have a contradiction. So S is

non-abelian. Thus S/Z is dihedral (including elementary abelian of order 4).

Hence H/Z ∼= Alt(7) or PSL2(q) for some odd prime power q [4, Theorem 16.3].

Since the odd order Sylow subgroups of G are cyclic, we deduce that H ∼= SL2(p)295

for some odd prime p. If p − 1 is not a power of 2, then H has a non-abelian

subgroup of order pr where r is an odd prime divisor of p−1 which is centralized

by Z. Hence p is a Fermat prime.

Suppose that G > H with H ∼= SL2(p), p a Fermat prime. Note G/H has

order 2. Let S ∈ Syl2(G). Then S ∩H is a quaternion group. Suppose that S300

is not quaternion Then there is an involution t ∈ S \H. By the Baer-Suzuki

Theorem, there exists a dihedral group D of order 2r for some odd prime r which

contains t. Since D and Z commute, this is impossible. Hence S is quaternion.

This gives the structure described in the lemma.
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It remains to demonstrate that the groups SL2(p) and SL2(p).2 with p a Fer-305

mat prime are indeed X-groups. Let G denote one of these group, H = F ∗(G) ∼=

SL2(p). Recall from the comments just after the statement of Theorem 2.1 that

G is isomorphic to a subgroup of X = SL2(p2). Let V be the natural GF(p2)

representation of X and thereby a representation of G. Assume that L ≤ G

is non-cyclic. Since H has no abelian subgroups which are not cyclic, L is310

non-abelian and L acts irreducibly on V . Schur’s Lemma implies that CX(L)

consists of scalar matrices and so has order at most 2. If L has even order, then

as G has quaternion Sylow 2-subgroups, L ≥ CG(L). So suppose that L has odd

order. Then using Dickson’s Theorem [7, 260, page 285], as p is a Fermat prime,

we find that L is cyclic, a contradiction. Thus G is an X-group.315

Proof of Theorem 2.1. This follows from the combination of the lemmas in this

section.

3. Locally finite X-groups

It has been proved in [1, Theorem 2.2] that an infinite abelian group is in the

class X if and only if it is either cyclic or isomorphic to Zp∞ (the Prüfer p-group)320

for some prime p. Moreover, Theorem 2.3 and Theorem 2.5 of [1] imply that

every infinite nilpotent X-group is abelian. We start this section by showing that

some extensions of infinite abelian X-groups provide further examples of infinite

X-groups.

Lemma 3.1. The infinite dihedral group belongs to the class X.325

Proof. Write G = 〈a, y | y2 = 1, ay = a−1〉. Then for every non-cyclic subgroup

H of G there exist non-zero integers n and m such that an, amy ∈ H. It easily

follows that CG(H) = 1.

Lemma 3.2. Let G = A〈y〉 where A ∼= Z2∞ and 〈y〉 has order 2 or 4, with

y2 ∈ A and ay = a−1, for all a ∈ A. Then G belongs to the class X.330
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Proof. It is clear that G/A has order 2, and A is the Fitting subgroup of G. Also

CG(A) = A and Z(G) is the subgroup of order 2 of A. Let H be a non-cyclic

subgroup of G with H 6= A. Then H 6≤ A as every proper subgroup of A is

cyclic. Pick any element h ∈ H \A. Then G = A〈h〉 since |G : A| = 2. Therefore

by the Dedekind modular law we get H = C〈h〉, where C = A ∩H > 1 is finite.335

Since h = bv with b ∈ A and v ∈ 〈y〉 \A, we get ah = a−1 for all a ∈ A. In

particular, CA(h) has order 2 and CG(h) has order 4. Since C has a unique

involution and h ∈ CG(H), we conclude that CG(H) ≤ H and so G is an

X-group.

When 〈y〉 has order 2, the group G = Ao 〈y〉 of Lemma 3.2 is a generalized340

dihedral group.

Let p denote any odd prime. Then, by Hensel’s Theorem (see for instance [8,

Theorem 127.5]), the group Zp∞ has an automorphism of order p− 1, say φ.

Lemma 3.3. The groups G = Zp∞ o 〈φj〉 for 1 ≤ j ≤ p− 1 are X-groups.

Proof. As X is subgroup closed, it suffices to show that G = Zp∞ o 〈φ〉 is an345

X-group. Write the elements of G in the form ay with a ∈ A ∼= Zp∞ and y ∈ 〈φ〉.

Suppose there exist non-trivial elements a ∈ A and y ∈ 〈φ〉 such that ay = a.

For a suitable non-negative integer n, the element ap
n

has order p and it is fixed

by y. Then y centralizes all elements of order p in A, and therefore y = 1 by a

result due to Baer (see, for instance, [9, Lemma 3.28]). This contradiction shows350

that 〈φ〉 acts fixed point freely on A.

Let H be any non-cyclic subgroup of G. Then, as G/A is cyclic, A ∩H 6= 1.

If H = A then of course CG(H) = H. Thus we can assume that there exist

non-trivial elements a, b ∈ A and y ∈ 〈φ〉 such that a, by ∈ H. Let g ∈ CG(H).

If g ∈ A then 1 = [g, by] = [g, y], so g = 1. Now let g = cz with c ∈ A and355

1 6= z ∈ 〈φ〉. Thus 1 = [cz, a] = [z, a], and a = 1, a contradiction. Therefore

CG(H) ≤ H for all non-cyclic subgroups H of G, so G is an X-group.

Lemma 3.4. An infinite polycyclic group belongs to the class X if and only if it

is either cyclic or dihedral.
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Proof. Arguing as in the proof of Theorem 3.1 of [1], one can easily prove that360

every infinite polycyclic X-group is either cyclic or dihedral. On the other hand,

the infinite dihedral group belongs to the class X by Lemma 3.1.

Proposition 3.5. A torsion-free soluble group belongs to the class X if and only

if it is cyclic.

Proof. Let G be a torsion-free soluble X-group. Then every abelian subgroup of365

G is cyclic, so G satisfies the maximal condition on subgroups by a result due

to Mal’cev (see, for instance, [10, 15.2.1]). Thus G is polycyclic by [10, 5.4.12].

Therefore G has to be cyclic.

In next theorem we determine all infinite soluble X-groups.

Theorem 3.6. Let G be an infinite soluble group. Then G is an X-group if and370

only if one of the following holds:

(i) G is cyclic;

(ii) G ∼= Zp∞ for some prime p;

(iii) G is dihedral;

(iv) G = A〈y〉 where A ∼= Z2∞ and 〈y〉 has order 2 or 4, with y2 ∈ A and375

ay = a−1, for all a ∈ A;

(v) G ∼= AoD, where A ∼= Zp∞ and 1 6= D ≤ Cp−1 for some odd prime p.

Proof. First let G be an X-group. If G is abelian then (i) or (ii) holds by [1,

Theorem 2.2]. Assume G is non-abelian, and let A be the Fitting subgroup of

G. Then A 6= 1 and CG(A) ≤ A as G is soluble. Let N be a nilpotent normal380

subgroup of G. Then N is finite, as, otherwise, using N is self-centralizing and

G/Z(N) is a subgroup of Aut(N), we obtain G is finite, which is a contradiction.

Thus [1, Theorems 2.3 and 2.5] imply that N is abelian. In particular, as the

product of any two normal nilpotent subgroups of G is again a normal nilpotent

subgroup by Fitting’s Theorem, we see that the generators of A = F (G) commute.385

Hence A is abelian. As A is infinite and abelian, A = CG(A) is either infinite

cyclic or isomorphic to Zp∞ for some prime p. In the former case clearly G′ ≤ A.
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In the latter case, let C be any proper subgroup of A. Thus C is finite cyclic.

Moreover C is characteristic in A, so it is normal in G, and G/CG(C) is abelian

since it is isomorphic to a subgroup of Aut(C). It follows that G′ ≤ CG(C), and390

again G′ ≤ CG(A) = A. Therefore G/A is abelian.

If A is infinite cyclic, then the argument in the proof of Theorem 3.1 of [1]

shows that G is dihedral. Thus (iii) holds.

Let A ∼= Zp∞ for some prime p, and suppose there exists an element x ∈ G

of infinite order. Then x ∈ G \ A, and so there exists an element y ∈ A such395

that [x, y] 6= 1. Then 〈y〉 is a finite normal subgroup of G, so conjugation by x

induces a non-trivial automorphism of 〈y〉. Since Aut(〈y〉) is finite, it follows

that there is an integer n such that [xn, y] = 1. Now y is a torsion element and

xn has infinite order and so 〈xn, y〉 is neither periodic nor torsion free and this

contradicts [1, Theorems 2.2]. Therefore G is periodic, and G/A is isomorphic400

to a periodic subgroup of automorphisms of Zp∞ .

It is well-known that Aut(Zp∞) is isomorphic to the multiplicative group of

all p-adic units. It follows that periodic automorphisms of Zp∞ form a cyclic

group having order 2 if p = 2, and order p− 1 if p is odd (see, for instance, [11]

for details). In the latter case (v) holds. Finally, let p = 2. Then G/A = 〈yA〉405

has order 2, and G = A〈y〉 with y /∈ A and y2 ∈ A. Moreover ay = a−1, for all

a ∈ A. If y has order 2 then G = A o 〈y〉. Otherwise from y2 ∈ A it follows

y2 = (y2)y = y−2, so y has order 4. Therefore G has the structure described in

(iv).

On the other hand, Lemmas 3.1 – 3.3 show that the groups listed in (i) – (v)410

are X-groups.

Finally, we determine all infinite locally finite X-groups.

Theorem 3.7. Let G be an infinite locally finite group. Then G is an X-group

if and only if one of the following holds:

(i) G ∼= Zp∞ for some prime p;415

(ii) G = A〈y〉 where A ∼= Z2∞ and 〈y〉 has order 2 or 4, with y2 ∈ A and

ay = a−1, for all a ∈ A;
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(iii) G ∼= AoD, where A ∼= Zp∞ and 1 6= D ≤ Cp−1 for some odd prime p.

Proof. Any abelian subgroup of G is either finite or isomorphic to Zp∞ for some

prime p, so it satisfies the minimal condition on subgroups. Thus G is a Černikov420

group by a result due to Šunkov (see, for instance [10, page 436, I]). Hence there

exists an abelian normal subgroup A of G such that A ∼= Zp∞ for some prime

p, and G/A is finite. It follows that G is metabelian, arguing as in the proof of

Theorem 3.6. Therefore the result follows from Theorem 3.6.

Corollary 3.8. Let G be an infinite locally nilpotent group. Then G is an425

X-group if and only if one of the following holds:

(i) G is cyclic;

(ii) G ∼= Zp∞ for some prime p;

(iii) G = A〈y〉 where A ∼= Z2∞ and 〈y〉 has order 2 or 4, with y2 ∈ A and

ay = a−1, for all a ∈ A.430

Proof. Suppose G is not abelian. Every finitely generated subgroup of G is

nilpotent, so it is either abelian or finite. It easily follows that all torsion-free

elements of G are central. Thus G is periodic (see [12, Proposition 1]). Therefore

G is direct product of p-groups (see, for instance, [10, Proposition 12.1.1]).

Actually only one prime can occur since G is an X-group, so G is a locally finite435

p-group. Thus the result follows by Theorem 3.7.
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