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Abstract | Remarkable technological advances uncover ever more properties and behaviors of individual microor-12 

ganisms, but the novel data generated are not yet fully exploited. We explain how individual-based models 13 

(IBMs), built on the findings of such techniques, help explore competitive and cooperative interactions hidden in 14 

the data. Insights into self-organized spatial patterns from biofilms to the ǁorld͛s oceans, into phage-CRISPR dy-15 

namics, and into other emergent phenomena, are rewards already gained through this approach. Thus, combin-16 

ing individual-based observations with individual-based modeling can advance our understanding on both the 17 

individual and population levels, leading to the new approach of microbial individual-based ecology (µIBE). We 18 

argue that the wider deployment of µIBE has the potential to generate mechanistic understanding and models of 19 

unprecedented predictive power.  20 
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Recent technological advances
1–12

, e.g., in microscopy, flow cytometry, microfluidics, spectroscopy, isotope and 21 

molecular probes, have brought us much closer to the holy grail of microbial ecology: observing and understand-22 

ing who does what, when, where, and next to whom. We need no longer envy plant and animal ecologists who 23 

have studied individual organisms for over a century. In fact, we are in a better situation now as it is much easier 24 

to manipulate the environment of microbes in the laboratory and mix species together into synthetic communi-25 

ties of defined composition. What is more, the rich data from these technologies facilitate a mechanistic descrip-26 

tion of the behaviour of microbial individuals not yet feasible for larger organisms.    27 

Complementing the experimental approach with mathematical modelling has, in all areas of science, pro-28 

vided valuable insights that would be difficult to obtain through experimentation alone
13

. A model consolidates 29 

our knowledge of the system gathered from a variety of experiments, tests the consequences of our assumptions, 30 

and exposes gaps and inconsistencies in our knowledge and understanding. Once validated, a mathematical mod-31 

el can be used to make predictions; for example, of system dynamics under conditions not yet investigated in the 32 

laboratory or field, or of system properties that may be difficult to observe directly. 33 

Traditionally, models of microbial systems have been constructed at the population level (FIG. 1). Popula-34 

tion-leǀel ŵodels ;PLMsͿ are tǇpiĐallǇ ͞strategiĐ ŵodels ŵade to ďe as siŵple as possiďle to reǀeal general expla-35 

ŶatioŶs͟14
, and have proven to be of immense value, both in microbial ecology and ecology in general. PLMs are 36 

good choices when the goal is to find general principles that apply across a broad range of organisms, such as the 37 

tendency of predator-prey systems to generate oscillatory population dynamics; or as a first step to studying a 38 

particular, complex system in detail. For an environment that is assumed to be spatially homogenous, PLMs can 39 

be formulated in terms of difference equations if time is treated as being discrete or in terms of ordinary differen-40 

tial equations (ODEs) if time is treated as being continuous (FIG. 1). When considering spatially structured envi-41 

ronments, it is traditional to model the time-evolution of population densities (biomass per unit space) using par-42 

tial differential equations (PDEs) (FIG. 1). For an executive summary of different modelling approaches see Sup-43 

plementary Information S1 (text). 44 

Spatially explicit PLMs that simulate the temporal evolution of density distributions, e.g., in biofilms
15

, are 45 

a valuable resource. However, they make several assumptions that are increasingly at odds with our growing 46 

knowledge of microbial systems. Firstly, PLMs ignore the ever more apparent phenotypic heterogeneity between 47 

individuals within a population, and the role these differences play in determining system level properties (e.g., 48 

population growth rates). At the same time, they can make little direct use of the information contained within 49 

data describing the state and behaviour of individual microbes. Secondly, PLMs do not resolve the broad range of 50 

interactions between individual organisms and their local biotic or abiotic environment. Thirdly, PLMs do not re-51 

solve adaptive processes at the level of individuals. Thus, while PLMs can simulate the dynamics of a system (e.g., 52 

changes in the spatial distribution of a microbial population), it is impossible to trace such changes back to the 53 

behaviour of individual organisms.  54 

An alternative to PLMs are individual-based models (IBMs) (FIG. 1), which can potentially overcome all of 55 

these limitations
16,17

. The defining characteristic of IBMs is that they model the properties, activities and interac-56 

tions of each individual within a population
14,18–20

.   Properties may include the biomass, size or physiological state 57 
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of the individual; activities may include the uptake of substrates from the environment, or the synthesis of new 58 

biomass; and interactions may include competitive, synergistic or parasitic interactions between individuals with-59 

in a population or community
21–24

. Such processes may be described as continuous and equation-based (e.g., 60 

growth) or discrete and rule-based (e.g., division).   In IBMs, the collective action of each individual determines 61 

population or community level properties. Feedbacks between the behaviour of individuals and the population as 62 

a whole emerge automatically; as does fitness, since it depends on what other individuals do, and how this 63 

changes the environment.   Furthermore, IBMs can make direct use of single-cell data during their construction, 64 

and of both individual and population level data during validation.   An IBM therefore mimics the natural system it 65 

models (FIG. 1). However, care must be taken to avoid the model becoming too complex to be useful. Precisely 66 

because various approaches have their advantages and disadvantages (for a deeper discussion see REF 
14

), it is 67 

particularly beneficial to use them in conjunction
25–27

 (FIG. 1). For example, by comparing ODEs to PDEs of the 68 

same system, the effects of local interactions in a spatially structured environment can be revealed. Likewise, 69 

comparing PDEs to IBMs reveals the effects of individuality and adaptive behaviour.  70 

In parallel to the technological advances for single-cell observations mentioned at the outset, the tech-71 

nology for developing, running and analysing individual-based models has also progressed significantly, making it 72 

easier for scientists to use IBMs to help decipher and understand patterns within experimental data
25

.   For most 73 

potential users, generic open-source platforms for individual-based modelling will be the best choice. A generic 74 

platform is a software tool that allows the user to create models of a range of systems. This is done by selecting 75 

the physical processes (e.g., diffusion, convection and mechanical interactions) together with the environment 76 

(e.g., liquid culture, agar plate, biofilm flow cell or gut) and the set of species and their biological processes (e.g., 77 

growth, cell-cell communication or motility). Being able to select from a range of processes, one can readily iden-78 

tify those processes that affect the behaviour under investigation. Current platforms are approaching this goal, 79 

and their further community-based development is the most effective way to implement an ever-wider range of 80 

processes.   However, specific applications may be better served by software that is more specialized. For recom-81 

mendations of software, see Supplementary Information S2 (box) and S3 (table). 82 

In this Opinion article, we argue that individual-based models complement individual-based observations 83 

perfectly. Joining these new developments into the approach of microbial individual-based ecology (µIBE) will 84 

become central for advancing the microbial sciences, as it makes the data from these new technologies available 85 

for modelling.  Here we discuss several examples in which individual-based modelling has advanced our under-86 

standing of interactions between microbes and their environment, e.g., the emergence of spatial structure and 87 

feedbacks between individual and population behaviour. These advances would not have been possible without 88 

IBMs, due to the complexity of the systems.   While such insight is rightly valued, the ability of IBMs to make pre-89 

dictions deserves similar status: it is essential for rational engineering and management of microbial ecosystems 90 

and proper testing of our models. Physicists and engineers for example have long used models to make predic-91 

tions, nicely illustrated by the prediction and later experimental verification of the existence of the Higgs boson.   92 

Based on this discussion, we propose that µIBE has the potential to revolutionize the microbial sciences. 93 

  94 
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Characteristics of individual-based modelling 95 

The IBM approach has advantages over PLMs when simulating (i) individual heterogeneity (ii), local interactions 96 

and (iii) adaptive behaviour
14,18–20

 (BOX 1), features increasingly recognized as important in microbial ecology.   97 

Mounting evidence from flow cytometry
28

 and single cell observations
1,5,6,29,30

 demonstrates the existence of indi-98 

vidual heterogeneity, even in clonal laboratory cultures
12,31–33

.   Local interactions are important because most 99 

ecosystems are spatially structured and individuals only interact with neighbours. For example, even in well-100 

mixed marine or fresh water environments, mixing at the microbial scale is limited enough for hot spots of nutri-101 

ents excreted by phytoplankton to persist long enough to attract and nourish chemotactic bacteria
34,35

.   Adaptive 102 

behaviour is prevalent in microbes since practically everything they do is in response to their environment, e.g., 103 

their genomes typically contain between 50 and 200 genes for two-component systems for sensing and respond-104 

ing to conditions
36

. While rarely considered by modellers, adaptive behaviour is common in nature, of great fit-105 

ness benefit, and easy to implement in IBMs
14,18–20

. IBMs are flexible, enabling behaviour to be specified in a vari-106 

ety of ways. In the simplest cases, rules like ͞if oǆǇgeŶ ĐoŶĐeŶtratioŶ ďeloǁ threshold, sǁitĐh froŵ aeroďiĐ to 107 

aŶaeroďiĐ ŵetaďolisŵ͟ can be implemented; such rules can be made stochastic. Kinetic equations with some 108 

oxygen inhibition term for the rates of aerobic and anaerobic metabolism would lead to a smoother transition. 109 

Incorporating a gene regulatory network submodel for oxygen sensing would replace the phenomenological with 110 

a mechanistic description, see FIG. 1.   Individual differences, local interactions, and adaptive behaviour may in-111 

teract in ways that are difficult to foresee without using an IBM to include and exclude these effects systematical-112 

ly (BOX 1). 113 

 114 

Microbial individuality and its consequences.   Phenotypic differences between individuals have consequences 115 

for both the population and the ecosystem. Many factors contribute to phenotypic heterogeneity; these include 116 

stochastic gene expression
31

, stochastic metabolism and growth
37

, epigenetically-regulated modifications such as 117 

phase variation
31

, phase in the cell cycle or biological clock
31

, asymmetric cell division
38

, and differences in the 118 

environment or stochastic sensing of the environment
39

. Finally yet importantly, the interactions between the 119 

above factors in a particular chronological order can affect the current state of an individual; this is simulated in 120 

an IBM tracking changes of the local environment and cellular state. For example, some cells may have chanced 121 

upon a nutrient-rich patch in the past and therefore downregulated their high-affinity transporters, later making 122 

them less acclimated to nutrient-poor environments.  123 

An important and surprising consequence of individual variation is that population averages can be mis-124 

leading if the functional relationship between an explanatory variable, e.g., substrate concentration, and a re-125 

sponse variable, e.g., specific growth rate, is non-linear. Non-linearities are prevalent in biology, e.g. they are 126 

found in Monod kinetics, Droop kinetics and most other observed relationships betǁeeŶ ͚dose͛ aŶd ͚respoŶse͛. 127 

Thus, awareness of the averaging fallacy is important
17

. FIG. 2a shows an example of Droop kinetics, here the non-128 

linear increase of specific growth rate of the marine cyanobacterium Synechococcus WH8103 with its intracellular 129 

phosphorus content; this is typical for phototrophic microbes
40

. As can be seen from the figure, the growth rate 130 

that a population of cells with average P content would have is higher than the average growth rate of individual 131 
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cells with their various P contents. An IBM sums the population growth rate from the growth rates of all individu-132 

als, calculated from their measured P content. Hence, IBMs are able to predict the effects of individual variation, 133 

local conditions, and adaptive behaviour on the population and ecosystem level, as well as any feedbacks the 134 

changes in the ecosystem may have on individuals, taking care of any non-liŶearities iŶ orgaŶisŵs͛ respoŶses to 135 

the environment.  136 

IBMs are also ideal for incorporating rare events, like mutations or phenotypic switches, since they sud-137 

denly change the behaviour of one particular individual (BOX 1). For example, Pseudomonas aeruginosa cells in 138 

laboratory flow-Đell ďiofilŵs forŵ ͚ŵushrooŵ͛ struĐtures under specific conditions because a subpopulation of 139 

immotile cells forms ŵushrooŵ ͚stalks͛ through growth and division, while the ŵotile suďpopulatioŶ forŵs ͚Đaps͛ 140 

on top of these stalks
41,42

. These subpopulations are reminiscent of castes in social insects. Contrary to expecta-141 

tions , an IBM based on these experimental observations showed that surface-bound twitching motility cannot 142 

explain the formation of mushroom caps
43

; it was later shown experimentally that cap formation requires flagella-143 

driven swarming and chemotaxis
44

.    144 

Much of the large phenotypic heterogeneity observed in nature is likely due to environmental differ-145 

ences: the expression of most genes in Escherichia coli does not show any bursts
45

, selection tends to minimize 146 

noise in gene expression for most functions
46,47

, and individual cells in a microfluidic device maintaining a strictly 147 

constant environment showed reduced variation of specific growth rates
30

. Nevertheless, non-heritable pheno-148 

typic differences that are intrinsically generated, and therefore independent of environmental conditions, are 149 

important as the basis for bet-hedging and division-of-labour strategies
32,48,49

. A division-of-labour example is the 150 

segregation of the population into motile and immotile cells discussed earlier.   A typical example of bet-hedging 151 

strategies is the differentiation of some cells into non-growing resting stages. Less fit under benign conditions, 152 

these have increased chances of survival under stress. For example, some cells of the filamentous cyanobacterium 153 

Anabaena flos-aquae differentiate into akinetes, which sink to the sediment bed to germinate and re-emerge 154 

under favourable conditions. It is clear that these dormant cells help the population survive adverse conditions, 155 

but is this trait required to survive annual challenges or more irregular and extreme events? Using an IBM, a het-156 

erogeneous population of cells was simulated in a reservoir model that also tracked environmental conditions 157 

(light, temperature, nutrients)
50

. When the akinete differentiation trait was ͞kŶoĐked out͟ in the model, the 158 

knockout population did not survive the first winter. As an unexpected insight from the simulations, akinetes pro-159 

vided an additional benefit by taking up nutrients while in the sediment bed
50

. Although experiments with mu-160 

tants are straightforward in the laboratory, we cannot introduce genetically engineered mutants into the field for 161 

ethical reasons so will have to rely on modelling approaches.  162 

 163 

Predicting complex spatial patterns 164 

Predicting unobserved gradients:   FIG. 2b shows that PDEs or IBMs can predict the hard-to-measure concentra-165 

tion gradients of substrates forming in biofilms. Such a prediction requires three ingredients: (i) spatial distribu-166 

tion of biomass (for PDEs) or cells (for IBMs) acquired from a confocal image of the biofilm, (ii) laws of diffusion, 167 

and (iii) measured substrate uptake kinetics of the cells. Wherever possible, these predictions should be validated 168 
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with microelectrodes; see the example of nitrifying granules below. Such validated models can then be used to 169 

visualize the unobserved concentration gradients throughout the imaged region and in other, comparable envi-170 

ronments where it is unfeasible to take direct measurements. 171 

 172 

Predicting complex spatial patterns.   A microbe, whether growing in a well-mixed liquid or a spatially structured 173 

biofilm, has the same genome and therefore the same potential to sense and react to the environment. Indeed, 174 

microbes respond to nutrient-poor conditions within biofilms in much the same way as they would to similar con-175 

ditions in a chemostat
51,52

 or stationary-phase batch culture
53,54

. It should therefore be possible to predict the 176 

behaviour of a microbe anywhere if we fully understand how it influences, and is influenced by, its environment
55

. 177 

FIG. 2c explains the approach of using a chemostat to measure the dependence of population growth rate on 178 

substrate concentration. PDEs or IBMs including such growth kinetics can then calculate the consumption and 179 

diffusion of substrate in order to predict the resulting substrate concentration and growth rate gradients in a bio-180 

film. This then tracks how, over time, the changing growth rates of the cells give rise to the emerging spatial struc-181 

ture of the biofilm. This approach has been surprisingly successful given the simplifications involved; see the ex-182 

ample of nitrifying granules below. However, if such predictions fail, we can conclude that the simplifications are 183 

inappropriate or that other factors may play a role, e.g., individual variation in kinetics of growing cells
33

, the 184 

presence of persisters
56,57

 or changes in gene expression upon attachment
58,59

 that affect growth kinetics
60

 or 185 

induce virulence
59

. Refining the model by including such effects may than better match experimental results. Such 186 

refinements would be straightforward to implement in IBMs but difficult to include in PDEs.   187 

An example where feedbacks between substrate concentration gradients, growth rates and biofilm struc-188 

ture can lead to spontaneous formation of clusters from initially small stochastic perturbations is shown in Fig. 2d. 189 

Once spontaneously arisen, clusters of slowly growing cells that utilize resources more economically grow faster 190 

than clusters of cells that grow faster at any given substrate concentration
61

. This counterintuitive result is due to 191 

the locally higher substrate concentration in the clusters of economical cells. Thus, complex spatial patterns can 192 

emerge from stochastic positioning of cells.  193 

 194 

Predicting interactions in mixed cultures.   Microbial species are often studied in isolation, yet in their natural 195 

environment they interact with many other species in a variety of ways; most interactions are indirect, mediated 196 

by diffusible compounds such as metabolites, autoinducers or toxins. Using modelling to predict interactions is 197 

extremely useful, as the number of potential interactions increases exponentially with the number of species in a 198 

habitat, e.g., at 5 or 6 species there are already 31 or 63 potential interactions
17

, making it difficult to study all 199 

possible interactions experimentally.    200 

In mixed species biofilms, additional mechanisms and phenomena of pattern formation come into play.   201 

Strains of Saccharomyces cerevisiae can be engineered to depend on each other for growth by producing a me-202 

tabolite that the other requires
62

. Engineering another strain requiring one metabolite without reciprocating adds 203 

a cheater to the cooperating pair of obligate cross-feeding strains.   When randomly placed cells start to grow into 204 

colonies, mutually cross-feeding colonies that happen to be close by will grow well towards each other, forming 205 
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large areas of contact. In contrast, the cheater strain becomes squeezed out, as it does not facilitate the growth 206 

of the strain that it depends on (FIG. 3a)
62

. The general insight from this and other IBMs is that spatial patterns in 207 

microbial communities are to some extent self-organized as they emerge from different types of metabolic inter-208 

actions: cooperation consisting in restraint from competition
61

, cross-feeding
63,64

, interspecies hydrogen trans-209 

fer
65,66

 and the combination of particular trophic interactions with motility of cells on hydrated rough surfaces
67

.  210 

The most rigorous demonstration to date of the ability of IBMs to predict solute gradients and spatial distribu-211 

tions of interacting metabolic/functional groups from kinetics measured in batch and chemostat cultures has 212 

been carried out for nitrifying biofilms
68

 and granules
69

. These are assemblages of a few types of autotrophic am-213 

monia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), plus a few types of heterotrophic denitrifiers, 214 

forming a food-web that is utilized in wastewater treatment to convert ammonia to dinitrogen. Matsumoto and 215 

colleagues
69

 combined microelectrodes to measure O2, NH4
+
, NO2

-
 and NO3

-
 profiles and confocal microscopy to 216 

determine the distribution of functional groups through these nitrifying granules (FIG. 3b). Considering that the 217 

model was not fitted to the data makes the match of microelectrode-measured with IBM-calculated profiles sur-218 

prisingly close; the match of observed biomass distributions with predictions was quite good, especially for the 219 

better-known autotrophic groups (FIG. 3b). This provided insight into the self-organization of radial stratification 220 

in these granules: oxygen becomes depleted with depth and the aerobic AOB dominate the surface layer because 221 

theǇ are first iŶ the food ĐhaiŶ, ǁhile the also aeroďiĐ NOB reside uŶderŶeath as theǇ are depeŶdeŶt oŶ the AOB͛s 222 

activity and therefore less competitive for oxygen. Reliable predictions are also of great value, as they can be used 223 

by engineers to estimate and optimize whole reactor performance.  224 

 225 

Predicting evolution 226 

IBMs, being based on specifying traits of individuals, can easily incorporate heritable mutations of these traits. 227 

Combined with simulating birth, death and competition, natural selection of the mutants is simply an emergent 228 

process in IBMs. FIG. 4a shows such an example where the phenotypic traits are digitally encoded, so a change in 229 

the digital genome is mapped to a change in phenotype, e.g., a change in the rate of a particular pathway
70

. In 230 

spatially structured environments, migration of the evolving microbes can generate spatial patterns and feed-231 

backs between the emerging spatial structure and natural selection can arise (FIG. 4a). This technique has been 232 

applied to studies of cyanobacteria dynamics in the ocean
71

 where a complex set of interacting biotic and abiotic 233 

forces shape the physiology, ecology, and evolutionary dynamics of these microorganisms.   In this work, an evo-234 

lutionary IBM was coupled to a hydrodynamic model that resolves vertical gradients in light intensity, tempera-235 

ture, and the amount of dissolved inorganic and organic nutrients, and how these change in time, e.g., due to 236 

changes in surface wind speeds, irradiance, or the uptake of nutrients by the cyanobacteria. The model predicted 237 

spatial and temporal trends in the physiology, size and abundance of Synechococcus and Prochlorococcus eco-238 

types. During the summer months when the water column is well stratified, small, high-light adapted cyanobacte-239 

ria dominated in well-lit but nutrient-starved surface waters, and larger, low-light adapted cells dominated at 240 

depth (Fig. 4b). These predicted trends were then found to be consistent with observations at the seasonally 241 

stratified Bermuda Atlantic Time Series site in the North Atlantic Ocean
71

. The IBM helped to identify a three-way 242 
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trade-off between cyanobacteria cell size, light/nutrient affinity, and growth rate that can explain the observed 243 

trends.   In the IBM, these different strategies emerged as a result of natural selection – i.e., they were not im-244 

posed. Thus, the extent of microbial diversity within an evolutionary IBM is an emergent property. Further, IBMs 245 

can readily simulate both acclimation strategies and adaptive processes, or resolve variations experienced over 246 

single division cycles, e.g., in light received by a cell as it is mixed up and down the water column.  247 

Another IBM was used to test the hypothesis that dispersal limitation of ocean bacteria is sufficient for 248 

the formation of biogeographical patterns
72

. This IBM simulated ~100,000 individuals within a global ocean circu-249 

lation model. The cells grew and divided and their 1 Mbp genomes were subject to neutral evolution, i.e., the 250 

mutations were assumed to have no fitness effect. The model showed that biogeographic provinces dominated 251 

by different species could be produced from ocean currents and dispersal limitation alone, without any environ-252 

mental selection
72

 (FIG. 4c). IBMs can simulate discrete individuals with their own genome sequence and account 253 

for dispersal limitation.  254 

IBMs are naturally also well suited to study co-evolution, and have been used to shed light on the co-255 

evolution of host immunity and phage. Given that immunity against phage infection should be of tremendous 256 

advantage in a world where bacteria are outnumbered by phages tenfold, it is surprising that less than half of the 257 

sequenced prokaryotic genomes from mesophiles contain an adaptive immunity system known as CRISPR (Clus-258 

tered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated genes)
73

. In contrast, almost all 259 

genomes of hyperthermophiles (mostly archaea) code for CRISPR-Cas
73

.   Koonin and coworkers developed an 260 

IBM that predicts loss of efficacy for CRISPR at larger population sizes, which are presumably not reached by hy-261 

perthermophiles in their environment, providing a plausible explanation for this puzzling observation
27

.   Their 262 

IBM enables host and phage co-evolution by including density dependent encounter of lytic phages and hosts, 263 

innate immunity independent of CRISPR (e.g., due to receptor mutation or restriction-modification systems), loss 264 

of entire CRISPR cassettes upon cell division and re-acquisition by HGT, loss and addition of single spacers, and 265 

mutation of viral proto-spacers (FIG. 4d)
27

.   Counterintuitively, CRISPR immunity is good for phages: the increased 266 

host population sustains an increased phage population and concomitant phage diversity (FIG. 4e). Above a phage 267 

diversity threshold, CRISPR becomes ineffective and is lost due to its fitness cost 
27

.    Importantly, this IBM only 268 

provided these insights because (i) all known key processes were included and (ii) population sizes were not fixed, 269 

as in previous models, but allowed to emerge through feedbacks between host and phage abundance, diversity 270 

and the co-evolving immunity.  271 

 272 

Beyond cell and population scales 273 

Microbial IBMs are multiscale models by nature, i.e., they link cell and population scales; this is rather useful in 274 

itself, but their multiscale nature can be further expanded to include lower and higher levels of organization. In-275 

cluding increasingly more intracellular states and behaviours leads to more mechanistic models of the behaviour 276 

of individual cells replacing the empirical descriptions traditionally used.   This has already been successful with 277 

IBMs incorporating signal transduction mechanisms in chemotaxis
74

 and quorum sensing
26

.   IBMs also advance 278 

the new field of synthetic biology because they allow simulation and optimization of how synthetic organisms 279 
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interact with each other and the environment before actually constructing them
26,75,76

 – the ultimate rational de-280 

sign.   Apart from providing stronger mechanistic foundations for individual behaviour and individuality, integra-281 

tion of intracellular mechanisms also enables exploitation of the rapidly growing metagenomic data. After recon-282 

structing genomes from shotgun metagenomics
77

 one can reconstruct whole-genome metabolic models from the 283 

stoichiometry of all enzyme reactions coded for by the genome. By assuming that the fluxes through reactions are 284 

constrained and optimized such that growth of the cell is maximal, one can predict metabolic fluxes and growth 285 

without having to know the kinetics of any enzymes
78,79

. Such constraint-based reconstruction and analysis (CO-286 

BRA) models have already been scaled up to the population level
33,80

. Likewise, incorporating COBRA models into 287 

IBMs (FIG. 1) has great potential for the future and has already been successful using a model based on a spatial 288 

grid, an approach similar to IBMs but with a coarser resolution
63

.    289 

In the other direction, microbial IBMs can be expanded to full-scale ecological or biogeochemical systems, 290 

which we have already illustrated with examples (FIG. 4a-c). This will improve the predictive power of ecosystem 291 

models.   Moreover, subcellular dynamics could be included in full-scale ecological IBMs, which will facilitate the 292 

use of omics data sets that measure the composition, acclimation state, activity or genetic make-up of individuals 293 

and thus help to bridge the growing gap between omics data and biogeochemical models
81

.  294 

 295 

Conclusions and future directions 296 

Physicists and engineers have long used models to predict dynamics or optimize processes but, since life is far 297 

more complex, it has taken considerably longer for models to advance to a stage where they can deal with com-298 

plex biological systems in a realistic way.   For this reason, the tradition in most areas of biology has been to view 299 

mathematical modelling as too unrealistic to be useful.   This, however, has started to change as experimentalists 300 

realize that the data being generated have become too complex to handle without models. We have explained 301 

how individual-based modelling allows researchers to integrate diverse types of information gathered from stud-302 

ies of molecular mechanisms, single cell observations, community dynamics and spatial patterns, thereby making 303 

best use of small and big data.    304 

The key general insight from IBMs is that population dynamics and structure emerge from the interac-305 

tions of individuals with each other and the environment. This extends to the community and ecosystem level. 306 

Biofilm spatial structure and other self-organized patterns are a prime example of emergence and because of this, 307 

complex macroscopic patterns can be predicted from simple microscopic mechanisms. In evolutionary IBMs, di-308 

versity and spatial distribution of species can emerge; the inclusive fitness of individuals is also emergent.   Since 309 

IBMs link cell and population scales they demonstrate how individual heterogeneity affects population and eco-310 

system function or how new phenomena can arise at the population level, e.g., in populations of signal transduc-311 

ing cells or hosts co-evolving with phages. Moreover, linking individual and population scales can identify mecha-312 

nisms that can or cannot explain observed population behaviour.   These insights could not have been obtained 313 

with classical PLMs as they do not account for individual heterogeneity, local interactions, or adaptive behaviour. 314 

Since IBMs do, they can advance our understanding and ability to predict microbial systems beyond what can be 315 

achieved without them.   PLMs are also important tools, and are useful when studying general principles in simple 316 
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systems and for comparing with IBMs, and ideally a variety of modelling approaches, briefly summarized in Sup-317 

plementary Information S1 (text), should be used in conjunction. 318 

The key shortcoming of IBMs is the tendency to become too complex and difficult to analyse mathemati-319 

cally. Overly complex models are difficult to understand and communicate, but standardizing the description of 320 

IBMs has helped (Box 1). Still, more efforts to standardize IBM descriptions would be just as beneficial as they 321 

were for systems biology. If models are too complex to understand, we no longer gain insight, although the pre-322 

dictive power of such models can still be valuable. On the other hand, overly simple models cannot generate the 323 

variety of dynamics and patterns the real systems are capable of under different conditions and therefore lack 324 

relevance for natural systems, yet they are useful to distil principles. Due to these trade-offs, intermediate model 325 

complexity is optimal
19

; exactly where the optimum is depends on the purpose of the model and on the data 326 

available. 327 

Bridging several levels of organization and time scales from molecular dynamics to evolution, multiscale 328 

IBMs have the potential to become generic mechanistic models able to predict dynamics in novel conditions or 329 

changing environments.   Ultimately, sufficient understanding of a system can only be demonstrated when one 330 

can write a complete and consistent description of the biology in the formal language of a computer program, 331 

which when executed recreates observed system behaviour and generates correct predictions from correct 332 

mechanisms.   What is required for this revolution in microbial sciences to succeed is the tight integration of ex-333 

perimental and computational research. Community development of computational tools for IBM that enable 334 

biologists to explain their system to the computer in their own, biological language will facilitate this. Communica-335 

tion between experimentalists and modellers will be crucial, requiring mutual education and building a communi-336 

ty around the goal of microbial Individual-Based Ecology (µIBE). 337 
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Display items 350 

 351 

Box 1 | Summary of characteristics, benefits, good practice and pitfalls of individual-based modelling 352 

Characteristics of mathematical models generally. The purpose of a model is to simplify reality. Since ͞a ŵathe-353 

matical model is a logical machine for converting assuŵptioŶs iŶto ĐoŶĐlusioŶs͟13
, it enforces complete and un-354 

ambiguous specification of assumptions, which is essential for rigorous testing of hypotheses. An example of a 355 

typical simplifying assumption in IBMs is that cells divide instantaneously when they reach a threshold volume; 356 

for studying e.g., lag phase a more mechanistic cell division model would be more appropriate
82

 357 

When to use IBMs specifically. IBMs are particularly useful when (i) individual heterogeneity, (ii) local interac-358 

tions, or (iii) adaptive behaviour are potentially important. Nonlinear feedback loops between the variable activi-359 

ties of individuals and environmental resources often make IBMs more appropriate than models using population 360 

averages. These models are also useful in situations where sudden, discrete events occur in the lifecycle of the 361 

microorganism (e.g., attachment to a surface) or when rare phenotypic variants (e.g., bet hedging) or mutants 362 

(e.g., evolutionary IBMs) arise. 363 

Benefits of IBMs. IBMs act as a bridge between individual and population/community level behaviour, allowing 364 

the consistency of assumed individual behaviour and population data to be assessed. IBMs of microbial systems 365 

(e.g., biofilms) excel at reconstructing/predicting (i) solute concentration gradients, (ii) effects of spatial structure, 366 

(iii) behaviour in more complex environments, and (iv) emergent interactions in complex communities. 367 

Good modelling practice in IBMs. AdoptiŶg the ͚ODD͛ ;Oǀerǀieǁ, DesigŶ ĐoŶĐepts, aŶd DetailsͿ protoĐol as 368 

standard for systematic, complete description of IBMs has already facilitated comparison and peer review of 369 

IBMs
83

. ODD is similar in purpose to MIRIAM
84

 (Minimum Information Requested In the Annotation of biochemi-370 

cal Models). Better-developed standards for model exchange and description have been highly beneficial for sys-371 

tems biology. For example, the Systems Biology Ontology (SBO
85

) provides an unambiguous vocabulary for model 372 

description and the Systems Biology Markup Language (SBML
86

) enables the exchange of completely and une-373 

quivocally specified models.  374 

The most successful models are structurally realistic, i.e., the entities and processes in the model correspond to 375 

those in the real world (e.g., a chemotaxis model where cells carry out runs and tumbles and responding to 376 

changes in attractant concentration
74

 rather than cells taking the steepest ascent towards the concentration 377 

peak).   Demonstrate robustness of model predictions: parameter sensitivity analysis to identify important pa-378 

rameters (e.g., an IBM of plasmid transfer evaluating how strongly the rate of plasmid transfer changes when 379 

pilus reach, lag times between transfers, and other conjugation parameters are varied
87

);   structural sensitivity 380 

analysis to identify important processes (e.g., an IBM of aging systematically including/excluding processes such 381 

as segregation, repair and/or toxicity of damage and growth of the cells to test whether they interact and/or 382 

change simulation results qualitatively or quantitatively
23

). 383 

Potential pitfalls of IBMs. Avoid using global environmental or population states in deciding the activities of an 384 

individual, since no individual has global knowledge (e.g., assuming that growth of cells depends on population 385 

density as in logistic growth
88

). Ignoring processes that are in fact important. Probably the most common mistake 386 
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is that of imposing behaviour of individuals that one wishes to study as emergent (e.g., using a biofilm model to 387 

predict biofilm structure formation but assuming that cells inside the biofilm cannot divide which will affect the 388 

structure
89

).  389 

 390 

Figure 1 | Simplified overview of approaches useful for modelling communities and/or single cells.   ODEs and 391 

PDEs describe rates of change of populations (X) and/or resources (R) directly, i.e. the level of individuals is ab-392 

sent. Comparing the non-spatial ODEs with the spatially explicit PDEs illuminates the effect of spatial structure.   393 

IBMs describe activities of individuals. Changes on the population level are not directly described because they 394 

emerge from individual behaviour. Hence, IBMs can make use of data on both levels: individual-level data as input 395 

and population-level data to compare with simulation output. Comparing PDEs with IBMs elucidates the effect of 396 

individuality and adaptive behaviour. Combining all three approaches is therefore best practice. Most IBMs to 397 

date include only simple kinetic models of growth and rules for cell division, but since IBMs treat individuals as 398 

discrete agents, they enable incorporation of intracellular dynamics as modelled in systems biology – bridging the 399 

scales from intracellular reactions to ecosystem function. Only two major types of models for intracellular dynam-400 

ics are shown: dynamic kinetic models use full kinetic equations only known for a select number of enzyme reac-401 

tions while flux balance models only need the stoichiometry of the reactions and constraints, which enables a 402 

genome-wide prediction of metabolic fluxes in steady state
79

. Image of mouse gut mucosa courtesy of Kristen 403 

Earle of JustiŶ “oŶŶeŶďurg͛s laď. DǇŶaŵiĐ kiŶetiĐ ŵodel ŵodified ǁith perŵissioŶ froŵ ‘EF. 90
. 404 

 405 

Figure 2 | Using IBMs to predict population dynamics, substrate and growth rate gradients and the effect of 406 

spatial structure.   a | Observed cellular phosphate content (quota q) in the marine cyanobacterium Synechococ-407 

cus WH8103 and photosynthesis rate (µ) calculated using the non-linear Droop kinetics shown as a black line
40

. 408 

Calculating the rate for each individual based on its quota (full circles) and averaging over individuals (red line: 409 

ave[µ(q)]) gives a lower population productivity than averaging the quotas and calculating the rate based on that 410 

average quota (blue line: µ(ave[q])).   b | Predicting unobserved concentration gradients. From a confocal biofilm 411 

image (courtesy of Søren Molin) we can estimate biomass distribution for PDE or cell positions for IBM and calcu-412 

late the concentration field based on growth kinetics and laws of diffusion. This may then be verified by microe-413 

lectrode transects where possible.   c | Growth kinetics parameterised from chemostat experiments can be used 414 

in PDEs or IBMs to predict biofilm structure, growth rate and concentration gradients. IBMs could include adapta-415 

tions in kinetics or heterogeneity in the population, e.g. persisters.   d | Predicting feedbacks between emerging 416 

biofilm structure and metabolic interactions. Once clusters of red cells that consume resources economically have 417 

formed by chance, they grow faster than clusters of the blue fast growing cells because their economy sustains 418 

locally higher substrate concentrations
61

.  419 

 420 

Figure 3 | Inter-species interactions lead to spatial patterns that may be predicted and explained using IBMs.   a 421 

| Members of a microbial community may be engineered to depend on one another for growth, referred to as 422 

synthetic obligate cross-feeding. A cheating strain that receives secreted nutrients but does not produce any is 423 
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excluded by spatial self-organisation of the co-operators; this is shown both experimentally, where strains are 424 

fluorescently tagged, and in an IBM of the system
62

. Images courtesy of Babak Momeni.   b | Verifying IBM predic-425 

tions for a nitrifying food-web in a lab scale aerobic upflow fluidized bed reactor with microelectrodes and mi-426 

croscopy. Based on standard literature parameters for nitrifiers rather than fitting the model to data, an IBM can 427 

predict the measured solute profiles and biomass distributions of the autotrophic AOB and NOB, and of EPS, quite 428 

well (simulated profiles were averaged over concentric layers). Predicted distributions of the less understood 429 

groups of heterotrophic bacteria (for this figure luŵped together as ͚Het͛) are roughly correct. Colour coding of 430 

solutes and biomass indicated next to the respective graphs. Modified with permission from REF. 
69

. 431 

 432 

Figure 4 | Combining ecology and evolution is facilitated by IBMs.   a | Many of the processes observed in real-433 

life microbial ecology and evolution can be mapped directly to those modelled in IBMs.   b | Emergent spatial and 434 

temporal patterns in cyanobacterial biomass and cell size distribution in an evolutionary IBM based upon a gener-435 

ic, cell-based model for cyanobacteria and coupled to a hydrodynamic model of vertical transport (modified with 436 

permission from REF. 
71

).   c | Biogeographical provinces emerge from the interaction of dispersal limitation and 437 

neutral evolution of genomes in a global surface ocean IBM. Colors demarcate regions where different OTUs 438 

dominate (reproduced with permission from REF. 
72

). d | The processes included in an IBM of phage-host co-439 

evolution where phages mutate and hosts have innate and adaptive immunity based on CRISPR-Cas. The host can 440 

acquire and lose single spacers and the entire cassette.   e | This IBM predicts that increased immune evasion by 441 

mutant phage will, counter-intuitively, reduce overall phage population size and diversity despite an increased 442 

number of phages per host cell as the host population declines (data from REF. 
27

)  443 
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FURTHER INFORMATION 617 

Software pages:  618 

CellModeller: www.cellmodeller.org  619 

CHASTE (Cancer, Heart And Soft Tissue Environment): www.cs.ox.ac.uk/chaste/  620 

CompuCell3D: www.compucell3d.org  621 

FLAME (Flexible Large-scale Agent Modelling Environment): www.flame.ac.uk  622 

iDynoMiCS (individual-based Dynamics of Microbial Communities Simulator): www.idynomics.org  623 

NetLogo: ccl.northwestern.edu/netlogo/  624 

Laboratory home pages: 625 

‘oďert J Clegg͛s aŶd Jan-UlriĐh Kreft͛s laď hoŵe page: 626 

http://www.biosciences-labs.bham.ac.uk/kreftlab/  627 

Ferdi L. Hellǁeger͛s hoŵe page: 628 

www.systemsbioecology.org 629 

http://www.cellmodeller.org/
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Primer of some modelling approaches used in microbial ecology 

Note that this characterisation of various approaches simplifies in order to emphasize what is typical; 

in fact, there is a range of complexities for each type of model. For example, IBMs do not need to have 

spatial structure and can be quite simple to reveal general principles, while PLMs can be applied to 

particular systems and then become quite complex. 

Population-level models (PLMs) directly describe the changes of the populations
1,2

. This can be 

achieved with differential equations if time is considered to be continuous or difference equations if 

time is considered to be discrete, e.g., if the population is stepped from generation to generation, or 

from year to year. PLMs are typically simple models that use a mass action approach for modelling 

interactions between different species. The mass action approach was adopted from kinetics of 

chemical reactions, where the probability of two molecules colliding and interacting is proportional to 

the concentration of each molecular species
3
. PLMs may consider the dynamics of resources explicitly, 

or assume a density dependence of growth rate such as logistic growth which implicitly considers 

resource depletion at higher population density
1,2

. The main advantages of PLMs are that they are 

relatively easy to describe and analyse, and they require less knowledge and data as they have fewer 

parameters. Their main purpose is to discover ͚general principles͛ or coŶcepts, as details are avoided. 

They have therefore been classified as ͚strategic͛, ͚deŵoŶstratioŶ͛ or ͚conceptual͛ models
4
. Due to 

their general nature, they are less suitable to predict specific populations in specific ecosystems as 

would be desired for ecosystem management
4,5

.  

PLMs are often based on ordinary differential equations (ODEs) or partial differential equations 

(PDEs); these are closely related, facilitating the exploration of corresponding ODE and PDE models
1,2

. 

ODEs assume homogenous space and are therefore appropriate for well-mixed systems such as 

chemostats or batch cultures. However, a non-uniform system may be represented reasonably well as 

consisting of different compartments. Then, a different set of ODEs for each compartment, and 

exchange between compartments, can approximate spatial structure. For example, a predator-prey 

model could have two types of habitat: one with food and predator, and one that is a refuge
1,2

.  

PDEs are mostly used for fully spatially explicit models
1,2

. The effects of spatial structure can be 

inferred from comparing corresponding ODEs and PDEs. These are both continuum models, where 

time, space and species densities are continuous, rather than discrete, variables. As a result, 

populations may become infinitesimally small without becoming extinct. The similar difference 

equations are discrete in time and either discrete in population size or continuous in population 

density. If they are discrete in population size, extinction occurs more readily. As a consequence of 

using discrete time, population responses have a built-in delay, i.e. poor weather in one year affects 

the population size only in the next year. This delay renders dynamics less stable
1,2

.  

Whilst PLMs usually neglect population heterogeneity, they can incorporate population structure in 

two ways
2
. One is to separate the population into multiple age classes or life-cycle stages and describe 

the rate of change for each class by a separate ODE, e.g., ͚graduatioŶ͛ froŵ oŶe age class to the Ŷeǆt 
would be based on the growth rate. Another is to use a PDE to represent the population structure, 

e.g., age or size structure, as a continuum
2
. Unavoidably, the more complex a PLM becomes, the more 

it loses its advantage over a corresponding IBM of being simpler and more tractable mathematically
4
. 
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Individual-based models (IBMs), in contrast to PLMs, do not describe changes on the population level 

at all: they only describe the activities and properties of individuals, how they change the 

environment, and how they respond to the environment
6–10

. Changes on the population level emerge 

automatically from all the interactions between individuals and the environment. Therefore, IBMs are 

classified as bottom-up models, describing the lower level to predict the higher level. For the same 

reason, PLMs are classified as top-down models.   While PLMs can be made more and more complex 

to include population and spatial structure, thereby coming closer to IBMs, they remain top-down, 

describing the changes on the population level, rather than directly describing individuals like IBMs. 

Because IBMs map individual behaviour to population dynamics, they can bridge these two scales and 

use data on both levels: observations of individual behaviour can be used as input into the model and 

observations of population dynamics can be compared with model output. Alternatively, individual 

behaviours can be inferred from comparing the kinds of population dynamics and patterns an 

assumed individual behaviour would produce with those dynamics and patterns observed, over a 

range of conditions. This has been called pattern-oriented modelling
11

. 

Individuals in IBMs are always discrete, but they may be either cells in a spatial grid (lattice) or 

particles in continuous space. In the first case, the IBM can also be called a cellular automaton (CA) 

where updating of lattice elements, diffusion of metabolites, cell division and movements are all 

specified by rules
12,13

. Individuals typically occupy a single grid element and can move to a 

neighbouring grid element only in certain directions (at angles that are multiples of 45° or 90°), which 

can lead to spatial artefacts
14

. A common rule for cell division is this: if a threshold mass is reached, 

divide into equal daughter cells. One daughter cell picks one of the free neighbouring cells at random, 

or if there are none free, pushes a random neighbouring cell away, which then moves according to the 

same rules
15–17

. To avoid artefacts, lattice elements should be updated in random order
18

.  

Modelling individuals as particles with real size in a continuous space facilitates physically correct 

modelling of mechanical interactions between cells; these may be collisions or pushing away of cells 

that have encroached on one another due to motility or expansion of cellular volumes
19–21

. Such 

models can also be called particle-based models, but note that IBMs are only that subset of particle-

based models where the particles may differ and have adaptive behaviour.   Whether based on CAs or 

particles, a useful feature of IBMs is that behaviour can be described using simple rules and "if 

statements" that are not easily captured with differential equations
6–10

. For example, cell division is 

commonly based on a cell size threshold
22

.  

Individuals in IBMs are autonomous agents that have their own state and carry out activities according 

to their state and in response to the environment. Hence, individual-based models are often called 

agent-based models. However, the term agent is more general as an agent does not have to be an 

individual. Agents can cover many scales, from molecular entities, cells, individual organisms, to social 

groups of organisms such as families, or larger social or economic organizations
10

.  

Since IBMs explicitly simulate individuals, they can simulate population heterogeneity in a 

straightforward manner. However, it should be noted that IBMs of systems with a very high number of 

individuals generally do not explicitly simulate all microbial cells, but representative ones called 

͞super-iŶdiǀiduals͟23,24
. So even in IBMs there may be some lumping. Therefore, in terms of 

population heterogeneity, there is no hard distinction between PLMs and IBMs: The resolution 

increases smoothly from PLMs to super-individual IBMs to true IBMs. However, the two approaches 

are still fundamentally different in that the PLM describes the behaviour of the population and that 

the IBM describes the behaviour of an individual
23,24

.    
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This difference between PLMs and IBMs can be illustrated with the example of microbial growth, 

which is fundamental for any modelling of population dynamics. Growth kinetics are non-linear, and 

this has important consequences.   In Droop kinetics, a commonly-used model for growth of 

phytoplankton, the specific growth rate depends on the cell͛s internal content of the limiting 

nutrient
25

. If internal nutrient contents vary between individuals, as observed in samples from the 

environment, the sum of the growth rates of all individuals will be different from the growth rate of a 

population with an average nutrient content
25

. This is an example of a well-known mathematical 

theorem, known as Jensen's Inequality, that the average of a non-linear response to some 

heterogeneous input is different from the response to the average input 
26

.  

In Monod kinetics, the standard model for growth of heterotrophic bacteria, the specific growth rate 

does not depend on the internal nutrient content of the individual, but on the substrate concentration 

in the environment
27

. Thus, it could be modelled with PLMs or IBMs, depending on the purpose of the 

model, e.g., whether other effects of individuality are to be considered or not.   IBMs would be more 

appropriate for the purpose of modelling growth if the Monod kinetic parameters (maximum specific 

growth rate and substrate affinity
27

) would differ between individuals. Such individual differences 

could be due to variation in expression of genes for uptake and metabolic enzymes between cells
28

. 

Variation in maximal specific growth rates have been observed
29,30

, most notably in populations with 

non-growing persister cells
31,32

, but variation in substrate affinity between different cells has, to our 

knowledge, not been investigated. This could be studied in microfluidic single-cell chemostats
33

. If 

individuals had different Monod kinetics, the kinetics of the population, which could be inferred with 

an IBM summing the rates of the individuals, would deviate from Monod kinetics. However, this would 

be difficult to observe in large populations, especially as individual growth rates fluctuate over time
34

 

and faster growing lineages would become more frequent in the population over time and so come to 

dominate the population kinetics. 

Models of intracellular dynamics, such as metabolism or gene regulation, can be integrated into IBMs, 

since IBMs have that flexibility of describing the activities of individuals by any means available to a 

programmer: from simple rules to complex, computationally expensive submodels. Focussing here on 

metabolism, there are two main ways in which metabolic fluxes can be predicted: dynamic kinetic 

models and steady state flux-balance models
35

. Ideally, one would like to be able to use a dynamic 

kinetic model and write down the kinetic equations for all enzymes in a cell and then simulate the 

resulting fluxes through the metabolic network, from which growth rates could be predicted. The 

advantage of such dynamic kinetic models is that they can simulate the effect of changes in 

metabolite or enzyme concentrations, or in regulation of enzyme activity.   However, this is not 

feasible for a genome-wide metabolic network, as the kinetics are only known for a limited number of 

enzymes from a limited number of species and often not under physiological conditions. Therefore, 

one usually either neglects large parts of the metabolic network or represents them as a 

stoichiometric model, and focusses instead on energy metabolism, where more is known
36

.  

For most species, even the kinetics of catabolic enzymes are not known sufficiently to use dynamic 

kinetic models or one wants to include less well studied enzymes. Then, genome-wide flux-balance 

models, also known as constraint-based models, can be used instead because they only require 

knowledge of the list of enzyme reactions coded for by the genome and the stoichiometries of these 

reactions
37,38

. However, the reaction rates can only be calculated when the equations are simplified by 

assuming that the system is in steady state, i.e., that the concentrations of the metabolites do not 

change with time. This is a reasonable assumption during exponential growth. Then, the distribution 

of fluxes (reaction rates) through the metabolic network that fulfil the stoichiometry can be 

calculated. To narrow down the space of possible solutions for these flux distributions, one uses 
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constraints, the more the better. For example, using experimentally measured fluxes, placing upper 

bounds on reaction rates, using thermodynamics, or using gene expression data to remove reactions 

catalysed by those enzymes that are not produced under given conditions. To obtain a unique solution 

for the flux distribution within the narrowed down solution space, one assumes that the flux 

distribution is optimal for the growth of the cell
37,38

. Commonly, the objective function for 

optimization is to maximize biomass production (growth yield), although the choice of objective 

function can be debated
39

. 
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Box S2 | Software for individual-based modelling in microbial ecology 

Overview of available platforms. The open-source platforms characterized here are fairly generic 

platforms we regard as particularly suited for microbial ecology: NetLogo
1,2

 and FLAME
3
 are the most 

generic, and often used for non-microbial IBMs. CellModeller
4,5

, CHASTE
6
 and CompuCell3D

7
 were 

designed for modelling tissues but can easily model biofilms as they are similar. CompuCell3D and 

iDynoMiCS
8
 require the least programming skills. See Supplementary Information S3 (table) for more 

details.   Apart from these platforms, generic agent-based modelling software libraries such as 

Repast
9
 can be used by programmers to rapidly build custom models (see Supplementary 

Information S1 (text) for an explanation of agent-based modelling).   Nevertheless, more specialized 

software may be better suited for a specific application: iAlgae for photosynthetic microbes
10

, Virtual 

Ecology Workbench (VEW)/Planktonica for plankton models
11

, INDISIM for carbon and nitrogen 

cycling in soil
12

 or lag phase in liquid media
13

, Framework for biofilm models
14

, AgentCell for 

chemotaxis signalling
15

, COMETS for metabolite exchange
16

 and BSim for gene regulation
17

.  

CellModeller
4,5

 focusses on mechanical forces between cells as it has been developed to model the 

growth of plant tissues and bacterial colonies. Applied to explaining formation of fractal boundaries 

between fluorescently-tagged, rod-shaped E. coli in expanding colonies. Also models signalling 

between cells, but lacks substrate diffusion. 

CHASTE
6
 (Cancer, Heart And Soft Tissue Environment) is a generic simulator for animal tissues. Since 

biofilms are tissue-like, the excellent capabilities of CHASTE (cellular behaviour, mechanical forces, 

metabolite and signal transport) could be adapted with some programming effort for biofilms; this 

would be particularly suited for biofilms associated with tissues. 

CompuCell3D
7
 is also a tissue simulator, but has already been used for biofilm structure formation. 

Cells have variable shape as they are made-up of several grid elements; their interactions are 

specified ďǇ ͚coŶtact eŶergies͛, ǁhich is Ŷatural for the ŵechaŶical forces ďetǁeeŶ groǁiŶg or 
motile, differentially adherent cells, but can also specify, e.g., signalling. 

FLAME
3
 (Flexible Large-scale Agent Modelling Environment) is very general and suited for large scale 

simulations as agents interact by broadcasting messages. This enables automatic parallel execution 

on compute clusters. Biological applications include various tissue models and E. coli interacting with 

oxygen. 

iDynoMiCS
8
 (individual-based Dynamics of Microbial Communities Simulator) was developed to 

enable biofilm researchers without programming skills to run biofilm simulations. Users are guided 

through the specification of species, reaction kinetics, substrates etc. by a web tool. The number of 

environments iDynoMiCS can simulate is increasing but there are still important gaps.  

NetLogo
1,2

 is an easy-to-use platform for IBMs with a large user community. It requires some 

programming aptitude, but its own high-level language makes NetLogo programs very concise and a 

de-facto standard for communicating IBMs. It has been used for simulating microbial dynamics but 

lacks a powerful physics engine for simulating solute diffusion.  

See also Table S3 for a feature and characteristics matrix of the above platforms.  
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Supplementary Table S3 | Generic open source platforms for individual-based modelling in microbial ecology 

 CellModeller CHASTE (Cancer, Heart And 

Soft Tissue Environment) 

CompuCell3D FLAME (Flexible Large-scale 

Agent Modelling Environment) 

iDynoMiCS (individual-based Dynamics 

of Microbial Communities Simulator) 

NetLogo 

Availability www.cellmodeller.org www.cs.ox.ac.uk/chaste/ www.compucell3d.org www.flame.ac.uk www.idynomics.org ccl.northwestern.edu/netlogo 

Primary do-

mains 

Plant tissue growth, 

Bacterial colonies 

Tissue development, Cardi-

ac electrophysiology 

Tissue development, 

Biofilms 

Tissue development, Economics Microbes, Biofilms, Chemostats Ecology, Sociology, Economics, 

Teaching, others 

Characteris-

tics 

Cells with various 

shapes interact me-

chanically and by signal-

ling; gene regulation. 

Growth constrained by 

forces not substrate 

IBM of cells with cell cycles, 

mechanical interactions; 

Metabolite and signal 

transport by PDEs, electro-

physiology by PDEs 

Contact energies be-

tween cells are mini-

mized; Environment is 

described by PDEs 

Agents move from state to 

state with transition functions 

and interact by broadcasting 

messages, which enables au-

tomatic parallel execution. 

Environment is also an Agent 

Agents are discrete objects in continuous 

3D space with processes in continuous 

time. 

Environment is described by PDEs 

Agents are ͚turtles͛ that live on a grid 

of ͚patches͛, models are specified in 

the programming language Scala. 

Extensions link NetLogo to Matlab, R, 

GIS 

Users can Specify model and 

control simulations by 

programming. Initialize 

simulations with loca-

tion data from micro-

scopic images 

Build code from source; 

specify cell-based models 

and control simulations by 

programming; use CHASTE 

as library for own develop-

ment 

Specify model with 

tool-specific XML file or 

Python script, helped 

by Wizard, GUI to run 

simulation 

Specify model with tool-specific 

XML file combined with specify-

ing agent transition functions 

by programming in C; all inputs 

are converted into C source 

code which the user compiles 

and runs 

Specify model with tool-specific XML file, 

which requires no programming skills; 

GUI helps user generate XML file; 

further customization or extension does 

require programming skills 

Rapidly develop model by program-

ming agent behaviour and using a 

GUI to control the simulation and 

view output 

Input and 

output for-

mats 

Models loaded/saved 

as Python scripts; 

simulation states load-

ed/saved as Pickles 

(Python object serializa-

tion) 

Non cardiac models are 

specified by C++ code in-

put; many standard text file 

formats for cell, mesh and 

other data output, suitable 

for VTK and meshing soft-

ware 

Models specified as 

tool-specific XML or 

Python scripts and 

lattice and concentra-

tion field text files; data 

output as VTK and 

other text files 

Output of simulation data in 

tool-specific XML format 

Models specified and simulation data 

saved/loaded as tool-specific XML files; 

can also read in previous simulation state 

and random number generator state to 

continue simulation with same or altered 

conditions/agents 

Models are specified in Scala, simula-

tion state or time series data can be 

saved/loaded as CSV files 

Documenta-

tion and user 

support in 

addition to 

website 

Publications, Library of 

demos 

Publications, Tutorials, 

Library of demos, Code 

documentation, Mailing 

list, Bug tracking, Wiki, 

Workshops 

Publications, Tutorials, 

Library of demos, Man-

uals, Workshops 

Publications, Tutorials, Manual, 

Code documentation 

Publication, Tutorial, Library of demos, 

Code documentation, Mailing list, Bug 

tracking, Wiki, Workshops 

Publications, Books, Tutorials, Large 

library of demos and user contribut-

ed models, Comprehensive online 

manual, Mailing lists, User groups, 

Wiki, Chat channel, Twitter, Work-

shops 

Appeared in 2005 2008 2004 2006 2011 1999 

Stable release 4.2.1 (07/2015) 3.3 (01/2015) 3.7.4 (08/2015) 0.17.0 (07/2012) 1.3 (06/2015) 5.2 (04/2015) 

Programming 

language 

Python C++ C++, user specifies 

models in XML or Py-

thon 

C, model specified with XML 

files and C functions 

Java (simulation output analysis in 

Matlab, R, Python) 

Scala (compiles to Java byte code so 

can be run on any Java virtual ma-

chine) 

Influenced by Engineering tissue 

shapes, synthetic biolo-

gy 

Systems biology, software 

engineering 

Cellular Potts Model, 

Complexity science 

State machines, Parallel com-

puting 

Swarm, Gecko, BacSim, Framework, 

Biofilm models, Complexity science 

Logo, Teaching emergence by creat-

ing ABMs, Complexity science 

http://www.cellmodeller.org/
http://www.cs.ox.ac.uk/chaste/
http://www.compucell3d.org/
http://www.flame.ac.uk/
http://www.idynomics.org/
http://ccl.northwestern.edu/netlogo
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 CellModeller CHASTE (Cancer, Heart And 

Soft Tissue Environment) 

CompuCell3D FLAME (Flexible Large-scale 

Agent Modelling Environment) 

iDynoMiCS (individual-based Dynamics 

of Microbial Communities Simulator) 

NetLogo 

OS Any with Python Linux, OS X, (Win) Windows, OS X, Linux Any with C compiler Any with Java Any with Java 

Example 

applications 

Plant meristem growth, 

Rod-shaped bacteria 

generating fractal pat-

terns 

Intestinal crypts/colorectal 

cancer, Heart electrome-

chanics 

Tissue morphogenesis 

(limb and somite for-

mation, tumour 

growth, angiogenesis), 

Dictyostelium fruiting 

body development 

Skin, Signalling cascade, Neo-

angiogenesis in cancer, E. coli 

interacting with oxygen, Mar-

ket economy 

Metabolic switching aerobic/anaerobic 

Plasmid transfer in biofilms 

Metabolic cooperation 

Aging in chemostats 

Land use, Crowd dynamics, Traffic, 

Stock market, Cooperation, Peer 

review 

Foraging ants, Mice in agriculture, 

Daphnia, Plant facilitation, Bacterial 

colonies on leaves 

Abbreviations: 

CA: Cellular Automaton 

CSV: Comma Separated Value text file 

GIS: Geographical Information System (for spatial or geographical data) 

GUI: Graphical User Interface 

OS: Operating System 

PDE: Partial Differential Equations 

VTK: Visualization Tool Kit 

XML: Extensible Markup Language 
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