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Abstract

The direct density functional theory global optimisation of MgO(100)-supported

AuIr sub-nanoalloys is performed using the Birmingham Parallel Genetic Algorithm

(BPGA). The BPGA is a pool genetic algorithm for the structural characterisation of

nanoalloys. The parallel pool methodology utilised within the BPGA allows the code

to characterise the structures of N = 4 − 6 AunIrN−n clusters in the presence of the

MgO(100) surface. The use of density functional theory allows the code to capture

quantum size effects in the system which determine their structures. The searches

reveal significant differences in structure and chemical ordering between the surface-

supported and gas-phase global minimum structures.

Introduction

Nanoalloys (NAs) are a class of nanomaterial composed of multiple metallic elements. The

combination of metals results in properties which are not only dependent on the size and

shape of the cluster but on the composition and ordering of elements.1 NAs have potential

optical, magnetic and catalytic applications.2

AuIr NAs have been investigated previously both theoretically and experimentally,3–6

particularity for CO oxidation catalysis. The activity of monometallic Au CO oxidation

catalysts was found to decrease over time, either because of sintering or poisoning.7 The

addition of Ir to the catalyst has been shown to prevent sintering and improve the overall

catalytic activity of the system through the formation of nanoalloy particles.3,5 In the studies

of both the mono- and bimetallic Au systems, the support was shown to play an important

role in the activity of the catalyst.8,9

The structural characterisation of NAs is a vital first step toward rationalising their

catalytic properties. In the present study the structures of N = 4 − 6 AunIrN−n NAs are

characterised using direct DFT global optimisation. This is performed both in the gas-phase

and in the presence of an MgO(100) slab to better understand the effect of a surface on the
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structures of AuIr NAs. The use of direct DFT global optimisation is necessary to reveal

any quantum size effects, commonly seen for Au and Ir, in the NA structures.10

Both the gas-phase and MgO(100)-supported global optimisations of the AuIr clusters

are performed using the Birmingham Parallel Genetic Algorithm (BPGA).11 The BPGA is a

pool-based genetic algorithm, capable of performing multiple DFT calculations in parallel.12

This parallelism is of particular importance for the surface-supported calculations. While

numerous methods for the direct DFT global optimisation of surface-supported clusters have

been developed,13,14 the inclusion of a surface slab within a local minimisation increases the

cost of the underlying DFT calculations and therefore greatly increases the overall cost of

the global optimisation.

Methodology

DFT

Gamma-point, spin-polarised DFT calculations were performed with VASP.15–19 Projected-

augmented wave (PAW) pseudopotentials were used with the PBE exchange correlation

functional.20,21 A plane-wave basis set with a cut-off of 400 eV was used. Methfessel-Paxton

smearing, with a sigma value of 0.01 eV, was utilised to improve SCF convergence.22

BPGA

The BPGA is an open-source genetic algorithm for the direct DFT global optimisation

of nanoalloys.23 The program utilises a pool methodology which allows the evaluation of

multiple potential cluster geometries in parallel.12,24 Calculations are performed in parallel

with between 2 and 4 instances of the BPGA operating on shared pools, depending on the

size of the cluster. Depending on access to computational resources, the number of instances

could be far larger.

An initial pool of 10 random structures is generated and evaluated by local minimisation
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within VASP. These initial structures are prepared so that no two atoms are so close as to be

non-physical. Once the initial pool has been minimised, crossover and mutation operations

are carried out. For crossover, pairs of clusters are selected from the pool through tournament

selection. Offspring are then produced through single-point, weighted crossover, carried out

according to the Deaven and Ho cut and splice method.25 The mutation rate is set to 10%

of the pool size.

For the supported clusters the local minimisation of the cluster geometry is performed

in the presence of an MgO(100) slab, which is not relaxed during the calculation due to the

high computational cost of doing so. The slab unit cell used in the present study is 6×6×2

atoms with a 14.7 Å vacuum spacing, to ensure there is no interaction between the cluster

and the periodic cell. The use of two layers of MgO(100) has previously been shown to

be capable of replicating the behaviour of the surface and its effect on the properties of a

cluster.26–29 The height of the cluster is fixed so that the lowest lying atom is 1.5 Å above

the surface, as is shown in figure 1.

h

Figure 1: An initial random geometry is generated and placed at a fixed height, h = 1.5 Å,
above the MgO(100) slab.

The mutation operator for the surface-supported clusters is a random rotation of the

cluster with respect to the fixed slab. For the gas-phase clusters, the mutation operators

are a random perturbation (up to a 1 Å displacement of 20% of the cluster atoms) for

monometallic clusters and a homotop-swap for bimetallic clusters.

Crossover and mutation operations are performed until the highest and lowest energies
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of the pool differ by no more than 10−3 eV. Due to the high computational cost, only one

run is carried out per composition.

Energetics

The binding energies, Eb, were calculated using the following expression

Eb =
EAunIrm − (nEAu +mEIr)

N
(1)

where EAunIrm is the total energy of cluster AunIrm, EAu and EIr are the energies of single,

spin-polarised Au and Ir atoms and N is the total number of atoms (N = n+m).

The excess energies, ∆,30 of the clusters was calculated using

∆ = EAunIrm − n

(
EAuN

N

)
−m

(
EIrN

N

)
(2)

where EAuN
and EIrN are the energies of the monometallic Au and Ir clusters with the same

total number of atoms as AunIrm.

The adsorption energies Eads of the surface -supported global minima were calculated as

follows

Eads = Eslab+AunIrm − (Eslab + EAunIrm) (3)

where Eslab is the energy of the MgO(100) slab and EAunIrm is the energy of the AunIrm

cluster, locally minimised in the gas-phase.

Results

The putative global minimum structures of the gas-phase N = 4 − 6 AunIrN−n clusters

are shown in figures 2, 3 and 4. Global minimum structures for the MgO(100)-supported

N = 4 − 6 AunIrN−n clusters are shown in figures 5, 6 and 7.
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Table 1: Binding energies Eb (gas-phase only), adsorption energies Eads (surface-
supported only), excess energies ∆ and spin-multiplicities 2S+1 for the N = 4−6
AunIrN−n clusters.

Gas-Phase Surface-Supported
Eb / eV ∆ / eV 2S + 1 Eads / eV ∆ / eV 2S + 1

Au4 -1.546 0 1 -1.951 0 1
Au3Ir -1.840 0.948 3 -2.342 0.890 3
Au2Ir2 -2.397 0.845 5 -3.251 0.332 3
AuIr3 -2.928 0.843 5 -3.434 0.459 1
Ir4 -3.670 0 9 -2.933 0 3

Au5 -1.692 0 2 -1.973 0 2
Au4Ir -1.975 0.784 4 -2.341 0.317 2
Au3Ir2 -2.458 0.565 4 -2.963 0.132 2
Au2Ir3 -2.892 0.593 6 -2.784 0.371 4
AuIr4 -3.478 -0.137 4 -3.083 -0.307 2
Ir5 -3.890 0 8 -3.325 0 4

Au6 -1.929 0 1 -1.592 0 1
Au5Ir -2.117 1.113 3 -2.465 1.356 1
Au4Ir2 -2.500 1.060 5 -3.621 0.830 3
Au3Ir3 -2.913 0.829 7 -3.559 0.574 1
Au2Ir4 -3.382 0.255 7 -3.211 0.847 3
AuIr5 -3.730 0.415 7 -3.043 1.083 5
Ir6 -4.173 0 5 -3.494 0 5
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Global minima for the gas-phase and supported AunIr4−n clusters are all found to be

planar. The surface-supported global minimum structures are all found to be normal to

the plane of the surface as a result of the ‘metal-on-top effect’ commonly seen in such

subnanometre size clusters.31 Ir4 is found to be a square, as seen in previous studies of gas-

phase Ir clusters,32 and Au4 is found to favour a rhombus structure. Differences between the

gas-phase and adsorbed clusters are subtle. On the surface the structure of Au4 is elongated

so that two Au atoms can bond to two O atoms, increasing the Au-Au distance from 2.68

Å to 3.76 Å. The adsorbed structure of Ir4 is the same as the gas-phase structure, with the

square standing upright and bound to two O atoms.

All surface-supported bimetallic structures favour the stronger Ir-O interactions over Au-

O. The structures of Au3Ir, Au2Ir2 and AuIr3 all differ from the gas-phase structures. The

structures of Au3Ir and Au2Ir2 are both Y-shaped in the gas-phase. On the surface the

preferred structure is a rhombus, with Au2Ir2 having an elongated Au-Au bond. The gas-

phase structure of AuIr3 is a distorted rhombus. On the surface, the three Ir atoms form a

linear chain with the Au atom bridging an Ir-Ir bond. In doing so AuIr3 is able to maximise

the number of Ir-O interactions.

The structure of the surface-supported Au5 is similar to that of Au4, with the structure

again having an elongated Au-Au bond so as to bond across two O atoms. The structure

of gas-phase Ir5 is an edge-bridged square, with the bridging atom lifting out of the square-

plane. The supported structure is a square-based pyramid structure with the basal plane

lying parallel to the surface, forming four Ir-O bonds.

The supported and gas-phase structures of Au4Ir are both tetrahedral structures. The

supported structure is similar to that of supported Au5 but the structure is now inverted

and a single Ir-O bond is formed. The supported Au3Ir2, Au2Ir3 and AuIr4 structures

are all edge-bridged squares. The differences between these supported clusters and the

corresponding gas-phase global minima vary. For Au3Ir2 the difference is simply a homotop

swap maximising Ir-O bonds, whereas for Au2Ir3 there is a larger structural difference, with
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a tetrahedral structure being preferred in the gas-phase.

AuIr4 is found to have the same surface and the gas-phase structures; however the sup-

ported structure now only forms two Ir-O bonds, compared to the four Ir-O bonds of Ir5.

This may be due to an unfavourable interaction between the edge-bridging Au atom and the

MgO(100) slab, had the Ir square remained four-coordinate, but it should be noted that the

Ir4 square cluster also sits perpendicular to the surface, so it may just reflect the competition

between the metal-on-top effect and localised Ir-O bonding effects.

The gas-phase structure of Ir6 is a slightly bent double-square structure, with a 154◦ angle

between squares. On the MgO(100)-support the structure is a 3D trigonal prism bound to

the surface by four Ir-O bonds. The planar-triangular structure of Au6 is found in both

the gas-phase and on the surface. Au4Ir and Au5Ir have similar gas-phase and supported

structures, with the extra Au in Au5Ir capping a Au-Ir bond in the tetrahedral structure.

On the surface, the structure of Au5Ir is still based on the tetrahedral structure but the Au

atom now caps a face.

Both Au4Ir2 and Au3Ir3 have the same planar-triangular structure on the surface and in

the gas-phase. There are, however, differences in the homotop of each structure as they try to

maximise Ir-O bonding. The Ir atoms in each surface-supported structure sit at the bottom

of the structure, forming a dimer and trimer, for Au4Ir2 and Au3Ir3, respectively. Au2Ir4 has

a planar bi-edge-bridged square structure in both the gas-phase and the surface, with the

two bridging Au atoms adopting cis positions in the gas-phase GM and trans positions in the

GM of the supported cluster. The gas-phase structure of AuIr5 is similar to that of Au2Ir4

except that the bridging Ir sits out of plane of the square. The lowest energy AuIr5 structure

on the MgO(100) surface is an Ir5 square pyramid (as for the Ir5 cluster) with one of the

edges on the square face bridged by Au. In contrast to Ir5, however, the square pyramid

lies on its side on the MgO surface (with only 3 Ir atoms in contact with the surface) which

may be due to an unfavourable interaction of the Au atom with the surface if the cluster

sits with the square face on the surface.
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Au4 Au3Ir Au2Ir2 AuIr3 Ir4

Figure 2: Putative global minimum structures of gas-phase AunIr4−n clusters. Au and Ir are
shown in gold and purple, respectively.

Au5 Au4Ir Au3Ir2

Au2Ir3 AuIr4 Ir5

Figure 3: Putative global minimum structures of gas-phase AunIr4−n clusters.

Au6 Au5Ir Au4Ir2 Au3Ir3

Au2Ir4 AuIr5 Ir6

Figure 4: Putative global minimum structures of gas-phase AunIr6−n clusters.
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Figure 5: Putative global minimum structures of MgO(100)-supported AunIr4−n clusters.
Au, Ir, Mg and O are shown in gold, purple, red and blue, respectively.

Figure 6: Putative global minimum structures of MgO(100)-supported AunIr5−n clusters.
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Figure 7: Putative global minimum structures of MgO(100)-supported AunIr6−n clusters.
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The results from our global optimisations, which are performed directly in the presence

of an MgO(100) slab, can be compared with those from other studies, in which structures

are generated in the gas-phase and are then deposited on a surface slab. Our results for

Au compare favourably with structures found in both the gas-phase and on the surface.33,34

However, work done previously on Ir clusters, using similar DFT calculations, which were

generated in the gas-phase and deposited on the surface show clear differences for Ir4 and

Ir6. This demonstrates the advantage of our methodology as the structures generated in the

gas-phase greatly biases the structures found on the surface.

Work on surface-supported Ir is limited but results for Ir4 and Ir6 clearly differ from those

reported in a recent study because of their utilisation of this methodology in their study.35

The spin multiplicities of the gas-phase and supported clusters are listed in table 1 and

are plotted in figure 8. The Ir and Ir-rich clusters are generally found to possess higher spins

than the Au and Au-rich clusters. The presence of the MgO(100) surface partially quenches

the spins of the Ir and Au-Ir supported clusters, with the clusters processing lower-spin

configurations. This is may be in part due to the Ir-O interactions which are favoured in

these clusters, resulting in some of the unpaired Ir electrons being involved in Ir-O bonding.

The surface is shown to have no overall effect on the spin of the Au clusters, which concurs

with work done previously on Au.33,34

The adsorption energies Eads of the supported clusters are listed in table 1 and are plotted

in figure 9. There are differences between energies of supported clusters and the energies of

the supported clusters with the slab removed, in particular the Au and Au-rich clusters are

found to have the most negative Eads, which then increases until the composition reaches

around 50/50.

The excess energies plotted in figure 10, reveal the energetic preference for the alloy-

ing of the constituent elements in the nanoalloy. AuIr is found to be a strongly demixing

system, with positive ∆ values found for almost all gas-phase and supported clusters sizes

and compositions. The only negative values are found for AuIr4, where from Ir5 there is
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Figure 8: Spin multiplicities 2S + 1 of the N = 4 − 6 AunIrN−n gas-phase and MgO(100)-
supported putative global minimum structures.

a 3D to 2D transition. The excess energies for the surface-supported clusters, particularly

for 4 and 5-atoms, are found to have lower excess energies. In these cases the surface could

be acting to promote alloying in the system. This trend, however, is not continued for the

6-atom clusters, with the gas-phase structures sometimes being less positive than those that

are surface-supported.

Conclusions and Future Work

The BPGA has been successfully applied to the global optimisation of both gas-phase and

MgO(100)-supported N = 4 − 6 AunIrN−n clusters. The direct global optimisation in

the presence of an MgO slab has revealed significant differences in gas-phase and surface-
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Figure 9: Adsorption energies Eads of the MgO(100)-supported N = 4−6 AunIrN−n clusters.

supported global minimum structures, with those on MgO(100) maximising the number of

Ir-O bonds. The MgO(100) surface not only affects the structures and atomic ordering of

the AuIr clusters, but the surface is also observed to suppress the spin of the clusters.

Future work will include expanding the BPGA’s library of surface generators to include

rutile, which has been shown to play an active role in increasing the catalytic performance of

AuIr.3 The larger number of surface sites on rutile will require greater computational effort

and mutation schemes capable of exploring these sites completely during a search.
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