

Dynamic Software Project Scheduling through a
Proactive-rescheduling Method
Shen, Xiao-ning; Minku, Leandro; Bahsoon, Rami; Yao, Xin

DOI:
10.1109/TSE.2015.2512266

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Shen, X, Minku, L, Bahsoon, R & Yao, X 2016, 'Dynamic Software Project Scheduling through a Proactive-
rescheduling Method', IEEE Transactions on Software Engineering, vol. 42, no. 7, pp. 658 - 686.
https://doi.org/10.1109/TSE.2015.2512266

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1109/TSE.2015.2512266
https://research.birmingham.ac.uk/portal/en/publications/dynamic-software-project-scheduling-through-a-proactiverescheduling-method(d30584b4-0bb9-4eeb-b80c-327ed485afbf).html

Dynamic Software Project Scheduling through
a Proactive-Rescheduling Method

Xiaoning Shen, Leandro L. Minku,Member, IEEE, Rami Bahsoon, and Xin Yao, Fellow, IEEE

Abstract—Software project scheduling in dynamic and uncertain environments is of significant importance to real-world software

development. Yet most studies schedule software projects by considering static and deterministic scenarios only, which may cause

performance deterioration or even infeasibility when facing disruptions. In order to capture more dynamic features of software project

scheduling than the previous work, this paper formulates the project scheduling problem by considering uncertainties and dynamic

events that often occur during software project development, and constructs a mathematical model for the resulting multi-objective

dynamic project scheduling problem (MODPSP), where the four objectives of project cost, duration, robustness and stability are

considered simultaneously under a variety of practical constraints. In order to solve MODPSP appropriately, a multi-objective

evolutionary algorithm based proactive-rescheduling method is proposed, which generates a robust schedule predictively and adapts

the previous schedule in response to critical dynamic events during the project execution. Extensive experimental results on 21 problem

instances, including three instances derived from real-world software projects, show that our novel method is very effective. By

introducing the robustness and stability objectives, and incorporating the dynamic optimization strategies specifically designed for

MODPSP, our proactive-rescheduling method achieves a very good overall performance in a dynamic environment.

Index Terms—Schedule and organizational issues, dynamic software project scheduling, search-based software engineering, multi-objective

evolutionary algorithms, mathematical modeling

Ç

1 INTRODUCTION

EFFECTIVE software project scheduling is crucial, when
managing the development of medium to large scale

projects to meet the deadline and budget [1]. The process
of software project scheduling includes some duties [1],
[2]: “identify project activities; identify activity dependen-
cies; estimate resources for activities; allocate people to
activities; and create project charts.” The so-called project
scheduling problem (PSP) [2], [3], [4], [5] deals with the
fourth duty which allocates employees with certain skills
to activities (tasks) so that the required objectives (project
cost, duration, etc.) can be achieved subject to various con-
straints. Good allocations are very important for software
projects, since human resources are their main resources
[6]. PSP is solved based on the information obtained from
prior duties, i.e., the indentified tasks, task dependencies,
and the estimated effort required for tasks provided by the
software manager. Besides, information about the available
employees and their salaries and skills is also needed.
PSP has been tackled by both classical and meta-heuristic

approaches. The classical methods include the program
evaluation and review technique [7] and the critical path
method [8], which represent projects by activity-on-the-arc
networks, and the resource-constrained project scheduling
problem model [9]. PSP has also been formulated as a
search-based optimization problem in [10], [11], [12] to pro-
vide near-optimal schedules in a large search space, and to
automate the task of allocations, which would otherwise
be performed by humans [2].

In previous studies on software project scheduling, it was
assumed that the system information, such as the effort
required by each task and the skills of each employee, are
known beforehand and remain unchanged. They also
assumed that no disruptions occur during the project lifetime
to interrupt the task execution. However, in the real world,
the working environment changes dynamically [1] by unpre-
dictable events, such as requirement changes during the life-
cycle of a project, a new urgent task arriving suddenly, an
employee leaving, etc. A previously optimal schedule may
become obsolete and infeasible in the new environment.
Moreover, it is common that project activities are subject to
considerable uncertainties. For instance, the task effort may
have been estimated incorrectly, the task specification may
be modified so that the originally estimated effort required
by the task is changed, the employee skill level may be
improved because of increasing experience, etc. The optimal
schedule generated according to the initial data may have
large performance deterioration when facing disturbances.
Pressman [14] indicated eight reasons for late software deliv-
ery, five of which are related to uncertainties, risks and
unpredictable events appearing during the project execution,
which are: “changing customer requirements that are not
reflected in schedule changes; an honest underestimate of the

� X. Shen is with B-DAT & CICAEET, School of Information and Control,
Nanjing University of Information Science and Technology, No.219,
Ning-Liu Road, Pu-Kou District, Nanjing 210044, P.R. China.
E-mail: sxnystsyt@sina.com.

� L.L. Minku is with the Department of Computer Science, University of
Leicester, University Road, Leicester LE17RH, United Kingdom.
E-mail: leandro.minku@leicester.ac.uk.

� R. Bahsoon and X. Yao are with CERCIA, University of Birmingham,
Edgbaston, Birmingham B15 2TT, United Kingdom.
E-mail: r.bahsoon@cs.bham.ac.uk., X.Yao@cs.bham.ac.uk.

Manuscript received 20 Mar. 2014; revised 9 July 2015; accepted 15 Dec.
2015. Date of publication 23 Dec. 2015; date of current version 22 July 2016.
Recommended for acceptance by M. Cohen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2512266

658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

mailto:
mailto:
mailto:
mailto:

amount of effort and/or the number of resources that will be
required to do the job; predictable and/or unpredictable risks
that were not considered when the project commenced; tech-
nical difficulties that could not have been foreseen in
advance; and human difficulties that could not have been
foreseen in advance.” Thus, it is vital to develop a dynamic
software project scheduling approach which can deal with
both uncertainties and dynamic events to reduce the late soft-
ware delivery. Furthermore, software engineering in emerg-
ing paradigms (e.g. the cloud, mobility, ultra-large software
systems) calls for new scheduling methods that explicitly
cater for uncertainties and dynamism in scheduling. This is
because many of the requirements may be unique to the said
project and exhibit little resemblance to prior projects. Conse-
quently, static scheduling methods may be ineffective and
may render myopic outcome if used. In the field of schedul-
ing, there are mainly three approaches to dynamic schedul-
ing: completely reactive, predictive-reactive, and proactive
(robust) scheduling [15]. Completely reactive scheduling cre-
ates partial schedules for the immediate future based on local
information at each decision point. For example, when a
machine becomes idle, the job with the highest priority will
be selected from the waiting queue according to a priority
dispatching rule. This approach is in essence a greedy one
and can be trapped into a local optimum easily. Predictive-
reactive scheduling has a scheduling/rescheduling process
where previous schedules are adapted to the new environ-
ment caused by dynamic events, while proactive scheduling
attempts to generate a schedule in advance, which has the
ability to satisfy performance requirements predictably in an
uncertain environment [16].

Although scheduling in dynamic and uncertain environ-
ments has attracted attention in construction and manufa-
cturing domains [17], little effort has been made to capture
the dynamic features of real-world software projects, let
along multi-objective dynamic project scheduling problems
(MODPSP). This paper tackles the challenge by first propos-
ing a mathematical model to define the problem and then
proposing a new proactive-rescheduling method that com-
bines proactive and predictive-reactive scheduling to solve
it. In static PSP, efficiency measures like project cost and
duration are usually used as the objectives to be optimized.
In dynamic PSP, a new schedule may be regenerated by sim-
ply minimizing the impact of disruptions to the project effi-
ciency. For example, a software engineer may be redeployed
on different tasks from the ones that he/she was originally
assigned to. Consequently, he/she may need some time to
learn and understand the newly assigned tasks, which
delays the project, increases the cost/budget, and disrupts
the smooth running of the project. To minimise potential
negative impact of generating very different schedules in a
dynamic environment, our MODPSP rescheduling process
should create new schedules that differ as little as possible
from the previous ones, i.e., it should promote stability in
dynamic scheduling. Furthermore, given the existence of
uncertainties in MODPSP, the schedule’s quality should not
be too sensitive tominor data variations, i.e., a good schedule
should be robust against data variations. Therefore,
MODPSP considers not only cost and duration as objectives,
but also stability and robustness. Although there has been
work on predictive scheduling for software projects under

uncertainties [18], and on dynamic resource rescheduling in
response to new project arrivals [19], there has not been any
research work on the mathematical modeling and dynamic
scheduling of MODPSP, which addresses both uncertainties
and dynamic events occurring during the software project
execution, as well as multi-objectivity under constraints.

The project cost, duration, robustness, and stability are
usually conflicting with each other. It is useful to handle
such multiple objectives using a true multi-objective
approach, e.g., an multi-objective evolutionary algorithm
(MOEA) [5], [11] that can provide various trade-offs among
different objectives on the Pareto front. The Pareto front can
help make informed decisions in dynamic scheduling.

The primary aim of this paper is to model the software
project scheduling problem in a dynamic and uncertain envi-
ronment by considering multiple objectives and constraints,
and propose an MOEA-based proactive-rescheduling
method for the formulated problem. Three aspects are stud-
ied: (i) PSP is formulated as a dynamic scheduling problem
with one type of uncertainty and three kinds of dynamic
events that often occur in software projects; (ii) the mathe-
matical model for the MODPSP is constructed, considering
the four objectives of project cost, duration, robustness and
stability, and a variety of practical constraints; (iii) a proac-
tive-rescheduling method is proposed to solve MODPSP.
The key idea of themethod is to create a robust schedule pre-
dictively considering the project uncertainties, and then
revise the previous schedule by an MOEA-based reschedul-
ing method in response to critical dynamic events. To evalu-
ate the effectiveness of our method, 18 dynamic PSP
benchmark instances and 3 instances derived from real-
world software projects are used in our experimental stud-
ies, which have three major purposes: (1) investigating the
influence of the robustness objective on proactive schedul-
ing; (2) evaluating the strength and weakness of our MOEA-
based rescheduling method over other dynamic scheduling
methods which adjust the original schedule based on a sim-
ple heuristic rule; and (3) comparing the overall performance
in dynamic environments obtained by five MOEA-based
rescheduling methods, where the effectiveness of simulta-
neously considering project duration, cost, robustness and
stability, and the dynamic optimization strategies adopted in
ourmethod are demonstrated.

This paper is organized as follows. Section 2 presents
an overview of the related work. Section 3 describes our
problem formulation and constructs the mathematical
model of MODPSP. In Section 4, the framework of our pro-
active-rescheduling method is introduced, and the pro-
posed rescheduling method called de-MOEA is described.
Section 5 details the techniques for individual representa-
tions, constraint handling and objective evaluations. Experi-
mental analyses are presented in Section 6. Conclusions are
drawn in Section 7.

2 RELATED WORK

In PSP, there are a set of tasks and a group of employees.
Each task has an effort expressed in person-month and a set
of required skills. The tasks have to be carried out based on
a task precedence graph (TPG), which specifies which tasks
should finish before a new task starts. Each employee has a

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 659

salary and personal skills, a maximum degree of dedication
to the project, and is able to do several tasks during a work-
ing day. PSP consists of determining which employees are
allocated to each task and when each one should be per-
formed, with the aim to minimize the project duration, min-
imize the project cost and so on, satisfying the constraints of
task skills, no overwork, etc [3].

2.1 Software Project Scheduling with EAs in Static
Environments

With the rapid development of search-based software engi-
neering, there has been some work on software project
scheduling based on EAs in the last decade. An early effort
was from Chang et al. [4] who constructed a task-based
model and applied a genetic algorithm (GA) to find near-
optimal schedules. Alba and Chicano [3] used the same
problem formulation as [4], and performed systematic
empirical studies of the impact that important problem
characteristics had on the solutions found by GAs. Also
with such a problem formulation, Minku et al. [2] gave a
runtime analysis to gain insight into how design choices in
EAs affected performance on PSP, and which instances
were easy or hard for EAs to solve.

To make their task-based model more practical, Chang
et al. [12] presented a time-line model which split the task
duration into small time units, and when evaluating the fit-
ness of a solution, it assigned employees to tasks in discrete
time units iteratively so that more human factors such as re-
assignment of employees, learning and training could be
considered. However, this model introduced a lot of subjec-
tive parameters, to which the sensitivity of the solutions pro-
vided by the GA was unknown [2], and it would induce a
large system instability because they scheduled tasks sepa-
rately in different time units [10]. To preserve the flexibility
in human resource allocation, Chen and Zhang [10] devel-
oped a model with an event-based scheduler which adjusted
the allocations at events, and adopted an ant colony algo-
rithm to solve the problem. Although the employee joining
or leaving was considered as an event in [10], and the varia-
tions of human factors were allowed in [12], the software
project scheduling was still treated as a static problem in
these two studies, since it was assumed that when and how
such events or variations occur were known in advance,
whichwould be used for the fitness evaluation of each candi-
date solution. However, in the real-world software project,
dynamic events or uncertainties usually occur in a stochastic
way, and it is impossible to get all the accurate information
in advance. Thus, it is more realistic to formulate the soft-
ware project scheduling as a dynamic scheduling problem,
and solve it dynamically during the project execution.

Luna et al. [5] and Chicano et al. [11] solved the static PSP
by an MOEA based on Pareto domination [20], where cost
and duration were not converted into a single combined
function. Penta et al. [19] presented a comprehensive survey
of the search-based techniques applied to software project
scheduling and staffing.

2.2 Software Project Scheduling in Uncertain
Environments

A few studies on software project scheduling under uncer-
tainties have appeared recently. Hapke et al. [21] proposed

a fuzzy software project scheduling system, where activity
time parameters were uncertain and modeled by means of
L-R fuzzy numbers, and the fuzzy problem was trans-
formed into a set of associate deterministic problems.
Lazarova-Molnar and Mizouni [22] gave a simulation based
method to select the most appropriate remedial action sce-
nario based on the project goal to limit the impact of uncer-
tainties on the overall project success. Gueorguiev et al. [18]
employed a proactive scheduling method where an MOEA
was used to find the Pareto front which represented the
trade-off between completion time and robustness (defined
as the completion time difference when new tasks were
added, or the tasks’ durations were inflated). The work in
[23] modeled the project scheduling using event chains. To
obtain a schedule under uncertainties, a number of Monte
Carlo simulations were performed based on a baseline proj-
ect schedule and an event list. It can also be regarded as a
proactive scheduling method. Antoniol et al. [24] used a tan-
dem GA to find the best order for processing work packages
and the best allocation of staff to project teams. Then a queu-
ing simulator was used to analyze the sensitivity of the
result obtained by GA with respect to uncertainties caused
by effort estimation errors, reworks and abandonment on a
given percentage of maintenance tasks. The result of this
sensitivity analysis could guide the search which deter-
mined whether a negotiation of further people and a succes-
sive iteration of the tandem GA process were required. The
whole process might repeat for multiple times to obtain a
satisfied solution. The work in [24] just considered the
robustness of the initial allocations to dynamic events of re-
work and abandonment, but not provided the responding
strategies when they occurred. Chicano et al. [25] gave a
new multi-objective formulation of PSP which considered
the productivity of the employees in developing different
tasks and the inaccuracies of task effort estimations. Task
effort variations were assumed to follow the uniform distri-
bution, and robustness was measured as the standard devi-
ation of the make-span and cost values obtained from a
certain number of simulations of task effort inaccuracies. In
our work, both robustness to task effort uncertainties and
immediate response to dynamic events are addressed by
the proposed proactive-rescheduling method. Meanwhile,
robustness is defined as the duration and cost increases
from the initial values obtained in the case assuming no
task effort uncertainties, where only the efficiency deteriora-
tion in the disrupted scenarios is penalized.

Xiao et al. [19] may be the first effort to consider dynamic
resource rescheduling for addressing disruptions that hap-
pen during the software development. They used the little-
JIL process definition language to describe the relations
among different projects and project activities, where a proj-
ect could be mapped into a task requiring a set of skills, and
an activity could be mapped into one skill of a task in the
task-based model proposed in [4]. There are three limita-
tions in the work of [19]. Firstly, unlike the task-based
model which searches the dedication degree of each
employee to each task, Xiao et al. [19] just determined
whether an employee should be allocated to each activity
(skill) and the priority of each activity. The workload alloca-
tion of each employee to the assigned activity was not deter-
mined by the GA. Secondly, only one kind of disruptive

660 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

event which represented the introduction of a new project
was considered, and rescheduling of merely three new proj-
ect arrivals were conducted in their work. In practice, a vari-
ety of dynamic events may occur during the software
development process. Moreover, continuous changes like
task effort uncertainties widely exist, which indicates that
the schedule robustness to uncertainties is also an important
factor that should be taken into account. Thirdly, although
the utility and process stability were considered in their
work, they were converted into a single objective by a
weighted sum method, introducing additional parameters
in their objective definitions and weight determinations.
Since multiple objectives are usually conflicting with each
other, it is better to handle them by an MOEA which can
provide various trade-offs among different objectives so
that a project manager can make an informed decision
when rescheduling.

In our work, we consider the dynamic version of task-
based model, which determines the dedication of each
employee to each task dynamically. The reason for using the
task-based model is that it is more general. The work in [19]
can be considered as a special case of the task-based model
where each task requires a single skill. To address various
uncertainties and real-time events, the task effort variances,
employee leaves and returns, and new task (urgent or regu-
lar) arrivals are considered in our work. A clear mathemati-
cal model for the dynamic software project scheduling is
developed, where four objectives, including the project cost,
duration, robustness and stability, are considered simulta-
neously. An MOEA-based, proactive-rescheduling method
is proposed to solve the dynamic scheduling problem.

3 PROBLEM FORMULATION AND MATHEMATICAL

MODELING OF MODPSP

3.1 Incorporating Dynamic Features into PSP

In order to address more dynamic characteristics of PSP, in
this paper, one type of uncertainty and three kinds of
dynamic events, which often occur during the execution of
the real-world software project, are incorporated into PSP.
They are listed as follows.

(1) Task effort uncertainty. At the beginning of the project,
the effort required by each task can be estimated by
some method such as the COCOMO model [26] or
the more recent online learning model [27]. How-
ever, modifications in task specifications and inaccu-
racies in the initial estimations may cause the
changes in the initially estimated task efforts. Here,
task effort variances are assumed to follow a Normal
distribution [3]. To infuse more reality, each task
effort is assigned different values of mean and stan-
dard deviation. The mean value of each task is set to
be its initially estimated task effort.

(2) New task arrivals. New requirements will emerge
during the development lifecycle of software. This
could be in response to changes in customers’
requirements and/or the environment. It can also be
attributed to the iterative and intertwined nature of
the software development, where continuous refine-
ments of requirements, architecture and designs can

lead to new tasks. As the project progresses, the
stakeholders’ understanding of the project may
evolve and new features may be added as a result.
Furthermore, new requirements may also emerge as
the software is prototyped, tested, or deployed. Such
dynamism is very common in large and complex
projects, where requirements tend to be highly
“volatile” and changeable during the lifetime of the
project. Consequently, the landscape of tasks tends
to continuously evolve. Tasks can be classified into
urgent and regular tasks. An urgent task should be
performed immediately when it arrives, while a reg-
ular task does not have such a requirement. As vola-
tility of requirements and its frequency are difficult
to predict, we model the uncertainty of new task
arrivals as following a Poisson distribution (i.e., the
time between two new task arrivals is distributed
exponentially).

(3) Employee leaves. Due to sickness or being part of mul-
tiple projects or other reasons, an employee may
leave during the project. Here, employee leaves are
assumed to follow a Poisson distribution. So for each
employee, the time interval between leaves is
assumed to follow an exponential distribution. To
infuse more reality, each employee is assigned a dif-
ferent mean time between his/her leaves.

(4) Employee returns. After having been absent from the
project, we consider that the employee may return
back to the project. “employee returns” is the
amount of time that the employee is absent from the
project, i.e., the amount of time that passes from
the moment the employee leaves until the employee
returns to the project. Here, employee returns are
also assumed to follow a Poisson distribution. To
infuse more reality, each employee is assigned a dif-
ferent mean time to return, i.e., the time that an
employee is out of the project.

It is worth noting that our approach is not limited to the
Poisson distribution, which is often used in operations
research. It is easy to replace the probability distribution
used in our algorithm by any other appropriate probability
distribution. All that is required is to plug in a different
probability distribution to sample from.

Note that other types of uncertainties and dynamic
events, such as changes in task precedence, addition of new
employees not in the company before the project started,
removal of tasks from the project due to changes in require-
ments, etc., may also occur during the dynamic process of a
real-world project. As an illustration to validate the effec-
tiveness and efficiency of the proposed proactive-reschedul-
ing method, we only consider the task effort uncertainties,
new task arrivals, employee leaves, and employee returns
in the model of MODPSP and experimental studies used in
this paper. The incorporation of other uncertainties and
dynamic events is proposed as future work.

3.2 Employees’ Properties

Assume a project requires a total of S skills and there are in
total M employees involved in the project. Let tl
(l ¼ 0; 1; 2; . . .) denote the scheduling point at which a
rescheduling method is trigged (including the initial time

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 661

t0). Each employee ei (i ¼ 1; 2; . . . ;M) has some properties

(eskillsi , skilli, e
maxded
i , enorm salary

i , eover salary
i), which are con-

sidered to be time-invariant here. During the project,
employee ei may leave, and then come back later. Thus, one

time-related variables eavailablei ðtlÞ is also attributed to ei.
Descriptions of an employee’s properties are listed in
Table 1. e ava setðtlÞ is used to represent the set of all avail-

able employees at tl, i.e., e ava setðtlÞ ¼ eijeavailablei ðtlÞ ¼ 1;
�

i ¼ 1; 2; . . . ;Mg.

3.3 Tasks’ Properties

At the initial time t0, assume there are NI tasks in the proj-
ect. As the time progresses, new tasks may be added one by
one. At tl, assume there have been NnewðtlÞ new tasks
arrived. Thus by tl, a total of ðNI þNnewðtlÞÞ tasks have
been considered as part of the project. Each task Tj (j ¼ 1;

2; . . . ; NI þNnewðtlÞ) has some properties (Tskills
j , reqj,

Test tot eff
j), which are considered to be time-invariant here.

At tl, it is possible that a certain task has finished, or a task
cannot be performed temporally because of an employee’s
leave (one skill required by the task is not possessed by any
of the remaining employees). Thus, several time-related

properties (Tunfinished
j ðtlÞ, TPG, Tavailable

j ðtlÞ) are also attrib-

uted to task Tj. Descriptions of a task’s properties are listed
in Table 2. T ava setðtlÞ is used to represent the set of all

available tasks at tl, i.e., T ava setðtlÞ ¼ Tj T
available
j ðtlÞ ¼ 1;

���n
j ¼ 1; 2; . . . ; NI þNnewðtlÞ:g.

An example of the TPG update process is shown in Fig. 1.
When a task finishes, its corresponding vertex and incident
edges are removed from the TPG, e.g., task 1. When a new
regular task arrives, it is appended to one or more unfin-
ished tasks, e.g., task 16. If the new task is urgent, its prece-
dence should not be lower than any other unfinished tasks
at the time of its arrival. So it may be inserted preceding one
or more unfinished tasks, as task 17, or it may be just added
as a vertex in the case of not having any precedence rela-
tions to other unfinished tasks, as task 18. Note that task
preemption is allowed in our MODPSP model. For example,
in Fig. 1, since the precedence of the new urgent task 17 is
higher than task 3, task 3 should stop processing until task
17 has finished.

An additional property eProficiencyij of the employee ei,
which indicates the proficiency of ei for task Tj, is

defined according to [12]: eProficiencyij ¼Qk2reqj
prok

i
C , and

TABLE 1
Properties of Each Employee

name description

eskillsi

The skill indicator set of employee ei. e
skills
i ¼fpro1i ;

pro2i ; . . . ; pro
S
i g, where proki 2 ½0;C�

(k ¼ 1; 2; . . . ; S) is a fractional score which measures
the proficiency of ei for the kth skill. proki ¼ 0means

ei does not have the kth skill, and proki ¼ C shows ei
totally masters the kth skill. According to [12], C is
set to be 5 in our experimental study.

skilli

The set of specific skills possessed by ei. It can be
converted from eskillsi , where
skilli ¼ fkjproki > 0; k ¼ 1; 2; . . . ; Sg.

emaxded
i

The maximum dedication of ei to the project, which
means the percentage of a full-time job ei is able to
work. emaxded

i ¼ 1means ei can dedicate all the
normal working hours of a month to the project.
Part-time jobs or overtime working are allowed by
setting emaxded

i to a value smaller or bigger than 1,

respectively. For example, emaxded
i ¼ 1:2 indicates ei

is allowed to work up to 120 percent of the normal
working time.

enorm salary
i

Themonthly salary of ei for his/her normal
working time.

eover salary
i

The monthly salary of ei for his/her overtime
working time.

eavailablei ðtlÞ
A binary variable which indicates whether ei is
available or not at tl. e

available
i ðtlÞ ¼ 1means ei is

available at tl, and eavailablei ðtÞ ¼ 0 shows ei is
unavailable at tl.

TABLE 2
Properties of Each Task

name description

Tskills
j

The skill indicator set of task Tj.
Tskills
j ¼ fsk1j ; sk2j ; . . . ; skSj g, where skkj ¼ 1

(k ¼ 1; 2; . . . ; S) indicates the kth skill is required
by Tj, and skkj ¼ 0means not.

reqj
The set of specific skills required by Tj. It can be
converted from Tskills

j , where

reqj ¼ fkjskkj ¼ 1; k ¼ 1; 2; . . . ; Sg.

Test tot eff
j

The initially estimated effort required to
complete task Tj in person-months. The task
effort uncertainty of Tj is assumed to follow a
normal distribution of Nðmj; sjÞ, where mj and
sj are the mean and standard deviation,

respectively. Here, we set mj ¼ Test tot eff
j .

Tunfinished
j ðtlÞ

A binary variable indicating whether Tj has

finished by tl. T
unfinished
j ðtlÞ ¼ 1means Tj is

unfinished at tl, and Tunfinished
j ðtlÞ ¼ 0 shows

Tj has finished by tl.

TPG

An acyclic directed graph with tasks as nodes
and task precedence as edges. TPG must be
updated when a task finishes or a new task is
added into the project. Here, G V ðtlÞ; AðtlÞð Þ is
used to represent the TPG at tl, where V ðtlÞ is
the vertex set which includes all the arrived
and unfinished tasks at tl, i.e.,
V ðtlÞ ¼ fTjjTunfinished

j ðtlÞ ¼ 1; j ¼ 1; 2; . . . ; NI þNnewðtlÞg,
and AðtÞ is the arc set which indicates the
precedence relations among the tasks in V ðtlÞ.

Tavailable
j ðtlÞ

A binary variable indicating whether Tj is
available or not at tl. T

available
j ðtlÞ ¼ 1 shows Tj

is available at tl, while Tavailable
j ðtlÞ ¼ 0means

not. Tj is regarded as available at tl if and only
if the following three conditions are satisfied
simultaneously: (1) Tj is unfinished at tl, i.e.,

Tunfinished
j ðtlÞ ¼ 1; (2) for any skill required by

Tj, at least one of the available employees at tl
possesses the skill, i.e., if k 2 reqj, then
9ei; s:t: ei 2 e ava setðtlÞ ^ k 2 skilli; and (3) all
the unfinished tasks preceding Tj in the TPG
satisfy the above condition (2).

662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

eProficiencyij 2 ½0; 1�. eProficiencyij is considered to be time-

invariant.

3.4 Solutions to MODPSP

At the scheduling point tl (tl � t0), a new schedule
which determines the dedication matrix XðtlÞ ¼
ðxijðtlÞÞM�ðNIþNnewðtlÞÞ is constructed, where xijðtlÞ denotes

the dedication of employee ei to task Tj scheduled at tl, and
it measures the percentage of a full-time job which ei spends

on Tj. In this paper, xijðtlÞ 2 f0;emaxded
i � 1=k; . . . ; emaxded

i �
k=kg, where k 2 N reflects the granularity of the solution,
and it is described in Section 5.1 in detail. xijðtlÞ ¼ 0 means
ei is not assigned to Tj at tl. Note that the values of some ele-

ments in XðtlÞ are determined easily: if eavailablei ðtlÞ ¼ 0,
then xijðtlÞ ¼ 0, for all the j ¼ 1; 2; . . . ; NI þNnewðtlÞ; if

Tavailable
j ðtlÞ ¼ 0, then xijðtlÞ ¼ 0, for all the i ¼ 1; 2; . . . ;M.

Only the values of xijðtlÞ 2 fxijðtlÞjeavailablei ðtlÞ ¼ 1 and

Tavailable
j ðtlÞ ¼ 1g need to be searched by an optimization

method.

3.5 Objectives to be Optimized

At the scheduling point tl (tl > t0), considering all the cur-
rent information gathered from the software project:

� A set of available employees e ava setðtlÞ;
� A set of available tasks T ava setðtlÞwith the remain-

ing estimated task efforts. For each task Tj 2
T ava setðtlÞ, the finished effort from t0 to tl is

recorded as Tfin eff
j ðtlÞ. Thus, the remaining esti-

mated effort of Tj at tl is calculated as Test rem eff
j ðtlÞ ¼

Test tot eff
j � Tfin eff

j ðtlÞ. If Test tot eff
j � Tfin eff

j ðtlÞ, but
Tj is actually unfinished at tl, which indicates that the
initially estimated effort of Tj is smaller than its actual
effort, then the total effort of Tj is re-estimated by
sampling a value B from the normal distribution
Nðmj; sjÞ for several times until the condition

B > Tfin eff
j ðtlÞ is satisfied. Set Test tot eff

j ¼ B, and

Test rem eff
j ðtlÞ ¼ Test tot eff

j � Tfin eff
j ðtlÞ;

� The TPG GðV ðtlÞ; AðtlÞÞwhich is updated at tl,
a new schedule is generated by optimizing the following

objectives:

minFðtlÞ ¼ ½f1ðtlÞ; f2ðtlÞ; f3ðtlÞ; f4ðtlÞ�; (1)

where f1ðtlÞ, f2ðtlÞ, f3ðtlÞ, and f4ðtlÞ are related to the dura-
tion, cost, robustness and stability of the project,
respectively.

f1ðtlÞ represents the maximum elapsed time required for
completing the remaining effort of each available task
rescheduled at tl:

f1ðtlÞ ¼ durationI ¼ max
fjjTj2T ava setðtlÞg

�
Tend
j ðtlÞ

�
� min

fjjTj2T ava setðtlÞg
�
Tstart
j ðtlÞ

�
;

(2)

where the subscript I denotes the initial scenario, which
assumes no task effort variances, and considers the remain-
ing estimated effort Test rem eff

j ðtlÞ calculated above as the
exact remaining effort of task Tj at tl. For each available task
Tj at tl, we just consider its remaining effort by tl, not includ-

ing its finished effort. Thus, Tstart
j ðtlÞ denotes the time (in

terms of months) when the remaining effort of Tj starts proc-
essing after tl according to the new generated schedule, but
not the starting time of the whole task Tj. Therefore, we have

Tstart
j ðtlÞ � tl; and Tend

j ðtlÞ is the completion time of Tj

rescheduled at tl. According to the TPG and the new schedule
(dedication matrix) rescheduled at tl, we can draw a Gantt

chart, fromwhich Tstart
j ðtlÞ and Tend

j ðtlÞ of Tj can be obtained.

f2ðtlÞ represents the initial cost, which means the total
expenses paid to the available employees for their dedications
to the available tasks at tl assuming no task effort variances.
Let t’ denote any month during which the project is being
developed after tl, and T active setðt0Þ denote the set of tasks
that are active (being developed) at the moment of time t’,
where an active task is defined as a task that has no preceding
unfinished task in the TPG at t’. f2ðtlÞ is defined as follows:

f2ðtlÞ ¼ costI ¼
X
t0�tl

X
ei2e ava setðtlÞ

e costt
0
i : (3)

If
P

j2T active setðt0Þ xijðtlÞ � 1, then

e costt
0
i ¼ enorm salary

i � t0 �
X

j2T active setðt0Þ
xijðtlÞ; (4)

else if 1 <
P

j2T active setðt0Þ xijðtlÞ � emaxded
i , then

e costt
0
i ¼ enorm salary

i � t0 � 1þ eover salary
i � t0

�
X

j2T active setðt0Þ
xijðtlÞ � 1

0
@

1
A;

(5)

where e costt
0
i means the expense paid to the employee ei at

the moment of time t’. If the total dedications of ei to all the
active tasks (

P
j2T active setðt0Þ xijðtlÞ) is larger than 1, it indi-

cates that ei works overtime at t’.
In the following Section 5.3, we will explain how to eval-

uate the objectives of durationI and costI in detail.
f3ðtlÞ represents the robustness performance, which eval-

uates the sensitivity of a schedule’s quality to task effort
uncertainties. The smaller the value of f3ðtlÞ, the better the
robustness performance

Fig. 1. An example of the update of the TPG.

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 663

f3ðtlÞ ¼ robustness ¼
ffi
1

N

XN
q¼1

max 0;
durationqðtlÞ � durationIðtlÞ

durationIðtlÞ
� �� �2

vuut

þ �

ffi
1

N

XN
q¼1

max 0;
costqðtlÞ � costIðtlÞ

costIðtlÞ
� �� �2

vuut ;

(6)

where durationI and costI are the initial duration and cost
evaluated from (2) and (3), respectively. Here, the scenario-
based method is used. A schedule undergoes a set of task

effort scenarios uqjq ¼ 1; 2; . . . ; N
� 	

, where uq is the qth sam-

pled scenario of task efforts, N is the sample size, and we
set N ¼ 30. durationq and costq are the corresponding effi-
ciency objective values under uq. Specifically, at tl, uq is gen-
erated as follows: at first, for each task Tj 2 T ava setðtlÞ, a
total effort T

tot effq
j is sampled from the normal distribution

Nðmj; sjÞ at random for multiple times until T
tot effq
j >

Tfin eff
j ðtlÞ is satisfied, and then set uq ¼ fTrem effq

j ðtlÞj
T

rem effq
j ðtlÞ ¼ T

tot effq
j � Tfin eff

j ðtlÞ; Tj 2 T ava setðtlÞg, where

T
rem effq
j ðtlÞ means the qth sampled remaining effort of Tj.

Considering that a high efficiency is always addressed in
the real-world software project, when defining the robust-
ness objective in (6), we just penalize the duration and cost
increases which will cause the efficiency deterioration in the
disrupted scenarios, while the variances of duration and
cost decreases are truncated by using a “max” function. � is
a weight parameter, which captures the relative importance
of the sensitivity of the project cost over the sensitivity of
the project duration to task effort uncertainties. � is set to be
1 in our experiments.

f4ðtlÞ denotes the stability, which measures the deviation
between the new and original schedules. It is calculated for
all the available tasks at tl (tl > t0) which are left from the
previous schedule created at tl�1. It is defined as the
weighted sum of the dedication deviations with the aim of
preventing employees from being shuffled around toomuch

f4ðtlÞ ¼ stability

¼
X

fijei2e ava setðtl�1Þ\e ava setðtlÞg

X
fjjTj2T ava setðtl�1Þ\T ava setðtlÞg

vijjxijðtlÞ � xijðtl�1Þj;
(7)

where the value of weight vij is set as follows:

vij ¼
2; if xijðtl�1Þ ¼ 0 and xijðtlÞ > 0;
1:5; if xijðtl�1Þ > 0 and xijðtlÞ ¼ 0;
1; else:

8<
: (8)

In the first case, a large penalty (vij ¼ 2) is given to
reschedule an employee to do a new task. If the employee ei
is not assigned to the task Tj at tl�1, but he/she should dedi-
cate to Tj according to the new schedule, then the employee
may feel confused. He/she may need additional time to
familiarise himself/herself with the newly assigned task,
hence the working efficiency may be decreased. In the sec-
ond case, if an employee was on a task previously, but he/
she is not allocated to the task in the new schedule, then a
medium penalty (vij ¼ 1:5) is given. The employee might

have received training about the task and become familiar
with the task. Such training would be wasted if the
employee does not perform this task any more. In the third
case, if an employee continues a task but with a different
dedication level, a small penalty (vij ¼ 1) is given to the dif-
ferences between the new and original dedications.

It should be mentioned that at the initial time t0, only
three of the objectives defined above, which are durationI ,
costI and robustness (without stability), are to be optimized.

3.6 Constraints

Constraints of MODPSP at the scheduling point tl are listed
as follows. Among them, constraints (i)–(ii) are hard con-
straints, and constraint (iii) is a soft one.

(i) No overwork constraints. At the moment of time t0 after
the scheduling point tl, the total dedication of an available
employee to all the active tasks which are being developed
should not exceed his/her maximum dedication to the proj-
ect, i.e.,

8 ei 2 e ava setðtlÞ; 8t0 � tl; s:t:

e workt
0
i ¼

X
j2T active setðt0Þ

xijðtlÞ; and e workt
0
i � emaxded

i
(9)

For example, if emaxded
i ¼ 1:2, then ei can work overtime,

but his/her overtime working should not exceed (120-
100 percent) ¼ 20 percent of the normal working time.

(ii) Task skill constraints. All the available employees
working together for one available task must collectively
cover all the skills required by that task, i.e.,

8 Tj 2 T ava setðtlÞ
s:t: reqj 	

[
ei2e ava setðtlÞ

skillijxijðtlÞ > 0
� 	 (10)

Note that the task skill constraints include the case that
each available task at tl should be performed by at least one
available employee.

(iii) Maximum headcount constraints. The number of avail-
able employees working together for Tj is expected to be no

more than an upper limit Tmaxhead
j . Here, Tmaxhead

j is

estimated by the formula in [12]: Tmaxhead
j ¼ maxf1;

roundð2=3ðTest tot eff
j Þ0:672Þg, which was derived from the

COCOMO model [26]. However, if the team size of Tj can-

not be reduced to Tmaxhead
j without violating the task skill

constraints, then the maximum headcount constraints can
be relaxed, but a penalty should be given to the task effort
of Tj which is introduced in Section 5.2.3. At the scheduling

point tl, suppose the team size of Tj is Tteamsize
j ðtlÞ, and the

minimum number of available employees who should join

Tj to satisfy the task skill constraint is T
min numemp
j ðtlÞ, then

we have:

8Tj 2 T ava setðtlÞ; T teamsize
j ðtlÞ

� max Tmaxhead
j ; T

min numemp
j ðtlÞ

 �
:

(11)

664 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

4 A PROACTIVE-RESCHEDULING APPROACH TO

SOLVE MODPSP

4.1 Framework of the Proactive-Rescheduling
Approach

To handle uncertainties and real-time events occurring dur-
ing a software project, a proactive-rescheduling approach is
proposed for solving the MODPSP. As an illustration for
introducing our approach, one real-world instance derived
from business software construction projects for a
departmental store [8] is taken as an example.

Step i. At the initial time of the project, the software man-
ager identifies several attributes of the project to be
developed. These are the tasks, task dependencies, and
required efforts. For example, the software manager
could identify that there are 12 tasks in total, e.g., per-
forming the UML diagrams, designing the database,
designing the web page templates, implementation,
testing the software, writing database design docu-
ments and a user manual, etc. In fact, if the scheduling
process starts after the architecture of the system is
designed, it would also be possible to define more fined
grained tasks, such as the implementation of each dif-
ferent component of the system. After identifying the
tasks, the software manager would identify the depen-
dencies among these tasks by creating a TPG, the skills
required by each task, and estimate the effort required
for each task. Supporting tools such as COCOMO [26]
or machine learning algorithms [27] could be used to
help providing effort estimations. Besides the attributes
of the project itself, the project manager also identifies
employees’ properties, such as the skill proficiencies
possessed by each employee, the maximum dedication
of each employee to the project, the normal and over-
time working salaries of each employee. Such informa-
tion can be obtained based on the experience and
knowledge of the software manager on the project. It
can also be based on historical information.

Step ii. Provide the information collected in step i as input to
the proposed MOEA-based proactive scheduling
approach introduced in Section 4.2. The approach will
automatically generate schedules to minimize the objec-
tives of project duration (defined by (2)), cost (defined
by (3)), and the sensitivity of the schedule to task effort
uncertainties (defined by (6)), satisfying the constraints
of no overwork, task skills and the maximum head-
count (defined by (9)-(11)). The approach assumes that
the task effort uncertainties follow a normal distribu-
tion. However, a software engineering tool implement-
ing this approach could be easily modified to assume
other distributions. The output of the approach is a set
of non-dominated solutions which represent schedules
with different trade-offs among the three objectives.
Each solution is a matrix providing the dedication of
each employee to each task.

Step iii. Once the approach generates the non-dominated
solutions, the software manager needs to choose one
solution to adopt. A tool implementing the approach
could display via a GUI some useful information for
that, such as the dedication matrix of each solution;
its multi-objective values; the maximum, mean and

minimum value on each objective among the obtained
non-dominated solutions. The software manager could
choose the schedule suggested by the automated deci-
sion making procedure introduced in Section 4.2.4, or
select a schedule manually based on the information
provided by our approach and his/her own experience
and knowledge about the project. The process of man-
ual decision making that the software manager would
need to go through is explained in Section 6.7. After
that, the initial project charts, e.g. Gantt charts, can be
created using the information of TPG, the estimated
task effort and allocation.

Step iv. During the lifetime of the project, some dynamic
events may occur, e.g. altering tasks, employee leaves,
employee with interrupted involvement, squeeze in
budget for some tasks and shift of focus on other tasks.
For simplicity, we just consider new task arrivals,
employee leaves and employee returns in the current
work. Among them, urgent task arrivals, employee
leaves and returns are regarded as critical events, while
regular task arrivals are considered to be non-critical. To
reduce the rescheduling frequency, a critical-event-
driven mode is employed. Once a critical event occurs,
the software manager triggers the rescheduling proce-
dure provided by our approach. Non-critical events like
regular task arrivals are not scheduled until the next crit-
ical event occurs. However, if the new regular task needs
to start before the next critical event occurs according to
the TPG, a heuristic method is used, which assigns a cer-
tain number of available employees with higher profi-
ciencies (measured by eProficiencyij) to it, simultaneously
satisfying the task skill constraint, and the dedication of
each assigned employee to it is generated randomly.
This is done automatically, without the need for the soft-
waremanager to providemanual input.

In the rescheduling procedure which is triggered when a
critical event occurs, first, the software manager determines
all the available tasks and employees that can be resched-
uled in the current environment. The following are pro-
vided by the software manager via GUI as the input of the
proposed MOEA-based rescheduling approach introduced
in Section 4.2: the remaining estimated effort required to fin-
ish each available task; the updated TPG reflecting any
changes that may have happened to the TPG; other proper-
ties of the available tasks and employees, together with the
four objectives of duration, cost, robustness and stability
defined by (2), (3), (6) and (7), and the three constraints
defined by (9)-(11). Such information can also be obtained
based on the investigation by and knowledge of the soft-
ware manager according to the current state of the project.
Then the rescheduling approach is triggered, and automati-
cally generates a set of non-dominated solutions, which rep-
resent different trade-offs among the four objectives. Next,
similar to the steps after proactive scheduling, some useful
information is presented via GUI, which the software man-
ager can take as a reference for deciding the final schedule
in the new environment. The process of how the software
manager would make a decision based on the Pareto front
provided by our approach is illustrated in Section 6.7. The
new schedule is implemented in the project until the next
critical event occurs, at which time the above rescheduling

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 665

procedure is triggered again. In short, the MODPSP is a
dynamic process formed by a sequence of multi-objective
PSPs with different sets of available employees and tasks to
be scheduled. This process continues until the whole project
has been completed.

As indicated in Section 1, five of the eight reasons given
by Pressman [14] for late software delivery are related to
uncertainties, risks and unpredictable events appearing
during the project execution. In our current work, four
kinds of risks or dynamic events including task effort uncer-
tainties, new task arrivals, employee leaves, and employee
returns are considered. Each of the above four cases can be
linked to one of the five reasons for late software delivery
noted by Pressman. The relationship between them and the
strategies used by our proactive-rescheduling approach to
address these issues are shown in Table 3.

4.2 An MOEA-Based Rescheduling Method for
MODPSP

The goal of multi-objective optimization is to find a repre-
sentative set of Pareto non-dominated solutions. One solu-
tion is said to Pareto dominate another if the first is not
worse than the second in all objectives, and there is at least
one objective where it is better. A solution is called Pareto
non-dominated if none of the objectives can be improved
without sacrificing some of the other objective values. The
set of Pareto non-dominated solutions in the objective space
is called the Pareto front, which can provide trade-offs
among multiple objectives.

e-MOEA is an e-domination based MOEA [28], where
e-domination is a generalization of the domination relation
introduced in [29]. e-MOEA employs efficient parent and
archive update strategies, and can produce good conver-
gence and diversity with a small computational effort, espe-
cially when dealing with many objectives (3 or more) [28].
MODPSP is a dynamic problem with four objectives. In

order to solve it in an efficient way, an e-MOEA-based
rescheduling method, de-MOEA, is proposed in this paper.

4.2.1 The Procedure of de-MOEA Applied to MODPSP

At each scheduling point tl (tl > t0) in MODPSP, the proce-
dure of de-MOEA is presented in Fig. 2.

For Step 1, update of the project state and heuristic con-
structions of the initial population are described in Sections
4.2.2 and 4.2.3, respectively. The tournament selection
method is used for the pop_selection procedure in Step 2. Two
individuals are picked up uniformly at random from the
population, and check the domination of each other. If one
dominates the other, the former will be chosen. Otherwise,
one of them is selected at random. In Step 3, an individual is
selected uniformly at random from the archive. In Step 4, the
variation operators are introduced in Section 5.1. In Step 5,
the sampled task efforts change from one iteration to
another, which increases the probability of generating robust
solutions undergoing a large number of scenarios. The
pop_acceptance and archive_acceptance procedures in Steps 6
and 7 are the same as in [28]. The termination criterion is that
the counter ct achieves a predefined maximum number of
objective evaluations. The decision making procedure is
described in Section 4.2.4. For each candidate solution, the
constraint handlingmethods and objective evaluation proce-
dure are presented in Sections 5.2 and 5.3, respectively.

It should be mentioned that at the initial time t0 of the
project, the proactive scheduling is also based on the de-

Fig. 2. Procedure of de-MOEA at the scheduling point tl (tl > t0).

TABLE 3
Relationship between Four Kinds of Dynamic Features
Considered in Our Approach and Five Reasons for Late

Software Delivery Noted by Pressman

Five reasons [14] Dynamic events Treatment

Changing customer
requirements that are
not reflected in schedule
changes.

Task effort
uncertainties,
new task arrivals.

Proactiveness/
rescheduling.

An honest underestimate
of the amount of effort
and/or the number of
resources that will be
required to do the job.

Task effort
uncertainties.

Proactiveness.

Predictable and/or
unpredictable risks that
were not considered
when the project
commenced.

New task arrivals,
employee leaves,
employee returns.

Rescheduling.

Technical difficulties that
could not have been
foreseen in advance.

Task effort
uncertainties.

Proactiveness.

Human difficulties that
could not have been
foreseen in advance.

Employee leaves,
employee returns.

Rescheduling.

666 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

MOEA procedure shown in Fig. 2. The differences are the
random population initialization is used in Step 1 instead of
the heuristic population initialization, and when evaluating
an individual, only three objectives (without stability) are
considered.

4.2.2 Update of the Project State

At each scheduling point tl (tl > t0), the project state should
be updated first.

(i) The finished effort of each task from t0 to tl should be
calculated. If a task has been completed by tl, its cor-
responding vertex and incident edges are removed
from the TPG.

(ii) Information about the new tasks arriving since the
previous scheduling point tl�1 must be gathered.
The new tasks and their task precedence are added
into the TPG.

(iii) For each task, whether it is available or not at tl is
determined by checking the three conditions intro-
duced in Table 2.

As a result of the above three steps, all the current avail-
able employees, available tasks, and the updated TPG can
be used for rescheduling at tl.

4.2.3 Heuristic Population Initialization in Rescheduling

With the aim of utilizing the dynamic features of MODPSP
and accelerating the convergence speed of the algorithm,
several heuristic strategies are incorporated in constructing
the initial population of de-MOEA.

(1) Exploitation of the dynamic event characteristics.
Inspired by the schedule repair often used in pro-
duction scheduling, which refers to local adjust-
ments to the original schedule and has the ability
of preserving the system stability well [15], three
schedule repair strategies are specifically designed
for MODPSP to exploit the dynamic event features.
Firstly, in the case of employee leaves, all the unaf-
fected tasks remain unchanged both for their
employees and dedications. For each affected task
to which the leaving employee was assigned, the
condition of whether the remaining employees in
the task team can satisfy the task skill constraint is
checked. If yes, their dedications to the task are
kept unchanged. Otherwise, other available
employees with relatively higher proficiencies are
found to join the task team to satisfy the skill
requirement. Secondly, in the case that an
employee returns, for each task left from the previ-
ous schedule, if its team size is less than the maxi-
mum headcount, and the returning employee has
one of the task skills, then he/she is assigned to
the task to speed up the task progress. Otherwise,
the previously scheduled employees and dedica-
tions remain unchanged. For each new arriving
regular task, or each previously unavailable task
that becomes available again due to the employee
return, the dedications of the available employees
to it are generated at random. Thirdly, in the case
of new urgent task arrivals, the employees and

their dedications assigned to each task left from
the previous schedule are kept unchanged, while
the dedications to the new tasks are generated at
random. In the above cases, if overwork of any
available employee appears, the normalization
method explained in 5.2.1 is applied. The result of
the schedule repair is called the schedule repair
solution.

(2) Exploitation of the history information. At each
scheduling point, information left from the previ-
ous schedule is regarded as the history informa-
tion which can be utilized. The dedication
allocations of the available employees to the avail-
able tasks in the old schedule are called the his-
tory solution.

(3) Incorporation of random individuals. In order to intro-
duce diversity, some random individuals are created
in the initial population. The dedication of each
available employee to each available task is gener-
ated uniformly at random from the set 0;emaxded

i ðtlÞ�
�

1=k; . . . emaxded
i ðtlÞ � k=kgg.

In this paper, 20 percent of the initial population are
formed with the history solution and its variants by muta-
tion, 30 percent with the schedule repair solution and its
variants, and 50 percent with the random individuals.

4.2.4 Decision Making

In practice, at each scheduling point, once a set of non-dom-
inated solutions are found by de-MOEA, they are provided
to the software manager for selection, and then the selected
schedule is implemented in the project. However, in our
experiments, it is not practical to have a person for taking
decisions. Thus, an automatic decision making method pro-
posed in our previous work [30] is adopted, and the proce-
dure is briefly given as follows.

Step i. Construction of the pairwise comparison matrix. Our
MODPSP uses N_o ¼ 4 objectives to be optimized. The
pairwise comparison questions of “How important is
the objective fi relative to fj ?” (i; j ¼ 1; 2; . . . ; N o;
j > i) are answered by the software manager a priori.
So there areN o � ðN o� 1Þ=2 ¼ 4ð4� 1Þ=2 ¼ 6 compar-
isons in total in our case. Then the pairwise comparison

matrix C1 ¼ cij
� �

N o�N o
can be constructed by the

nine-point scale in Analytic Hierarchy Process (AHP)
[31], which describes the degree of the preference for
one objective versus another.

Step ii. Estimation of the weight vector w ¼ wið ÞN o�1 for
multiple objectives. The logarithmic least squares
method [32] is adopted. The geometric mean of each
row in the matrix C1 is calculated, which is then nor-
malized by dividing it by the sum of them.

Step iii. Normalization of the objective values. Each objec-
tive is normalized as

n fiðxÞ ¼ fmax
i � fiðxÞ

� �
= fmax

i � fmin
i

� �
; i ¼ 1; 2; . . . ; N o; (12)

where fmax
i and fmin

i are the maximum and minimum
objective values among all the non-dominated solutions
obtained at the current scheduling point.

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 667

Step iv. Calculation of the utility value. The weighted geo-
metric mean of the multiple objective values is used to
find the utility value for each non-dominated solution:

UðxÞ ¼
YN o

i¼1

n fiðxÞwi=
PN o

i
wi : (13)

Step v. Choose the solution with the maximum utility value
as the final schedule.

Note that the pairwise comparison matrix and the weight
vector in Steps i and ii are determined beforehand and kept
unchanged during the dynamic process. Only Steps iii, iv,
and v are performed at each scheduling point during the
project execution.

Here, we give an example of the above decision mak-
ing method. Before the beginning of the project, assume
that the software manager considers that the objectives
durationI and costI are of the equal importance; robust-
ness and stability are of the equal importance; and the
intensity scale of the importance of durationI (or costI)
over robustness (or stability) is set as the intermediate
value between equal importance and weak importance.
Thus the pairwise comparison matrix for the four objec-
tives is constructed according to the nine-point scale in
AHP:

C1 ¼ cij
� �

4�4
¼

1 1 2 2
1 1 2 2
1=2 1=2 1 1
1=2 1=2 1 1

2
664

3
775;

and w ¼ wið Þ4�1 ¼ ½0:33330:33330:16670:1667�T can be
obtained according to the above Step ii. At each scheduling
point during the project execution, after normalizing each
objective according to (12), the utility value of each non-
dominated solution can be calculated based on (13). Then,
the non-dominated solution with the highest utility value
is chosen.

There have been AHP-related decision making meth-
ods in the existing work. Javanbarg et al. [33] proposed
a fuzzy AHP decision making model to deal with the
imprecise judgments of decision makers, and then a
fuzzy prioritization method was applied to derive exact
priorities from consistent and inconsistent fuzzy compar-
ison matrices. Kim and Langari [34] gave an adaptive
AHP for decision making in the dynamically changing
traffic environment, which could provide an optimal rel-
ative importance matrix under different traffic situations
and driving modes. Bernardon et al. [35] presented a
multicriteria decision-making process for solving the
remote-controlled switch allocation problem based on
AHP. In [33], the weight of each objective was set as the
algebraic mean of each row in the normalized pairwise
comparison matrix C1, and in [34], the weight was set as
the element in the eigenvector associated with the maxi-
mum eigenvalue of C1. Both [33] and [34] used the
weighted algebraic mean to evaluate the utility of each
alternative. However, when estimating the weight vector
w ¼ wið ÞN o�1, it is expected that the entry Wij ¼ wi=wj in
the matrix W ¼ ðWijÞN o�N o will provide the best fit to
the judgement cij in C1 [31]. Thus, in our work, the

logarithmic least squares method is used to calculate the
weight vector based on the minimization of the distance
between C1 and W. Meanwhile, the weighted geometric
mean, which is considered as the optimal method to find
the utility value for the alternative [36], is employed.

5. DETAILS OF OUR IMPLEMENTATION

5.1 Representations and Variation Operators

In MODPSP, the solution at each scheduling point tl is a

dedication matrix XðtlÞ ¼ xijðtlÞ
� �

M� NIþNnewðtlÞð Þ, where

xijðtlÞ 2 0; emaxded
i

�

. We employ binary string chromosomes

to encode solutions in de-MOEA. nb bits are used to repre-

sent an xijðtlÞ, so that xijðtlÞ 2 f0;emaxded
i � 1=k; . . . ;

emaxded
i � k=kg, k ¼ 2nb � 1. As mentioned in Section 3.4, in

XðtlÞ, only the values of xijðtlÞ 2 xijðtlÞjeavailablei ðtlÞ ¼
�

1 and

Tavailable
j ðtlÞ ¼ 1g have to be searched, while other elements

should be 0. In order to improve the efficiency of de-MOEA,
only suchxijðtlÞare encoded in the chromosome, which has
a length of e ava setðtlÞj j � T ava setðtlÞj j � nb bits (�j j means
cardinality of a set). The chromosome should be decoded
into a dedication matrix for the convenience of objective
evaluation. Fig. 3 gives an example of the representation of
a binary chromosome and its decoded dedication matrix,
where there are two available employees e1, e2, two avail-
able tasks T2, T3, one leaving employee e3, one finished task
T1, and nb ¼ 3.

In de-MOEA, the 2-D single point crossover operator [3],
which is designed for matrices, and the bit-flip mutation are
employed as variation operators.

5.2 Constraint Handling

5.2.1 Handling the No Overwork Constraints

In [3], overwork is handled by penalizing the fitness
value of a schedule. As shown in their experimental
results, the no overwork constraints are difficult to be
satisfied by this method, especially when the number of
tasks or employees is increased, or the employees’ skills
are decreased, or the project demands more skills. A
modification to the dedication normalization method
proposed in [2] is employed here.

At time t’, if the no overwork constraint for the employee

ei is violated, i.e., e workt
0
i > emaxded

i , then his/her dedica-
tion xijðtlÞ to each active task Tj, which is being performed

at t’, is divided by e workt
0
i =. If e workt

0
i � emaxded

i , then the
dedication is not normalized. The normalized value of the
dedication xijðtlÞ is denoted as dijðtlÞ, and we have

dijðtlÞ ¼ xijðtlÞ=maxð1; e workt
0
i =e

maxded
i Þ. The normalized

dedications dijðtlÞ are the ones that employees will use at
any moment after tl in order to avoid overwork. This

Fig. 3. An example of the representation of a chromosome and its
decoded dedication matrix.

668 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

method allows an employee to divide his/her dedications
to several tasks, and it is guaranteed that the no overwork
constraints can always be satisfied by such an adjustment.

5.2.2 Handling the Task Skill Constraints

In order to incorporate the proficiency of each employee for
different tasks when evaluating a schedule and handling
the task skill constraints, according to [10] and [12], the
adjusted total dedication A TdjðtlÞ for task Tj can be calcu-
lated as follows:

First, the total dedication TdjðtlÞof all the available
employees for Tj is

TdjðtlÞ ¼
X

ei2e ava setðtlÞ
dijðtlÞ: (14)

Second, the total fitness FjðtlÞ of all the available employ-
ees for the task Tj is calculated:

FjðtlÞ ¼
X

ei2e ava setðtlÞ
eProficiencyij � dijðtlÞ

0
@

1
A=TdjðtlÞ; (15)

where FjðtlÞ is a fraction of the total dedication spent by
employees to the task Tj. The explanation for this is as fol-
lows. Even though employees have a dedication of dijðtlÞ
for the task Tj, if their proficiency on the skills needed for
the task are low, Tj will take longer to finish, as if the
employees’ dedications were lower than dijðtlÞ. (15) reduces
the dedications of employees to tasks based on their
proficiency.

Third, FjðtlÞ is converted to a cost drive value VjðtlÞ:

VjðtlÞ ¼ max 1; 8� round FjðtlÞ
 7þ 0:5
� �� �

; (16)

where the value of VjðtlÞ ranges from 1 to 7. VjðtlÞ ¼ 1 indi-
cates the assigned employees are the most suitable for task
Tj, and vice versa. This conversion was proposed by [12].

Fourth, the adjusted total dedication A TdjðtlÞ, which
takes into account the proficiency of the employees, can be
obtained:

A TdjðtlÞ ¼ TdjðtlÞ=VjðtlÞ; (17)

where A TdjðtlÞ is in person.
Assume Trem eff

j ðtlÞ is the remaining effort of task Tj at tl,
then the time required to finish Tj is

Trem eff
j ðtlÞ=A TdjðtlÞ ¼ Trem eff

j ðtlÞ= TdjðtlÞ=VjðtlÞ
� �

: (18)

At the scheduling point tl, if a candidate schedule is
infeasible because certain task skills are not covered by the
allocated employees, then very high penalty values are
assigned to the objectives, as suggested in [2]. Suppose
reqsk is the number of missing skills in an infeasible sched-
ule. Each objective is penalized as follows:

f1ðtlÞ ¼ durationI

¼ reqsk � 2 �
X

Tj2T ava setðtlÞ
Test rem eff
j ðtlÞ

�

min
ei2e ava setðtlÞ

emaxded
i =k= max

Tj2T ava setðtlÞ
Vj

 !

¼ reqsk � 2 �
X

Tj2T ava setðtlÞ
Test rem eff
j ðtlÞ

�

min
ei2e ava setðtlÞ

emaxded
i =k=7Þ

� �

¼ reqsk � 14k �
X

Tj2T ava setðtlÞ
Test rem eff
j ðtlÞ

�

min
ei2e ava setðtlÞ

emaxded
i ;

(19)

f2ðtlÞ ¼ costI

¼ reqsk � 2 �
X

ei2e ava setðtlÞ

X
Tj2T ava setðtlÞ

eover salary
i �Test rem eff

j ðtlÞ � 7

¼ reqsk � 14 �
X

ei2e ava setðtlÞ

X
Tj2T ava setðtlÞ

eover salary
i �Test rem eff

j ðtlÞ;

(20)

f3ðtlÞ ¼ robustness ¼ reqsk � 2 � Crob; (21)

f4ðtlÞ ¼ stability

¼ reqsk � 2 � e ava setðtlÞj j � T ava setðtlÞj j � max
ei2e ava setðtlÞ

emaxded
i ;

(22)

where Crob is a constant, and we set Crob ¼ 100 here.
All the four penalized values are higher than the corre-

sponding objective values of any feasible schedule, since, at tl:

� The duration is always at most 7k �PTj2T ava setðtlÞ
Test rem eff
j ðtlÞ=minei2e ava setðtlÞ e

maxded
i . The explana-

tion for this is as follows. In the worst case, tasks are
processed one by one. The total dedication for each

task is the minimum value minei2e ava setðtlÞ e
maxded
i =k,

and the cost driver value of each task takes the maxi-
mum value 7.

� The cost is always at most
P

ei2e ava setðtlÞP
Tj2T ava setðtlÞ e

over salary
i �Test rem eff

j ðtlÞ � 7. The expla-

nation for this is as follows. In the worst case, all
the available employees have to dedicate to all

tasks with his/her overwork salary eover salary
i .

Moreover, the total dedication of each employee
to each task equals to the total effort required for

this task Test rem eff
j ðtlÞ � 7, where 7 is the maxi-

mum possible cost driver value of each task. This
is the total dedication as if each employee was the
only employee working for the task, i.e., the maxi-
mum possible total dedication of the employee for
the task.

� The stability value is always at most e ava setðtlÞj j�
T ava setðtlÞj j �maxei2e ava setðtlÞ e

maxded
i . In the worst

case, dedication deviations of all the available

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 669

employees to all the available tasks are

maxei2e ava setðtlÞ e
maxded
i .

� The robustnessvalue was always much smaller than
the constant Crob from our experimental
observations.

� Moreover, the penalty values are proportional to the
value of reqsk, which means the penalty will
decrease if the number of missing skills decreases.
This penalized objective vector gives a strong gradi-
ent for search algorithms towards feasible regions.

5.2.3 Handling the Maximum Headcount Constraints

In order to improve the efficiency of our algorithm, two
heuristic operators are performed for a candidate schedule
before the objective evaluation. The first one is to set the
dedication of an employee for a task to 0 if he/she has none
of the skills required by the task, i.e., if eProficiencyij ¼ 0, then
set xijðtlÞ ¼ 0.

The second one is to check whether the team size of
each available task Tj 2 T ava setðtlÞ is larger than its

maximum headcount Tmaxhead
j . If Tmaxhead

j is exceeded,

then the following procedure is performed: 1) sort the

proficiency eProficiencyij of all the employees in the team of

Tj; 2) start from the employee with the lowest profi-
ciency and have a check. If removing him/her does not
violate the task skill constraints, then he/she can be
removed (set the corresponding xijðtlÞ ¼ 0), otherwise,
he/she is kept in the team; 3) move to the next employee
in the sorting list and do the same operation as in 2) for
him/her. This procedure continues until the team size of
Tj is within the limit or all the employees in the team
have been checked. If the team size cannot be reduced to

Tmaxhead
j without violating the task skill constraints, then

it can be larger than Tmaxhead
j , but a penalty is given to

the effort of Tj. As indicated in [37], the communication
overhead must be added to the amount of work to be
done. If each part of the task has to be separately coordi-
nated with each other part, then the effort requires

Tteamsize
j T teamsize

j � 1

 �

=2 times as much pairwise inter-

communication as that of having only two employees in

the task, where Tteamsize
j denotes the number of employ-

ees assigned to Tj. Thus, if Tteamsize
j > Tmaxhead

j , then we

give a penalty to the effort of Tj as follows:

Teff
j ¼ Teff

j � 1þ Tteamsize
j � ðTteamsize

j � 1Þ=2
Z

 !
; (23)

where Teff
j is the effort of Tj without considering the over-

head, and Z is a parameter. We have performed some pre-
liminary experiments and found that when Z ¼ 5, the
relationship of the time to finish the task versus the number
of employees has a similar behavior to the curve of Fig. 2.4
shown in [37].

In [10] and [12], the maximum headcount constraints
were also considered. However, neither of them presented
any method to handle such constraints, which might pro-
duce infeasible solutions and introduce communication

overheads. Here, the approach of penalizing the task effort
given in (23) fills the gap in the literature.

5.3 Objective Evaluations

The pseudo code of the objective evaluation procedure at
the scheduling point tl is given in Fig. 4. At first, the proce-
dure tests whether the dedication matrix XðtlÞ is feasible in
that the task skill constraint of every available task is satis-
fied (lines 1-4). If there is no missing skills (reqsk ¼ 0), two
heuristic operators introduced in Section 5.2.3 are per-
formed, and the modified dedication matrix X0ðtlÞ is
obtained (lines 5-6). If the team size of Tj is still bigger than

Tmaxhead
j after the heuristic operators, then give a penalty to

the effort of Tj (lines 7-12). For X0ðtlÞ, two efficiency objec-
tives of durationI and costI are evaluated by calling the
function Evaluate_duration_cost (line 16), the procedure of
which is given in Fig. 5. If the task skill constraints are vio-
lated (reqsk > 0), output the penalized objective vector
(lines 17-19) and stop the procedure. Otherwise, the robust-
ness and stability values of X0ðtlÞ are calculated (lines 20-
36). Note that the modified dedication matrix X0ðtlÞ is also
output by the procedure, which will replace XðtlÞ in the suc-
ceeding optimization.

The procedure of evaluating duration and cost shown
in Fig. 5 is a modification to Algorithm 1 in [2], which
provides a schedule-driven estimation [38] of duration
and cost. Algorithm 1 considered all the tasks and
employees in the static PSP, while our procedure here is
for computing the elapsed time and cost of processing the
available tasks by the available employees at a specific
scheduling point. Moreover, the skill proficiencies and
overtime salaries are taken into account in our work. If
the task skill constraints are satisfied, the procedure itera-
tively constructs the schedule (Lines 5-34). Line 6 checks
which tasks can be active at the current moment of time
according to the TPG. The dedication is normalized for
employees whose total dedication to all the active tasks
exceeds the upper limit (line 12). Next, the total dedica-
tion of employees for a task is calculated (Line 14), and
the total fitness for the task is evaluated and converted to
a cost drive value by (15) and (16) (lines 15-16). Line 18
determines the earliest moment of time t’ at which a task
finishes. The finished task and its incident edges are
removed from the TPG (line 31), thus new tasks are
allowed to become active in the next iteration based on
the TPG. Duration and cost are accumulated along all the
iterations (lines 19–27). Line 29 computes the remaining
effort of each active task, which will be used in the next
iteration if the task has not finished yet.

6 EXPERIMENTAL STUDIES

Considering the uncertainties and dynamic events that
often occur in dynamic environments of a software proj-
ect, it is desirable to provide the software manager with
insight into whether robustness and stability should be
taken into account together with project duration and
cost, and which rescheduling method to choose for solv-
ing MODPSP. This insight should be supported by evi-
dences illustrating the influence of robustness and
stability on the project duration and cost and also on the

670 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

performance of the algorithm. The evidence should also
demonstrate which rescheduling algorithm is likely to
behave better according to the evaluation criteria that
may affect the software manager’s decision. With this
aim, this section presents a comprehensive study of the

influence of the robustness objective on proactive sched-
uling, compares our rescheduling method, de-MOEA,
with the heuristic dynamic scheduling based on the
whole project duration and cost, and also compares five
MOEA-based rescheduling methods based on the

Fig. 4. Pseudo code of the objective evaluation procedure at the scheduling point tl.

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 671

convergence, distribution and spread performances that
are usually considered in multi-objective optimization.

6.1 MODPSP Instances

In our experiments, both the instances derived from Alba
and Chicano’s benchmarks [3], and those derived from real-
world projects were used.

Since there are no standard benchmarks for the
MODPSP, 18 dynamic instances are generated based on the
18 static PSP instances of benchmark 4 in [3]. The reason for
selecting these 18 instances is that they include the variants
of three important parameters in PSP, which are the number
of employees, the number of tasks, and the number of
employee skills. To capture more features of the realistic
PSP, the MODPSP instances generated here differ from the
static ones of [3] in the following aspects: (1) The task effort

uncertainties and three kinds of dynamic events (new task
arrivals, employee leaves, and employee returns), which
often occur during the project execution, are incorporated.
(2) The maximum headcount of each task, the skill level of
each employee, part-time jobs, and overtime working of
employees are all taken into account.

The 18 dynamic instances derived from benchmark 4 in
[3] contain different software projects. The total number of
different skills required by the project is 10 in each instance,
and each task requires five skills randomly selected from
them. The number of employees can be 5, 10, or 15, and the
number of skills possessed by each employee ranges from 4
to 5, or from 6 to 7. 20 percent of the employees do part-
time jobs, whose maximum dedications are uniformly gen-
erated from [0.5, 1) at random; another 20 percent can work
overtime, whose maximum dedications are in the interval

Fig. 5. Pseudo code of evaluating duration and cost.

672 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

(1, 1.5]; and the maximum dedication of each remaining
employee is set to 1.0 (full time). According to [3], the nor-
mal monthly salary of each employee is sampled from a
normal distribution with the mean of 10,000 and standard
deviation of 1,000. The overtime salary is set to be the nor-
mal monthly salary multiplied by 3. If an employee has one
skill, the proficiency score is sampled uniformly from (0, 5]
at random, otherwise it is set to 0.

At the initial time, the number of tasks can be 10, 20, or 30.
Then it is assumed that 10 new tasks arrive one by one fol-
lowing a Poisson distribution. We suppose the mean time
between task arrivals is 1 month. We assume 20 percent of
the new tasks are urgent, and the remaining 80 percent are
regular. The simulation continues until all the original and
new tasks have finished. Variances of task efforts are
assumed to follow a normal distribution. Each task effort is
assigned different values of mean and standard deviation,
which vary uniformly in [8], [12] and [4], [6] (unit: person-
month), respectively. These values are chosen such that on
average, themean of a task effort is 10 and the standard devi-
ation is 5 [3]. The TPG for the initial tasks is generated using
the method in [3]. For a newly arrived task, the precedence
of the urgent or the regular one is inserted preceding or suc-
ceeding a randomly selected unfinished task, respectively.

During the project execution, employee leaves and
returns are assumed to follow a Possion distribution. As
indicated in Section 3.1, each employee is assigned different
mean time between his/her leaves and mean time to his/
her return, which vary uniformly in [11], [13] and [0.4, 0.6]
(unit: month), respectively. These values are chosen such
that on average, an employee is available for 11.5 months
per year, and then asks for a leave of 0.5 months. Hence, an
employee’s availability is about 95.83 percent.

The 18 MODPSP instances randomly generated accord-
ing to the above principles are named as
sT#1_dT#2_E#3_SK#4-#5, where sT#1 means the number of
initial static tasks, dT#2 means the number of dynamically
arriving tasks, E#3 means the total number of employees,
and SK#4-#5 means each employee has #4 to #5 skills. For
example, sT30_dT10_E15_SK6-7 denotes that there are 30
tasks in the project initially, then 10 new tasks arrive one by
one dynamically, and there are in total 15 employees, each
of whom has six to seven skills.

Additionally, three real-world instances (named Real_1,
Real_2 and Real_3) derived from business software con-
struction projects for a departmental store [10] were also
used in our experiments. Since these real instances are origi-
nally static PSPs, uncertainties and dynamic events are
introduced to transfer them into the dynamic instances. For
task effort uncertainties, the original task effort in the static
real instances is regarded as the initially estimated effort,
and is set as the mean value of the normal distribution
which each task effort follows, and the standard deviation
is assumed to be 10 percent of the mean value. The three
kinds of dynamic events occur in the same way as that
described in the above 18 randomly generated instances. In
addition, the maximum dedication emaxded

i in our model was
calculated from the real instances as follows:

emaxded
i ¼ maximum possible working hours per month

legal normal working hours per month
:

When evaluating the cost in the procedure shown in
Fig. 5, the basic salary was incorporated as in [10].

In total, there are 21 test instances used in our experi-
ments, which were performed on a personal computer with
Intel core i5, 3.2 GHz CPU and 4 GB RAM.

We do not currently have access to real world software
project data containing information about their dynamic
and uncertain events. The simulation nature and the lack of
empirical validation with data of completely real nature is a
threat to validity of this study. In order to mitigate this
threat, we used several simulated software projects contain-
ing different numbers of tasks, employees, skills, dynamic
events and uncertainties. We have also used three real
world software projects with simulated dynamic and uncer-
tain events. Once real world data with known dynamic and
uncertain events become available for an empirical study,
further analyses should be performed.

6.2 Parameter Settings

Parameter settings of our rescheduling method, de-MOEA,
in all the experiments are given in Table 4. In each indepen-
dent run, the algorithm stops after 10,000 objective vector
evaluations. In the decision making procedure, the pairwise
comparisonmatrix for the four objectives was assumed to be

C1 ¼ cij
� �

4�4
¼

1 1 2 2
1 1 2 2
1=2 1=2 1 1
1=2 1=2 1 1

2
664

3
775:

Hence, the corresponding weight vector is w ¼ wið Þ4�1 ¼
½0:3333 0:3333 0:1667 0:1667�T .

6.3 Research Questions

The research questions (RQ) that our experimental studies
aim to investigate are as follows:

RQ1. Is our initial proactive scheduling effective in improv-
ing the schedule robustness to task effort uncertainties
by simultaneously considering the “robustness” objec-
tive and two efficiency objectives?

RQ2. Does our rescheduling method de-MOEA improve the
project efficiency significantly compared to a heuristic
dynamic scheduling method? Is the project efficiency
sensitive to task effort variances when using our
rescheduling method de-MOEA?

RQ3. Are the strategies designed in de-MOEA effective com-
pared to other MOEA-based rescheduling methods?
These strategies include the dynamic optimization
mechanism, introduction of the robustness and stability
objectives, and heuristic initialization strategies.

TABLE 4
Parameter Settings of the Rescheduling Method

Population size of de-MOEA 100
Chromosome Binary encoding, 3 bits

for each xijðtlÞ, i.e. nb ¼ 3
Crossover possibility 0.9
Mutation possibility 1/L, where L is the

chromosome length
maximum number of objective
vector evaluations

10,000

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 673

RQ4. What insights into trade-offs among objectives can be
found in the Pareto fronts of software projects?

6.4 RQ1: Influence of the Robustness Objective on
the Initial Proactive Scheduling

This section aims to validate the effectiveness of the initial
proactive scheduling in improving the schedule robustness
to task effort uncertainties (the dynamic events occurring
during the project execution are not considered here). Per-
formance comparisons were done between our robust
method (three objectives of durationI , costI , and robustness
were considered simultaneously, and it is called e-MOEA-
r), and the method where only two efficiency objectives
(durationI and costI) were considered (it is called e-MOEA-
d). Aiming to compare the two methods within a multi-
objective framework, the following steps were performed at
the initial time of each of the 21 MODPSP instances:

Step i. Two methods were applied, and two non-dominated
solution sets were produced, respectively. Then the
value of the objective “robustness” was calculated for the
two methods using the same sampled efforts (100 task
effort scenarios were sampled at random here), despite
the fact that only one of them was optimizing this objec-
tive. When comparing the two methods in terms of Par-
eto domination, “robustness”was also considered.

Step ii. The non-dominated sets of the two methods were
compared using the set cover metric C [39], which is
defined as follows: suppose X1; X2 are two solution
sets. The metric C maps the ordered pair ðX1; X2Þ into
the interval 0; 1½ �:

CðX1; X2Þ ¼ x2 2 X2;9x1 2 X1 : x1 � x2orF x1ð Þ ¼ F x2ð Þf gj j
X2j j ;

(24)

where x1 � x2 means solution x1 Pareto dominates x2,
and F is the objective vector. The metric C gives a com-
parison of two sets based on their domination or

equality to each other. C X1; X2ð Þ > C X2; X1ð Þ indicates
thatX1 is better thanX2 in terms of the metric C.

Step iii. In order to check the overall performance improve-
ment (or deterioration) on individual objectives by
using “robustness” as one of the multiple objectives, the
non-dominated solutions of e-MOEA-r were averaged
along each of the three objectives, respectively, and also
for e-MOEA-d. The quantitative improvement (or dete-
rioration) of e-MOEA-r over e-MOEA-d on each objec-
tive is calculated as follows:

Impiðt0Þ ¼ � Avg f"�MOEA�r
i �Avg f"�MOEA�d

i

� �
Avg f"�MOEA�d

i

� 100%;

i ¼ 1; 2; 3

(25)

where Avg f"�MOEA�r
i and Avg f"�MOEA�d

i represent the
average of the non-dominated solutions (i.e., the overall
performance) obtained by e-MOEA-r and e-MOEA-d on
the objective fi, respectively. Since all objectives were to
be minimized, we used a negative sign in (25).

30 independent runs of both methods were replicated
following the above experimental procedure on each prob-
lem instance. To significantly compare the metric C between
e-MOEA-r and e-MOEA-d on the 21 instances, Wilcoxon
rank sum tests with the significance level of 0.05 were
employed. The results are listed in Table 5. It can be seen
that C(e-MOEA-r, e-MOEA-d) is significantly better than C
(e-MOEA-d, e-MOEA-r) in 100 percent of the real-world,
and 72.22 percent of the random instances, respectively,
and there is no significant difference between them in the
remaining 27.78 percent of the random instances, which
indicates that the convergence performance of our robust
method e-MOEA-r is better than or at least no worse than
e-MOEA-d in terms of Pareto domination.

The overall performance improvement (or deterioration)
of e-MOEA-r over e-MOEA-d on each objective was averaged
over 30 runs and listed in Table 6. Wilcoxon rank sum tests
with the significance level of 0.05 were employed to signifi-
cantly compare the overall performance on each objective
obtained by each of the two algorithms, and the results are

TABLE 5
Statistical Tests of the Metric C between e-MOEA-r and e-MOEA-d for the 21 MODPSP Instances at the Initial Time

Instance sT10_dT10_
E5_SK4–5

sT10_dT10_
E10_SK4–5

sT10_dT10_
E15_SK4–5

sT10_dT10_
E5_SK6–7

sT10_dT10_
E10_SK6–7

sT10_dT10_
E15_SK6–7

C(e-MOEA-r, e-MOEA-d)
versus C(e-MOEA-d, e-MOEA-r)

p-value
sign

0.0039
þ

1.64E-6
þ

0.3309
¼

3.30E-6
þ

1.13E-6
þ

7.99E-6
þ

Instance sT20_dT10_
E5_SK4–5

sT20_dT10_
E10_SK4–5

sT20_dT10_
E5_SK4–5

sT20_dT10_
E5_SK6–7

sT20_dT10_
E10_SK6–7

sT20_dT10_
E15_SK6–7

C(e-MOEA-r, e-MOEA-d)
versus C(e-MOEA-d, e-MOEA-r)

p-value
sign

8.18E-4
þ

0.8865
¼

0.0501
¼

4.58E-8
þ

3.55E-6
þ

5.34E-4
þ

Instance sT30_dT10_
E5_SK4–5

sT30_dT10_
E10_SK4–5

sT30_dT10_
E15_SK4–5

sT30_dT10_
E5_SK6–7

sT30_dT10_
E10_SK6–7

sT30_dT10_
E15_SK6-7

C(e-MOEA-r, e-MOEA-d)
versus C(e-MOEA-d, e-MOEA-r)

p-value
sign

0.0202
þ

0.1671
¼

0.0079
¼

4.94E-8
þ

6.37E-6
þ

5.45E-6
þ

Instance Real_1 Real_2 Real_3

C(e-MOEA-r, e-MOEA-d)
versus C(e-MOEA-d, e-MOEA-r)

p-value
sign

0.0361
þ

2.86E-6
þ

0.0017
þ

The sign of ‘þ/�/ ¼’ in A versus B indicates that according to the metric C, algorithm A is significantly better than B, significantly worse than B, or there is no
significant difference between A and B based on the Wilcoxon rank sum test with the significance level of 0.05.

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

also shown in Table 6. It can be seen from statistical results
that compared to e-MOEA-d, e-MOEA-r improves the robust-
ness significantly in 17 of the 18 random instances and all the
three real instances, while only deteriorates the efficiency
objective significantly (mainly the duration) in six of the 18
random instances and one of the three real instances. From
the results of overall performance improvement, the improve-
ment in robustness is much more than the deterioration in
efficiency, which suggests that if the predictive schedules are
generated by simultaneously considering robustness and effi-
ciency, there will be a high chance of obtaining more robust
schedules without seriously affecting efficiency. Note that
this happens not only in the random instances, but also in the
ones derived from real-world projects. Moreover, the better
robustness performance obtained by e-MOEA-r shows it can
produce a set of trade-off schedules with lower duration
delays and cost increases than e-MOEA-d when facing task
effort uncertainties, which suggests its ability to reduce the
schedule sensitivity to uncertainties.

Take Real_3 as an example to illustrate the behaviors of
different algorithms. The initially estimated efforts of the 12
initial static tasks are 3, 2, 2, 2, 3, 1, 4, 3, 2, 2, 2, and 3, and a
disrupted task effort scenario is 2.84, 2.16, 1.76, 2.16, 3.36,

1.13, 3.31, 3.28, 2.13, 1.87, 2.35 and 2.72 respectively. Dura-
tion and cost in the initial (durationI and costI) and dis-
rupted (durationq and costq) scenario of a randomly chosen
schedule generated by e-MOEA-d are shown in Table 7 and
also for e-MOEA-r. It can be seen that to get better robust-
ness, the initial duration and cost of e-MOEA-r are worse
than those of e-MOEA-d. However, when facing the same
task effort disruption, the disrupted duration and cost for
e-MOEA-d becomes worse than both the initial and dis-
rupted duration and cost for e-MOEA-r, which illustrates
that better robustness really compensates the worse initial
cost and duration for e-MOEA-r.

6.5 RQ2: Comparisons of the Proposed
Rescheduling Method de-MOEA against the
Heuristic Dynamic Scheduling Method

This section compares de-MOEA with a heuristic dynamic
scheduling method (it is called h-method), which generates
an initial schedule by the robust scheduling algorithm
e-MOEA-r (introduced in Section 6.3), combined with the
decision making method described in Section 4.2.4. The
h-method then makes a local adjustment to the original

TABLE 6
Performance Improvements (or Deteriorations) of e-MOEA-r over e-MOEA-d and Statistical Tests of the Overall Performance on

Each Objective on the 21 MODPSP Instances at the Initial Time

Instance durationI costI robustness Instance durationI costI robustness

e-MOEA-r
versus
e-MOEA-d

sT10_dT10_
E5_SK4-5

�1.63 percent
(0.096 ¼)

0.76 percent
(0.15 ¼)

4.05 percent
(0.022 þ)

sT10_dT10_
E10_SK4-5

�2.98 percent
(0.22 ¼)

�2.29 percent
(0.15 ¼)

5.11 percent
(0.022 þ)

sT10_dT10_
E15_SK4-5

3.29 percent
(0.0017 þ)

�1.42 percent
(0.16 ¼)

2.56 percent
(0.08 ¼)

sT10_dT10_
E5_SK6-7

�4.46 percent
(0.12 ¼)

�0.53 percent
(0.21 ¼)

6.42 percent
(0.003 þ)

sT10_dT10_
E10_SK6-7

2.33 percent
(6.91E�4 þ)

�0.94 percent
(0.14 ¼)

7.88 percent
(7.20E�5 þ)

sT10_dT10_
E15_SK6-7

�6.13 percent
(0.0087 �)

0.33 percent
(0.15 ¼)

11.36 percent
(0.023 þ)

sT20_dT10_
E5_SK4-5

�1.79 percent
(0.080 ¼)

0.75 percent
(0.52 ¼)

13.42 percent
(2.22E�5 þ)

sT20_dT10_
E10_SK4-5

�4.11 percent
(8.66E�5 �)

�1.03 percent
(0.082 ¼)

17.06 percent
(8.88E�5 þ)

sT20_dT10_
E15_SK4-5

�6.25 percent
(0.047 �)

�1.51 percent
(0.59 ¼)

16.70 percent
(3.83E�5 þ)

sT20_dT10_
E5_SK6-7

�2.15 percent
(0.085 ¼)

�1.14 percent
(0.064 ¼)

9.07 percent
(0.0076 þ)

sT20_dT10_
E10_SK6-7

�1.11 percent
(0.058 ¼)

�1.14 percent
(0.59 ¼)

3.62 percent
(1.47E�7 þ)

sT20_dT10_
E15_SK6-7

3.72 percent
(4.46E�4 þ)

0.53 percent
(0.75 ¼)

5.84 percent
(4.12E�6 þ)

sT30_dT10_
E5_SK4-5

�0.58 percent
(0.064 ¼)

1.31 percent
(0.077 ¼)

9.53 percent
(1.17E�4 þ)

sT30_dT10_
E10_SK4-5

�7.86 percent
(8.20E�7 �)

�7.28 percent
(0.66 ¼)

32.25 percent
(1.96E-10 þ)

sT30_dT10_
E15_SK4-5

�1.31 percent
(0.21 ¼)

�0.17 percent
(0.060 ¼)

6.19 percent
(5.27E�5 þ)

sT30_dT10_
E5_SK6-7

�6.61 percent
(0.0023 �)

�0.94 percent
(0.52 ¼)

17.48 percent
(2.60E�5 þ)

sT30_dT10_
E10_SK6-7

�6.81 percent
(4.22E�4 �)

�2.11 percent
(0.43 ¼)

22.82 percent
(3.96E�8 þ)

sT30_dT10_
E15_SK6-7

�8.67 percent
(6.36E�5 ¼)

-0.28 percent
(0.84 ¼)

21.97 percent
(2.83E�8 þ)

Real_1 �6.25 percent
(2.60E�8 �)

�4.14 percent
(4.12E�8 �)

27.84 percent
(1.61E�10 þ)

Real_2 �0.31 percent
(0.70 ¼)

1.82 percent
(0.028 þ)

9.29 percent
(0.0018 þ)

Real_3 �1.56 percent
(0.36 ¼)

1.53 percent
(0.0468 þ)

2.13 percent
(0.029 þ)

The positive value means improvement and is in bold. The negative value means deterioration. The sign of ‘þ/�/ ¼’ in A versus B indicates that according to the
overall performance on each objective, algorithm A is significantly better than B, significantly worse than B, or there is no significant difference between A and B
based on the Wilcoxon rank sum test with the significance level of 0.05. The values in the parentheses are p-values obtained from Wilcoxon rank sum tests.

TABLE 7
An Example of the Duration and Cost Variance Obtained by e-MOEA-d and e-MOEA-r in the Initial and

Disrupted Scenario

durationI costI durationq costq robustness

e-MOEA-d 8.34 368583 8.81 380880 0.0563
e-MOEA-r 8.41 370630 8.68 378275 0.0516

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 675

schedule based on a heuristic rule when a dynamic event
occurs (these local adjustments are different strategies that
could be adopted if no dynamic MOEA rescheduling was
used). The heuristic rules used here are:

1) In the case that an employee leaves and returns, for
each task in which the leaving employee is on, if the
task becomes infeasible because the employee leaves,
then the task is unprocessed and waits until the
employee returns to be continued. Otherwise, if the
task is still feasible, then the remaining employees
still work on it and their dedications to the task are
kept unchanged. For other tasks, they are performed
according to the initial schedule.

2) If a newly arrived task is to be performed according
to the TPG, then a number of available employees
with higher proficiencies (measured by eProficiencyij)
will be assigned to it, simultaneously satisfying the
task skill constraint. The number of selected employ-
ees is expected not to exceed the maximum head-
count of the task. However, if the team size cannot
be reduced to the limit without violating the task
skill constraint, then the task headcount constraints
can be relaxed.

Two performance measures were adopted in this section.
One was the whole project duration (the elapsed time of fin-
ishing all the tasks that have ever been considered as part of
the project), and the other was the whole project cost (the
total expenses paid to the employees for completing the
whole project). 30 independent runs on each MODPSP
instance were performed using our method de-MOEA, and
also the h-method. Average results, percentages of the per-
formance improvement of de-MOEA over h-method, and
the statistical results obtained by Wilcoxon rank sum tests
with the significance level of 0.05 are listed in Table 8.

It can be observed that compared to h-method, de-MOEA
decreases the whole project duration and cost significantly
on all instances. It improves the project efficiency to a large
extent, which shows the distinct superiority of de-MOEA
over the heuristic dynamic scheduling when dealing with
MODPSP, although the mean CPU time consumed by de-
MOEA at each scheduling point is much larger than that of
the h-method (The smallest and largest mean execution
time cost by de-MOEA was 86.33 s (Real_1) and 431.68 s
(sT30_dT10_E10_SK6-7), while those of h-method were only
0.0150 s (Real_3) and 0.0556 s (sT30_dT10_E5_SK6-7),
respectively). However, compared to the project duration
measured by months and the savings found by de-MOEA,

TABLE 8
Average Results, Percentages of the Performance Improvement, and the Statistical Test Results

Obtained by Comparing de-MOEA against h-Method

Performance values Project duration Project cost Project duration Project cost Project duration Project cost Project duration Project cost

Instance sT10_dT10_E5_SK4–5 sT10_dT10_E10_SK4–5 sT10_dT10_E15_SK4–5 sT10_dT10_E5_SK6–7

de-MOEA 108.4 3512722 71.0 2792531 57.1 2019370 145.9 3601760

h-method 136.2 3862030 91.0 3148683 68.2 2280162 172.5 4072819

Improvement percentage 20.4 percent 9.0 percent 22.0 percent 11.3 percent 16.3 percent 11.4 percent 15.4 percent 11.6 percent

de-MOEA versus h-method 3.02E-11þ 3.02E-11þ 3.61E-13þ 8.73E-14þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ
Instance sT10_dT10_E10_SK6–7 sT10_dT10_E15_SK6–7 sT20_dT10_E5_SK4–5 sT20_dT10_E10_SK4–5

de-MOEA 65.3 2451803 60.1 2404944 161.9 6090925 65.9 3136695

h-method 89.3 2799789 78.2 2738974 188.1 6619072 87.2 3391533

Improvement percentage 26.9 percent 12.4 percent 23.2 percent 12.2 percent 13.9 percent 8.0 percent 24.4 percent 7.5 percent

de-MOEA versus h-method 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ
Instance sT20_dT10_E15_SK4–5 sT20_dT10_E5_SK6–7 sT20_dT10_E10_SK6–7 sT20_dT10_E15_SK6–7

de-MOEA 58.6 3096519 230.9 6955361 78.8 4466765 64.3 3594815

h-method 71.3 3265817 293.8 7308816 108.3 5205138 87.2 3745180

Improvement percentage 17.8 percent 5.2 percent 21.4 percent 4.8 percent 27.2 percent 14.2 percent 26.3 percent 4.0 percent

de-MOEA versus h-method 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ
Instance sT30_dT10_E5_SK4–5 sT30_dT10_E10_SK4–5 sT30_dT10_E15_SK4–5 sT30_dT10_E5_SK6–7

de-MOEA 120.4 5017805 82.4 5013772 69.6 4607639 196.6 7786837

h-method 137.2 5392107 110.2 5242736 92.9 4838638 216.3 8150944

Improvement percentage 12.2 percent 6.9 percent 25.2 percent 4.4 percent 25.1 percent 4.8 percent 9.2 percent 4.5 percent

de-MOEA versus h-method 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ
Instance sT30_dT10_E10_SK6–7 sT30_dT10_E15_SK6–7 Real_1 Real_2

de-MOEA 128.1 6887576 93.0 6094726 16.2 1330256 12.1 499891

h-method 157.0 7571868 126.6 6317385 19.9 1451890 14.6 611864

Improvement percentage 18.4 percent 9.0 percent 26.6 percent 3.5 percent 18.6 percent 8.4 percent 17.1 percent 18.3 percent

de-MOEA versus h-method 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ 3.02E-11þ
Instance Real_3

de-MOEA 16.6 690717

h-method 20.3 856075

Improvement percentage 18.2 percent 19.3 percent

de-MOEA versus h-method 3.02E-11þ 3.02E-11þ

The better of the performance values on each instance are in bold. The unit of the project duration is month. The sign of ‘þ/�/¼’ in A versus B indicates that accord-
ing to the performance compared, algorithm A is significantly better than B, significantly worse than B, or there is no significant difference between A and B based
on theWilcoxon rank sum test with the significance level of 0.05. The values before the signs ‘þ/�/=’ are p-values obtained fromWilcoxon rank sum tests.

676 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

the time cost of de-MOEA is relatively small, and it is worth
consuming the time to regenerate a schedule by de-MOEA
that can improve the project efficiency significantly.

The sensitivity analysis of the impact of task effort varian-
ces on the project efficiency is also performed on one real-
world instance (Real_1). Here, the standard deviation of the
normal distribution that task effort variances assumed to fol-
low is set to be 5, 10, 15, 20, 40, 60, 80, and 100 percent of the
mean value, respectively, which reflects the uncertainty
level. Fig. 6 gives the variations of the project duration and
cost obtained by de-MOEA and h-method with the uncer-
tainty in the task effort estimation (30 replications of either
method are performed under each uncertainty level and the
average value is computed, respectively). It can be seen that
as the uncertainty level increases, the project duration and
cost also increase because the project suffers from such effort
variations. However, the increment of project duration and
cost produced by de-MOEA (Fig. 6a) is much smaller than
that obtained by h-method (Fig. 6b), which indicates that our
method de-MOEA is much less sensitive against such task
effort uncertainties.

6.6 RQ3: Validating the Effectiveness of Strategies
Designed in de-MOEA

6.6.1 Introduction to the Compared Methods

In this section, the proposed rescheduling method de-
MOEA was compared to the other four rescheduling meth-
ods which are listed as follows:

i) dCOEA. To validate the effectiveness of the dynamic
optimization mechanism incorporated in de-MOEA,
it was compared to a state-of-the-art dynamic
MOEA called dCOEA [40]. At each scheduling point,
each subpopulation in dCOEA played a role in
searching the dedications of one available employee
to all available tasks. In dCOEA, two strategies were
specifically designed for dynamic optimization:
(1) when changes occur, diversity in each subpopula-
tion was introduced via stochastic competitors; and
(2) to exploit useful information about the current
archive, a temporal memory was used to handle out-
dated archived solutions. The chromosome repre-
sentations and variation operators in dCOEA were
the same as those in de-MOEA. The parameter set-
tings of dCOEA were: the subpopulation size was
10, the maximum archive size was 100, SCratio was
0.5, Rsize was 5, and Cfreq was 10, which were the
same as recommended by [40]. Other parameters

such as the crossover and mutation probabilities
were the same as those in de-MOEA.

ii) de-MOEA-Deterministic. To demonstrate the superi-
ority of considering project duration, cost, robust-
ness and stability simultaneously and incorporating
the heuristic initialization, de-MOEA was compared
to de-MOEA-Deterministic, which is an e-MOEA-
based complete rescheduling method [15] that regen-
erates a new schedule from scratch and does not con-
sider task effort uncertainties and project stability. At
each scheduling point tl, only the project duration
and cost in the initial scenario are considered. Mean-
while, the initial population is entirely generated at
random.

iii) de-MOEA-No-Sta. To study the impact of the stability
objective, de-MOEA was compared to an e-MOEA-
based rescheduling method without considering sta-
bility called de-MOEA-No-Sta. This method is differ-
ent from de-MOEA in that only three objectives
(durationI , costI and robustness) are optimized
simultaneously at each scheduling point (heuristic
initialization is adopted). From this group of com-
parisons, a software manager can gain insight into
how the initial duration, cost and robustness would
be affected by considering stability and whether the
human allocation and dedication changes would
become smaller at different scheduling points.

iv) de-MOEA-No-HI. To study the influence of heuristic
initialization strategies, de-MOEA was compared to
an e-MOEA-based rescheduling method which just
adopted random initialization. This method is differ-
ent from de-MOEA in that the initial population is
generated at random at each scheduling point (four
objectives are considered simultaneously). This
group of experiments can provide a software man-
ager with a better understanding of whether it
would be helpful to utilize dynamic features of a
problem and exploit the previous schedule informa-
tion when re-planning a schedule.

The parameter settings of de-MOEA-Deterministic, de-
MOEA-No-Sta, and de-MOEA-No-HI are the same as those of
de-MOEA,which are given in Table 4.Note that all algorithms
stop after 10,000 objective vector evaluations in one run.

6.6.2 Performance Measures

It is desirable for an algorithm to provide a software man-
ager with a set of non-dominated solutions with good

Fig. 6. Variations of the project duration and cost obtained by de-MOEA and h-method with the task effort uncertainties.

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 677

convergence to the reference Pareto optimal front, and also
with a uniform (in most cases) distribution and a wide
spread over the Pareto front. In this way, the software man-
ager can get a full picture of various trade-offs among the
project duration, cost, robustness and stability, which is
very helpful for him/her to understand more about the
problem so that he/she can make an informed choice or
revise the schedule already planned by himself/herself
according to the requirement of the project.

In this paper, four popular metrics are employed to eval-
uate the performance of the five MOEA-based rescheduling
methods. The first one is the hypervolume ratio (HVR) [41].
The hypervolume metric HV measures the size of the objec-
tive space dominated by the obtained non-dominated front
PFknown [42], and HVR is the ratio of HV and the hypervo-
lume of the reference Pareto front PFref. A larger HVR value
indicates a better convergence and a wider spread of the
obtained non-dominated front. The second one is the Gener-
ational Distance (GD), which measures how far PFknown is
from PFref [43]. A small GD indicates the obtained solutions
are close to the reference Pareto front, which means a good
convergence performance. The weakness of GD is that it
does not take the spread of solutions into account, hence a
set of solutions which gather around a small region near the
reference Pareto front may also get a good GD value. The
third one is a distribution performance metric called Spac-
ing, which measures the distance variations of neighbouring
vectors in PFknown [44]. The smaller Spacing is, the better the
distribution uniformity of PFknown is. The fourth one is
Spread, which measures the extent of spread achieved by
the obtained solutions and the uniformity in the distribution
of PFknown. The definition of Spread in [45] was used for bi-
objective problems. As for problems with three or more
objectives, we propose a modified Spread given in (26):

Spread ¼
PN o

j¼1 dfj þ
PnPF

i¼1 d0i � d0
�� ��PN o

j¼1 dfj þ nPF � d0 ; (26)

where N o is the number of objectives, dfj is the Euclidean
distance between the best solution on the jth objective and
its nearest solution in PFknown, nPF is the number of vectors
in PFknown, d

0
i is the Euclidean distance from the ith vector of

PFknown to its nearest neighbour in PFknown, and d0 is the
mean of all d0i. A wide and uniform spread of solutions in
PFknown will result in a small value of Spread.

No matter how uniformly the solutions distribute or how
widely the range of objective values covers, if the obtained
solution set is far from the reference Pareto front, the algo-
rithm is not very useful because some of the project cost,
duration, robustness and stability are poor. Thus, the con-
vergence performance (HVR and GD) of an algorithm
should be considered first by a software manager when
choosing an algorithm to use. For two algorithms with com-
parable convergence, the one with a better distribution
(Spacing) and spread (Spread) is preferred.

Because the true Pareto front at each scheduling point is
unknown in MODPSP, PFref is obtained in our work by
merging the solutions found during all the independent
runs using all the five methods, and then obtaining the non-
dominated solutions from them. The reference point in

HVR is formed by the worst objective values observed in all
optimization runs.

Due to the space limitation, the procedure of comparing
de-MOEA to other MOEA-based rescheduling methods
is presented in Appendix A, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2015.2512266, in
detail. To compare the five methods in terms of the overall
performance across different scheduling points and runs
on each instance, Wilcoxon rank sum tests with the signifi-
cance level of 0.05 are employed. The statistical test results
are listed in Table B.1 in Appendix B, available in the
online supplemental material. The overall performance
improvement (or deterioration) and the statistical test
results of de-MOEA over the other four methods on each
objective on the 21 instances are listed in Table B.2 in
Appendix B, available in the online supplemental material.

6.6.3 Comparisons to dCOEA

In order to understand the impact of different dynamic
MOEAs on the performance of MODPSP, we also applied
dCOEA to find the Pareto front at each scheduling point.
Table 9 summarizes the statistical test results of our method
de-MOEA versus the other four methods.

It can be seen that in terms of the convergence metrics
HVR and GD, de-MOEA is significantly better than dCOEA
in all cases. It maintains a comparable spread performance
to dCOEA, where the Spread values of de-MOEA are signifi-
cantly better than dCOEA in 83 percent of the 18 random
instances and one in three real-world instances, respec-
tively. As to the distribution performance, de-MOEA is com-
parable to dCOEA on the real-world instances, while a bit
worse than dCOEA on the random instances since its Spac-
ing values are significantly worse than dCOEA in 33 percent
of the 18 random instances. One possible reason for this is
that dCOEA is a coevolutionary algorithm known to be
good at maintaining a diverse set of solutions.

As mentioned before, convergence performance is the
most important factor that a software manager should take
into account when evaluating an algorithm. The poor con-
vergence performance of dCOEA in our experiments indi-
cates that the dynamic optimization strategies it adopts may
not be suitable for solving MODPSP (dCOEA was tested
only in dynamic multi-objective function optimization in
[40]). Other policies, such as the heuristic initialization strat-
egies designed in this paper which can utilize dynamic fea-
tures of MODPSP, should be introduced.

6.6.4 Comparisons to de-MOEA-Deterministic

With the aim to observe the consequence caused by not con-
sidering uncertainties and system stability when reschedul-
ing from scratch in MODPSP, de-MOEA was compared to
de-MOEA-Deterministic, which only cares about the project
duration and cost in the initial scenario and generates the
initial population at random. It can be seen from Table 9
that considering the convergence metrics HVR and GD, de-
MOEA is significantly better than de-MOEA-Deterministic
in all cases. As for the Spread metric, de-MOEA behaves bet-
ter because it is significantly better than de-MOEA-Deter-
ministic in 61 percent of the random instances and

678 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

http://doi.ieeecomputersociety.org/10.1109/TSE.2015.2512266
http://doi.ieeecomputersociety.org/10.1109/TSE.2015.2512266

100 percent of the real-world instances. However, in terms
of Spacing, de-MOEA-Deterministic behaves better, since it
is significantly better than de-MOEA in 50 and 67 percent of
the random and real-world instances, respectively. The pos-
sible reason is that the initial population are generated at
random in de-MOEA-Deterministic, which is helpful in
increasing the diversity of solutions.

Besides, it can be found from Table B.2, available in the
online supplemental material, that compared to de-MOEA-
Deterministic, de-MOEA improves the overall performance
on robustness and stability significantly in all cases, while it
degrades durationI and (or) costI sometimes. However, the
improvements in robustness and stability are much more
than the deterioration in the initial efficiency, which sug-
gests that if a software manager reschedules by simulta-
neously considering duration, cost, robustness and stability,
and also taking the dynamic event features and previous
schedule information into account, he/she will have a
higher chance of obtaining more robust and stable solutions
without severely affecting the initial efficiency.

To further present the advantages of de-MOEA over de-
MOEA-Deterministic, we plotted a section of the schedule
Gantt charts produced by the two methods on one real-
world instance (Real_2), respectively, which are given in
Fig. 7. Since stability is not taken into account by de-MOEA-
Deterministic, it is possible that a group of employees differ-
ent from the previous ones are assigned to the same task
when rescheduling, and the dedication of an employee to a
task fluctuates a lot. For example, in Fig. 7b, task T9 is sched-
uled to be performed by employees e1, e7, e9 at the initial
time t0, by e1, e2, e9 at the scheduling point t1, and by e7, e9 at
t2. Although e9 is assigned to T9 all the time, his/her

dedication changes a lot. This will induce the system insta-
bility and lack of continuity, which is undesirable for any
real-world software project. In contrast, by considering sta-
bility, the schedule in Fig. 7a produced by de-MOEA is
more stable with only small adjustments in a few dedica-
tions, and the group of employees assigned to tasks T2, T9,
T10, T17 are kept unchanged at different scheduling points
as shown in Fig. 7a. Furthermore, since robustness is not
considered in de-MOEA-Deterministic either, its schedule
may behave worse when facing task effort disturbances. For
example, in Fig. 7b, the durations of tasks T1 and T4 were
longer than those built by de-MOEA in Fig. 7a. Besides, T3

was suspended when the new urgent task T17 arrived (the
precedence of T17 was higher than that of T3) and would
continue until T17 finished.

6.6.5 The Influence of the Stability Objective

To study the impact that the stability objective has on the
performance of the MOEA-based rescheduling methods,
de-MOEA was compared to de-MOEA-No-Sta which did
not take the stability objective into account. It can be seen
from Table 9 that considering the convergence metric HVR,
de-MOEA is significantly better than de-MOEA-No-Sta in
72 and 100 percent of the random and real-world instances,
respectively, which indicates that compared to de-MOEA-
No-Sta, de-MOEA can provide the software manager with a
wider spread of non-dominated solutions that are close to
the reference Pareto front. As for GD, the differences
between the two methods are not large: there is no signifi-
cant difference between them in 72 and 67 percent of the
random and real-world instances, respectively. The Spread

TABLE 9
Comparison Results Summarized from Table B.I (The Percentage of the 18 Random Instances and Three Real-World Instances for

the Statistical Test Results of De-MOEA versus the Other Four Methods, where the Sign of ‘þ/�/ ¼ ‘ in A versus B Indicates that
According to the Metric Considered, Algorithm A Is Significantly Better than B, Significantly Worse than B, or There Is No Significant

Difference between A and B Based on the Wilcoxon Signed-Rank Test with the Significance Level of 0.05)

Random Instances

HVR GD Spacing Spread

de-MOEA versus

dCOEA

þ ¼ � þ ¼ � þ ¼ � þ ¼ �
100 percent 0 0 100 percent 0 0 28 percent 39 percent 33 percent 83 percent 17 percent 0

de-MOEA versus

de-MOEA-

Deterministic

þ ¼ � þ ¼ � þ ¼ � þ ¼ �

100 percent 0 0 100 percent 0 0 11 percent 39 percent 50 percent 61 percent 33 percent 6 percent

de-MOEA versus

de-MOEA-No-Sta

þ ¼ � þ ¼ � þ ¼ � þ ¼ �
72 percent 28 percent 0 28 percent 72 percent 0 50 percent 50 percent 0 percent 67 percent 33 percent 0

de-MOEA versus

de-MOEA-No-HI

þ ¼ � þ ¼ � þ ¼ � þ ¼ �
100 percent 0 0 100 percent 0 0 22 percent 45 percent 33 percent 11 percent 39 percent 50 percent

Real-world Instances

HVR GD Spacing Spread

de-MOEA versus

dCOEA

þ ¼ � þ ¼ � þ ¼ � þ ¼ �
100 percent 0 0 100 percent 0 0 33 percent 67 percent 0 33 percent 67 percent 0

de-MOEA versus

de-MOEA-

Deterministic

þ ¼ � þ ¼ � þ ¼ � þ ¼ �

100 percent 0 0 100 percent 0 0 0 33 percent 67 percent 100 percent 0 0

de-MOEA versus

de-MOEA-No-Sta

þ ¼ � þ ¼ � þ ¼ � þ ¼ �
100 percent 0 0 33 percent 67 percent 0 33 percent 67 percent 0 0 percent 100 percent 0

de-MOEA versus

de-MOEA-No-HI

þ ¼ � þ ¼ � þ ¼ � þ ¼ �
100 percent 0 0 100 percent 0 0 33 67 percent 0 34 percent 33 percent 33 percent

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 679

values produced by de-MOEA are better than or compara-
ble to de-MOEA-No-Sta in all the instances, and similar
results can be obtained for the Spacing metric. The reason
for de-MOEA-No-Sta having a relatively good performance
on GD, but not so good on HVR and Spread is that it can find
a set of solutions close to the reference Pareto front, but they
just gather around a small region (with good values of
durationI , costI and robustness, but bad stability), so the
spread of its solutions is not wide.

Besides, it can be found from Table B.2, available in the
online supplemental material, that compared to de-MOEA-
No-Sta, de-MOEA improves the system stability signifi-
cantly with a small sacrifice in the initial efficiency and (or)
robustness. This result is very practical for a software man-
ager since stability is an important factor in the real-world
software project.

6.6.6 The Influence of Heuristic Initialization Strategies

To study the impact that the heuristic initialization strate-
gies have on the performance of the rescheduling method,
de-MOEA was compared to de-MOEA-No-HI. It can be
seen from Table 9 that considering the convergence met-
rics HVR and GD, de-MOEA is significantly better than
de-MOEA-No-HI in all cases, which indicates that the
combined use of dynamic features and history informa-
tion in initialization can help improve the convergence
performance of the MOEA-based rescheduling method a
lot. Thus, when rescheduling, it is better for a software
manager to take both the dynamic event features and pre-
vious schedule information into account. As for the Spac-
ing metric, de-MOEA outperforms or is comparable to de-
MOEA-No-HI in all the real-world instances, but it is sig-
nificantly worse than de-MOEA-No-HI in 33 percent of

Fig. 7. Comparisons of the schedule Gantt charts produced by de-MOEA and de-MOEA-Deterministic in the real-world instance Real_2 (xij denotes
the dedication of employee ei to task Tj in the corresponding schedule).

680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

the random instances. Meanwhile, de-MOEA-No-HI has
better Spread performance as a whole since it is signifi-
cantly better than de-MOEA in 50 and 33 percent of the
random and real-world instances, respectively. The rea-
son is that de-MOEA uses the history solution, the sched-
ule repair solution and their variants as parts of the
initial population, which can help speed up the conver-
gence. However, this may limit the search space explored
by the algorithm.

It can also be found from Table B.2, available in the
online supplemental material, that compared to de-MOEA-
No-HI, de-MOEA improves the overall performance on
costI and stability significantly in all cases, and improves
durationI significantly in 16 of the 18 random instances and
in all the 3 real instances, while it may degrade robustness in
some instances. However, the improvements in durationI ,
costI and stability are much more than the deterioration in
robustness (if any), which suggests that the incorporation of
heuristic initialization is able to improve the efficiency and
stability significantly with a small sacrifice in robustness.

To further understand the advantages and disadvantages
of the convergence performance of de-MOEA over the other
four methods, we plotted the average HVR and GD values

over 30 independent runs across the scheduling points,
which are shown in Figs. 8 and 9, respectively. Due to the
space limitation, we just give curves on the instances with
the best, medium and worst mean value of HVR or GD
obtained by de-MOEA. It can be seen that de-MOEA can
achieve the maximum HVR or the minimum GD value at
most of the scheduling points. The convergence performance
of de-MOEA-No-Sta is close to that of de-MOEA, while the
other threemethods aremuchworse.

6.7 RQ4: Pareto Fronts of the Evolved Schedules
at Scheduling Points

At each scheduling point, a set of non-dominated solutions
were evolved by de-MOEA. In order to demonstrate the
trade-offs among these solutions which a software manager
can utilize in balancing their choices when making a deci-
sion about the final schedule, one scheduling point on a
real-world instance (Real_3) was selected arbitrarily and
taken as an example. At tl ¼ 2:6 (month), the employee e10
leaves, and tasks T4 to T14 are available. 31 independent
runs of de-MOEA were performed. With the aim of showing
the sample median quality attained in multiple (31 here)

Fig. 8. Average HVR comparisons of the five methods at each scheduling point on the MODPSP instance (HVR is to be maximized).

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 681

runs, the 50 percent -summary attainment surface (i.e., the
16th-summary attainment surface) [46] is obtained. A four
objective problem requires 4D data to be represented. To
visually investigate the resulting summary attainment sur-
face, we give the slice plot in Fig. 10. The slice plot draws sli-
ces along the durationI , costI and robustness directions, and
the colors on the slices are determined by the values on sta-
bility. As indicated in [46], the summary attainment surface
emphasizes the distribution of the location achieved over
multiple runs. Thus, it can be seen from Fig. 10 that the
points on the 50 percent-summary attainment surface tend
to crowd around the regions with small values on the objec-
tive durationI , i.e., the density of such regions is much
higher than others.

To inspect different trade-offs among the four objectives
found by de-MOEA in one run, one of the 31 Pareto fronts
obtained from 31 runs of de-MOEA was selected randomly.
To visually investigate the Pareto front, we give the diago-
nal plot [47] in Fig. 11. The diagonal plot gives pairwise
interactions among the four objective values on the Pareto
front, where the axes of any plot can be obtained by finding
the corresponding diagonal boxes and their ranges. For
instance, the plot at the third row and fourth column has its
vertical axis as robustness and horizontal axis as stability.

Firstly, it can be observed from the figure durationI versus
costI that the two efficiency objectives are conflicting with
each other, since a smaller durationI normally leads to a
larger costI . Secondly, it can be seen from figures costI ver-
sus robustness and costI versus stability that the robustness or
stability measure is slightly conflicting with the objective of

Fig. 9. AverageGD comparisons of the five methods at each scheduling point on the MODPSP instance (GD is to be minimized).

Fig. 10. Slice plot of the 50 percent-summary attainment surface
obtained at the scheduling point tl ¼ 2:6 in Real_3.

682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

costI . When finding solutions that have smaller costI , robust-
ness or stability becomes worse. However, it is hard to deter-
mine the relationship from the figures robustness versus
stability, durationI versus robustness and durationI versus
stability. For example, a small robustness may correspond to
either a small or high stability. There is no solution that can
simultaneously optimize all the considered objectives.

Table 10 gives several examples of the objective vectors
selected from the Pareto front shown in Fig. 11. A solution
may perform very well for one objective, but poorly for
some others, such as Solution1-Solution4. Some solutions
may have good (but not the best) values in all objectives,
which indicate a good compromise among all the objectives,
such as Solution5-Solution7. The Pareto front produced by
de-MOEA can provide a software manager with better
knowledge about various trade-offs among multiple objec-
tives. It is very helpful for him/her to make an informed
decision about the best compromise with regards to his/her
preference.

Next, we will suggest the process of how a software man-
ager could make a manual choice based on the Pareto front
provided by our approach. The tool implementing our pro-
posed approach displays the plot of different trade-offs
among the four objectives as in Fig. 11. The software man-
ager could first pick a given range of cost and durations, if
these are the objectives that he/she is most interested in.
For example, he/she could decide that he/she is more inter-
ested in solutions with higher cost and lower duration. So,
he/she would select a few solutions with high cost and low
duration in the figure of durationI versus costI . Then, he/
she could check the different robustnesses and stabilities of
these solutions so that a final choice could be made. Alterna-
tively, the software manager could also choose the schedule

automatically suggested by our decision making procedure
introduced in Section 4.2.4, if he/she wishes to avoid the
manual choice.

7 CONCLUSION

This paper introduced a novelMOEA-based dynamic sched-
uling method to regenerate new schedules in response to
real-time events and uncertainties inMODPSP. Our first con-
tribution is to capture more of the dynamic features of a real-
world PSP than previous work, and formulate the problem
with one type of uncertainty and three kinds of dynamic
events, including: 1) variations of task efforts; 2) new task
arrivals; 3) employee leaves; and 4) employee returns.

Our second contribution is the construction of a mathe-
matical model for MODPSP. In this model, considering the
updated project state at each scheduling point, four objec-
tives with respect to the project duration, cost, robustness
and stability are optimized simultaneously. In addition,
three practical constraints, which are the task skill con-
straints, no overwork constraints, and the maximum head-
count constraints, are considered.

Our third contribution is the design of an MOEA-based
proactive-rescheduling method to solve MODPSP. A predic-
tive schedule is generated initially using a proactive schedul-
ing method considering task effort uncertainties. During the
project, the previous schedule is revised by a rescheduling
method de-MOEA in response to critical dynamic events. de-
MOEA considers the project duration, cost, robustness and
stability simultaneously, and employs heuristic initialization
strategies, which exploit dynamic event characteristics and
history information so that a new schedule is not regenerated
from scratch. Furthermore, new methods to handle the task
skill constraints, no overwork constraints, and the maximum
headcount constraints are proposed.

Our fourth contribution is a comprehensive experimental
study of the newly proposed de-MOEA. The study is based
on three groups of comparisons. The first group compared
our proactive scheduling method considering the robust-
ness (e-MOEA-r) with the method without caring about
robustness (e-MOEA-d). Our analyses confirm that
e-MOEA-r reduces the schedule sensitivity to task effort
uncertainties significantly with only a small sacrifice in the
project duration and cost under the initial scenario. Mean-
while, better robustness can compensate the worse initial
duration and cost. The second group compared our
rescheduling method de-MOEA to the heuristic dynamic
scheduling which regenerated a new schedule based on a

Fig. 11. Diagonal plot of the Pareto front obtained in one run of de-MOEA
at the scheduling point tl ¼ 2:6 on Real_3.

TABLE 10
Several Examples of Objective Vectors Selected from

the Aggregated Pareto Front at the Scheduling
Point tl ¼ 2:6 on Real_3

[durationI , costI , robustness, stability]

Solution1 [5.30, 304597, 0.12, 6.14]
Solution2 [6.31, 276596, 0.077, 5]
Solution3 [6.91, 327794, 0.028,13.79]
Solution4 [5.34, 296656, 0.036, 0]
Solution5 [5.67, 286808, 0.057, 0.86]
Solution6 [5.97, 279699, 0.054, 3.86]
Solution7 [5.75, 283536, 0.061, 2.00]

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 683

simple heuristic rule. Our results show that de-MOEA is
very effective in improving the whole project duration and
cost, and it is much less sensitive against task effort varian-
ces during the dynamic project scheduling process. The
third group compared de-MOEA to state-of-the-art MOEA-
based rescheduling methods. Our analyses confirm the ben-
efits that can be obtained by considering robustness and sta-
bility together with the project initial efficiency, where
project duration and cost deteriorate only slightly when fac-
ing task effort uncertainties, and employee assignments and
dedications change very little between the new and original
schedules, which reduces the potential confusion to both
the manager and employees. In addition, these benefits can
be produced without severely affecting the initial efficiency.
Our results suggest that de-MOEA outperforms the state-of-
the-art dynamic MOEA (dCOEA) for solving MODPSP
since it can provide a software manager with a wider range
of non-dominated solutions that are much closer to the ref-
erence Pareto front.

Although our MODPSP model is an advancement and
considers more aspects of reality than previous models, it is
still far from capturing all events and factors that can affect
project scheduling situations. As indicated in [48] and [49],
estimation inaccuracies may be caused by political behav-
iors, or psychological and economic factors. Our current
work assumes that the deviations in effort estimations fol-
low a Gaussian distribution. An empirical validation should
be performed to reveal how suitable the Gaussian distribu-
tion is to model deviations, and how to best model such
deviations. This can be a challenging study that would
probably require data collection in terms of deviations in
effort estimations obtained during a period of time. After
that, our approach could be easily adapted to use such dif-
ferent distributions. In addition, certain factors could also
cause the objectives of software scheduling efforts to be
affected. As future work, our approach could be modified
to deal with changing objectives by considering them as
extra dynamic events to be dealt with. Some methods which
can involve the participation of the software manager, such
as the interview study for collecting information [48], will
be used to get feedback from practitioners on how to
improve our approach. Besides, more types of uncertainties
and dynamic events which may occur during the project
execution, such as changes in the task precedence, addition
of new employees to the project, and task cancellations
should be considered. More characteristics about tasks and
employees, such as the employees’ experiences, training
courses, and the due-date of each task should also be con-
sidered, as well as the relationship between such attributes
and the performances of MOEAs on MODPSP need to be
further studied. Moreover, a thorough empirical validation
in industrial contexts should be performed in order to eval-
uate the practicality of the approach and to further improve
it in terms of how close it is to real software development
scenarios. In particular, such empirical validation would
allow us to get feedback on the assumptions made by our
approach, on additional types of uncertainty and dynamic
events to be considered, and on the trade-off between the
improvements in cost, duration, robustness and stability
provided by our approach and the effort needed to adopt
the approach in the real world.

Various dynamic events and factors can affect project
scheduling situations, thus future PSP investigations should
avoid making simplistic modeling assumptions and simpli-
fications that are not valid in practice.

ACKNOWLEDGMENTS

This work was partially supported by the National Natural
Science Foundation of China (NSFC) under Grant No.
61502239, No. 61329302 and No. 61503191, Natural Science
Foundation of Jiangsu Province of China under Grant No.
BK20150924 and No. BK20150933, an EPSRC Grant (No.
EP/J017515/1) on “DAASE: Dynamic Adaptive Automated
Software Engineering”, and an EPSRC Grant (No. EP/
K001523/1) on “Evolutionary Computation for Dynamic
Optimization in Network Environments”. This work was
done while the first author was with CERCIA, School of
Computer Science, University of Birmingham, United King-
dom. The authors are grateful to W. Chen and J. Zhang for
providing the data of the three real-world PSP instances.
The work of X. Yao was supported by a Royal Society Wolf-
son Research Merit Award.

REFERENCES

[1] I. Sommerville, Software Engineering, 8th ed. Essex, U.K.: Addison-
Wesley, 2006.

[2] L. L. Minku, D. Sudholt, and X. Yao, “Improved evolutionary
algorithm design for the project scheduling problem based on
runtime analysis,” IEEE Trans. Softw. Eng., vol. 40, no. 1, pp. 83–
102, Jan. 2014.

[3] E. Alba and J. F. Chicano, “Software project management with
gas,” Inf. Sci., vol. 177, no. 11, pp. 2380–2401, 2007.

[4] C. K. Chang, M. J. Christensen, and T. Zhang, “Genetic algorithms
for project management,” Ann. Softw. Eng., vol. 11, pp. 107–139,
2001.

[5] F. Luna, D. Gonz�alez-�Alvarez, F. Chicano, and M. A. Vega-
Rodr�ıguez, “The software project scheduling problem: A scalabil-
ity analysis of multi-objective metaheuristics,” Appl. Soft Comput.,
vol. 15, pp. 136–148, 2014.

[6] A. Barreto, M. de O. Barros, and C. Werner, “Staffing a software
project: A constraint satisfaction and optimization based
approach,” Comput. Oper. Res., vol. 35, pp. 3073–3089, 2008.

[7] J. D. Wiest, and F. K. Levy, A Management Guide to PERT/CPM:
with GERT/PDM/CPM and Other Networks. Englewood Cliffs, NJ,
USA: Prentice-Hall. 1977.

[8] D. Golenko-Ginsburg and A. Ganik, “Stochastic network project
scheduling with non-consumable limited resources,” Int. J. Pro-
duction Econ., vol. 48, pp. 29–37, 1997.

[9] W. Herroelen, B. D. Reyck, and E. Demeulemeester, “Resource-
constrained project scheduling: A survey of recent devel-
opments,” Comput. Oper. Res., vol. 25, no. 4, pp. 279–302, 1998.

[10] W. N. Chen and J. Zhang, “Ant colony optimization for software
project scheduling and staffing with an event-based scheduler,”
IEEE Trans. Softw. Eng., vol. 39, no. 1, pp. 1–17, Jan. 2013.

[11] F. Chicano, F. Luna, A. J. Nebro, and E. Alba, “Using multiobjec-
tive metaheuristics to solve the software project scheduling prob-
lem,” in Proc. 13th Annu. Genetic Evol. Comput. Conf., 2011,
pp. 1915–1922.

[12] C. K. Chang, H. Jiang, Y. Di, D. Zhu, and Y. Ge, “Time-line based
model for software project scheduling with genetic algorithms,”
Inf. Softw. Technol., vol. 50, pp. 1142–1154, 2008.

[13] M. Di Penta, M. Harman, and G. Antoniol, “The use of search
based optimization techniques to schedule and staff software proj-
ects: An approach and an empirical study,” Softw.: Practice Experi-
ence, vol. 41, no. 5, pp. 495–519, 2011.

[14] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 6th
ed. New York, NY, USA: McGraw-Hill, 2005.

[15] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling in
manufacturing systems,” J. Scheduling, vol. 12, no. 4, pp. 417–431,
2009.

684 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

[16] C. Le Pape, “Constraint propagation in planning and scheduling,”
Robot. Lab., Dept. Comput. Sci., Stanford Univ., Stanford, CA,
USA, CIFE Tech. Rep. TR029, 01/1991, 1991.

[17] W. Herroelen and R. Leus, “Project scheduling under uncertainty:
Survey and research potentials,” Eur. J. Oper. Res., vol. 165, no. 2,
pp. 289–306, 2005.

[18] S. Gueorguiev, M. Harman, and G. Antoniol, “Software project
planning for robustness and completion time in the presence of
uncertainty using multi-objective search based software engineer-
ing,” in Proc. 11th Annu. Genetic Evol. Comput. Conf., 2009,
pp. 1673–1680.

[19] J. Xiao, L. J. Osterweil, Q. Wang, and M. Li, “Dynamic resource
scheduling in disruption-prone software development environ-
ments,” in Proc. 13th Int. Conf. Fundam. Approaches Softw. Eng.,
2010, pp. 107–122.

[20] C. A. Coello Coello, “Evolutionary multiobjective optimization: A
historical view of the field,” IEEE Comput. Intell. Mag., vol. 1, no. 1,
pp. 28–36, Feb. 2006.

[21] M. Hapke, A. Jaszkiewicz, and R. Slowinski, “Fuzzy project sched-
uling system for software development,” Fuzzy Sets Syst., vol. 67,
no. 1, pp. 101–117, 1994.

[22] S. Lazarova-Molnar and R. Mizouni, “A simulation-based
approach to enhancing project schedules by the inclusion of reme-
dial action scenarios,” in Proc. Winter Simul. Conf., 2011, pp. 761–
772.

[23] (2005). Intaver Institute Inc. Software Project Scheduling under
Uncertainties. [Online]. Available: http://www.intaver.com/
Articles/Article_SoftwareProjectManagement.pdf

[24] G. Antoniol, M. Di Penta, andM. Harman, “A robust search-based
approach to project management in the presence of abandonment,
rework, error and uncertainty,” in Proc. 10th Int. Symp. Softw. Met-
rics, 2004, pp. 172–183.

[25] F. Chicano, A. Cervantes, F. Luna, and G. Recio, “A novel multi-
objective formulation of the robust software project scheduling
problem,” in Applications of Evolutionary Computation. New York,
NY, USA: Springer, 2012, pp. 497–507.

[26] B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1981.

[27] L. L. Minku and X. Yao, “Software effort estimation as a multi-
objective learning problem,” ACM Trans. Softw. Eng. Methodol.,
vol. 22, no. 4, art no. 35, Oct. 2013.

[28] K. Deb, M. Mohan, and S. Mishra, “Evaluating the e-domination
based multi-objective evolutionary algorithm for a quick compu-
tation of Pareto-optimal,” Evol. Comput., vol. 13, no. 4, pp. 501–
525, 2005.

[29] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining con-
vergence and diversity in evolutionary multi-objective opti-
mization,” Evol. Comput., vol. 10, no. 3, pp. 263–282, 2002.

[30] X. Shen, and X. Yao, “Mathematical modeling and multi-objective
evolutionary algorithms applied to dynamic flexible job shop
scheduling problems,” Inf. Sci., vol. 298, pp. 198–224, 2015.

[31] J. F€ul€op. (2005). Introduction to Decision Making Methods, Work-
ing Paper 05-6, Lab. Oper. Res. Decision Syst., Comput. Autom.
Inst., Hungarian Acad. Sci., Budapest, Hungary. [Online]. Avail-
able: http://academic.evergreen.edu/projects/bdei/documents/
decisionmakingmethods.pdf

[32] T. L. Saaty, and L. G. Vargas, “Comparison of eigenvalue, loga-
rithmic least squares and least squares methods in estimating
ratios,”Mathematical Modelling, vol. 5, pp. 309–324, 1984.

[33] M. B. Javanbarg, C. Scawthorn, J. Kiyono, and B. Shahbodagh-
khan, “Fuzzy AHP-based multicriteria decision making systems
using particle swarm optimization,” Expert Syst. Appl., vol. 39,
pp. 960–966, 2012.

[34] C. Kim, and R. Langari, “Adaptive analytic hierarchy process-
based decision making to enhance vehicle autonomy,” IEEE Trans.
Veh. Technol., vol. 6, no. 7, pp. 3321–3332, Sep. 2012.

[35] D. P. Bernardon, M. Sperandio, V. J. Garcia, L. N. Canha, A. R.
Abaide, and E. F. B. Daza, “AHP decision-making algorithm to
allocate remotely controlled switches in distribution networks,”
IEEE Trans. Power Del., vol. 26, no. 3, pp. 1884–1892, Jul. 2011.

[36] C. M�esz�aros and T. Rapcs�ak, “On sensitivity analysis for a class of
decision dystems,” Decision Support Syst., vol. 16, pp. 231–240,
1996.

[37] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineer-
ing. Boston, MA, USA: Addison-Wesley, 1995.

[38] L. A. Maciaszek and B. L. Liong, Practical Software Engineering—A
Case Study Approach. Essex, U.K.: Addison-Wesley, 2005.

[39] K. Deb,Multi-Objective Optimization Using Evolutionary Algorithms.
New York, NY, USA: Wiley, 2001.

[40] C. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” IEEE Trans.
Evol. Comput., vol. 13, no. 1, pp. 102–127, Feb. 2009.

[41] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolu-
tionary algorithm test suites,” in Proc. ACM Symp. Appl. Comput.,
1999, pp. 351–357.

[42] E. Zitzler, and L. Thiele, “Multiobjective evolutionary algorithms:
A comparative case study and the strength Pareto approach,”
IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[43] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolu-
tionary algorithm research: A history and analysis,” Dept. Elect.
Comput. iEng., Air Force Inst. Technol., Wright-Patterson AFB,
OH, USA, Tech. Rep. TR-98-03, 1998.

[44] J. R. Schott, “Fault tolerant design using single and multicriteria
genetic algorithm optimization,” Master’s thesis, Dept. Aeronau-
tics Astronautics, Massachusetts Inst. Technol., Cambridge, MA,
USA, 1995.

[45] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
ist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[46] J. Knowles, “A summary-attainment-surface plotting method for
visualizing the performance of stochastic multiobjective opti-
mizers,” in Proc. 5th Int. Conf. Intell. Syst. Design Appl., 2005,
pp. 552–557.

[47] R. Shang, L. Jiao, F. Liu, andW. Ma, “A novel immune clonal algo-
rithm for MO problems,” IEEE Trans. Evol. Comput., vol. 16, no. 1,
pp. 35–50, 2012.

[48] A. Magazinius, S. Borjesson, and R. Feldt, “Investigating inten-
tional distortions in software cost estimation—An exploratory
study,” J. Syst. Softw., vol. 85, pp. 1770–1781, 2012.

[49] M. Jorgensen, K. H. Teigen, and K. Molokken, “Better sure than
safe? Over-confidence in judgement based software development
effort prediction intervals,” J. Syst. Softw., vol. 70, pp. 79–93, 2004.

Xiaoning Shen received the bachelor’s degree in
automation and the PhD degree in control science
and engineering from the Nanjing University of Sci-
ence and Technology, Nanjing, P.R. China, in 2003
and 2008, respectively. She is an associate profes-
sor at B-DAT & CICAEET, School of Information
and Control, Nanjing University of Information Sci-
ence and Technology. Her main research interests
include multiobjective optimization, evolutionary
computation, and its applications on software engi-
neering and dynamic production scheduling.

Leandro L. Minku received the PhD degree in
computer science from the University of Birming-
ham, Birmingham, United Kingdom, in 2010. Dur-
ing his PhD, he was the recipient of the Overseas
Research Students Award (ORSAS) from the Brit-
ish government. He was also invited to a 6-month
internship at Google in 2009/2010. He is currently
a lecturer (assistant professor) at the Department
of Computer Science, University of Leicester,
Leicester, United Kingdom. Prior to that, he was a
research fellow at the University of Birmingham.

His main research interests include computational intelligence for soft-
ware engineering, machine learning in nonstationary environments/data
stream mining, and ensembles of learning machines. His work has been
published in internationally renowned journals such as IEEE Transac-
tions on Software Engineering, ACMTransactions on Software Engineer-
ing and Methodology, IEEE Transactions on Knowledge and Data
Engineering, and Neural Networks. He has been invited to give keynotes
and tutorials in his research topics. He is a member of the IEEE.

SHEN ETAL.: DYNAMIC SOFTWARE PROJECT SCHEDULING THROUGH A PROACTIVE-RESCHEDULING METHOD 685

Rami Bahsoon received the PhD degree in soft-
ware engineering from University College London
for his research on evaluating software architec-
ture stability using real options and he attended
London Business School for MBA-level studies in
technology strategy and dynamics. He is a senior
lecturer in software engineering (associate pro-
fessor) and leads the software engineering for/in
the Cloud Interest group at the University of
Birmingham, Birmingham, United Kingdom. The
group’s research aims at developing architecture

and frameworks to support and reason about dependable complex soft-
ware systems, where the investigations span cloud computing architec-
tures and their economics. He published extensively in the area of
economics-driven software engineering, cloud software engineering,
and utility computing and coedited a book on Software Architecture and
Software Quality and another on Economics-Driven Software Architec-
ture (published by Elsevier).

Xin Yao is a professor of computer science and
the director of CERCIA (the Centre of Excellence
for Research in Computational Intelligence and
Applications) at the University of Birmingham, Bir-
mingham, United Kingdom. His major research
interests include evolutionary computation,
ensemble learning, and their applications in soft-
ware engineering. In particular, he has been work-
ing on software effort estimation and software
defect prediction using advanced machine learn-
ing algorithms and on software project scheduling

in dynamic environments. He is a fellow of the IEEE and a distinguished
lecturer of the IEEE Computational Intelligence Society (CIS). His
received the 2001 IEEE Donald G. Fink Prize Paper Award, 2010 and
2015 IEEE Transactions on Evolutionary Computation Outstanding
Paper Awards, 2010 BTGordon Radley Award for Best Author of Innova-
tion (Finalist), 2011 IEEE Transactions on Neural Networks Outstanding
Paper Award, and many other best paper awards. He received the presti-
gious Royal Society Wolfson Research Merit Award in 2012 and the IEEE
CIS Evolutionary Computation Pioneer Award in 2013. He was the Presi-
dent (2014-2015) of IEEE CIS, and the editor-in-chief (2003-2008) of the
IEEE Transactions on Evolutionary Computation.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

686 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 7, JULY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

