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ON SPECIAL CASES OF THE GENERALIZED MAX-PLUS
EIGENPROBLEM∗

PETER BUTKOVIČ† AND DANIEL JONES‡

Abstract. We study the generalized eigenproblem A ⊗ x = λ ⊗ B ⊗ x, where A,B ∈ Rm×n

in the max-plus algebra. It is known that if A and B are symmetric, then there is at most one
generalized eigenvalue, but no description of this unique candidate is known in general. We prove
that if C = A − B is symmetric, then the common value of all saddle points of C (if any) is the
unique candidate for λ. We also explicitly describe the whole spectrum in the case when B is an outer
product. It follows that when A is symmetric and B is constant, the smallest column maximum of
A is the unique candidate for λ. Finally, we provide a complete description of the spectrum when
n = 2.
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1. Introduction. We start with four motivational examples. They are all vari-
ants of a model called the multiprocessor interactive system.

Example 1. Products P1, . . . , Pm are prepared using n processors, with every pro-
cessor potentially contributing to the completion of each product. It is assumed that
every processor can work for all products simultaneously and that all these actions
on a processor start as soon as the processor starts to work. Let aij be the dura-
tion of the work of the jth processor needed to complete the partial product for Pi
(i = 1, . . . ,m; j = 1, . . . , n). Let us denote by xj the starting time of the jth processor
(j = 1, . . . , n). Then all partial products for Pi (i = 1, . . . ,m) will be ready at time

max(x1 + ai1, . . . , xn + ain).

Hence if b1, . . . , bm are given completion times of the products that have to be met
exactly, then the starting times have to satisfy the system of equations

max(x1 + ai1, . . . , xn + ain) = bi, ∀ i = 1, . . . ,m.

If we denote a⊕ b = max(a, b) and a⊗ b = a+ b, and the pair of operations (⊕,⊗) is
extended to matrices and vectors in the same way as in linear algebra, then this can
be written as a compact equation:

(1) A⊗ x = b.

The matrix A = (aij) is called the production matrix.
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GENERALIZED MAX-PLUS EIGENPROBLEM 1003

Example 2. Consider the system in which processors P1, . . . , Pn work interac-
tively and in stages. In each stage all processors simultaneously produce components
necessary for the work of some or all of the other processors in the next stage. Let
xi(k) denote the starting time of the kth stage on Pi (i = 1, . . . , n), and let aij denote
the duration of the operation at which processor Pj prepares the component necessary
for processor Pi in the (k + 1)st stage (i, j = 1, . . . , n). Then, avoiding any delay, we
have

(2) xi(k + 1) = max(x1(k) + ai1, . . . , xn(k) + ain) (i = 1, . . . , n; k = 0, 1, . . .).

In the max-algebraic notation, (2) gets the form

xi(k + 1) = ai1 ⊗ x1(k)⊕ · · · ⊕ ain ⊗ xn(k) (i = 1, . . . , n; k = 0, 1, . . .).

or, in the matrix-vector form,

x(k + 1) = A⊗ x(k) (k = 0, 1, . . .).

We say that the system reaches a steady regime [15], [16] if it eventually moves forward
in regular steps; that is, for some λ and k0 we have x(k+ 1) = λ⊗x(k) for all k ≥ k0.
Equivalently, the time between the starts of consecutive stages will eventually stabilize
and be the same constant for every processor. If this happens, then we have

A⊗ x(k) = λ⊗ x(k) ∀ k ≥ k0,

and so x (k) is a max-plus eigenvector of A with associated eigenvalue λ.

Example 3. Now suppose that in addition to the assumption of Example 1, k
other machines independently prepare partial products for products Q1, . . . , Qm, and
the duration and starting times are bij and yj , respectively. Then the synchronization
problem is to find starting times of all n + k machines so that each pair (Pi, Qi)
(i = 1, . . . ,m) is completed at the same time. This task is equivalent to solving the
system of equations

(3) max(x1 + ai1, . . . , xn + ain) = max(y1 + bi1, . . . , yk + bik) (i = 1, . . . ,m) .

Again, using max-algebra and denoting K = {1, . . . , k} we can write this system as a
system of max-linear equations:

(4)
∑
j∈N

⊕
aij ⊗ xj =

∑
j∈K

⊕
bij ⊗ yj (i = 1, . . . ,m).

In the matrix-vector notation it has the form

A⊗ x = B ⊗ y

or, specifically,
A⊗ x = B ⊗ x.

Example 4. A variant of (3) is the task when n = k and the starting times are
linked; for instance, it is required that they be the same or, more generally, that there
be a fixed interval between the starting times of the first and second systems; that
is, the starting times xj , yj of each pair of machines differ by the same value. If we
denote this (unknown) value by λ, then y = λ⊗ x and the equations read

(5) max(x1 + ai1, . . . , xn + ain) = max(λ+ x1 + bi1, . . . , λ+ xn + bin)
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1004 PETER BUTKOVIČ AND DANIEL JONES

for i = 1, . . . ,m. In max-algebraic notation, this system gets the form of a “generalized
eigenproblem”:

A⊗ x = λ⊗B ⊗ x.

The examples above give rise to the following systems:

(6) A⊗ x = b,

(7) A⊗ x = λ⊗ x,

(8) A⊗ x = B ⊗ x,

and

(9) A⊗ x = λ⊗B ⊗ x.

Systems (6) are historically the first problem studied in max-algebra [14], and
their solution set can easily be described [12] both algebraically (using residuation)
and combinatorially (in terms of set coverings; see below). For the origins of max-
algebra see also [26], [28], and [22].

Systems (7) have also been intensively studied since the 1960s [15] (see also [22],
[19]). It is known [19], [13], [12] that every n× n matrix over R∪{−∞} has up to n
eigenvalues, with the maximum cycle mean of A always being a (biggest) eigenvalue.
All eigenvalues and bases of all eigenspaces can be found in O

(
n3
)

time.
Systems (8) have been studied since 1978 [7], [8], [9], [10], [11]. It has been

proved that the solution set is finitely generated [10]. These systems have been shown
to be equivalent to mean payoff games [2]. A number of solution methods exist [17],
[20], [3], [27]. Although none of them is polynomial, this problem is known to be in
NP ∩ co−NP [5], and it is therefore expected that eventually a polynomial solution
method will be found.

Systems (9) for fixed λ reduce to (8), so the effort is usually concentrated on
finding the spectrum. In contrast to (7), no polynomial method seems to be known
in general for finding even a single eigenvalue or deciding whether such a value exists.
The task of finding the spectrum is made more complicated by the fact that on one
hand, there may be no eigenvalue at all, and on the other hand, there is no upper
limit for the number of eigenvalues—there may even be a continuum of them, and
any union of closed intervals is the spectrum for some generalized eigenproblem [25].
Nevertheless, there is a pseudopolynomial method for finding the whole spectrum
based on Newton-type iterations [21]. This problem was studied for the first time
independently in [6] and [18] and then by many other authors. A fast method for
narrowing the search for a generalized eigenvalue is presented in [12, section 9.3].

Paper [6] presents a number of conditions that are either necessary or sufficient for
the existence of either a solution or a unique solution to (9). In particular, it follows
that there is at most one generalized eigenvalue if A and B are finite and symmetric.
The paper also includes specific conditions and a graphical method for 2×2 matrices.

Note that systems (6)–(9) may be considered over R∪{−∞} . The aim of the
present paper is to study the spectrum of (9) for finite matrices (that is, matrices
over R), more precisely, we do the following:

(a) We prove that if C = A−B is symmetric, then the common value of all saddle
points of C (if any) is the unique candidate for λ (section 3).

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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GENERALIZED MAX-PLUS EIGENPROBLEM 1005

(b) We explicitly describe the whole spectrum provided that B is an outer product
(section 4).

(c) We show that it follows that when A is symmetric and B is constant, the
smallest column maximum of A is the unique candidate for λ (section 4).

(d) Finally, we provide an alternative, algebraic description of the whole spectrum
and eigenspaces when x is two-dimensional (section 5).

2. Prerequisites. In this section we give the definitions and some basic results
which will be used in the formulations and proofs of our results. For the proofs and
more information about max-algebra, the reader is referred to [1], [4], [12], and [23].

We assume everywhere that m,n ≥ 1 are natural numbers and denote M =
{1, . . . ,m} and N = {1, . . . , n} ; the symbol R stands for R ∪ {−∞}. We use the
conventions max ∅ = −∞ and min ∅ = +∞.

It will be useful to first recall a simple property of matrices, well known in the the-
ory of matrix games. Let A = (aij) ∈ Rm×n, and denote v1 (A) = maxi∈M minj∈N aij
(usually called “gain-floor”) and v2 (A) = minj∈N maxi∈M aij (“loss-ceiling”). A pair
(r, s) ∈M ×N is called a saddle point in A if

max
i∈M

ais = ars = min
j∈N

arj .

Theorem 5 (see [24]). The inequality v1 (A) ≤ v2 (A) holds for every A ∈ Rm×n.
The equality holds if and only if there is a saddle point in A. If (r, s) is any saddle
point, then v1 (A) = ars = v2 (A) (and this value is called the value of the game A).

We will use the following notation:

Mj (A) =

{
r ∈M ; arj = max

i∈M
aij

}
, j ∈ N,

Ni (A) = {j ∈ N ; i ∈Mj (A)} , i ∈M.

We will also write Mj , Ni instead of Mj (A) , Ni (A) if no confusion can arise. The
following will be useful.

Proposition 6.
⋃
j∈N Mj = M if and only if Ni 6= ∅ for every i ∈M.

Proof. The proof is straightforward from the definitions.

If a, b ∈ R, then we set
a⊕ b = max(a, b)

and
a⊗ b = a+ b.

Throughout the paper we denote −∞ by ε (the neutral element with respect to ⊕),
and for convenience we also denote by the same symbol any vector with all components
−∞, and a matrix with all entries −∞. If a ∈ R, then the symbol a−1 stands for −a.
The symbol ak (k ≥ 1 integer) stands for the iterated product a ⊗ a ⊗ · · · in which
the symbol a appears k times (that is, ka in conventional notation). By max-algebra
(recently also called “tropical linear algebra”) we understand the analogue of linear
algebra developed for the pair of operations (⊕,⊗), extended to matrices and vectors
as in conventional linear algebra. That is, if A = (aij), B = (bij), and C = (cij) are
matrices of compatible sizes with entries from R, we write C = A⊕B if cij = aij⊕bij
for all i, j ∈ N and write C = A⊗B if

cij =
⊕
k∈N

aik ⊗ bkj = max
k

(aik + bkj)

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1006 PETER BUTKOVIČ AND DANIEL JONES

for all i and j ∈ N . If α ∈ R, then α ⊗ A = (α⊗ aij). Although the use of the
symbols ⊗ and ⊕ is common in max-algebra, we will apply the usual convention of
not writing the symbol ⊗. Thus, in what follows the symbol ⊗ will not be used and,
unless explicitly stated otherwise, all multiplications indicated are in max-algebra.

A vector or matrix is called finite if all its entries are real numbers. A square
matrix is called diagonal if all its diagonal entries are real numbers and off-diagonal
entries are ε. More precisely, if x = (x1, . . . , xn)

T ∈ Rn, then diag (x1, . . . , xn) or just
diag (x) is the n× n diagonal matrix

x1 ε ... ε
ε x2 ... ε
...

...
. . .

...
ε ε ... xn

 .

The matrix diag (0) is called the unit matrix and denoted by I. Obviously, AI =
IA = A whenever A and I are of compatible sizes. A matrix obtained from a diago-
nal matrix (unit matrix) by permuting the rows and/or columns is called a generalized
permutation matrix (permutation matrix). It is known that in max-algebra, general-
ized permutation matrices are the only type of invertible matrices [16], [12]. Clearly,

(diag (x1, . . . , xn))
−1

= diag
(
x−11 , . . . , x−1n

)
.

The following theorem is probably the historically first result in max-algebra; here

we denote the following for A ∈ Rm×n and b ∈ Rn:

S (A, b) =
{
x ∈ Rn;Ax = b

}
.

Theorem 7 (see [14], [12]). If A ∈ Rm×n is a matrix with no ε columns, b ∈ Rm,

and B = (diag (b))
−1
A, then S(A, b) 6= ∅ if and only if

⋃
j∈N Mj (B) = M.

Corollary 8. If A ∈ Rm×n is a matrix with no ε columns, b ∈ Rm, and B =
(diag (b))

−1
A, then S(A, b) 6= ∅ if and only if Ni (B) 6= ∅ for every i ∈M.

Proposition 9. If b ∈ Rm is a constant vector, then Mj (A) = Mj (B) for all
j ∈ N and, consequently, also Ni (A) = Ni (B) for all i ∈M.

Proof. The proof is straightforward from the definitions.

Suppose that A = (aij) ∈ Rm×n and B = (bij) ∈ Rm×n are given. The generalized

eigenproblem for (A,B) is the task of finding x ∈ Rn, x 6= ε (generalized eigenvector
or just eigenvector) and λ ∈ R (generalized eigenvalue or just eigenvalue) such that

(10) Ax = λBx.

Note that the case λ = ε is trivial and is not discussed here. We denote

V (A,B, λ) =
{
x ∈ Rn;Ax = λBx, x 6= ε

}
,

Λ (A,B) = {λ ∈ R;V (A,B, λ) 6= ∅} .

The set Λ (A,B) will be called the spectrum of the pair (A,B) . In the rest of the
paper we will assume that A,B ∈ Rm×n. It is easy to see that then a generalized
eigenvector exists if and only if a finite generalized eigenvector exists. Note that some

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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GENERALIZED MAX-PLUS EIGENPROBLEM 1007

statements remain valid if the finiteness requirement is removed or replaced by the
condition that there are no ε columns.

The next two statements have previously been proved and provide useful infor-
mation about the spectrum. Here and in the rest of the paper we denote

C = A−B = (cij) ,

λ (C) = max
i∈M

min
j∈N

cij ,

and
λ (C) = min

i∈M
max
j∈N

cij .

We will use shorthand λ or λ if no confusion can arise.

Proposition 10 (see [12]). Λ (A,B) ⊆
[
λ, λ

]
holds for any A,B ∈ Rm×n.

The interval
[
λ, λ

]
will be called the feasibility interval for the generalized eigen-

problem.
The following statement follows from the results in [6].

Proposition 11. If A,B ∈ Rn×n are symmetric, then |Λ (A,B)| ≤ 1.

This paragraph presents a sketch of a numerical method of [21] for solving the
generalized eigenproblem for arbitrary matrices A and B. However, it will not be used
in this paper and may be skipped. The method is based on the following idea. Let
us define (see [16]) min-algebra over R ∪ {+∞} by

a⊕′ b = min(a, b)

and
a⊗′ b = a⊗ b

for all a and b except when one of a and b is +∞ and the other −∞. In this case,

+∞⊗−∞ = −∞⊗+∞ = −∞

but
+∞⊗′ −∞ = −∞⊗′ +∞ = +∞.

We also define A# = −AT . As in max-algebra, we extend the pair of operations
(⊕′,⊗′) to matrices and vectors. We will not write the operator ⊗′, and for matrices
the convention applies that the product is in min-algebra whenever it follows the
symbol #; otherwise it is in max-algebra. In this way a residuated pair of operations
(a special case of Galois connection) has been defined, namely,

Ax ≤ y ⇐⇒ x ≤ A#y,

for all x, y. Due to isotonicity, Ax ≤ y implies A(A#y) ≤ y, and it follows immediately
that a one-sided system A ⊗ x = b has a solution if and only if A

(
A#b

)
= b. It will

be convenient to denote PA (z) = A
(
A#z

)
for any A and z. Thus, finding a solution

to a two-sided system with separated variables A⊗ x = B⊗ y then means finding a z
such that PAPB (z) = z = PBPA (z) or, equivalently, PAPB (z)⊕′ PBPA (z) = z. The
system A⊗ x = λ⊗B ⊗ x is equivalent to

C (λ)x = Dy,

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1008 PETER BUTKOVIČ AND DANIEL JONES

where

C (λ) =

(
A

λ+B

)
, D =

(
I

I

)
,

and I is a unit matrix of an appropriate size. The function

hλ (x) =
(
λ⊕A#Bx

)
⊕′
(
−λ+B#Ax

)
is an order-preserving, additively homogeneous and continuous map. As such, it has
a largest “eigenvalue”

r (hλ) = max {ρ;hλ (x) = ρ+ x} .

It is proved that Λ (A,B) coincides with

{λ; r (hλ) = 0} .

It is also proved that the function s (λ) = r (hλ) is piecewise-linear and Lipschitz
continuous, and therefore in the case of integer matrices A and B its zero-level set
can be found by a pseudopolynomial number of calls to an oracle that computes the
value of a mean payoff game.

3. Generalized eigenproblem for symmetric matrices with saddle point.
Note that in general even if the premise of Proposition 11 is satisfied, it is not clear
what the unique candidate for the generalized eigenvalue is, and even if such a candi-
date is known, it is not clear how to check in polynomial time whether it is such an
eigenvalue.

Let C ∈ Rm×n be any matrix. Clearly, λ (C) coincides with v1 (C) . Although in
general λ (C) is different from v2 (C) we observe that for CT = (cji) =

(
c′ij
)

we have

λ = min
i∈M

max
j∈N

cij

= min
j∈M

max
i∈N

cji

= min
j∈M

max
i∈N

c′ij

= v2
(
CT
)
.

Hence λ (C) = v1 (C) and λ (C) = v2 (C) if C is symmetric, in particular, when
C = A − B and both A and B are symmetric. Thus, if C is symmetric and has a
saddle point, say (r, s) , then λ = ars = λ and so either ars is the unique generalized
eigenvalue or there is no such eigenvalue. The next two examples confirm that both
cases are possible.

Example 12. If

A =

(
2 1
1 0

)
, B =

(
0 0
0 0

)
,

then C = A is symmetric and has saddle point (1, 2) of value 1, which is therefore the
unique candidate for a generalized eigenvalue. If there was an associated eigenvector
x = (x1, x2)

T
, we may assume without loss of generality x1 = 0, and the individual

terms in Ax and λBx are as described in the following matrices:(
2 1 + x2
1 x2

)
,

(
1 1 + x2
1 1 + x2

)
.

The first equation implies 1 + x2 ≥ 2 and the second 1 + x2 ≤ 1; thus Λ (A,B) = ∅.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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GENERALIZED MAX-PLUS EIGENPROBLEM 1009

Example 13. If

A =

(
0 0
1 0

)
, B =

(
−2 −1

0 0

)
,

then C is the same as in the previous example and so λ = 1 is the unique candidate for
a generalized eigenvalue. Now the zero vector x = (0, 0)

T
is an associated eigenvector,

and thus Λ (A,B) = {1} .
The following example shows that Λ (A,B) may be nonempty even if C is sym-

metric and has no saddle point.

Example 14. If

A =

(
1 2
3 1

)
, B =

(
1 0
1 0

)
,

then

C =

(
0 2
2 1

)
is a symmetric matrix without a saddle point, but λ = 2 is a generalized eigenvalue
with associated eigenvector x = (0, 1)

T
.

We summarize as follows.

Theorem 15. If A,B ∈ Rn×n, C = A− B is a symmetric matrix with a saddle
point (r, s), and Λ (A,B) 6= ∅, then crs is the unique generalized eigenvalue for (A,B) .

The authors are not aware of any polynomial method for checking that the saddle
point value of A−B is a generalized eigenvalue of (A,B).

4. Generalized eigenproblem when B is an outer product. Let us con-
sider the generalized eigenproblem (10), where B is a (max-algebraic) outer product

of two vectors, say v = (v1, . . . , vm)
T ∈ Rm and w = (w1, . . . , wn)

T ∈ Rn. Thus, we
can write

B = (bij) = vwT = (vi + wj) .

Let V = diag (v) and W = diag (w) . Then (10) reads

Ax = λvwTx

and is equivalent to

V −1Ax = λV −1Bx

or

V −1Ax = λ

 0
...
0

wTx.

Set x = W−1y, where y = (y1, . . . , yn)
T

; then (10) is equivalent to

V −1AW−1y = λ

 0
...
0

 (y1 ⊕ y2 ⊕ · · · ⊕ yn) .
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1010 PETER BUTKOVIČ AND DANIEL JONES

Here the right-hand side is actually equal to

λ

 0 · · · 0
...

. . .
...

0 · · · 0

 y,

and thus in system (10) with B an outer product it can be assumed without loss of
generality that B is a zero matrix (a matrix with all entries equal to 0). In such
a system the right-hand side of each equation is λ (x1 ⊕ x2 ⊕ · · · ⊕ xn), and thus an
x 6= ε satisfying Ax = λ0x exists if and only if there is a z ∈ R satisfying

(11) A′x =

 z
...
z

 ,

where A′ is obtained from A by adding an extra row whose every entry is λ, that is,

A′ =

(
A

λ . . . λ

)
=
(
a′ij
)
.

Clearly, A′ is an (m+ 1)×n matrix. Theorem 7 and Proposition 9 enable us to solve
such systems, and we use them in the next two propositions. It will be useful to
denote

M ′ = M ∪ {m+ 1} ,

M ′j =

{
r ∈M ′; a′rj = max

i∈M ′
a′ij

}
, j ∈ N,

and
N ′i =

{
j ∈ N ; i ∈M ′j

}
, i ∈M ′.

Proposition 16. Let A ∈ Rm×n. Then λ ∈ Λ (A, 0) if and only if
⋃
j∈N M

′

j =
M ′.

Proof. The proof follows straightforwardly from the previous discussion, Theorem
7, and Proposition 9.

Proposition 17. Λ (A, 0) ⊆ [λ0, λ1] holds for every A = (aij) ∈ Rm×n, where

λ0 = min
j∈N

max
i∈M

aij and

λ1 = max
j∈N

max
i∈M

aij .

Proof. A real number λ is in Λ (A, 0) if and only if the system (11) has a solution
for some z ∈ R. This is a one-sided system whose solvability does not depend on z
because the right-hand side is a constant vector. The solvability criterion is given in
Theorem 7. We apply this condition to A′ using Proposition 9, first to each of the
first m rows and then to the last row:

(12) (∀i ∈M) (∃j ∈ N) (∀r ∈M) aij ≥ arj ⊕ λ

and

(13) (∃j ∈ N) (∀i ∈M)λ ≥ aij .
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GENERALIZED MAX-PLUS EIGENPROBLEM 1011

The latter is equivalent to λ ≥ minj∈N maxi∈M aij , which proves the lower bound.
The first is equivalent to the requirement that for every i ∈ M there exists a j ∈ N
satisfying

aij ≥ max
r∈M

arj ⊕ λ.

Since
max
r∈M

arj ⊕ λ ≥ max
r∈M

arj ≥ aij ,

it follows that
aij = max

r∈M
arj ⊕ λ = max

r∈M
arj

and λ ≤ maxr∈M arj ≤ maxj∈N maxi∈M aij , which proves the upper bound.

Proposition 17 does not provide any tool for checking whether Λ (A, 0) is nonempty.
We give this answer next.

Proposition 18. The following statements are equivalent for every A = (aij) ∈
Rm×n:

(a) Λ (A, 0) 6= ∅,
(b)

⋃
j∈N Mj = M,

(c) Ni (A) 6= ∅ for every i ∈M, and
(d) λ0 ∈ Λ (A, 0) .

Proof. The equivalence of (b) and (c) has been shown in Proposition 6. We prove
(b) ⇒ (d) ⇒ (a) ⇒ (b). Suppose (b) is true. There is an index k ∈ N such that

λ0 = max
i∈M

aik ≤ max
i∈M

aij

holds for every j ∈ N. Hence, for λ = λ0 and for every j ∈ N we have Mj ⊆M ′j and
m+ 1 ∈M ′k. It follows that⋃

j∈N
M ′j ⊇

⋃
j∈N

Mj ∪ {m+ 1} = M ∪ {m+ 1} = M ′,

and thus ⋃
j∈N

M ′j = M ′,

and so (11) has a solution for λ = λ0, which proves (d) by Proposition 16.
The second implication is trivial, so suppose now that λ ∈ Λ (A, 0) . Hence, (11)

has a solution with this value of λ, and thus
⋃
j∈N M

′
j = M ′. Let i ∈ M ; then

i ∈ M ′j for some j ∈ N and therefore also i ∈ Mj because for any j ∈ N the set M ′j
either coincides with Mj or is Mj ∪ {m+ 1} or is just {m+ 1} . Statement (b) now
follows.

Corollary 19. If A ∈ Rn×n is symmetric, then either Λ (A, 0) is empty or {λ0} .
Proposition 18 shows that the lower bound for the spectrum specified in Proposi-

tion 17 is tight for every matrix with nonempty spectrum. In general this is not true
about the upper bound. For instance, if

A =

(
1 0
0 2

)
, B = 0,

then C = A is symmetric, and so Λ (A,B) = {1} by Proposition 18 and Corollary 19.
However, λ1 = 2 > 1.
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1012 PETER BUTKOVIČ AND DANIEL JONES

In order to give exact bounds we now introduce the following:

L = min
i∈M

min
j∈Ni

aij

and
U = min

i∈M
max
j∈Ni

aij .

Proposition 20. L = λ0 for any A ∈ Rm×n.
Proof. There exist r ∈M and s ∈ N such that

λ0 = min
j∈N

max
i∈M

aij = max
i∈M

ais = ars.

So ars is the smallest column maximum in A. Let k ∈M. The quantity minl∈Nk
akl is

the smallest of all column maxima appearing in row k of A (recall that this value is +∞
if Nk = ∅). Hence minl∈Nk

akl ≥ ars, and therefore also L = mink∈M minl∈Nk
akl ≥

ars = λ0.
On the other hand, L = mink∈M minl∈Nk

akl ≤ minl∈Nr arl = ars = λ0.

Proposition 21. Λ (A, 0) ⊆ [L,U ] holds for every A = (aij) ∈ Rm×n and
{L,U} ⊆ Λ (A, 0) whenever Λ (A, 0) 6= ∅.

Proof. The lower bounds in Propositions 17 and 21 coincide by Proposition 20,
so we need only prove the upper bound and its tightness. Suppose without loss
of generality that Λ (A, 0) 6= ∅ and so Ni 6= ∅ for every i ∈ M. Let λ = U =
mini∈M maxj∈Ni aij . Then λ = maxi∈M ais for some s ∈ N, and thus m + 1 ∈ M ′s.
At the same time if r ∈M, then maxj∈Nr

arj ≥ mini∈M maxj∈Ni
aij = λ. Therefore,

r ∈M ′j for some j ∈ Nr. This shows that U ∈ Λ (A, 0) by Proposition 16.
Suppose now that λ > U. Then λ > maxj∈Ni

aij for some i ∈M. Hence, λ > aij
for all j ∈ Ni and so i /∈ M ′j for all j ∈ Ni. Since also i /∈ Mj for all j /∈ Ni and
Mj ⊆ M ′j for every j ∈ Ni, we have that i /∈ Mj for all j ∈ N, and thus λ /∈ Λ (A, 0)
by Proposition 18.

Theorem 22. Λ (A, 0) = [L,U ] holds for every A = (aij) ∈ Rm×n.
Proof. If Λ (A, 0) = ∅, then by Proposition 18 Ni = ∅ for some i ∈ M and so

U = −∞, L = +∞, and [L,U ] = ∅.
Suppose now Λ (A, 0) 6= ∅. Due to Proposition 21 we may also assume that L < U,

and we need only prove that (L,U) ⊆ Λ (A, 0) . Let λ ∈ (L,U) . If i ∈ M, then
λ < U ≤ maxj∈Ni

aij = ait for some t ∈ Ni. Hence, i ∈Mt = M ′t and so i ∈
⋃
j∈N M

′
j .

On the other hand, λ > L ≥ ars, where r ∈ M, s ∈ Nr, hence λ = maxi∈M ′ a′is, and
thus m+1 ∈M ′s. We conclude that

⋃
j∈N M

′
j = M ′ and so λ ∈ Λ (A, 0) by Proposition

16.

5. Two-dimensional generalized eigenproblem. In this section we give a
complete description of the spectrum of (A,B) and all eigenspaces, where A,B ∈
Rm×2.

The case when x1 = ε reduces the generalized eigenproblem to the question
of whether the second columns of A and B are proportional (and the coefficient of
proportionality is then the unique generalized eigenvalue). This holds similarly for
x2 = ε, so we will restrict our attention to the task of finding finite x. By homogeneity
of V (A,B, λ) we can assume that x1 = 0. We will therefore study the one-variable
problem

(14) ai1 ⊕ ai2x2 = λbi1 ⊕ λbi2x2, i ∈M.
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GENERALIZED MAX-PLUS EIGENPROBLEM 1013

Before we answer the main question, we will show in subsection 5.1 how to find
all solutions of two-sided systems

(15) Ax = Bx, x ∈ R2

for A,B ∈ Rm×2, and then in subsection 5.2 we show how to solve (14) for m = 2.
The following technical lemma will be useful.

Lemma 23 (cancellation rule). Let v, w, a, b ∈ R, a < b. Then for any real x we
have

v ⊕ ax = w ⊕ bx
if and only if

v = w ⊕ bx.
Proof. The proof is straightforward; see also [12, Lemma 7.4.1].

This section can be seen as an independent generalization of the results for 2× 2
matrices in [6] to m× 2 matrices.

5.1. Two-dimensional two-sided systems. Suppose that a system

(16) ai1 ⊕ ai2x2 = bi1 ⊕ bi2x2; i ∈M

is given (as explained before, x1 = 0 is assumed without loss of generality). Let us
denote

Vi = {x2 ∈ R; ai1 ⊕ ai2x2 = bi1 ⊕ bi2x2} , i ∈M,

and V =
⋂
i∈M Vi.

We will explicitly describe each Vi. Let us apply the cancellation rule of Lemma
23 to (16). For every i ∈M there are either two, or one, or no cancellations.

(i) If there is no cancellation, then

ai1 = bi1 and ai2 = bi2

and so Vi = R.
(ii) If there is exactly one cancellation, then we can assume without loss of gen-

erality that it takes place on the left-hand side, and we consider two cases.
Either ai1 < bi1 and ai2 = bi2 so that (16) reduces to

ai2x2 = bi1 ⊕ ai2x2

yielding Vi = [a−1i2 bi1,+∞), or ai1 = bi1 and ai2 < bi2 so that (16) reduces to

ai1 = ai1 ⊕ bi2x2

yielding Vi = (−∞, ai1b−1i2 ].
(iii) If there are two cancellations and they take place on the same side, then this

side becomes ε yielding Vi = ∅. If the two cancellations take place on different sides,
then either ai1 > bi1 and ai2 < bi2 so that (16) reduces to

ai1 = bi2x2

yielding Vi =
{
ai1b

−1
i2

}
, or ai1 < bi1 and ai2 > bi2 yielding similarly Vi =

{
a−1i2 bi1

}
.

Since each Vi obtained above is a closed interval (including possibly a singleton
or empty set) and can be found in a constant number of operations, the intersection
V =

⋂
i∈M Vi is also a closed interval (including possibly a singleton or empty set)

and can be found in O (m) time.
We conclude with the following.
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1014 PETER BUTKOVIČ AND DANIEL JONES

Proposition 24. The solution set to (15) is of the form{
α (0, x2)

T
;α ∈ R, x2 ∈ V

}
,

where V is a closed interval (including possibly a singleton or empty set) and can be
found in O (m) time as described above.

5.2. Generalized eigenproblem for 2 × 2 matrices. Our aim in this sub-
section is to describe the whole spectrum for the 2× 2 generalized eigenproblem

a11 ⊕ a12x2 = λb11 ⊕ λb12x2,(17)

a21 ⊕ a22x2 = λb21 ⊕ λb22x2,

where all aij and bij are real numbers.
This is a very special case, already solved in [6], but it will be of key importance

for solving the general two-dimensional case in the next subsection. We use a different
methodology from that in [6] for solving the general case in subsection 5.3.

Recall that by Proposition 10, Λ (A,B) ⊆
[
λ, λ

]
(see section 2). Both λ and λ

can easily be found (in O (mn) time). We will therefore assume that λ < λ, since
otherwise we have Λ (A,B) = ∅ (if λ > λ), or λ = λ is the unique candidate for a value
in Λ (A,B), and this can be verified easily, for instance, using the tools of subsection
5.1. We will distinguish four cases and describe the spectrum in each of them. The
feasibility interval

[
λ, λ

]
has exactly one of the forms

[max (c11, c21) ,min (c12, c22)] ,

[max (c12, c22) ,min (c11, c21)] ,

[max (c11, c22) ,min (c12, c21)] ,

[max (c12, c21) ,min (c11, c22)] .

Note that the first case can be equivalently described by inequalities c11<c12, c21<
c22; this holds similarly for the other cases. The first two cases can be transformed
into each other by swapping the variables x1 and x2 and similarly for the last two
cases. So we essentially have only two cases. In fact we will deal only with the third
(and thus also with the fourth) case as the first (two) will be covered by the discussion
in subsection 5.3.

In what follows we denote

γ2 = a12a21b
−1
11 b
−1
22 .

Proposition 25. If c11 < c12, c22 < c21, and λ < λ, then Λ (A,B) = {γ̂} , where
γ̂ is the unique projection of γ onto

[
λ, λ

]
, that is,

γ̂ =


λ if γ ≤ λ,
γ if γ ∈

(
λ, λ

)
,

λ if γ ≥ λ.

Proof. Note first that by the assumptions, we have λ = max (c11, c22) and λ =
min (c12, c21) . Let us denote

S =
(
λ, λ

)
∩ Λ (A,B) .
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GENERALIZED MAX-PLUS EIGENPROBLEM 1015

It is sufficient to prove the following statements:
(i) S 6= ∅ =⇒ S = {γ} ,
(ii) γ ∈

(
λ, λ

)
=⇒ γ ∈ S,

(iii) γ ∈
(
λ, λ

)
=⇒ λ, λ /∈ Λ (A,B) ,

(iv) γ ≤ λ =⇒ Λ (A,B) = {λ} , and
(v) γ ≥ λ =⇒ Λ (A,B) =

{
λ
}
.

In order to prove (i) suppose λ ∈ S. Hence, we have

c11, c22 < λ < c12, c21,

and thus (using cij = aijb
−1
ij )

a11 < λb11, a12 > λb12,

a22 < λb22, a21 > λb21.

Using the cancellation rule of Lemma 23 in this case, system (17) reduces to

(18)
a12x2 = λb11
a21 = λb22x2

}
.

So x2 = λb11a
−1
12 and x2 = λ−1a21b

−1
22 , from which λ = γ follows.

(ii) Suppose γ ∈
(
λ, λ

)
and put λ = γ. By taking x2 = λb11a

−1
12 = λ−1a21b

−1
22 , we

see that λ ∈ Λ (A,B) .
(iii) Suppose that γ ∈

(
λ, λ

)
and λ = λ ∈ Λ (A,B) . If c11 < c22, then

c11 < c22 = λ < c12, c21

and thus,

a11 < λb11, a12 > λb12,

a22 = λb22, a21 > λb21.

By cancellations and substituting λb22 for a22, system (17) reduces to

(19)
a12x2 = λb11

a21 ⊕ λb22x2 = λb22x2

}
.

So x2 = λb11a
−1
12 and x2 ≥ λ−1a21b−122 , from which λ2 ≥ γ2, a contradiction.

A contradiction is obtained in a similar way when c11 > c22 or c11 = c22.
The case of λ = λ ∈ Λ (A,B) is dealt with in a similar way.
(iv) Suppose γ ≤ λ. Due to (i) it is sufficient to prove that λ ∈ Λ (A,B) and

λ /∈ Λ (A,B) . Let λ = λ. It is easily verified that x2 is a solution to (17), where

x2 =


λb11a

−1
12 if c11 < c22,

λ−1a21b
−1
22 if c11 > c22, and

any value in
[
a11a

−1
22 , a11a

−1
12

]
if c11 = c22.

Let λ = λ and suppose c12 < c21. Then λ > γ and

c11, c22 < λ = c12 < c21
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1016 PETER BUTKOVIČ AND DANIEL JONES

and thus,

a11 < λb11, a12 = λb12,

a22 < λb22, a21 > λb21.

By cancellations and substituting λb12 for a12, system (17) reduces to

(20)
a12x2 = λb11 ⊕ a12x2
a21 = λb22x2

}
.

So x2 ≥ λa−112 b11 and x2 = λ−1b−122 a12, from which λ2 ≤ γ2, a contradiction.
A contradiction can similarly be obtained when c12 > c21 or c12 = c21.
(v) The proof of this part is similar to that of (iv) and is omitted here.

5.3. Generalized eigenproblem: The two-dimensional case. As before,
due to the finiteness of x and homogeneity, we assume that x1 = 0 and therefore
study system (17).

We will distinguish three cases.
Case 1: If ci1 = ci2 for some i ∈ M, then by Proposition 10 this value is the

unique candidate for the generalized eigenvalue. Using the method of subsection 5.1
it can be readily checked whether this is indeed the case.

Case 2: If ci11 < ci12 and ci21 > ci22 for some i1, i2 ∈M, then the 2× 2 system(
ai11 ai12
ai21 ai22

)
x = λ

(
bi11 bi12
bi21 bi22

)
x

has a unique eigenvalue by Proposition 25 and is therefore a unique candidate for
an eigenvalue of the whole system. This can easily be checked by the method of
subsection 5.1.

Case 3: If ci1 < ci2 for all i ∈ M (the case when ci1 > ci2 for all i ∈ M can be
discussed similarly), then for any i ∈ M the feasibility interval for the ith equation
alone is [ci1, ci2] . Suppose λ ∈ Λ (A,B) ∩ (ci1, ci2) . Then ai1 < λbi1 and ai2 > λbi2,
and the equation

(21) ai1 ⊕ ai2x2 = λbi1 ⊕ λbi2x2

using cancellations reduces to
ai2x2 = λbi1.

Hence, x2 = λbi1a
−1
i2 , and thus the dependence of x2 on λ over (ci1, ci2) is expressed

by a linear function (with slope 1). This concludes the case when λ is strictly between
ci1 and ci2. To finish Case 3 suppose now that λ = ci1 ∈ Λ (A,B) . Then ai1 = λbi1
and ai2 > λbi2, and (21) using cancellations reduces to

ai1 ⊕ ai2x2 = ai1.

Hence x2 ≤ ai1a−1i2 . Similarly if λ = ci2 ∈ Λ (A,B) , then x2 ≥ bi1b−1i2 . Note that

lim
λ→ci1

λbi1a
−1
i2 = ai1a

−1
i2 and lim

λ→ci2
λbi1a

−1
i2 = bi1b

−1
i2 ,

and so the graph of dependence of x2 on λ over [ci1, ci2] is a continuous, piecewise
linear map; see Figure 1. This result is consistent with the fact that ai1a

−1
i2 < bi1b

−1
i2

since this is equivalent to ci1 < ci2.
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GENERALIZED MAX-PLUS EIGENPROBLEM 1017

λλ = ai1b
−1
i1 λ = ai2b

−1
i2

ai1a
−1
i2

bi1b
−1
i2

x2

x2 = λbi1a
−1
i2

Fig. 1. A single equation.

Finally, we note that for the whole system we have(
λ, λ

)
=
⋂
i∈M

(ci1, ci2) .

Thus if λ ∈ Λ (A,B)∩
(
λ, λ

)
, then λ ∈ Λ (A,B)∩ (ci1, ci2) for every i ∈M , and so x2

is the common value of all λbi1a
−1
i2 , i ∈ M. This implies

(
λ, λ

)
⊆ Λ (A,B) . We have

proved the following.

Proposition 26. If A,B ∈ Rm×2 and ci1 < ci2 for every i ∈ M , then a gen-
eralized eigenvalue in

(
λ, λ

)
exists if and only if all values in

(
λ, λ

)
are generalized

eigenvalues. This is equivalent to the requirement that all values bi1a
−1
i2 for i ∈ M

coincide.

If the condition in Proposition 26 is satisfied, then by continuity also λ, λ ∈
Λ (A,B) , and in this case Λ (A,B) =

[
λ, λ

]
. If not, then λ, λ have to be examined

separately to see if they are generalized eigenvalues. Figures 2–6 indicate that all
possibilities may occur (both λ and λ, exactly one, or none in Λ (A,B)).

Summarizing all cases we have that if A,B ∈ Rm×2, then Λ (A,B) can be found
in O (m) time and has one of the following forms (the illustrating figures are drawn
for m = 2):

•
[
λ, λ

]
(see Figure 2);

•
{
λ, λ

}
(see Figure 3);

• {λ} , where λ ∈
[
λ, λ

]
(see Case 2 and Figures 4 and 5);

• ∅ (see Figure 6 and Case 1).
In all cases the eigenspace associated with a fixed generalized eigenvalue is de-

scribed in Proposition 24.
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λa21b
−1
21 a12b

−1
12

a21a
−1
22

a11a
−1
12

b21b
−1
22

a11b
−1
11 a22b

−1
22

b11b
−1
12

x2

x2 = λb11a
−1
12 = λb21a

−1
22

Fig. 2. A continuum of solutions: λ ∈ [λ = a21b
−1
21 , λ = a12b

−1
12 ], x2 = λb11a

−1
12 = λb21a

−1
22 .

λa21b
−1
21 a12b

−1
12

a21a
−1
22

a11a
−1
12

b21b
−1
22

a11b
−1
11 a22b

−1
22

a21b
−1
21 b11a

−1
12

a12b
−1
12 b21a

−1
22

b11b
−1
12

x2

Fig. 3. Two solutions: (λ, x2) = (λ = a21b
−1
21 , a21b

−1
21 b11a

−1
12 ) and (λ, x2) = (λ =

a12b
−1
12 , a12b

−1
12 b21a

−1
22 ).
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λa21b
−1
21 a22b

−1
22

a21a
−1
22

a11a
−1
12

b21b
−1
22

a11b
−1
11 a12b

−1
12

a21b
−1
21 b11a

−1
12

b11b
−1
12

x2

Fig. 4. One solution: (λ, x2) = (λ = a21b
−1
21 , a21b

−1
21 b11a

−1
12 ).

λa21b
−1
21 a22b

−1
22

b21b
−1
22

a11a
−1
12

a21a
−1
22

a11b
−1
11 a12b

−1
12

a22b
−1
22 b11a

−1
12

b11b
−1
12

x2

Fig. 5. One solution: (λ, x2) = (λ = a22b
−1
22 , a22b

−1
22 b11a

−1
12 ).
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λa21b
−1
21 a12b

−1
12

a11a
−1
12

b21b
−1
22

a21a
−1
22

a11b
−1
11 a22b

−1
22

b11b
−1
12

x2

Fig. 6. No solutions.

REFERENCES

[1] M. Akian, R. Bapat, and S. Gaubert, Max-plus algebras, in Handbook of Linear Algebra,
Discrete Math. Appl. 39, L. Hogben, ed., Chapman & Hall/CRC, Boca Raton, FL, 2006,
pp. 25/1–25/17.

[2] M. Akian, S. Gaubert, and A. Guterman, Tropical polyhedra are equivalent to mean payoff
games, Int. J. Algebra Comput., 22 (2012), 125001.

[3] X. Allamigeon, S. Gaubert, and E. Goubault, Computing the vertices of tropical polyhedra
using directed hypergraphs, Discrete Comput. Geom., 49 (2013), pp. 247–279.

[4] F. L. Baccelli, G. Cohen, G.-J. Olsder, and J.-P. Quadrat, Synchronization and Linearity,
John Wiley, Chichester, New York, 1992.
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[13] P. Butkovič, R. A. Cuninghame-Green, and S. Gaubert, Reducible spectral theory with
applications to the robustness of matrices in max-algebra, SIAM J. Matrix Anal. Appl., 31
(2009), pp. 1412–1431, doi:10.1137/080731232.

[14] R. A. Cuninghame-Green, Process synchronisation in a steelworks—a problem of feasibility,
in Proceedings of the 2nd International Conference on Operational Research, J. Banbury
and J. Maitland, eds., English University Press, London, 1960, pp. 323–328.

[15] R. A. Cuninghame-Green, Describing industrial processes with interference and approximat-
ing their steady-state behaviour, Oper. Res. Quart., 13 (1962), pp. 95–100.

[16] R. A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Econom. and Math. Systems
166, Springer-Verlag, Berlin, 1979.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

09
/1

6/
16

 to
 1

47
.1

88
.2

24
.1

27
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 

http://dx.doi.org/10.1137/080731232


GENERALIZED MAX-PLUS EIGENPROBLEM 1021

[17] R. A. Cuninghame-Green and P. Butkovič, The equation A ⊗ x = B ⊗ y over (max,+),
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