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Abstract 17 

This study investigated the transfer of water into milk protein concentrate (MPC) powder 18 

particles using Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) as a 19 

detection method for the first time. BARDS analysis is based on an acoustic phenomenon 20 

which occurs during powder rehydration. Release of air from the powder into the solvent 21 

during rehydration leads to outgassing in the solvent, which results in changes in solvent 22 

compressibility that are monitored through accompanying changes in induced resonance 23 

frequencies in the dissolution vessel. BARDS confirmed that water transfer into MPC 24 

particles became increasingly inhibited as protein content of the powder increased. The 25 

reproducibility of the data indicates that air release from internal vacuoles within powder 26 

particles in high-protein MPCs is a highly ordered process, occurring over a protracted time 27 

scale. Kinetic modelling of gas volume data from BARDS confirmed that the release of 28 

occluded air caused the changes in solvent compressibility during rehydration. The 29 

physicochemical properties of solubilised protein had a slight inhibitory effect on escape of 30 

bubbles from the solvent, but the primary factor limiting gas release from high-protein MPCs 31 

was water transfer into powder particles and the concomitant release of occluded air into the 32 

solvent. In agreement with many previous studies, cryo-SEM analysis showed that particles 33 

in high-protein MPCs were slow to disperse; the current study, in addition, highlights 34 

inhibited water transfer into particles as another factor which may contribute to their poor 35 

rehydration properties. A potential link between inhibited water transfer and poor 36 

dispersibility is proposed. 37 

 38 

 39 

 40 

 41 

 42 

Keywords: MPC, BARDS, rehydration, solubility, water transfer, particle structure 43 
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1. Introduction 44 

Milk protein concentrate (MPC) powders are recently developed ingredients which 45 

contain the two major protein fractions of bovine milk at the ratio that they occur naturally in 46 

milk (80:20 casein:whey protein). MPCs are typically manufactured using pressure-driven 47 

membrane separation processes, where ultrafiltration (UF) alone, or a combined UF and 48 

diafiltration (DF) process, is used to concentrate protein while removing smaller molecules 49 

including lactose, salts, non-protein nitrogen (Carr and Golding, 2016). After membrane 50 

processing, MPCs are usually spray-dried into powders. Currently, the most widely used 51 

MPC powders in commercial applications are the high-protein varieties (i.e., those containing 52 

>80% protein). High-protein MPCs are exploited for their functional attributes (e.g., 53 

viscosity, emulsification, curd-forming ability) and nutritional features (e.g., high protein, 54 

low lactose) in a range of commercial applications (Agarwal et al., 2015).  55 

When milk protein concentrate (MPC) powders are manufactured to a final protein 56 

content >70%, solubility is commonly impaired (Crowley et al., 2015), with the rate of 57 

liberation of casein micelles from powder particles during rehydration reducing with 58 

increasing protein content of the powders (Mimouni et al., 2010b). As casein is the 59 

predominant component in high-protein MPCs, and the majority of caseins exist in the 60 

micellar state, the persistence of these poorly-dispersible particles for extended periods after 61 

wetting and submersion of the powder can result in suspensions with an unacceptably high 62 

quantity of sedimentable solids (Havea, 2006; Sikand et al., 2011). Furthermore, after 63 

extended rehydration, these particles may not be of sufficient density to sediment, but may 64 

still remain suspended as large, highly-hydrated particles (Fang et al., 2011; Crowley et al., 65 

2015). Incomplete rehydration of MPCs is an issue which is encountered both during mixing 66 

of dried ingredients by processors and reconstitution of dried products by consumers, and can 67 

have a negative influence on the functional and sensory properties of the final product (Carr 68 

and Golding, 2016).  69 

Micellar casein is primarily responsible for the solubility issues encountered during 70 

the rehydration of MPCs (McKenna, 2000; Anema, 2006; Havea, 2006; Mimouni et al., 71 

2010a; Gazi and Huppertz, 2014). The particular solubility issues associated with MPCs are 72 

not found in whey protein-dominant powders (i.e., whey protein concentrates/isolates), 73 

casein-dominant powders which are relatively low in protein (i.e, skim milk/nonfat dry milk 74 

powders) or high-protein casein-dominant powders which do not contain micellar casein 75 

(e.g., sodium caseinate). Micellar casein concentrates (MCCs), powders with higher 76 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

casein:whey protein ratios than MPCs, are known to have similarly poor, and even more 77 

challenging, rehydration performance (Crowley et al., 2016); when levels of lactose or whey 78 

proteins are increased in MCCs they dissolve more quickly, due to a concurrent decrease in 79 

the level of micellar casein and possible improvements in the water transfer properties of the 80 

powder due to the presence of the more soluble components (Richard et al., 2012).  81 

In high-protein MPC powders, casein micelles are considered to be the molecular 82 

building blocks of a ’skin‘ at the surface of primary powder particles, which may prevent the 83 

release of casein micelles during rehydration (McKenna, 2000; Mimouni et al., 2010b; Fyfe 84 

et al., 2011; Crowley et al., 2016; Ji et al., 2016). The solubility of MPCs deteriorates further 85 

during storage under adverse conditions (Anema et al., 2006; Fyfe et al., 2011; Gazi and 86 

Huppertz, 2014), due to the decreased solubility of micellar casein, while the solubility of 87 

whey proteins is largely retained unless they have been denatured to a significant degree 88 

during processing (Gazi and Huppertz, 2014). The central role of micellar casein in the 89 

development of insolubility issues in MPCs is further supported by some of the techniques 90 

which have been used to improve their solubility, including high pressure treatment (Udabage 91 

et al., 2012), ion-exchange (Bhaskar et al., 2001) and CO2 injection (Marella et al., 2015), all 92 

of which are primarily based on structural modification of casein micelles (Carr and Golding, 93 

2016).  94 

There is a need to develop in-situ techniques for the dynamic monitoring of powder 95 

rehydration phenomena, as this will allow the identification of the stages (i.e., wetting, water 96 

transfer, or dispersion) which are responsible for prolonged rehydration times (Fang et al., 97 

2008; Crowley et al., 2016). Dynamic studies of MPC powder rehydration have primarily 98 

focused on advanced stages of rehydration, such as dispersion, which has been identified as 99 

the rate-limiting step in the rehydration process for MPCs in experiments where the changes 100 

in particle size over time were measured (Mimouni et al., 2009; Fang et al., 2011). However, 101 

other than the study of Hauser and Amamcharla (2016) on commercial MPC80, there are 102 

limited studies available in the literature in which water transfer into particles during the 103 

rehydration of different MPC powders has been investigated. Water transfer has been studied 104 

in MCCs by Schuck et al. (2002) and Richard et al. (2012) using nuclear magnetic resonance 105 

relaxometry and ultrasound attenuation measurements, respectively, with both studies 106 

demonstrating that water transfer can be markedly inhibited in MCCs. Bouvier et al. (2013) 107 

demonstrated that increasing the size and number of pores in particles can improve the 108 

rehydration properties of MCC powders, supporting the concept that enhancing water transfer 109 

can improve the dispersibility of these powders. 110 
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Generating data on water transfer phenomena in MPCs could potentially inform 111 

strategies to modify particle structure (i.e., during or after spray drying) in order to improve 112 

their rehydration characteristics. Thus, in this study, a new form of acoustic spectroscopy, 113 

Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS), was used to monitor 114 

water transfer related phenomena in a range of MPC powders for the first time. BARDS is an 115 

analytical platform technology with multiple applications, such as blend uniformity analysis, 116 

discrimination of polymorphs and drug loading on sugar spheres for controlled release 117 

formulations (Fitzpatrick et al., 2012a, 2012b, 2014). ). The technique is based on real-time 118 

changes in the compressibility of a solvent as a solute dissolves, which can be monitored 119 

acoustically via changes in induced resonant frequencies of the dissolution vessel. In this 120 

study, the rehydration behaviour of MPCs with varying protein contents was assessed over 121 

time using BARDS. Experiments were devised to isolate the influence of water transfer on 122 

changes in gas volume during rehydration. A novel kinetic approach was used to confirm the 123 

role of occluded air release in determining BARDS spectra. The influence of serum-phase 124 

composition (i.e., soluble protein) on the escape of gas from the solvent was considered for 125 

the first time in a study of dairy powder rehydration based on changes in gas volume. Cryo-126 

SEM micrographs were also collected during the rehydration of selected powders to establish 127 

a potential link between water transfer and particle dispersion-state. 128 

 129 

2. Experimental 130 

2.1. Materials 131 

 Crowley et al. (2014a, b) described the manufacturing protocol for pilot-scale 132 

production of the MPC powders used in the current study. In brief, pasteurised skim milk was 133 

subject to UF (MPC50, MPC60) or UF and DF (MPC70, MPC80, MPC85, MPC90) to 134 

different protein concentration factors at 50°C with 10 kDa molecular weight cut-off 135 

membranes. MPC35 did not undergo any membrane filtration, and is essentially skim milk 136 

powder. MPC35, MPC50, MPC60 and MPC70 were evaporated before being spray-dried, 137 

while MPC80, MPC85 and MPC90 were not subjected to evaporation. Spray drying involved 138 

nozzle atomisation, an air inlet temperature of 185-190°C and an outlet temperature of 85-139 

90°C. The composition and selected physical properties (measured as described by Crowley 140 

et al. (2014a, b) of the MPC powders is provided in Table 1. Analar grade KCl was 141 

purchased from Sigma Aldrich. The solvent used for rehydration experiments was deionised 142 

water unless otherwise indicated. 143 

 144 
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[Table 1 about here] 145 

 146 

2.2. Instrumentation 147 

The BARDS spectrometer consists of a closed chamber with a dissolution vessel 148 

(soda lime glass), microphone (Sony ECM-CS10, range 100 Hz – 16 kHz), a magnetic stirrer 149 

and follower. A schematic diagram is shown in Figure 1, demonstrating the principle of 150 

BARDS as applied in the current study and the basic components of the apparatus. There is 151 

access at the front of the chamber for the dissolution vessel and at the top in order to place a 152 

sample in a weighing boat on an automated tipper motor for introduction of the powder. The 153 

microphone is positioned above the top of the glass within the housing for these studies. The 154 

glass, containing 25 mL of deionised water, is placed on the stirrer plate. The stirrer motor 155 

underneath is positioned so as to allow the magnetic follower to gently tap the inner vessel 156 

wall. In this way, the follower acts as a source of broadband acoustic excitation, thereby 157 

inducing various acoustic resonances in the glass, the liquid and the air column above the 158 

liquid. The audio is sampled at a rate of 44.1 kHz. A fast Fourier transform is applied to the 159 

signal, resulting in a typical BARDS frequency response. The resonances of the liquid vessel 160 

are recorded in a frequency band of 0-20 kHz. The frequency response was measured during 161 

the rehydration of 0.04-0.20% (w/v) suspensions of MPCs in 25 mL  water. 162 

 163 

[Figure 1 about here] 164 

 165 

2.2.1 Theoretical Background of BARDS 166 

The BARDS response results from changes in the compressibility of a solvent during 167 

the dissolution of a compound, in which compressible gas bubbles are introduced or 168 

generated. Changes in compressibility alter the speed of sound resulting in frequency changes 169 

of induced acoustic resonances within the solvent. The principles underlying the BARDS 170 

response are as follows. The sound velocity (v) in a medium (m s-1), whether air or liquid 171 

phase, is determined by Equation 1. 172 

 173 

                    		�������	 = � �
.�                  Equation (1) 174 

 175 
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Where ρ is the density (kg m-3) and K is the compressibility (inverse of the bulk modulus) of 176 

the medium (Pa-1). Generation of micro bubbles in a liquid decreases the density in a 177 

negligible way in comparison to a large increase in compressibility. The net effect is a 178 

significant reduction of the sound velocity in the liquid. The following relationship between 179 

the fractional bubble volume and the sound velocity in water was derived by Frank S. 180 

Crawford, as given in equation 2 (Crawford, 1982): 
181 

 
182 

             
��
� = ��1 + 1.49 × 10�. ��	    Equation (2) 183 

 184 

where vw and v are the velocities of sound (m s-1) in pure and bubble-filled water, 185 

respectively, and fa is the fractional volume occupied by air bubbles . Equation 2 is based on 186 

an approximation presented originally by Wood (1930). 187 

BARDS analysis of an induced acoustic excitation of the vessel containing the fluid is 188 

focused on the lowest variable frequency time-course, i.e., the fundamental resonance mode 189 

of the liquid. The fundamental resonant frequency is determined by the sound velocity in the 190 

liquid and the approximate but fixed height of the liquid level, which corresponds to one 191 

quarter of its wavelength. The frequency response is described as: 192 

 193 

        ���� = � !"�
��#�.�$×�%&.�'   Equation (3) 194 

 195 

where freqw and freq are the resonance frequencies (kHz) of the fundamental resonance 196 

modes in pure and bubble-filled water, respectively. A comprehensive outline of the 197 

principles and underlying processes involved in BARDS analysis is given by Fitzpatrick et al 198 

(2012a). 199 

 200 

2.3. Experimental procedure for BARDS experiments 201 

 In a typical experiment, the spectrometer records the steady-state resonances of the 202 

system as a reference for 30 s after the stirrer has been set in motion (Figure 1, panel 1). The 203 

pitch of the resonance modes in the solution change significantly when the powder is added 204 

(Figure 1, panel 2), before gradually returning to steady-state over several minutes (Figure 1, 205 

spectrum in panel 3). The amounts used are expressed as solid/liquid concentration (w/v) in 206 

all figures and throughout the text. Gas oversaturation of water prior to introduction of 207 

powders was removed through agitation by shaking vigorously for 60 s and then resting for 208 
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10 min. Otherwise, remaining gas oversaturation may lead to an over-response (Fitzpatrick et 209 

al. 2013). 210 

 The frequency-time response of the fundamental resonance is presented as manually 211 

extracted data from the total acoustic response. The steady-state frequency before addition of 212 

the powder is designated as the ‘volume line’, so called as it varies depending on the liquid 213 

volume in the vessel. Spectra were recorded for 3000-4000 s depending on the rate of return 214 

of the BARDS response to steady state. All experiments were performed in duplicate at 215 

ambient temperature (~22°C) and atmospheric pressure. Average readings with error bars 216 

representing the standard deviation are presented.  217 

 218 

2.4. Characterisation of the microstructure of MPC powders in their dry state 219 

Scanning electron microscopy (SEM; Philips XL30 FEG ESEM) was used to 220 

characterise the microstructure of MPC35, MPC70 and MPC90 to assess any morphological 221 

differences. MPC powder samples were placed upon double-sided adhesive conductive 222 

carbon tape, sputter-coated with gold and scanned at 10 kV.  223 

 224 

2.5. Characterisation of the microstructure of MPC powders during rehydration 225 

Cryogenic scanning electron microscopy (Cryo-SEM; Philips XL30 FEG ESEM), with 226 

a Gatan low temperature preparation system, was used to visualise the microstructure of 227 

MPC35 and MPC90 at rehydration times of 100, 1000 and 3000 s. Cryo-SEM analysis was 228 

performed to assess differences in particle dispersion between the two powders, to supplement 229 

water transfer data generated using BARDS. One drop of liquid was frozen to approximately -230 

180 °C in liquid nitrogen slush. Samples were then fractured and etched for 1 min at a 231 

temperature of -95 °C inside the preparation chamber. Afterwards, samples were sputter coated 232 

with gold and scanned at 3 kV, during which the temperature was maintained below -160 °C by 233 

addition of liquid nitrogen to the system. 234 

 235 

3. Results 236 

3.1 Composition and physical properties of the MPC powders 237 
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Data related to the composition and physical properties of the MPCs are shown in 238 

Table 1. Reductions in lactose and mineral levels were measured in the MPC powders, 239 

corresponding with increasing protein concentration. Particle size increased with increasing 240 

protein content for MPC35, MPC50 and MPC60, and decreased thereafter as protein content 241 

increased further. There were no apparent trends in the volume of interstitial and occluded air 242 

when MPC35, MPC50, MPC60 and MPC70 were compared; however, MPC80, MPC85 and 243 

MPC90 were 2-3 times more aerated than the former powders, although there were only 244 

minor differences within this class of high-protein MPC powders. 245 

 246 

3.2 Interpretation of BARDS profiles 247 

Figure 1, panel 3, shows a typical BARDS spectrum during the rehydration of 248 

MPC90. The acoustic frequency profile of interest is called the fundamental curve. The 249 

frequency minimum (fmin) represents an equilibrium between the rate of introduction of gas as 250 

bubbles into solution and the rate of elimination of these bubbles at the surface of the 251 

solution. In BARDS analysis, the fundamental curve is used to make comparisons between 252 

individual experiments. The acoustic frequencies of the vessel remained steady for the first 253 

30 s until the addition of MPC90; thereafter, the resonant frequency at 14 kHz decreased to 6 254 

kHz and gradually returned to steady-state. The constant frequency at 11 kHz is just one of 255 

many resonant frequencies of the vessel that is not dependent on the liquid compressibility 256 

and therefore remained unchanged as gas volume levels fluctuated.  257 

Figures 2 and 3 show the acoustic profiles for all seven MPCs with a concentration of 258 

0.2%.  There is a gradual increase in the deflection to fmin with increasing protein content. 259 

Powders with higher protein concentrations exhibited a distinct change in the rate of gas 260 

release into the solvent (reduced down-slope) compared to lower protein powders, as 261 

indicated by the increased amount of time required to reach fmin. The disappearance of gas 262 

from the solvent after fmin also proceeded more slowly (reduced up-slope) as protein content 263 

of the MPC powder increased, which resulted in considerably extended times to reach steady-264 

state. Most notable was the time required (~3000 s) to reach steady-state for MPC90.  265 

 266 
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[Figure 2 about here] 267 

The acoustic profiles (Figure 2) strongly indicate differences in the volume of gas generated, 268 

the rate of gas release from the powders, and the rate of gas disappearance from the solvent 269 

during the rehydration of different MPCs. These factors were investigated more closely by 270 

tracking changes in gas volume in the following sections. 271 

 272 

3.3 Changes in compressible gas volume during rehydration of MPC powders 273 

Equation 3 was applied to the BARDS frequency data from the MPC experiments 274 

(Figure 2) to generate data relating to the fractional gas volume (fa) occupied by compressible 275 

gas during the dissolution of 0.2% of each of the MPCs. The gas volume plots presented in 276 

Figures 3 (A) and (B) concern absolute volumes (fa × Vsolution). The initial up-slope indicates 277 

the rate at which gas was released from the powder. The data suggests that a significant 278 

change in rehydration behaviour occurred when the protein content exceeded 80% in the 279 

MPC powders. MPC35 generated a negligible gas volume during rehydration (see higher 280 

resolution data in Figure 3, B). MPC50 and MPC60 exhibited a very rapid release of a limited 281 

quantity of gas, the disappearance of which from the solvent began immediately and 282 

proceeded rapidly. Conversely, for MPC80, MPC85 and MPC90, there was a very gradual 283 

increase in the gas volume to a high maximum, after which point gas remained constant in 284 

the system for ~200 s, due to a balance of gas release and disappearance, before gas 285 

disappearance from the liquid surface became dominant. The steady increase in the 286 

compressibility of the solvent for these powders during ~ 500 s of rehydration indicates that 287 

the immersed particles themselves, containing occluded air prior to significant water transfer, 288 

are non-compressible and that, as such, the release of gas from the particles contributes to 289 

changes in the compressibility of the solution. If the particles themselves were compressible, 290 

an immediate and marked increase in gas volume would be expected to occur as soon as the 291 

powder submerged.  292 

 293 

[Figure 3 about here] 294 

 295 
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 296 

3.4 Kinetic analysis of changes in compressible gas volume during rehydration of the MPCs 297 

When the gas volume data (Fig. 3 A, B) is plotted using a logarithmic scale, as shown 298 

in Figure 3 (C), the disappearance rate constant (k) for compressible gas in the solution is 299 

given by the descending slope (assuming a first-order process). Table 2 presents the results of 300 

this gas disappearance analysis, with values for k and the time range from which the 301 

descending slope was calculated. For the MPC suspensions at the highest concentration 302 

studied (0.2%), a gradual decrease in gas disappearance rate is observed with increasing 303 

protein content of the powder. The k value of the lowest protein powder (MPC35) was five 304 

times that of the highest protein powder (MPC90), indicating a profound shift in water 305 

transfer behaviour. 306 

 307 

[Table 2 about here] 308 

 309 

Based on visual assessment of wetting behaviour, kinetic data in Table 2 and gas volume-310 

time plots (Fig. 3), it is possible to distinguish four categories of MPC based on data for 0.2% 311 

systems: 312 

 313 

Fast wetting/fast water transfer/fast gas disappearance: MPC35 and MPC50 314 

These powders wetted rapidly at the water surface and underwent fast sinking. The volume 315 

response-time curves for these samples show a subsequent fast release of compressible gas 316 

from the powder into the solvent, indicating that water transfer into particles was rapid after 317 

sinking. In contrast to the MPC50, the MPC35 response seems to indicate a relatively slower 318 

rate of water transfer, despite having a lower protein content. Both powders exhibited high 319 

gas disappearance rates (k ≈ 1-3 × 10-2 s-1) compared to the other MPCs. These results are 320 

generally in line with previous studies demonstrating that low-protein MPCs have good 321 

solubility characteristics (Crowley et al., 2015; Sikand et al., 2011) 322 
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 323 

Fast wetting/fast water transfer/intermediate gas disappearance: MPC60 and MPC70 324 

These samples exhibited rapid wetting at the powder surface and gas generation in the 325 

solvent, suggesting that water transfer into particles in these powders was not severely 326 

inhibited compared to MPC35 and MPC50. Like MPC50, these powders exhibited a more 327 

rapid rate of water transfer than MPC35. However, both powders exhibit slower gas 328 

disappearance rates (k ≈ 3.7-6.6 × 10-3 s-1) than MPC35 and MPC50, indicating that escape 329 

of bubbles from the solvent was inhibited compared to the lower protein powders, likely due 330 

to the increasing influence of solubilised protein. For example, a 0.2% solution of MPC70 331 

will have approximately double the protein content of MPC35. Particles in this set of MPCs 332 

with <80% protein disperse relatively quickly (Crowley et al., 2015), and therefore increasing 333 

the protein content from MPC35/MPC50 to MPC60/MPC70 may have increased the levels of 334 

soluble protein to a degree sufficient to inhibit bubble escape (Ybert and di Meaglio, 1998). 335 

 336 

Slow wetting/slow water transfer/intermediate gas disappearance: MPC80 and MPC85 337 

The initial part of the response was likely influenced by slow wetting, with MPC80 and 338 

MPC85 observed to require ~200 s to fully disappear from the liquid surface; however, this 339 

cannot account for the 500 s of gas generation which elapsed prior to the initiation of the gas 340 

disappearance phase, which was strongly indicative of inhibited water transfer into powder 341 

particles. As with MPC60 and MPC70, intermediate gas disappearance rates (k ≈ 3.4 - 3.9 × 342 

10-3 s-1) were measured, which suggests that the period of inhibited water transfer did not 343 

continue into the gas disappearance phase and influence derived k values.  Thus, the effect of 344 

soluble proteins might be considered to dominate gas disappearance, as per the lower protein 345 

MPCs. 346 

 347 

Slow wetting/slow water transfer/slow gas disappearance: MPC90 348 

Similarly to MPC80 and MPC85, slow wetting was observed for MPC90 (~200 s). The initial 349 

part of the response of MPC90 is also similar to that of MPC80 and MPC85, and strongly 350 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

indicates inhibited water transfer into the submerged particles. The gas disappearance rate for 351 

MPC90 was the lowest of all the powders (k ≈ 1.9 × 10-3 s-1), and suggested that water 352 

transfer may have continued during the gas disappearance phase. 353 

  354 

The slow gas generation for high-protein MPCs strongly indicates inhibition of water transfer 355 

into powder particles. However, it is not clear, especially for MPC90, which of the two 356 

primary phenomena (water transfer into particles and gas elimination from the solvent) are 357 

rate-determining for the observed trends in gas disappearance based on the kinetic data for 358 

0.2% systems alone. Further analysis of the concentration-dependency of the BARDS 359 

response for different MPCs was performed to obtain more reliable mechanistic and kinetic 360 

information. 361 

The concentration-dependency of the BARDS response for four of the seven MPCs (MPC35, 362 

MPC70, MPC80 and MPC90), spanning the four aforementioned categories, is shown in 363 

Figure 4. The comparative kinetic analysis of the BARDS data is based on the related gas 364 

volume data and is presented in Figure 5 using a logarithmic scale.  365 

 

[Figure 4 about here] 366 

 367 

[Figure 5 about here] 

 

The results for individual powders can be summarised as follows: 

MPC35 (Figure 5, A):  368 

An immediate, very rapid gas disappearance was observed for 0.04 and 0.08% systems (k ≈ 5 369 

× 10-2 s-1). A short time period (~200 s) of constant gas volume was observed at the higher 370 

concentrations of 0.12% (~100 s) and 0.16 and 0.20% (~200 s) before the gas volume started 371 

to decrease. The periods of constant volume may be attributed to slower powder wetting and 372 

uptake into the solvent, which was observed with higher quantities of added MPC35. In the 373 
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gas disappearance phase, a k value of ~ 1 × 10-2 s-1 was calculated for concentrations of 0.08 374 

- 0.20%. 375 

MPC70 (Figure 5, B): 376 

The gas disappearance rate for the concentrations 0.04 – 0.16% decreased gradually with 377 

time. Therefore, the curves have been characterized by two gas disappearance rate constants, 378 

an initial fast release and a subsequent slow release: the values are k ≈ 1.2-1.7 × 10-2 s-1 for 379 

the initial part of each curve and k ≈ 7-8 × 10-3 s-1 for the terminal parts. The gas 380 

disappearance for the 0.2% system was much slower than these lower concentrations with k ≈ 381 

6.6 × 10-3 s-1 for the initial part and k ≈ 3.7 × 10-3 s-1 for the terminal part of the curve. The 382 

overall decrease in disappearance rate with rehydration time and with increase of MPC70 383 

concentration, may suggest an increasing influence of solvent properties (e.g., increasing 384 

viscosity or ‘protein drag force’ effects) on the release of bubbles from the solvent as protein 385 

is solubilised. 386 

 387 

MPC80 (Figure 5, C): 388 

The time taken for the gas volume to reach its maximum value increased with increasing 389 

concentration, due to the influence of increasingly longer wetting times (200 s at the highest 390 

mass added). The gas disappearance rate constants decreased with increasing concentration 391 

from k ≈ 6.7 × 10-3 s-1 at 0.04% to k  ≈ 3.4 × 10-3 s-1  at 0.2%. 392 

 393 

MPC90 (Figure 5, D): 394 

Compared to MPC80, the concentration-dependency of the time for the gas volume to reach 395 

its maximum seemed less prominent with MPC90, despite this powder having similar wetting 396 

times. In addition, the gas disappearance rate appears to be relatively independent of 397 

concentration (k ≈ 2.0-3.0 × 10-3 s-1) compared to the other MPCs. 398 

 399 
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The rate-limiting stage for the descending slope (representing gas disappearance) seems to be 400 

gas elimination from the solvent MPC70. Values for k decrease with increasing 401 

concentration, indicating that increasing levels of solubilised components may have retarded 402 

bubble escape to a greater degree. On the other hand, for MPC90, gas release from MPC 403 

particles appears to be rate-limiting, as gas disappearance was effectively independent of 404 

concentration. A slow and ordered process of water transfer into MPC90 particles would 405 

explain this observation. 406 

 407 

The MPC80 data indicate a concentration-dependent transition between the processes 408 

described which determine the gas disappearance rate for MPC70 and MPC90. Like MPC90, 409 

there is evidence that this powder has poor water transfer properties, due to the extended 410 

duration of its gas generation phase, but its gas disappearance behaviour is broadly similar to 411 

MPC70. It is proposed that the factor which extends the gas disappearance phase of MPC90 412 

compared to MPC80 is a slower water transfer process. 413 

 414 

3.6 Validation of water transfer as key stage influencing BARDS spectra for MPC90 415 

The data presented in previous sections indicate that inhibited water transfer into particles in 416 

high-protein MPCs strongly influences the BARDS spectra, with powders such as MPC90 417 

containing particles which require longer water transfer times. An experiment was designed 418 

to investigate whether the slow decrease in the compressible gas volume for high-protein 419 

MPC samples (especially MPC90) is due to steady transfer of gas out of the MPC particles 420 

(during water transfer) or due to other processes which affect the loss of gas at the liquid 421 

surface - for instance, an increase in viscosity, surface tension or drag forces acting on 422 

ascending bubbles (Ybert and di Meaglio, 1998). To this end, KCl was used as a monitoring 423 

compound, to investigate whether the physicochemical properties of rehydrated MPC90 (post 424 

steady-state) inhibited the ability of gas to escape from the liquid. Figure 6 (A) shows the 425 

BARDS responses during the dissolution of 0.5 M KCl in water and also the dissolution of 426 

0.2% MPC90 in water. KCl exhibits immediate release of gas and a fast return to steady state 427 

within 200 s.  428 

 429 
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[Figure 6 about here] 430 

 431 

A second experiment was performed whereby the same amount of KCl was added to a 432 

solution of 0.2% MPC90 which had been rehydrated until a steady-state BARDS response 433 

was achieved (Fig. 6, B). Again, there was an immediate generation of gas observed, but the 434 

return to steady-state took ~10 times longer due to replacement of water with MPC90 435 

solution. This result shows that the presence of soluble proteins impedes gas disappearance. 436 

Despite the slower escape of gas from the liquid, it took a significantly shorter time for gas 437 

from KCl to disappear from MPC solution compared to the disappearance of gas during the 438 

rehydration of MPC90. The first-order k values can be derived from the descending slopes in 439 

Figure 6 (B), and were found to be 2.8 × 10-3 s-1 for KCl dissolved in MPC90 solution 440 

compared to the lower k value of 1.5 × 10-3 s-1 for MPC90 on its own. This strongly indicates 441 

that for MPC90 the terminal gas disappearance rate is determined by the process of continued 442 

water transfer into particles generates compressible gas from MPC90 during rehydration.  443 

In pharmacokinetics, an analogous process to that observed for MPC90 rehydration can be 444 

described in which the terminal stage of the concentration time-course of a drug in the blood 445 

reflects the drug absorption process instead of the elimination process as a ‘flip-flop’ system 446 

(Boxenbaum, 1998). In this study, generation of compressible gas bubbles through water 447 

transfer into particles can replace absorption, in the pharmacokinetic sense, for the kinetic 448 

analysis of MPC90 rehydration presented in the following section. 449 

 450 

3.7 Verification that occluded air accounted for total gas volume using flip-flop kinetics 451 

The gas volume time-course of MPC90 (see Figure 3, A) was used to establish the total 452 

amount of compressible gas that was produced during the rehydration experiment. An 453 

approach was followed similar to that used in pharmacokinetic studies, in which one 454 

distinguishes the absorption of a drug into the body, its distribution and its subsequent 455 

elimination. The concentration-time profile is determined in the central compartment 456 

(blood/plasma). The area under the concentration/time curve (AUC), combined with the drug 457 
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distribution volume (Vd) and its first-order elimination rate constant (kel, s-1) are used to 458 

calculate the dose (D) that has entered the central compartment using equation 4.  459 

( = )*+	 × ,� 	× -!.  Equation (4) 460 

In an adjusted approach used for the gas volume analysis, the absorption is replaced by the 461 

generation of compressible gas into the solution (the central compartment) following addition 462 

of MPC90 to the solvent. The dose administered in pharmacokinetics becomes the total 463 

amount of compressible gas produced. In contrast to pharmacokinetics, the distribution 464 

volume (Vd) is now simply the volume of the solution (Vsolution) (Rowland and Tozer, 1989). 465 

The total amount of compressible gas produced during dissolution (Dgas) can then be 466 

calculated using Equation 5. 467 

(/�� = )*, × -!.  Equation (5) 468 

Where Dgas (mL) is the total amount of compressible gas produced during the rehydration of 469 

MPC90. AUV (mL.s) is the total area under the gas volume/time curve (the volume of 470 

compressible gas is calculated as fa × Vsolution) and kel (s
-1) is the rate constant of the first-471 

order gas elimination process. In the calculations, the rate constant determined for KCl in 472 

MPC90 is used for the elimination process. The results of the modelling are shown in Figure 473 

7. The red profile in Figure 7(A) represents 0.2% MPC90 and the black profile is the 474 

simulation with a kgen (gas generation rate) of 1.54 × 10-3 s-1, derived from MPC90 terminal 475 

gas disappearance rate and kel (gas elimination rate) is 2.82 × 10-3 s-1, derived from KCl gas 476 

elimination rate in MPC90 solution. Figure 7 (B) shows the log plot of the data in Figure 7 477 

(A). The AUV was calculated to be 7.87 mL.s. The total amount of gas generated was 2.22 × 478 

10-2 mL, calculated as AUV × kel; note that kel > kgen, implying flip-flop characteristics of gas 479 

production and elimination. The total amount of occluded gas in the MPC90 sample used in 480 

the experiment was 2.31 × 10-2 mL. This was estimated for a 0.2% MPC90 system in 25 mL 481 

of water from the occluded air value in Table 1. The total amount of gas generated during 482 

powder rehydration (estimated from BARDS data) is in very close agreement with the 483 

occluded air content of the powder. 484 

 485 

[Figure 7 about here] 486 
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 487 

A similar set of experiments with rehydration of MPC90 in water and KCl in rehydrated 488 

MPC90, but performed under slightly altered conditions (i.e., using a glass vessel with 489 

different dimensions and therefore slightly different solution mixing dynamics) yielded 490 

different gas elimination rate constants. However, the total amount of compressible gas 491 

calculated was the same as found with the other experiment and again corresponded to the 492 

value for occluded gas in MPC90. The results of the experiment are shown in Figure 7 (C) 493 

and (D). The red profile in Figure 7 (C) represents 0.2% MPC90 and the black profile the 494 

simulation with kgen of 1.99 × 10-3 s-1, derived from MPC90 terminal gas disappearance rate. 495 

The value for kel of 5.17 × 10-3 s-1 was derived from the KCl gas elimination rate in MPC90 496 

solution. The AUV was calculated to be 4.36 mL.s and the total amount of gas generated was 497 

2.25 × 10-2 mL, calculated as AUV ×	kel; flip-flop characteristics are implied again as kel > 498 

kgen. The calculated total gas volume was in excellent agreement with the total amount of 499 

occluded gas in the MPC90 sample used in the experiment (2.31 × 10-2 mL). The 500 

calculations demonstrate that the two experiments are in good agreement in terms of the total 501 

amount of gas generated. The value is therefore independent of the differences in response 502 

observed between the two experiments and the different rate constants used in the 503 

calculations.  504 

Crucially, the values calculated using flip-flop kinetics for the amount of gas 505 

generated during the rehydration of MPC90 indicate that the gas detected by BARDS 506 

originates exclusively from the occluded gas fraction of the powder. Thus, when considering 507 

the BARDS spectra for the MPC90, the influence of interstitial air can be considered 508 

negligible, which allows isolation of the gas generation phenomenon as one of water transfer 509 

into powder particles.   510 

 511 

 512 

3. 8 Microstructure of dry MPC powders 513 

SEM micrographs of representative low- (MPC35), intermediate- (MPC70) and high-514 

protein (MPC90) powders are shown in Figure 8. In agreement with particle size data (Table 515 

1), there was a greater quantity of small particles in the MPC90, while the MPC35 and MPC70 516 
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were similar in this respect. Increasing protein content was associated with two distinct 517 

morphological changes, the smoothening of particle surfaces and partial deflation of the surface 518 

towards the particle interior. Smooth particle surfaces may be attributable to differences in 519 

compositional homogeneity of the particle surfaces in the MPC powders. Kelly et al. (2015) 520 

determined that protein constituted 63, 79 and 93% of the surface of MPC35, MPC70 and 521 

MPC90 (same sample set), respectively; the surface of MPC35 contained a large quantity of 522 

lactose (31%), while the surface of MPC90 contained <1% lactose. The deflation effect is 523 

characteristic of casein-dominant dairy powders, such as MPCs and MCCs, and is not observed 524 

for whey protein-dominant powders (Sadek et al., 2016). It is generally associated with 525 

powders containing high levels of occluded air, which is the case for MPC70 and, in particular, 526 

MPC90 (Table 1), where distinct internal air vacuoles and external protein layers are present. 527 

Recent studies suggest that highly concentrated casein suspensions undergo a form of gelation 528 

during drying, and that this surface gel has distinct mechanical properties which result in this 529 

final deflated or buckled powder particle shape (Sadek et al., 2016). 530 

 531 

[Figure 7 about here] 532 

 533 

 534 

3.9 Microstructure of MPC powders during rehydration 535 

To investigate the dispersion state of powder particles during rehydration, cryo-SEM 536 

was used to visualise powders with fast (MPC35) and slow (MPC90) water transfer 537 

characteristics. Cryo-SEM micrographs of MPC35 and MPC90 powders during rehydration are 538 

shown in Figure 9. The three different time points represent pre-steady-state for both powders 539 

(100 s), steady state for MPC35 and not MPC90 (1000 s), and post-steady-state for both 540 

powders (3000 s), as determined by BARDS. 541 

 542 

[Figure 9 about here] 543 

 544 

After a short period of 100 s, partially-dispersed or fragmented particles were present in 545 

both MPC35 and MPC90; however, the latter also contained intact powder particles, similar in 546 
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size (~20 µm) to the particles observed in the corresponding micrographs for dry powders 547 

(Figure 8). When the powders were rehydrated for 1000 s, numerous small, distinct particles 548 

predominated in MPC35 which were ~1 µm in size, while several larger particles (~5 µm) 549 

remained in MPC90 with few distinct particles in general being visible. After 3000 s of 550 

rehydration, the majority of particles in MPC35 were <1 µm, with a minor distribution of 551 

micron-sized particles, while, in contrast, MPC90 was still populated largely by particles >1 552 

µm; in addition, ring-link structures can be seen in Figure 9 (1C), consistent with the possible 553 

presence of hydrated but undispersed powder particles, as suggested previously (Mimouni et 554 

al., 2009; Crowley et al., 2015). Figure 9 also shows the BARDS frequency-time profiles for 555 

all seven MPCs with a sample mass of 50 mg (0.2%). The BARDS measurement times 556 

corresponding to the rehydration times where the micrographs were captured are indicated. It 557 

can be seen in Figure 9 that for an equivalent stage of water transfer, such as the steady-state of 558 

all MPCs at 3000 s, different dispersion states can exist. This is because BARDS is a technique 559 

that detects the completion of water transfer into particles but not necessarily the disappearance 560 

of granular particle structures. However, both water transfer and dispersion occur 561 

simultaneously, indicating that a possible relationship between the two phenomena exists; this 562 

is expanded in Section 4. 563 

 564 

 565 

4. Discussion 566 

This is the first study reporting on the gas release/water transfer properties of a full range of 567 

MPCs, ranging from low to high protein. Results from BARDS analysis indicated that water 568 

transfer into MPC powder particles became inhibited as the protein content of the MPC 569 

powders increased (Figures 2, 3, Table 1). For example, rehydration of MPC35 yielded a 570 

minimal BARDS response and a rapid return to steady-state (<400 s), while the time (60 min) 571 

required to reach steady-state for MPC90 (0.2%) (Figure 2) is unprecedented in its length 572 

compared to previous BARDS studies (Fitzpatrick et al., 2012a, 2012b, 2013, 2014). Release 573 

of gas from powders can be used to indirectly investigate water transfer in dairy powders 574 

(Richard et al., 2012; Hauser and Amamcharla, 2016;). Gas in powders consists of interstitial 575 

(between particles) and occluded (within particles) air. In the samples studied, greater 576 

quantities of both were present in high-protein powders such as MPC90 (Table 1), but flip-577 

flop kinetic analysis of MPC90 (0.2%) indicated that only occluded air was detected by 578 
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BARDS (see Section 3.7); thus, the higher levels of occluded air in high-protein MPCs were 579 

responsible for the greater total volume of gas which was released during their rehydration 580 

(Figure 3). The volume of compressible gas generated was, as would be expected, in 581 

proportion to the mass of powder added to the water (Figure 5). 582 

Figure 3B demonstrates that at concentrations of 0.2% gas was released much more 583 

slowly into the solvent during the rehydration of high-protein MPCs (MPC80, MPC85 and 584 

MPC90) compared to the lower protein MPCs. Gas generation in these high-protein MPCs 585 

was partially delayed by slow wetting, due to their high air content and consequent poor 586 

sinkability (Table 1) but also the high hydrophobicity indicated by the large contact angle 587 

formed between the powders and water (Crowley et al., 2015). However, although wetting 588 

lasted 200 s for these powders, gas generation was still dominating over gas elimination until 589 

500 s in the BARDS spectra of 0.2% MPC80, MPC85 and MPC90, confirming that water 590 

transfer into particles continued after wetting.  For MPC80 and MPC85, Figure 3C and Table 591 

2 show that the gas disappearance phase was intermediate among the powders and similar to 592 

MPCs which did not exhibit inhibited water transfer (MPC60, MPC70). For this reason, 593 

inhibited water transfer was not considered to strongly affect the gas disappearance behaviour 594 

in MPC60, MPC70, MPC80, MPC85; instead, the impeding influence of solubilised protein 595 

on bubble escape (Ybert and di Meaglio, 1998) was considered to define gas elimination in 596 

these systems. The more rapid gas disappearance for MPC35 and MPC50, which displayed 597 

similarly fast water transfer to MPC60 and MPC70, was likely due to the lower levels of 598 

protein available to impede bubble escape. Indeed, it was demonstrated in this study that the 599 

properties of a protein solution can influence bubble escape (Fig. 6) during the rehydration of 600 

a solute, which is an important consideration when conducting rehydration assessments using 601 

BARDS and other sound-based methods. 602 

The rate of gas disappearance for MPC90 was the slowest of all the powders, which 603 

suggested that water transfer into powder particles was still influential during the gas 604 

disappearance phase; however, the influence of water transfer and solvent properties needed 605 

to be differentiated. Although certain physicochemical properties of a 0.2% MPC90 606 

suspension (which had undergone complete water transfer) affected gas bubble elimination 607 

(Figure 6), slow water transfer into the powder particles was determined to be the major 608 

factor limiting gas disappearance from the solvent. The influence of the markedly slow 609 

process of water transfer into particles therefore persisted throughout the, intermediate and 610 
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late stages in the BARDS spectra for MPC90. A study of concentration-dependency, 611 

however, revealed differences between MPC80 and MPC90, which has also been observed 612 

previously for their dispersion characteristics (Crowley et al., 2015). For MPC80 (gas 613 

elimination-limiting), the rate of gas disappearance was affected by concentration effects 614 

such as soluble protein, but this was not the case for MPC90 (gas generation-limiting), as the 615 

process of water transfer was not influenced by concentration (Figure 6). 616 

Cryo-SEM micrographs indicated that the dispersion of particles on the transition 617 

from a dry powder (Figure 8) into a rehydrated solution (Figure 9) was slower and less 618 

complete for MPC90 compared to MPC35, due to the poor dispersibility of particles in high-619 

protein MPCs (Fang et al., 2011; Mimouni et al., 2009; Crowley et al., 2015; Li et al., 2016). 620 

The cryo-SEM micrographs can be compared to the BARDS spectra in Figure 10. At 100 s of 621 

rehydration, MPC35 had a limited BARDS frequency deflection due to the quick dispersion of 622 

particles capable of releasing the minor levels of occluded air present (Table 1). As large 623 

structures capable of entrapping air were no longer present due to effective dispersion, MPC35 624 

rapidly reached steady state before 1000 s had elapsed; conversely, water transfer into MPC90 625 

particles was slow, and the particles themselves underwent more limited dispersion, resulting in 626 

continued air release from the particles. When particles in both MPCs had undergone 627 

significant dispersion into smaller fragments and dissolution into component molecules, neither 628 

powder exhibited any air release (~3000 s). However, at this point, the rehydration state of both 629 

powders cannot be considered equivalent, as it is clear that much larger particle structures 630 

remained in the MPC90. The MPC35 primarily consisted of particles <1 µm, which would be 631 

expected for the nanoscale proteins present in milk. On the other hand, MPC90 contained a 632 

substantial proportion of micron-sized particles, which were presumably undispersed powder 633 

particle fragments.  634 

BARDS data indicating inhibited water transfer during the rehydration of high-protein 635 

MPCs, particularly MPC90, must be considered in the context of a growing body of evidence 636 

supporting the presence of a ‘skin’ of inter-linked casein micelles at the surface of high-637 

protein MPC particles, which has been linked with the poor rehydration characteristics of 638 

these powders (McKenna, 2000; Mimouni et al., 2010b; Fyfe et al., 2011; Crowley et al., 639 

2016; Ji et al., 2016). The results of the present study suggest that this skin of inter-packed 640 

casein micelles may act as a barrier which reduces the rate of water transfer into particles 641 

during the rehydration of high-protein MPCs. The protein:lactose ratio at the surface of the 642 

MPC particles studied here decreased significantly as the protein content of the powders 643 
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increased (Kelly et al., 2015). This altered surface composition may have removed lactose as 644 

a hydrophilic channel for effective water transfer into the particle resulting in a relatively 645 

homogenous and hydrophobic particle surface (Fyfe et al., 2011; Crowley et al., 2015). The 646 

absence of lactose as a physical ‘spacer’ may also have promoted the tendency for proteins-647 

protein interactions resulting in cohesive protein skin (Anema, 2006; Havea, 2006). The 648 

BARDS data and cryo-SEM micrographs in Figures 8, 9 and 10 strongly support that both 649 

water transfer and dispersibility are impaired in high-protein MPCs. This has also been found 650 

for MCCs, where a link between rapid water transfer and effective dispersion has been 651 

proposed (Richard et al., 2012) and demonstrated (Bouvier et al., 2013). 652 

The nature of the relationship between water transfer and dispersion has yet to be 653 

established, although it is evident from the present study that MPCs with poor water transfer 654 

properties also have poor dispersion characteristics. One possibility is that incomplete water 655 

transfer results in regions of the particles remaining effectively ‘dry’, thereby limiting their 656 

ability to attain the molecular mobility necessary to disperse effectively. This concept is 657 

illustrated in Figure 10 with corresponding BARDS frequency profile for MPC90, which 658 

shows how the presence of dry regions near the internal air vacuole of the particle could 659 

result in the predominance of uni-directional (towards the bulk solvent) dispersion, where 660 

components in immediate contact with the solvent are released first by an erosion-like 661 

process. Transfer of water through the protein skin during rehydration could eventually 662 

expose dry regions to a second solvent-front located in the interior of the particle. The 663 

presence of these two solvent-fronts would then promote collapse of the particle through 664 

multi-directional (towards the particle interior and the bulk solvent) dispersion.  665 

 666 

5. Conclusion 667 

BARDS was demonstrated to be an effective method for discriminating between MPC 668 

powders with different rehydration characteristics. The BARDS experiments only required 25 669 

mL of water and 10-50 mg of each MPC (0.04-0.20%), which minimises greatly the 670 

quantities of powder required for comparable tests. An additional advantage is that BARDS is 671 

non-invasive, as acoustic responses are derived from a non-contact microphone rather than a 672 

submerged probe. MPC35, MPC50, MPC60 and MPC70 exhibited similar water transfer 673 

properties, and differences in their BARDS spectra were primarily caused by their different 674 

air contents and the effect of increasing protein content on bubble escape. High-protein MPC 675 

powders (MPC80, MPC85 and MPC90) exhibited a characteristic BARDS response during 676 
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rehydration involving a prolonged period of gas generation to reach a maximum solvent 677 

compressibility, due mainly to inhibited water transfer into the powder particles. The period 678 

of gas generation during the rehydration of high-protein MPCs was followed by a prolonged 679 

return to steady-state equilibrium; the disappearance of gas from the solvent during this phase 680 

was influenced by the impeding effect of soluble protein on bubble escape; however, for 681 

MPC90, inhibited water transfer was still dominant during gas disappearance. The water 682 

transfer properties of high-protein MPCs were poor, but they were exceptionally poor for 683 

MPC90. BARDS is one of the few techniques currently available which facilitates the 684 

dynamic monitoring of water transfer during powder rehydration. Further BARDS studies 685 

will focus on the effect of varying solvent composition and temperature of rehydration on 686 

water transfer properties. BARDS may also be an attractive option for identifying defects in 687 

the rehydration characteristics of high-protein dairy powders caused by process- or storage-688 

induced degradative changes. 689 

 690 
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Figure Legends 1 

Figure 1. Principal of BARDS analysis as applied to MPC rehydration: Panel 1, Schematic of 2 

the BARDS Instrument; Panel 2, Addition of MPC powder to the BARDS dissolution vessel; 3 

Panel 3, Water/Air transfer of an MPC particle during rehydration and raw BARDS spectra 4 

of the rehydration of 50 mg of MPC90 in 25 mL of deionised water at 22 °C.  5 

Figure 2. Comparison of BARDS spectra of all MPC powders dissolved in 25 mL deionised 6 

water at 22 °C with a consistent sample concentration of 0.2% (w/v). 7 

Figure 3. Concentration-dependence of BARDS frequency response during rehydration of 8 

MPC in deionised water at 22 °C: (A) MPC35; (B) MPC70; (C) MPC80; (D) MPC90. 9 

Figure 4. Gas volume-time plots derived from BARDS frequency data: (A) Gas volume plots 10 

of all MPCs tested during rehydration of 50 mg MPC in 25 mL water at 22 °C; (B) 11 

Magnification of gas volume profile during the initial phase shown in (A); (C) A log plot of 12 

the gas volumes in (A), the slopes of which are used to calculate the BARDS first-order rate 13 

constants (k). 14 

Figure 5. Gas volume plots for (A) MPC35, (B) MPC 70, (C) MPC80 and (D) MPC90, using 15 

a logarithmic scale for the gas volume. 16 

Figure 6. Investigation of influence of solvent properties on gas disappearance: (A) 17 

Frequency-time plot of MPC dissolved in water, KCl dissolved in water or KCl dissolved in 18 

MPC90 solution; (B) log plot of gas volume data derived from (A). 19 

Figure 7. Modelling of BARDS data using flip-flop kinetics: (A) Modelling of 0.2%  MPC90 20 

data, as presented in Fig. 3A. (B) Log plot and simulation of the data in (A). (C) Modelling of 21 

0.2% MPC90 data obtained under slightly different conditions and (D) log plot and 22 

simulation of the data in (C). 23 

Figure 8. Cryo-SEM micrographs of dry (1) MPC35, (2) MPC70 and (3) MPC90  at 24 

magnifications of (A) 500× and (B) 2500×, with scale bars of 50 and 10 µm, respectively, for 25 

the magnifications. 26 

Figure 9. BARDS spectra of all MPCs added at 0.2% w/v and cryo-SEM micrographs of (1) 27 

MPC35 and (2) MPC90 after rehydration for (A) 100 s, (B) 1000 s, and (C) 3000 s. 28 
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Corresponding rehydration times in the BARDS spectra and micrographs are indicated for 29 

comparison. 30 

Figure 10. Schematic representation of protein ‘skin’ at the surface of a primary powder 31 

particle in a high-protein MPCs and the hypothesised relationship between inhibited water 32 

transfer and the poor dispersion of these particles. A BARDS profile for MPC90 is shown. 33 
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Table 1.  Composition and physical properties of milk protein concentrates (MPCs). Data 

presented are the means of duplicate analysis, with the exception of lactose, which was the 

result of a single analysis.a 

Table 2. Results from kinetic analysis of log gas volume-time plots taken from BARDS 

measurement of different MPC powders.
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Tables  

Table 1.  Composition and physical properties of milk protein concentrates (MPCs). Data presented are the means of duplicate analysis, with the 

exception of lactose, which was the result of a single analysis.a 

 

 

 

 

 

 

 

 

a taken from Crowley et al. (2014a). 

b Particle size below which 50% of material volume exists – median. 

 

 

  Composition  Physical properties  

    Protein Lactose Ash Fat  d50 
b Interstitial air Occluded air 

  (%, w/w)  (µm) (ml 100 g-1) 

MPC35   35.4 49.6 8.06 0.5  35.3 98 18.1 

MPC50   49.9 35.8 7.75 0.8  43.0 88 14.1 

MPC60   60.8 24.5 7.74 1.5  48.9 95 21.4 

MPC70   68.3 18.0 7.99 1.2  39.6 111 23.0 

MPC80   79.1 6.36 7.69 1.7  27.9 206 53.7 

MPC85   84.0 1.81 7.54 1.2  26.1 229 47.2 

MPC90   85.9 0.37 7.59 1.6  26.8 230 46.2 
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Table 2. Results from kinetic analysis of log gas volume-time plots taken from BARDS measurement of different MPC powders.  

 

 

 

Conc. MPC35 fit MPC50 fit MPC60 fit MPC70 fit MPC80 fit MPC85 fit MPC90 fit

% (w/v) k (s
-1

) range (s) k (s
-1

) range (s) k (s
-1

) range (s) k (s
-1

) range (s) k (s
-1

) range (s) k (s
-1

) range (s) k (s
-1

) range (s)

0.2 1.0E-02 220 -500 2.5E-02 40 -160 3.7E-03 240 -1500 6.6E-03 70 - 300 3.4E-03 500 -2000 3.88E-03 800 - 1800 1.9E-03 500 -2500

9.5E-03 160 - 300 3.7E-03 400 - 1400

0.16 1.0E-02 220 -500 1.3E-02 120 - 200 1.8E-03 400 -2700

7.9E-03 220 - 500

0.12 1.0E-02 220 -500 1.3E-02 120 - 200 4.3E-03 400 -1300 1.8E-03 400 -2100

7.9E-03 220 - 500

0.08 4.4E-02 60 -90 1.6E-02 120 - 220 4.9E-03 400 -1200 2.1E-03 700 -2400

1.0E-02 120 -260 7.0E-03 240 - 500

0.04 5.3E-02 40 -90 1.1E-02 60 - 180 6.7E-03 300 -600 2.8E-03 600 -1500

7.1E-03 260 - 400 9.8E-03 100 -220

Compressible gas volume disappearance rate constant: k (s
-1

)
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Figure 1. 

 

 

Figure 2: 
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Figure 3  
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Figure 4.  
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9.  
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Highlights 

• BARDS measured changes in gas volume during  MPC rehydration 
• Gas generation/escape rates decreased with increasing protein content 
• Occluded air from particles constituted the gas generated 

• BARDS indicates water transfer was markedly inhibited in MPC90 
• The hydration process of high MPC samples have been quantitatively modelled. 

• Cryo-SEM confirmed slow water transfer/poor dispersion link 


