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Premature translation termination leads to a reduced mRNA level in all 
types of organisms. In eukaryotes, the phenomenon is known as nonsense-

mediated mRNA decay (NMD). This is commonly regarded as the output of 
a specific surveillance and destruction mechanism that is activated by the 
presence of a premature translation termination codon (PTC) in an atypical 
sequence context. Despite two decades of research, it is still unclear how 

NMD discriminates between PTCs and normal stop codons. We suggest 
that cells do not possess any such mechanism and instead propose a new 
model in which this mRNA depletion is a consequence of the appearance of 
long tracts of mRNA that are unprotected by scanning ribosomes. 
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NMD and gene expression 

Gene expression, the process that decodes the DNA sequence into specific 

RNAs and proteins, is characteristically complex in eukaryotes. In addition to the 

multitude of mechanisms that regulate transcription and pre-mRNA processing, 

accurate and robust gene expression depends on mechanisms that link these 

nuclear processes with translation and mRNA turnover [1]. This interplay is most 

obvious in nonsense-mediated mRNA decay (NMD), a mechanism believed to 

degrade mRNAs that harbor a premature translation termination codon (PTC). 

PTCs can arise from various causes: genetic mutation, inaccurate transcription 

and, more frequently, unproductive pre-mRNA splicing. The expression of 5-30% 

of the genome, depending on the organism, is affected by NMD [2]. For example, 

upon suppression of NMD, the level of alternatively spliced mRNAs predicted to 

encode a PTC increases in all organisms, from yeast to humans [3-11]. This 

selective degradation of alternatively spliced (AS) mRNA (referred to as AS-

NMD) has been proposed to be an evolutionarily conserved means of regulating 

gene expression [12, 13]. NMD seems to compensate for the inefficient splicing 

of introns with weak splice sites; it has therefore been suggested that NMD is an 

important gene expression quality control mechanism that might have co-evolved 

with the acquisition of introns early in the Eukarya lineage [14-16], possibly in 

parallel with the origin of the nucleus [17]. In spite of the consensus that NMD is 

the function of a specific biochemical pathway that has been selected for by 

evolution, its mechanisms vary extensively and are not well-understood in any 

organism. Here we critically review current NMD models and discuss the 

significance of mRNA surveillance in general. Our conclusion is that cells may 

not require such an mRNA surveillance mechanism or even possess a PTC 

recognition mechanism(s). We offer a new model based on the idea that NMD is 

primarily a passive consequence of either ribosome release following premature 

translation termination or low ribosome occupancy of NMD-sensitive transcripts. 

 

NMD and the emergence of the mRNA surveillance concept 
Nonsense mutations are nucleotide substitutions that change a coding triplet into 

one of the three translation stop codons, UAG, UAA and UGA. These, and other 

mutations that indirectly lead to premature translation termination, are thus 

expected to produce truncated polypeptides. However, this is not always the 
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case as some alleles encoding PTCs produce only very low mRNA levels. It is 

perhaps partly for this reason, and partly due to proteasome activity, that 

truncated proteins are not detectable [18]. This feature of gene expression was 

first observed in the early days of molecular biology in Escherichia coli, when this 

class of mutation was key to the deciphering of the genetic code [19, 20]. In 

bacteria, these low mRNA concentrations can be attributed either to a non-

specific mechanism, in which mRNAs that are not shielded by translating 

ribosomes become more susceptible to cleavage by RNase E [21, 22], or to 

premature transcription termination, possibly due to loss of contact between RNA 

polymerase and the first ribosome trailing on the nascent transcript [23]. 

Depletion of mRNA is, therefore, the result of reduced transcription or instability 

of the transcript in E. coli.  

 

Comparable effects of nonsense mutations on mRNA levels in eukaryotes were 

first observed in the late 1970s in yeast and humans [24-26]. This mRNA 

reduction was initially attributed to cytoplasmic instability caused by a lack of 

ribosome shielding [24, 26]. However, the present view is that it is the function of 

a specialized mRNA surveillance mechanism that distinguishes between PTCs 

and normal stop codons, and triggers rapid mRNA degradation following 

premature translation termination. This mRNA surveillance hypothesis was first 

put forward by studies in Saccharomyces cerevisiae and Caenorhabditis elegans, 

which discovered that specific proteins might be required for the accelerated 

breakdown of mRNAs harboring a PTC [27, 28]. Mutations in these proteins were 

first identified as either suppressors or co-suppressors of nonsense and certain 

other mutations that affect translation. These were named upf in yeast, since they 

enhanced the activity of an up frameshift tRNA suppressor [29], reviewed in [30], 

and smg in C. elegans, for suppressor with morphogenetic effect on genitalia, due 

to an additional phenotype observed in mutant worms [31]. Notably, the C. 

elegans study also reported that some recessive nonsense mutations in a myosin 

heavy chain gene (unc-54) become dominant in smg(-) mutant genetic 

backgrounds, causing paralysis of the animal due to muscle abnormalities. This 

is likely due to the stabilization of the mutant unc-54 mRNA, resulting in the 

production of truncated myosin polypeptides that interfere with the formation of a 

functional myosin dimer [28, 32]. These observations engendered the concept 
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that eukaryotes have evolved an mRNA surveillance or quality control 

mechanism in which the coordinated action of a set of specific proteins 

distinguishes PTCs from regular stop codons. This triggers the destruction of 

aberrant mRNAs that would produce wasteful and potentially toxic peptides if 

translated. The mechanism was termed nonsense-mediated mRNA decay by a 

set of studies in yeast [7, 33], one of which also proposed that unspliced pre-

mRNA may represent a major source of endogenous NMD substrates [7]. (Two 

major reviews were published shortly after [34, 35], while the acronym NMD first 

appeared in a later study [36].) NMD has since been intensively studied in 

several model eukaryotic organisms, yet as we discuss below, none of the 

standard NMD models provides a satisfactory description of the process.  

 
Standard NMD models: the surveillance machinery and the hypotheses of a 
PTC recognition mechanism 
NMD is thought to be the joint function of several conserved proteins that act in 

the same biochemical pathway, of which UPF1, UPF2 and UPF3 are the most 

conserved. These proteins interact in vitro and are thought to form a trimeric 

complex upon recognition of NMD substrates [37]. This complex was interpreted 

to represent the ancestral core of the NMD machinery, which is required for both 

PTC recognition and activation of rapid mRNA degradation across eukaryotes. 

Despite there being examples of NMD occurring in the absence of these proteins, 

and NMD suppression taking place when other proteins with no functional 

connection to the UPFs are depleted [38, 39], the consensus is that NMD is the 

output of the coordinated actions of the UPFs, and, in animals and plants, several 

additional proteins that regulate their function [37, 40, 41]. Below we discuss the 

different models that have been proposed so far to explain the nature and the 

function of this putative mRNA surveillance machinery. 

 

The DSE model 

The first hypothesis to explain how the NMD machinery could discriminate 

between PTCs and normal stop codons proposed that they are distinguished 

post-translation termination by the presence of one or more downstream 

sequence elements (DSEs). These sequences were predicted to occur more 

frequently in coding regions than in 3’ untranslated regions (3’UTRs) [42, 43]. 
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This model also explains the observation in S. cerevisiae that NMD is most 

apparent the further upstream a PTC is from the normal stop codon, since the 

earlier a PTC is in the mRNA, the higher the frequency is of a functional DSE 

motif occurring by chance in the lengthened mutant 3’ UTR. The model 

proposed that an NMD or surveillance complex, including UPF1, UPF2 and 

UPF3, assembles following termination and scans for a DSE in S. cerevisiae. 

The RNA binding protein, HRP1, was subsequently shown to interact 

specifically with both the putative DSE in vitro and with UPF1 in S. cerevisiae  

[44]. HRP1 is involved in pre-mRNA 3’ end processing and transcription 

termination, and is known to shuttle between the nucleus and the cytoplasm 

[45-47]. The initial DSE model therefore envisaged that HRP1 might bind the 

DSE in the nucleus, remaining bound to the mRNA after its export to the 

cytoplasm. An interaction between UPF1 and DSE-bound HRP1 was thought 

to identify the mRNA as an NMD substrate, initiating rapid destruction of the 

mRNA by promoting the recruitment of the decay factors (Figure 1A). The 

DSE model was largely abandoned when it became apparent that there is no 

similarity between putative DSEs identified in different mRNAs [36]. However, 

the derived concept, that NMD-inducing PTCs are distinguished from normal 

stop codons by a downstream mark after termination, is the basis of current 

models, particularly in mammalian cells.  

 

The EJC model 

As in the yeast DSE model, the EJC (Exon Junction Complex) model also 

predicts that PTCs are distinguished from normal stop codons by the presence of 

a downstream signal, in this case a splice junction. The link between splicing and 

NMD was first reported in mammalian cells, where PTCs often induce strong 

NMD only when they are located upstream of at least one splice junction [48-50], 

specifically, at least 50-55 bases upstream of the last junction (introns are 

infrequent in 3’UTRs) [51]. As splice junctions are highly degenerate sequences, 

it was unclear at first how they are recognized. The answer came with the 

discovery of the EJC, a multiprotein complex that is deposited on the mRNA 

during splicing in the nucleus, and which remains associated with exon junctions 

during export to the cytoplasm [52, 53]. A core of three proteins, eIF4AIII, Y14 

and MAGO, associates with several additional proteins, including UPF2 and 
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UPF3, to form the EJC [54, 55]. While the precise mechanism remains 

undefined, the current model (Figure 1B) predicts that SMG1 (a UPF1 kinase) 

and UPF1 are recruited to all terminating ribosomes, where they form a complex 

with the eukaryotic release factors (this complex is termed SURF) [56]. Since the 

EJC core complex binds UPF3 in vitro, the prediction is that UPF2, by binding 

both UPF1 and UPF3, forms a physical bridge between the SURF complex and 

the EJC when translation termination occurs upstream of an exon-exon junction; 

this interaction stimulates the helicase activity of UPF1 and the accelerated 

destruction of the mRNA [55, 56] (reviewed recently in [57]). It has also been 

proposed that PTC recognition and NMD occur during the first (pioneer) round of 

translation, while the mRNA is still associated with EJCs and the nuclear cap 

binding complex (CBC) [58]; however, others have reported that NMD is not 

restricted to CBC-bound mRNAs in mammalian cells [59, 60]. 

 

The EJC model provides a logical explanation as to how splicing can affect NMD 

not only in mammalian cells, but also in other organisms [61-63]. However, as we 

discussed previously, there are several long-standing, as well as some recent, 

observations that the EJC model cannot explain [39]. One such observation is 

that UPF2 can interact with the SURF, thereby potentially activating UPF1, 

independently of UPF3 and the EJC in human cells [64], which strongly 

contradicts the classic SURF-EJC model [56]. More puzzling is the finding that in 

Schizosaccharomyces pombe an intron enhances NMD regardless of whether it 

is placed before or after the PTC, and that the proteins that form the core of the 

EJC are not required for such splicing-dependent NMD [8]. Therefore, the means 

by which splicing affects translation and NMD remains largely unsatisfactorily 

understood. 

 

The faux 3’-UTR model  

As demonstrated by the early studies in S. cerevisiae, NMD can take place in 

intronless genes. Moreover, it can also occur in the absence of an intron 

downstream of the PTC in mammalian cells, as well as in other organisms [8, 65-

67]. The presence of a downstream splice junction therefore cannot be an 

evolutionarily conserved second signal that is essential for distinguishing PTCs 

from normal stop codons during translation.  
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Presently, the prevalent NMD model is based on the idea that termination at 

PTCs is biochemically different from that at normal stop codons, because it takes 

place far from the normal 3’UTR or 3’ end of the mRNA [68]. This so-called “faux 

3’-UTR” model (Figure 1C) was initially built on observations in S. cerevisiae [65], 

but appears to also apply to other organisms [66, 67, 69, 70]. Cytoplasmic 

poly(A) binding protein (PABPC), which binds the mRNA poly (A) tail, was found 

to interact with eukaryotic release factor 3 (eRF3) which associates with the 

terminating ribosome [71, 72]. Release factor eRF3 forms a complex with eRF1 

(which binds the ribosome A site and recognizes all three stop codons in 

eukaryotes), triggering the release of the polypeptide [73]. The interaction of 

PABPC with eRF3 stimulates translation termination [72] and was proposed to 

couple termination and global mRNA decay [74]. In particular, the faux 3’-UTR 

model proposed that in the absence of an interaction with PABPC, either 

termination or the release of the ribosome from the mRNA is delayed. This 

triggers the recruitment or activation of NMD-inducing factors such as UPF1 in 

place of PABPC, therefore diverting the mRNA for rapid destruction [65]. 

Numerous reports that UPF1 interacts with eRF1 and eRF3 (reviewed in [37]) are 

consistent with this model, and deletion of UPF1 and other UPF proteins 

promotes translation read-through independently of mRNA levels [43, 75, 76]. 

However this effect on termination appears in part to be indirect in S. cerevisiae 

[77]. 

 

The faux 3’-UTR model rationalizes many features of NMD across organisms, 

such as NMD being more apparent when the PTC is further away from the 3’ 

end, yet there are numerous observations (which we have previously discussed 

in detail [39]) that it cannot account for. In direct contrast to one of the model’s 

key predictions, that PTCs closer to the 3’ end escape NMD because the 

terminating ribosome is able to interact with PABPC, recent studies reported that 

the interaction between eRF3 and PABPC is not the means by which mRNAs are 

stabilized when PABPC is artificially tethered downstream of NMD-inducing 

PTCs [78, 79]. This interaction appears to affect translation termination but 

neither general mRNA decay nor NMD in S. cerevisiae [80]. Additionally, 

depletion of PABPC does not substantially change the pattern of NMD in S. 
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pombe, where PTCs early in the coding region lead to more apparent NMD than 

PTCs closer to the normal stop codon, regardless of the presence of PABPC [8].   

 

It can be argued that 3’UTR proteins other than PABPC are required for efficient 

termination. This may be the case, but was not envisaged by the faux 3’-UTR 

model. Moreover, recent studies also seem to invalidate the model’s key 

prediction that UPF1 should selectively associate with mRNAs subjected to NMD. 

UPF1 was shown to bind mRNAs regardless of whether or not they are affected 

by NMD, and more generally, no correlation with the position of the stop codon 

was identified [81-83]. These latter studies contrast a number of others that 

concluded that more UPF1 binds NMD-sensitive transcripts [84-87]. The latest of 

these reported that while UPF1 can dynamically bind any mRNA, its ATP-ase 

activity is specifically inhibited on NMD substrates [84] slowing its dissociation 

and therefore activating their decay, however, the mechanism by which this 

target discrimination is achieved remains vague.  

 

NMD might not require any specific PTC recognition mechanism 

The ribosome-release model 

As we have outlined above, none of the NMD models proposed to date can 

explain PTC discrimination satisfactorily in any organism. While this might signify 

that different eukaryotes have evolved diverse PTC discrimination mechanisms, 

the alternative is that cells do not have such a mechanism at all. Is NMD simply 

the passive consequence of translation terminating prematurely and the 

ribosomal subunits being released from the mRNA? Following stop codon 

recognition and release of the nascent peptide, the post-termination ribosome is 

recycled for a new round of translation. Recycling comprises two key steps, 

splitting of the ribosome into its subunits and release of deacetylated tRNA and 

mRNA [88, 89]. The process requires the activity of a number of proteins, 

including translation initiation factor eIF3. Based initially on observations that 

mutations in eIF3 subunits can suppress NMD, as well as on evidence for a 

physical interaction between eIF3 and UPF1 [90-92], we have previously 

proposed that NMD might be caused by the release of ribosomes from the mRNA 

[39]. Our model predicts that when termination occurs at an early position in the 

coding region, the mRNA becomes unstable, simply because the downstream 
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sequence remains unprotected by the standard set of translating ribosomes 

(Figure 2, Key Figure). Our proposal is that in cells without UPF1, or possibly 

other NMD factors, the mRNA remains densely loaded with ribosomes or 

ribosomal subunits. These would passively suppress NMD by shielding the 

transcript from non-specific nuclease attack, thereby preventing activation of 

general mRNA destruction pathways, which typically involve 5’ end decapping 

[93, 94].  

 

Consistent with this model, mRNAs which are translated by a single ribosome 

(monosomes) are more sensitive to NMD than mRNAs that are simultaneously 

translated by several ribosomes (polysomes) in S. cerevisiae [95]. Additionally, it 

was reported that in fact more ribosomes engage with PTC-containing mRNAs in 

cells lacking UPF1 [96, 97]. While this could be interpreted as evidence that 

NMD, similar to general mRNA decay, occurs co-translationally [93, 94, 96], the 

data are also consistent with our model, that in the absence of UPF1, ribosomes, 

or ribosomal subunits, remain associated with the 3’UTR. Notably, the possibility 

that ribosomes might passively stabilize the mRNA by migrating downstream of 

the PTC in the absence of UPF1, was examined by one of the early UPF1 

studies in S. cerevisiae, but it was dismissed because the distribution of the 

mRNA which was tested shifted toward heavier polysomal fractions by only a 

small extent in a strain lacking UPF1 [33]. However, in view of the recent 

observations discussed above, this small shift might be significant and consistent 

with the prediction of our model. 

 

Moreover, a lack of UPF1 inhibits recycling of post-termination ribosomes in S. 

cerevisiae [98]. UPF1 might be recruited to the 3’UTR via its interaction with the 

terminating ribosome or bind mRNAs directly, as discussed, or associate with the 

ribosome during translation initiation, via direct association with ribosomal 

proteins [99]. In any case, once bound to the RNA, its ATP-ase activity could 

promote release of unstable post-termination ribosomes, and also remove 

associated proteins and resolve RNA secondary structures [100, 101]. The 

UPF1-like helicase MOV10 might also contribute to this function in mammalian 

cells [83]. One function of UPF1 could be to prevent translation re-initiation 

downstream of the stop codon. Translation re-initiation is a feature that can, at 
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least partially, suppress NMD of mRNAs with a PTC located upstream of 

sequences that drive re-initiation [102, 103]. Notably, mutations in UPF1 and 

UPF3 were also isolated in early genetic screens as suppressors of a mutation 

that introduces an upstream reading frame (uORF) in a S. cerevisiae gene; the 

suppression mechanism probably consisted of an increased re-initiation rate 

downstream of the uORF [104, 105]. It is therefore possible that NMD is not the 

output of a specific mechanism which, either at or post-termination, distinguishes 

stop codons. Instead, it may be the result of the passive destabilization of an 

mRNA due to the release of ribosomes, ribosomal subunits, or stably associated 

RNA binding proteins (RBPs) – the latter may account for why many endogenous 

mRNAs with long 3’UTRs are not affected by UPF1 depletion [106, 107].  

 

There are observations that seemingly disprove our model. For example, it has 

long been known in the NMD field that blocking ribosome scanning, by inserting a 

secondary structure in the 5’UTR, does not destabilize the mRNA, in spite of 

inhibiting translation [108]. We propose that transcripts are intrinsically stable 

until translation initiation starts removing the RBPs that shield the RNA. UPF1, as 

well as other helicases involved in translation initiation [109], might be 

responsible for the unfolding of the mRNP. However, future experiments may 

reveal that there are not more ribosomes loaded on the mRNA in UPF1 depleted 

cells, which would disprove this model.  

 

What is the function of NMD? 

Does NMD function as an mRNA surveillance mechanism in order to remove 

aberrant mRNAs? The initial interpretation, that NMD is a specific mRNA 

surveillance mechanism that destroys mRNAs of nonsense alleles, is 

questionable, since nonsense mutations are rare, typically inactivate the gene 

product, and as such will be subjected to negative natural selection. The proposal 

that NMD might have evolved to remove unspliced pre-mRNAs that would 

otherwise produce potentially toxic truncated proteins, is more plausible. 

However, there is no experimental evidence that the small fraction of mRNAs that 

fail to be spliced can be efficiently translated into toxic, or even stable, peptides 

without first inactivating the proteasome [18]. On the contrary, it has been 

reported that there is no correlation between transcript and protein changes 
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attributable to NMD in HeLa cells [110]. Additionally, while a lack of NMD 

increases pre-mRNA levels, it does not affect viability of either S. cerevisiae or S. 

pombe in laboratory conditions [8, 37], and, as mentioned, has only a mild 

specific developmental phenotype in C. elegans [31, 111]. Most introns are 

located only a few nucleotides from the AUG in S. cerevisiae; if translated, the 

pre-mRNA would produce short peptides that are unlikely to form toxic 

interactions with other proteins. Therefore, producing a defective dimer with the 

wild-type copy of the protein, as reported in C. elegans for some alleles of the 

myosin heavy chain gene in smg mutants [28], would be improbable. It was also 

envisaged that NMD increases the efficiency of gene processing by avoiding 

energetically wasteful translation of non-functional transcripts. These can be 

generated not only by inaccurate pre-mRNA processing, as discussed, but also 

by inaccurate selection of transcription start sites, as recently proposed in S. 

cerevisiae [112]. However, eukaryotic gene expression does not necessarily 

follow the most energetically efficient path, as exemplified by the fact that many 

essential genes remain functionally expressed when their introns are artificially 

removed in S. cerevisiae [113]. 

 

NMD factors are essential for the viability of many organisms [61, 63, 114] 

though it is not yet clear whether these effects are due to the global suppression 

of NMD. It is possible that lethality is due to the mis-expression of one or more 

essential genes in some, but not necessarily other, NMD mutants. For example, 

although mutations that inactivate UPF1, UPF2 and UPF3 all suppress global 

NMD in Drosophila [107, 115], loss of function of UPF1 and UPF2 results in 

embryonic lethality, but UPF3 is not essential for either development or fly 

viability [116]. These observations were interpreted as evidence that UPF3 is not 

required for directing the subset of specific transcripts involved in fly development 

towards NMD [116]. However, they could indicate that global NMD in itself does 

not have an important function for the organism, or that these factors have other 

functions unrelated to NMD. Remarkably, the lethality of Drosophila UPF1 and 

UPF2 mutants may be caused by the overexpression of a single gene [117], out 

of hundreds of predicted targets [107].  
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NMD was reported to be important for cellular differentiation [118-121]. Depletion 

of UPF2 in mouse hematopoietic cells resulted in depletion of hematopoietic 

stem and progenitor cells but only mildly affected differentiated cell numbers 

[120]. This phenotype could be attributed to the toxic accumulation of PTC-

containing mRNAs of cell receptor and immunoglobulin genes, as, during normal 

maturation of T- and B-cells, these genes undergo somatic rearrangements that 

frequently introduce NMD-inducing PTC mutations [122]. The interpretation was 

that NMD is essential for survival of proliferating cells, however, it remains 

possible that these cells are primarily depleted due to the lack of a functional T-

receptor on the cell membrane [123]. It remains to be investigated whether 

deletion of UPF1 and other NMD factors produce similar phenotypes. In 

summary, while UPF1, UPF2 and UPF3 are important, which is also underscored 

by their conservation across eukaryotes, they do not necessarily function to 

identify and target specific mRNAs for destruction. Whether the reason for this 

evolutionary conservation is, as we proposed, their function in promoting efficient 

release of ribosomes from the mRNA, will need to be investigated by future 

studies.  

 

Concluding remarks and future perspective 

While the consensus is that NMD functions as a specific mRNA decay pathway 

that targets transcripts which encode a PTC, or possess other NMD inducing 

features such as long 3’UTRs, uORFa and a downstream splice junction [2], it is 

becoming increasingly apparent that NMD affects many more transcripts than 

initially envisaged. There is little overlap between the lists of putative targets 

identified in different organisms or cell-types, and many have no shared features 

[106, 107, 124]. We discussed the possibility that NMD is not the output of a 

specific biochemical process - see also [39], but rather is the passive 

consequence of ribosome release following translation termination (Figure 2, Key 

Figure). The fact that NMD is seemingly suppressed by depletion of specific 

proteins does not necessarily imply that these proteins are the effectors of NMD. 

NMD-like phenomena clearly occur in bacteria, which have no UPF proteins or 

other NMD-machinery, and UPF1 is not required for NMD in trypanosomes [125]. 

Additionally, deletion of UPF1 and UPF2 does not completely suppress NMD in 

fission yeast [8]; and there are reports of non-specific mRNA stabilization in NMD 
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mutants of different organisms, in which mRNA levels can rise above those in 

wild-type cells (discussed in [39]. 

 

Whether a transcript is affected by NMD could be mainly a consequence of 

multiple features, some of which are either acquired fortuitously during gene 

evolution or arise due to inaccurate transcription or pre-mRNA processing. The 

result of these may be slow translation initiation [126] leading to the mRNA being 

translated only by a single ribosome [95]. However, codon usage, which is a 

global determinant of mRNA levels [127, 128], shows no significant correlation 

with NMD [95, 126]. In any case, organisms might not need such an mRNA 

surveillance mechanism: gene features conducive to NMD, such as weak splice 

signals, if detrimental to gene function, would be expected to be removed through 

the generations by natural selection.   

 

Despite this, NMD remains an important feature of eukaryotic gene expression.  

Understanding its different causes will be important for gaining a more accurate 

understanding of gene expression and developing new treatments for particular 

genetic disorders arising from PTCs [129-131]. Depletion of UPF1 in particular 

appears to stabilize transcripts of genes required for resistance to different 

cellular stresses [117, 132-134]. Understanding the NMD phenomenon therefore 

might also allow its manipulation in diseases such as cancer, in which tumor 

progression relies on the regulation of stress-response mechanisms [134]. Many 

open questions still remain (see Outstanding Questions Box); one key point will 

be to understand how UPF1 affects ribosome release, and whether other NMD 

factors have a similar effect on translation. Additionally, UPF1 and the other so-

called NMD factors might have other functions independent of translation and 

NMD in the cytoplasm. There is evidence, for instance, that UPF1 has a role in 

nuclear processes, which raises the possibility that it is these additional functions 

that make the proteins necessary for survival in some organisms [135]. Finally, in 

light of observations that nonsense mutations can impinge on co-transcriptional 

processes, leading to reduced production of the corresponding mRNA, the issue 

of whether NMD can occur in the nucleus will need to be re-investigated [70, 136-

139]. A recent study concluded that in some instances NMD may wrongly appear 

to be nuclear in mammalian cells because PTC-containing mRNAs are degraded 
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within seconds of them reaching the cytoplasm, while still associated with the 

nucleus [108, 140]. However there is new evidence that the ribosome can 

translate nuclear RNA in human cells [137, 141], and also nascent transcripts in 

Drosophila [142]. NMD might therefore be the compounded effect of releasing 

ribosomes from both processed and nascent transcripts, the former leading to 

instability of the mature mRNA while the latter may reduce its production [143], 

as in bacteria. The presence of translating ribosomes within the nucleus can 

potentially change not only our understanding of NMD, since it could explain how 

NMD is enhanced by pre-mRNA splicing, but also that of eukaryotic molecular 

biology in general. 
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Figure legends 

Figure 1. Current NMD models. (A) DSE model. Translation termination 

occurs normally at a PTC. Following peptide release (in red), a surveillance 

complex comprising UPF1, UPF2 and UPF3 (depicted by the blue car) 

assembles downstream and scans the 3’UTR. If a downstream sequence 

element (DSE) is encountered, the interaction between UPF1 and HRP1 

bound to the DSE identifies the stop codon as premature, triggering rapid 

mRNA decay. (B) EJC model. Translation termination occurs normally at a 

PTC. A SURF complex, consisting of SMG1, UPF1, eRF1 and eRF3, 

assembles upon termination. SURF association with a downstream EJC 

identifies that termination is premature and induces mRNA decay. (C) Faux 

3’UTR model. Translation termination occurs abnormally at a PTC. 

Ribosomes terminating in proximity of the poly(A) tail interact with PABPC via 

eRF3, which leads to normal termination. Early termination, distant from the 

3’ end, is abnormal because it precludes this interaction with PABPC (heat 

map shows its highest concentration in red), instead inducing the recruitment 

of NMD factors to the terminating ribosome. The dashed line represents a 

putative interaction between the 5’-cap and PABPC predicted to keep the 

mRNA in a closed-loop conformation. The E, P and A sites are the tRNA 

binding sites on the ribosome.  

 

Figure 2. The NMD ribosome release model. Translation termination occurs 

normally at a PTC. Ribosomal subunits remain joined and associated with 

mRNA after nascent peptide release (in red). Such post-termination 

ribosomes can migrate, possibly bidirectionally, towards codons capable of 

pairing with the anticodon of the deacetylated tRNA, which remained in the P 

site. UPF1 is recruited to terminating ribosomes from which it moves onto the 

downstream sequence. It then, possibly by interacting with eIF3, facilitates 

dissociation of non-translating post-termination ribosomes or ribosomal 

subunits which have migrated along the 3’UTR. The process might also 

release otherwise stably associated different RNA binding proteins (depicted 

by small circles). If translation terminates prematurely, the downstream region 

of the mRNA remains therefore exposed and accessible to decay factors, 

which leads to its rapid degradation. In the absence of UPF1 (bottom 
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diagram) post-termination ribosomes are not efficiently released and continue 

to migrate downstream, shielding (together with residual RNA-binding 

proteins) the mRNA from degradation.  
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The Trends box  
 
Mutations that interrupt translation reduce mRNA levels in all organisms 
studied to date. 
 
It has long been thought that in eukaryotes this mRNA depletion is the 
function of a specific and evolutionarily conserved mRNA surveillance 
mechanism termed nonsense-mediated mRNA decay (NMD). 
 
On the contrary, we argue that NMD is a passive consequence of ribosomes 
being prematurely released from the mRNA. 
 
Low ribosome occupancy is the key determinant of NMD. 
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Outstanding Questions Box  
 

What is the mechanism that drives association of UPF1 with mRNA and not other 

classes of RNA? Is UPF1 brought to mRNA by a direct interaction with the 

ribosome?  

 

How does UPF1 affect ribosome release from the 3’UTR subsequent to 

translation termination, as well as ribosome occupancy in general?  

 

Do UPF2 and UPF3 also affect ribosome occupancy? Is the function of UPF1 in 

ribosome release dependent on UPF2 and UPF3?  

 

What is the mechanism that links pre-mRNA splicing to translation and NMD in 

the absence of the EJC? 

 

Are mRNAs affected by NMD while still in the nucleus?  
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Wild type: efficient ribosome release
Release model

UPF1 null mutant: inefficient ribosome release

 Exposed 3’UTR NMD
  Post-termination (PT)

 ribosome dissociation
Premature termination

 Protected 3’UTR No NMD  PT ribosome retentionPremature termination

No UPF1

UPF1

60S

40S

?

PT ribosome

E

E P A

E P A

5’ CAP PABPC

5’UTR 3’UTR

AAA

Premature

termination

eRF1

eRF3

PTC

STOP

43S

eIF3

UPF1

eIF3

UPF1 P A

?

P A

START

E

E P A

E P A

E P A

E P A

PT ribosome

E

E P A

E P A

5’ CAP

5’UTR 3’UTRPremature

termination

eRF1

eRF3

PTC

STOP

43S

40S

P A

START

E

AAA

AAA

AAA AAA
AAA

AAA

AAA

AAA

PABPC

AAA

AAA

AAA

AAA AAA
AAA

AAA

AAA

AAA

 


