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Abstract 24 

The present study examined the effect of intensive training in combination with marked reduction in 25 

training volume on FXYD1 expression and phosphorylation at rest and during exercise. Eight well-26 

trained cyclist replaced their regular training with speed-endurance training (10-12 x ~30-s sprints) 27 

2-3 times per week and aerobic high-intensity training (4-5 x 3-4 min at 90-95% of peak aerobic 28 

power output) 1-2 times per week for seven weeks and reduced the training volume by 70%. 29 

Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol and 30 

protein expression and phosphorylation were determined by western blotting. Expression of 31 

FXYD1 (30%), actin (40%), mTOR (12%), PLN (16%) and CaMKII γ/δ (25%) was higher 32 

(P<0.05) after compared to before the training intervention. In addition, after the intervention non-33 

specific FXYD1 phosphorylation was higher (P<0.05) at rest and during exercise, mainly achieved 34 

by an increased FXYD1 ser68 phosphorylation, compared to before the intervention. CaMKII 35 

thr287 and eEF2 thr56 phosphorylation at rest and during exercise, overall PKCα/β thr638/641 and 36 

mTOR ser2448 phosphorylation during repeated intense exercise as well as resting PLN thr17 37 

phosphorylation were also higher (P<0.05) after compared to before the intervention period. Thus, a 38 

period of high intensity training with reduced training volume increases expression and 39 

phosphorylation levels of FXYD1, which may affect Na+/K+ pump activity and muscle K+ 40 

homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN as well as 41 

increased phosphorylation of CaMKII thr287 may have improved intracellular Ca2+ handling. 42 

 43 

Abbreviations 44 

4E-BP1, eukaryotic initiation factor 4E-binding protein 1; ACC, Acetyl-CoA carboxylase; AMPK, 45 

AMP-activated Protein Kinase; CaMK, Ca2+/Calmodulin-dependent Protein Kinase; eEF2, 46 

eukaryotic elongation factor 2; FXYD1, phospholemman; mTOR, mammalian target of rapamycin; 47 

NaK, Na+/K+; p70S6K1, Ribosomal protein S6 p70 Kinase 1; PKC, protein kinase C; PLN, 48 

phospholamban; TBST, Tris-buffered Saline including 0.1% Tween-20.  49 
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Introduction 50 

Changes in muscle ion homeostasis during intense contraction reduce membrane excitability which 51 

may lead to development of fatigue (30). Exercise training improves performance during intense 52 

exercise and reduces the accumulation of potassium in both blood (25) and muscle interstitium (32), 53 

which has been associated with elevated levels of Na+/K+ (NaK) pump subunit expression (25; 31-54 

33). However, training studies have shown improved work capacity without adaptations in the NaK 55 

pump content and isoform abundance but with a higher maximal NaK pump activity (3). Thus, 56 

factors other than NaK pump subunits expression may affect the capacity of the NaK pump. 57 

Phospholemman (FYXD1) is a regulatory protein associated with the NaK pump and changes in its 58 

expression and phosphorylation affect pump activity (7; 13; 27; 35). It is well known that muscle 59 

NaK pump activity increases markedly with exercise (9), which may be regulated partly by an 60 

increased FXYD1 phosphorylation observed during both moderate intensity (5) and high intensity 61 

acute exercise in humans (52). The effect of endurance training on muscle FXYD1 expression and 62 

phosphorylation during and after exercise has been examined (5). Ten days of moderate intensity 63 

cycle training including 6 x 5 min at 90-100% of an intensity corresponding to VO2 max did not 64 

affect FXYD1 expression or FXYD1 phosphorylation during long-term low intensity exercise in 65 

untrained healthy individuals (5). In contrast, a 2-week period of high intensity exercise training 66 

elevated resting levels of FXYD1 phosphorylation (54), indicating that intensity during training 67 

may be important for the adaptations of FXYD1. However, the effect of intense training on muscle 68 

FXYD1 expression and exercise-induced phosphorylation has not been examined. We hypothesize 69 

that intensified training does lead to higher expression of FXYD1 and increased FXYD1 70 

phosphorylation during intense exercise, which can explain the  finding of a lower femoral venous 71 

potassium concentration after intense exercise (23).   72 

Exercise training leads to multiple adaptations in human skeletal muscles as a result of molecular 73 

events, including exercise-induced activation of signaling pathways, which regulate changes of 74 

muscle structure and function. AMP-activated Protein Kinase (AMPK) is known as a key protein 75 

for exercise-mediated muscle adaptations and particular regulation of mitochondrial and GLUT4 76 

biogenesis (44). AMPK content, activity and phosphorylation are markedly regulated during a few 77 

weeks of endurance training (17; 29). On the other hand, AMPK thr172 phosphorylation is elevated 78 

after high, but not low, intensity exercise (15). Furthermore, AMPK and Acetyl-CoA carboxylase 79 

(ACC) phosphorylation are increased after four 30-s bouts of intense exercise (21), indicating that 80 
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high intensity exercise training, including training intensities exceeding VO2 max, may lead to 81 

adaptations in the AMPK signaling pathway, but this issue has not been investigated. 82 

Regulation of muscle Ca2+ fluxes during exercise does affect the development of fatigue (1). In 83 

human skeletal muscles the multifunctional Ca2+/Calmodulin-dependent protein kinase (CaMK) II 84 

is the major CaMK and was shown to be activated during low intensity exercise (48). Furthermore, 85 

endurance training alters CaMKII cell signaling in human skeletal muscles (47). In contrast, 86 

CaMKII thr287 phosphorylation is only elevated after high, and not low, intensity exercise (15). 87 

Therefore, high intensity exercise training may induce adaptations in the CaMKII pathway via 88 

changes in CaMKII thr287 phosphorylation, which will affect phospholamban (PLN) thr17 89 

phosphorylation and thereby Ca2+ fluxes via the SERCA pumps (48). 90 

Mammalian target of rapamycin (mTOR) is part of the multi-protein complex, mTORC1, and plays 91 

via e.g. eukaryotic initiation factor 4E-binding protein (4E-BP1) and ribosomal protein S6 p70 92 

kinase 1 (p70S6K1) an essential role in the regulation of muscle mass and protein synthesis (22). 93 

Phosphorylation of mTOR ser2448 and activation of mTORC1 have been associated with both 94 

atrophy and hypertrophy of skeletal muscles (22; 42). Endurance exercise induces an increased 95 

mTOR signaling via phosphorylation of mTOR ser2448 (4) and heavy resistance exercise induces 96 

increases in mTOR signaling and protein synthesis (22). On the other hand, four 30-s sprints did not 97 

activate mTOR signaling (21), while other studies implementing high intensity exercise do report 98 

activation of mTOR signaling (22). Due to the ambiguous findings it is of value to examine whether 99 

intense exercise induces mTOR signaling and how intensified training affects mTOR signaling. 100 

Thus, the aim of the present study was to examine the effects of intense training with reduced 101 

volume on FXYD1 expression and phosphorylation during repeated high intensity exercise in 102 

trained individuals. In addition, to examine the effect of intensified training with a reduced volume 103 

on activation of signaling pathways involving mTOR, AMPK and CaMKII in human skeletal 104 

muscles. 105 

  106 
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Materials and Methods 107 

Ethical approval and subjects 108 

The study was approved by the local ethical committee of the capital region of Copenhagen (Region 109 

Hovedstaden) and performed in accordance to the principles of the Declaration of Helsinki. The 110 

subjects and training intervention were the same as in a study focusing on adaptations of ion 111 

transport proteins and ion kinetics (23) and a study focusing on adaptations in oxygen kinetics (8) 112 

during repeated high intensity exercise. Eight well trained male cyclists, who had been training and 113 

competing on a regular basis for at least 3 years, with an average (mean ± SD) age, weight and 114 

maximum oxygen uptake of 33±8 years, 81±8 kg and 59±4 ml·min-1·kg-1, respectively, participated 115 

in the study. The subjects were informed of any risks and discomforts associated with the 116 

experiments before giving their written, informed consent to participate. 117 

 118 

Training intervention 119 

A 7-week intensive training intervention including a volume-reduction was performed, as a one-120 

group longitudinal design immediately after the regular cycling season as described in detail 121 

previously (8; 23). All training sessions were supervised and performed on public roads and on the 122 

subjects’ own bikes. Briefly, the subjects replaced all their regular training with 2-3 sessions of 123 

speed-endurance training a week performed as 10-12 x ~30-s maximal uphill (~6% gradient) cycle 124 

sprinting interspersed by 4.5 min of low intensity exercise and 1-2 sessions a week of aerobic high-125 

intensity training consisting of 4-5 x ~4 min of cycling (2 km flat course) at 90-95% of maximal 126 

heart rate interspersed by 2 min of rest with a work-to-rest ratio of ~2:1. During the training 127 

intervention subjects reduced the training volume by ~70% (62 vs. 211 km/week). 128 

 129 

Experimental design 130 

Subjects carried out two experimental days as well as two performance testing days before and after 131 

the 7-week training intervention as described in detail previously (8; 23). Briefly, on the first 132 

experimental day subjects arrived at the laboratory in the morning at least 60 min after consumption 133 

of a standardized breakfast. After 30 min of supine rest, catheters were inserted into the femoral 134 

artery and vein under local anesthesia, using the Seldinger technique. The catheters were used to 135 
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measure blood flow and for blood sampling. After 30 min of rest subjects cycled for 6 min at 50% 136 

of peak power output on an ergometer bike (Monark, Ergomedic 839E, Vansbro, Sweden), then 137 

after 30 min of rest, for 6 min at 70% of peak power output and 60 min later for 6 min at 70% of 138 

peak power output. Then, after another 60 min of rest, subjects performed a repeated intense 139 

exercise protocol, consisting of 2 min at low intensity (20 W), then intense exercise for 2 min 140 

(EX1), followed by 2.5 min of recovery and 2 min of low intensity exercise (20 W), and then 141 

another intense exercise bout performed to exhaustion (EX2). The intensity during the intense 142 

exercise was 90% of peak aerobic power output (356±6 W). This article focuses on training 143 

adaptations and changes in relation to the repeated intense exercise protocol performed at the end of 144 

one of the two experimental days (Fig.1). 145 

Before the repeated intense exercise protocol, a muscle biopsy (n=7 as one subject did not have 146 

biopsies taken) was obtained from the m. vastus lateralis (6) under local anesthesia (1 ml of 147 

lidocaine, 20 mg/ml without epinephrine) and incisions were made as preparation for the following 148 

three biopsies. A biopsy was collected immediately after EX1, just prior to the low intensity 149 

exercise before EX2 and at exhaustion in EX2 within 10 seconds of exercise cessation with the 150 

subjects still placed on the bike (Fig. 1). All muscle samples were immediately frozen in liquid N2 151 

and stored at -80°C until analyses were initiated. 152 

 153 

Protein expression in muscle homogenate lysates 154 

Protein expression was determined as described previously (54). In short, samples of approximately 155 

2.5 mg freeze dried human muscle tissue were dissected free from blood, fat and connective tissue. 156 

Samples were homogenized for 1 min at 28,5 Hz (Qiagen Tissuelyser II, Retsch GmbH, Haan, 157 

Germany) in a fresh batch of ice-cold buffer containing (in mM): 10% glycerol, 20 Na-158 

pyrophosphate, 150 NaCl, 50 HEPES (pH 7.5), 1% NP-40, 20 β-glycerophosphate, 2 Na3VO4, 10 159 

NaF, 2 PMSF, 1 EDTA (pH 8), 1 EGTA (pH 8), 10 µg/ml Aprotinin, 10 µg/ml Leupeptin and 3 160 

Benzamidine, afterwards rotating for 1 hour at 4 °C and centrifuged at 18,320 G for 20 min at 4 °C 161 

to exclude non dissolved structures. The supernatant (lysate) was collected and used for further 162 

analysis. Total protein concentration in each sample was determined by a BSA standard kit 163 

(Thermo Scientific, USA) and samples were mixed with 6 x Laemmli buffer (7 ml 0.5 M Tris-base, 164 
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3 ml glycerol, 0.93 g DTT, 1 g SDS and 1.2 mg bromophenol blue) and ddH2O to reach equal 165 

protein concentration before protein expression were determined by western blotting. 166 

 167 

Western blotting 168 

Equal amount of total protein were loaded in each well of pre-cast gels (Bio-Rad Laboratories, 169 

USA). All samples from each subject were loaded on the same gel. Proteins were separated 170 

according to their molecular weight by SDS page gel electrophoresis and semi-dry transferred to a 171 

PVDF membrane (BioRad, Denmark). The membranes were blocked in either 2% skimmed milk or 172 

3% BSA in Tris-buffered Saline including 0.1% Tween-20 (TBST) before an overnight incubation 173 

in primary antibody at 4 °C and a subsequent 1 hour incubation in horseradish-peroxidase 174 

conjugated secondary antibody at room temperature. The bands were visualized with ECL 175 

(Millipore) and recorded with a digital camera (ChemiDoc MP Imaging System, Bio-Rad 176 

Laboratories, USA). Densitometry quantification of the western blot band intensity was done using 177 

Image Lab version 4.0 (Bio-Rad Laboratories, USA) and determined as the total band intensity 178 

adjusted for background intensity. Representative blots are shown in Figure 2. 179 

 180 

Antibodies 181 

The primary antibodies used in the present experiment were optimized by use of mixed human 182 

muscle standard lysates to ensure that the protein amount loaded would result in band signal 183 

intensities localized on the steep and linear part of a standard curve. To determine total and 184 

phospho-specific protein expression the antibodies included in Table 1 were used with the 185 

localization of the quantified signal noted. The phospho-specific Acetyl-CoA carboxylase (ACC) α 186 

ser79 antibody (#07-303, Millipore) was previously shown to recognize the equivalent ser221 in 187 

human ACC β (45; 57) and therefore used to determine ACC β ser221 phosphorylation. The 188 

secondary antibodies used were horseradish-peroxidase conjugated rabbit anti-sheep (P-0163), 189 

rabbit anti-goat (P-0449), goat anti-mouse (P-0447, DAKO, Denmark) and goat anti-rabbit IgM/IgG 190 

(4010-05 Southern Biotech). 191 

 192 
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FXYD1 antibody phospho-specificity 193 

All of the FXYD1 antibodies used in the present study were previously shown to detect FXYD1 in 194 

human skeletal muscle (5; 52) as well as FXYD1 in other tissues (18; 41; 50). In order to interpret 195 

the data meaningfully, it should be noted, that AB_FXYD1 recognizes mainly unphosphorylated 196 

FXYD1, however, phosphorylation at ser63, ser68 and thr69 reduces the AB_FXYD1 signal 197 

intensity, as the antibody epitope is located in the C-terminal region of FXYD1 protein, where the 198 

phosphorylation sites are also located (5; 41; 50; 53). This was confirmed in the present study by 199 

dephosphorylation of the membrane proteins (43) after the original western blot analysis with 200 

AB_FXYD1: The original PVDF membrane was first reactivated in ethanol and afterwards 201 

incubated in TBST. Then the membrane was incubated in a stripping buffer (0.5 M Tris-HCL; pH 202 

6.7, 2% SDS and 100 mM 2-Mercaptoethanol) at 50 °C for 2 hours. After 3 x 10 min washing in 203 

TBST in another container, the membrane was blocked with TBST including 2% skimmed milk in 204 

15 min and incubated in secondary antibody for 1 hour. Membranes were then washed again for 3 x 205 

15 min and the stripping procedure was confirmed by exposure of the membrane. When the entire 206 

primary antibody was removed by the stripping protocol, the dephosphorylation protocol was 207 

conducted by incubating membranes for 2 hours at 37 °C in the dephosphorylation buffer (50 mM 208 

Tris-HCL, 0.1 mM Na2EDTA, 5 mM DTT, 0.01% Brij 35 and 2 mM MnCl2; pH 7.5) including 500 209 

U/ml lambda protein phosphatase (P07535, New England BioLabs). Then the membrane was 210 

blocked with TBST including 2% skimmed milk, incubated overnight in AB_FXYD1, washed 2 x 5 211 

min in TBST, incubated for 1 hour in secondary antibody and exposed by ECL. Following this 212 

procedure, total FXYD1 expression (using AB_FXYD1 on dephosphorylated proteins) was shown 213 

to be significantly increased (0.91±0.05 vs. 1.04±0.06) after compared to before the training 214 

intervention. A similar result (30% increase) was obtained with the total FXYD1 antibody (Table 215 

2), raised against the N-terminal region of the FXYD1, confirming the AB_FXYD1 phospho-216 

specificity. For clarity purposes, data obtained with AB_FXYD1 is inverted and shown as 217 

1/AB_FXYD1, thus an increase on the figure (Fig. 3A) represents an increase in non-specific 218 

FXYD1 phosphorylation. 219 

AB_FXYD1ser68 (originally named CP68) is phospho-specific for ser68 residue in humans (52), 220 

although it should be noted that the affinity for ser68 residue is affected by the phosphorylation 221 

status of the adjacent thr69. Thus, the amount of ser68 phosphorylation, as determined by 222 

AB_FXYD1ser68 (Fig. 3C), can be underestimated if thr69 is phosphorylated (18). Similarly, 223 
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FXYD1 thr69 phosphorylation (Fig. 3E) can be affected by the phosphorylation status of the ser68 224 

residue. 225 

Furthermore, a new batch of FXYD1 phospho-specific antibodies: FXYD1ser63, FXYD1ser68 and 226 

FXYD1thr69 (developed by Will Fuller and Michael Shattock), have also been used. These 227 

antibodies were used in mouse and rat ventricular myocytes, where FXYD1 is poorly 228 

phosphorylated at thr69 (16), however, in vitro phosphorylation data indicates (18) that the 229 

FXYD1ser68 and FXYD1thr69 antibodies are affected to the similar extent as the older generation 230 

of antibodies, AB_FXYD1ser68 and AB_FXYD1. Indeed, in our study, FXYD1 ser68 231 

phosphorylation data obtained by the FXYD1ser68 and AB_FXYD1ser68 antibodies were similar 232 

and thus, for simplicity, only data obtained using AB_FXYD1ser68 are included in the results 233 

section. 234 

In order to take into account the phospho-specificity and -sensitivity of the used antibodies, 235 

AB_FXYD1ser68/AB_FXYD1 ratio (Fig 3D) was used as an alternative to determine ser68 236 

phosphorylation (Fig. 3C), as done in the past (54), whereas, FXYD1thr69/AB_FXYD1 (Fig. 3F) 237 

was used as alternative to determine thr69 phosphorylation (Fig. 3E). These ratios may overcome 238 

that the determination of FXYD1 ser68 and thr69 phosphorylation probably are affected by 239 

simultaneously phosphorylation at the two sites located next to each other. Data obtained from the 240 

ratio FXYD1ser68/AB_FXYD1 were similar to AB_FXYD1ser68/AB_FXYD1 and not included. 241 

 242 

Data treatment  243 

For each muscle sample, protein expression and phosphorylation was determined in duplicate 244 

(except for three muscle samples where only one measure was performed due to limited muscle 245 

tissue) and the average intensities were calculated. Values for all the individual time points were 246 

compared with the average resting value before the training intervention. 247 

Training induced changes in total protein expression and phosphorylation are shown in relation to 248 

the total expression of the same protein, where both are determined, e.g. mTOR 249 

phosphorylation/mTOR expression. Determination of the specific phosphorylation level and total 250 

protein expression was performed on separate membranes in separated analyses. 251 

 252 
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Statistics 253 

Changes in protein phosphorylation and expression were evaluated by a Two-way repeated measure 254 

ANOVA. If overall significant main effects were observed, a Student-Newman-Keul post-hoc 255 

analysis was conducted to identify differences in protein phosphorylation within specific time 256 

points (SigmaPlot 11.0). P < 0.05 was chosen as the level of significance.  257 
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Results 258 

Effect of the training intervention on protein expression 259 

Total expression of muscle FXYD1, CaMKII γ/δ, PLN, mTOR and actin was 30% (P<0.01), 25% 260 

(P<0.01), 16% (P<0.01), 12% (P<0.05) and 40% (P<0.05) higher after than before the training 261 

intervention. The expression of 4E-BP1 was 24% lower (P<0.05) after than before the training 262 

intervention. CaMKII βM expression tended (P=0.072) to be higher after compared to before the 263 

training intervention, whereas the expression of AMPKα2, eEF2 and p70S6K1 was not changed 264 

with the training intervention (Table 2).  265 

 266 

Effect of the training intervention on protein phosphorylation during intense exercise 267 

Non-specific FXYD1 phosphorylation was higher (P<0.05) at all time-points during the repeated 268 

intense exercise, compared to rest. After the training intervention period, non-specific FXYD1 269 

phosphorylation was higher (P<0.05) after EX1 and before EX2, than before the training 270 

intervention (Fig. 3A). 271 

FXYD1 ser63 phosphorylation was not altered during the repeated intense exercise, nor was it 272 

changed with the training intervention (Fig. 3B). 273 

FXYD1 ser68 phosphorylation was higher (P<0.001) at the end of EX1, compared to rest, 274 

decreased (P<0.001) after EX1, and then increased (P<0.05) after compared to before EX2 (Fig. 275 

3D). Furthermore, FXYD1 ser68 phosphorylation was higher (P<0.05) at rest and throughout the 276 

repeated intense exercise protocol after compared to before the training intervention (Fig. 3C and 277 

3D). 278 

FXYD1 thr69 phosphorylation was higher (P<0.05) after EX1, before and after EX2 compared to 279 

rest, while the training intervention did not affect FXYD1 thr69 phosphorylation (Fig. 3F). 280 

 281 

PKCα/β thr638/641 phosphorylation 282 

PKCα/β thr638/641 phosphorylation did not change during the repeated intense exercise, but after 283 

the training intervention, it was higher (P<0.01) before EX2 compared to rest (Table 3). After the 284 
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training intervention PKCα/β thr638/641 phosphorylation was higher at the end of EX1 (P<0.05) 285 

and before EX2 (P<0.01) compared to before the training intervention.  286 

 287 

CaMKII thr287, PLN thr17 and eEF2 thr56 phosphorylation  288 

Neither CaMKII βM nor γ/δ subunit thr287 phosphorylation was altered during the repeated high 289 

intensity exercise. After the training intervention CaMKII γ/δ thr287 phosphorylation was higher 290 

(P<0.01) at rest and both CaMKII βM and γ/δ thr287 phosphorylation were higher (P<0.01) before 291 

and after EX2, compared to before the training intervention (Table 3). 292 

After the training intervention Phospholamban (PLN) thr17 phosphorylation, was higher at rest 293 

(P<0.01) compared to before the intervention. Furthermore, before the training intervention, PLN 294 

thr17 phosphorylation was higher before EX2 compared to rest, while there were no changes in 295 

PLN thr17 phosphorylation with exercise after the training intervention (Table 3). 296 

Another CaMKII downstream target, eukaryotic elongation factor 2 (eEF2) thr56 phosphorylation, 297 

was increased at rest (P<0.01) and after EX2 (P<0.05) after the training intervention compared to 298 

before. Before the training intervention eEF2 thr56 phosphorylation after EX2 was higher (P<0.05) 299 

than at rest, while after the intervention the eEF2 thr56 phosphorylation after EX2 was higher 300 

(P<0.05) than at all other time points (Table 3). 301 

 302 

mTOR ser2448, p70S6K1 thr389 and 4E-BP1 thr37/46 phosphorylation 303 

Phosphorylation of mTOR ser2448 tended (P=0.064) overall to change during the exercise bouts. 304 

After the training intervention mTOR ser2448 phosphorylation was higher before EX2 (P<0.01) 305 

and after EX2 (P<0.05), compared to before the training intervention (Table 3). 306 

Before the training intervention mTORC1 activity determined by p70S6K1 thr389 phosphorylation 307 

at all time points was higher (P<0.05) compared to rest. After the training intervention p70S6K 308 

thr389 phosphorylation was higher (P<0.05) after EX1 compared to rest (Table 3). 309 

The mTOR substrate eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) thr37/46 310 

phosphorylation was not changed with neither exercise nor training (Table 3). 311 
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 312 

AMPKα thr172 and ACC β Ser221 phosphorylation 313 

Before the training intervention, AMPKα thr172 phosphorylation was higher (P<0.01) after EX2 314 

compared to the other time points. After the training intervention AMPKα thr172 phosphorylation 315 

after EX2 was lower (P<0.01) than before the training intervention (Table 3).  316 

As a downstream target of AMPK, the ACC β ser221 phosphorylation was higher after EX1 317 

(P<0.001) and before EX2 (P<0.01) compared to rest, and was further increased (P<0.05) at 318 

exhaustion, but was not affected by the training intervention (Table 3). 319 

 320 

  321 
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Discussion 322 

The main findings of the present experiment were that seven weeks of intensive training, with a 323 

reduced training volume, increased the total expression of FXYD1 and elevated the resting non-324 

specific FXYD1 phosphorylation level in endurance trained cyclist. In addition, repeated intense 325 

exercise after the training intervention induced a higher level of non-specific FXYD1 326 

phosphorylation than before the intervention. This was dominated by higher phosphorylation at 327 

FXYD1 ser68 residues. Other important findings were that the training intervention elevated the 328 

expression of actin, mTOR, PLN and CaMKII γ/δ and lowered the 4E-BP1 expression. 329 

Furthermore, the resting PLN thr17 phosphorylation, the overall PKCα/β thr638/641 and mTOR 330 

ser2448 phosphorylation during repeated intense exercise as well as CaMKII thr287, and eEF2 331 

thr56 phosphorylation at rest and during exercise was higher after compared to before the training 332 

intervention. 333 

Total FXYD1 expression was higher after compared to before the intensified training period, with 334 

no change in NaK pump α- and β-isoform expression (NaKα1: -11%, NaKα2: -8%, NaKβ1: -3%; 335 

(23). In contrast, no change in total FXYD1 expression, but elevated NaK pump α1-, α2- and β1-336 

isoform protein expressions were shown after 10 days of moderate intensity (75-100% of VO2 peak) 337 

cycle training in recreationally active subjects (5). Thus, it appears that the intensity of training 338 

and/or the training status of the subjects are important for adaptation of muscle FXYD1. In support 339 

of the first notion, sprint training in rats induced higher muscle FXYD1 levels, while endurance 340 

training did not have any effect on FXYD1 expression (38). Treadmill running with a 10%-grade, 5 341 

days a week for 45 min in about 14 weeks, elevated FXYD1 expression in rat skeletal muscles (40). 342 

The different effect of the various training forms may have been caused by the degree of the FT 343 

muscle fiber stimulation, as FT muscle fibers are expected to be more activated during the intense 344 

training. In agreement, it has been demonstrated in humans, that the exercise (5 min cycling at 95% 345 

of VO2 max) induced change in FXYD1 phosphorylation is more pronounced in type II fibers than in 346 

type I fibers (51). 347 

In the resting state, non-specific FXYD1 phosphorylation and ser68 phosphorylation was higher 348 

after compared to before the training intervention. In agreement, a higher level of FXYD1 ser68 349 

phosphorylation at rest was observed after two weeks of intensified training in soccer players (54). 350 

In contrast, 10 days of moderate intensity exercise training did not induce changes in the resting 351 



15 
 

FXYD1 phosphorylation level (5), indicating that exercise intensity is also important for the 352 

training adaptations of FXYD1 phosphorylation at rest.  353 

During the repeated intense exercise the non-specific FXYD1 phosphorylation increased due to 354 

greater ser68 and thr69 phosphorylation, which is also observed during exercise with moderate 355 

intensity (52). On the other hand, FXYD1 ser63 phosphorylation did not change during the short 356 

and intense repeated exercise protocol as shown after 20-30 min of moderate intensity exercise (5; 357 

52). This may be explained by the lack of increase in PKCα/β thr638/641 phosphorylation level, as 358 

ser63 phosphorylation is PKC mediated (7; 36). The duration of the repeated intense exercise 359 

protocol may have been too short or the intensity too high to induce ser63 phosphorylation. FXYD1 360 

thr69 phosphorylation increased after EX1 and stayed elevated during the repeated intense exercise 361 

protocol, while ser68 phosphorylation increased during both exercise bouts and decreased in 362 

recovery from EX1. These marked increases in FXYD1 phosphorylation levels during exercise 363 

suggest that FXYD1 phosphorylation may play a crucial role in regulation of the NaK pump, and 364 

hence, K+ regulation during and after intense exercise, where K+ fluxes are pronounced (24; 28). 365 

Thus, in the same study it was observed that the average venous K+ concentration during the first 2 366 

min of recovery from the intense exercise bouts was lower (P<0.05) after compared to before the 367 

training intervention (4.2±0.2 vs. 4.9±0.2 and 4.3±0.2 vs. 5.1±0.1 mM), suggesting an enhanced 368 

muscle K+ reuptake, without changes in the expression of NaK pumps subunits (20). Furthermore, 369 

performance during repeated intense exercise was improved with the training intervention (256 vs. 370 

217 s) (23). 371 

After the training intervention non-specific FXYD1 phosphorylation was higher at the end of EX1 372 

and before EX2, due to higher FXYD1 ser68 phosphorylation, compared to before the intervention. 373 

The training intervention did not affect FXYD1 thr69 phosphorylation, which is in agreement with 374 

findings after a period of moderate intensity training (5). The training induced increase in PKCα/β 375 

thr638/641 phosphorylation may have contributed to the elevated FXYD1 phosphorylation, since 376 

PKCα activity has been shown to be required for contraction induced FXYD1 phosphorylation in 377 

mouse skeletal muscles (52) and other tissues (7; 18; 35). 378 

The higher expression of FXYD1 and FXYD1 phosphorylation after compared to before the 379 

training intervention may have affected the NaK pump activity and, hence, muscle potassium 380 

reuptake at rest and during contractions (10). In rat skeletal muscles around 30% of the α-subunits 381 

were co-expressed with FXYD1 (39), and the finding of a larger amount of FXYD1 may suggest a 382 
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higher degree of NaK pumps found as α/β/FXYD1 or a higher pool of free FXYD1 proteins. It has 383 

been shown in Xenopus oocytes, that the affinity for potassium (K+) and especially sodium (Na+) is 384 

lower for α/β/FXYD1 pumps compared to α/β pumps (both α1/β1 and α2/β1) without differences in 385 

the maximal pump activity (13). Thus, at rest a potential higher amount of α/β/FXYD1 pumps after 386 

compared to before the training intervention may per se lower the NaK pump activity, but it may 387 

also have been counterbalanced by an increased Na+ affinity expected from a higher resting FXYD1 388 

phosphorylation (7; 35). 389 

Incubation of rat muscle tissue homogenates with an anti-FXYD1 antibody lowered the NaK 390 

enzymatic activity by more than 50% compared to samples with no treatment (40), indicating that 391 

more FXYD1 increases the activity of NaK pumps in muscles through a higher amount of NaK 392 

pumps found as α/β/FXYD1. In addition, a higher pool of free FXYD1 after compared to before the 393 

training intervention, may have elevated the NaK pump activity during contractions. Indeed, 394 

FXYD1 has been suggested to translocate from an intracellular pool to the sarcolemma membrane 395 

during contractions, concomitant with an increased association between FXYD1 and the α1-subunit 396 

and a higher pump activity in the sarcolemma membrane fraction (39). Furthermore, the higher 397 

FXYD1 phosphorylation after the training intervention may have improved the pump activity 398 

through both a higher Na+ affinity (27) and a higher Vmax (34; 35). Thus, during exercise both the 399 

higher FXYD1 expression and phosphorylation may have contributed to an increased NaK pump 400 

activity after the training intervention compared to before. Unfortunately, the maximal NaK pump 401 

activity could not be determined due to lack of muscle tissue. Nevertheless, a higher activity of the 402 

NaK pump during and after exercise may explain the observation of lowered femoral venous 403 

plasma K+ concentration in the first 2 min of recovery after EX1 and EX2 as a result of the training 404 

intervention (23). 405 

An increased exercise-induced extracellular K+ concentration has been linked to depolarization of 406 

the muscle membranes, decreased excitability and muscle fatigue. Therefore higher muscle K+ 407 

reuptake is expected to improve performance. Improved K+ handling and exercise performance has 408 

been related to higher NaK pump content after a period of training (25; 31-33). On the other hand, 409 

high intensity training has augmented maximal pump activity despite unchanged total pump content 410 

and protein isoform expression (3). FXYD1 expression and phosphorylation were not determined in 411 

either of these studies and adaptations in the FXYD1 proteins may be the missing link explaining 412 

increased NaK pump activity without changes in pump content or isoform expression (3). 413 



17 
 

Concomitant adaptations in the NaK pump α2-subunit and FXYD1 phosphorylation have 414 

previously been demonstrated after intensified training (54). Thus, the adaptations in FXYD1 415 

expression and FXYD1 phosphorylation shown here may have improved K+ handling during 416 

exercise, despite no changes in NaK pump subunit expression. It is interesting to hypothesize that 417 

these adaptations in the FXYD1 protein may be the cause of the improved performance during 418 

repeated high intensity exercise of already trained athletes after the intensified training intervention 419 

with reduced training volume, as observed in the present study (23). 420 

An improved performance as a result of the training intervention (23) may also have been related to 421 

an improved intracellular Ca2+ handling (20). The high intensity training intervention with reduced 422 

volume induced increases in the CaMKII γ/δ isoforms while the CaMKII βM tended to be higher. 423 

The elevated CaMKII expression was associated with a higher expression of PLN and a higher 424 

resting phosphorylation of the substrate phospholamban thr17, which relieves the phospholamban 425 

inhibition on SERCA, allowing a higher Ca2+ affinity and, thus, a higher rate of Ca2+ uptake (48). A 426 

higher content of PLN with the same degree of thr17 phosphorylation would most likely lead to 427 

better Ca2+ homeostasis in the trained muscle (47), as observed previously in rats (26). It should be 428 

noted, however, that the changes in CaMKII expression in the present study were less pronounced 429 

than with 10 days of endurance training (4) and three weeks of one-legged endurance exercise 430 

training, which doubled the CaMKII activity, CaMKII kinase isoform expression and CaMKII 431 

autophosphorylation in resting muscles (47). On the other hand, the changes in PLN expression and 432 

thr17 phosphorylation at rest as well as in CaMKII thr287 phosphorylation (up to 8-fold increases) 433 

at rest and throughout the repeated intense exercise protocol shown after the intense training 434 

intervention, were either not seen after 10 days of endurance training (4) or were less pronounced 435 

after three weeks of endurance training (47), even though the subjects in the present study were 436 

trained before the intervention period. Thus, adaptations in PLN expression and CaMKII thr287 437 

phosphorylation seem to be intensity dependent. CaMKII phosphorylation accelerates ATP 438 

provision via glycogenolysis and glycolysis during contractions (48) and may explain why higher 439 

muscle lactate levels were observed during exercise after the training intervention (23). 440 

AMPK thr172 phosphorylation at exhaustion was lower after the intervention period. In accordance, 441 

10 days of endurance exercise training abolished a 9-fold increase in AMPK α2 activity, observed 442 

during prolonged exercise before the training period (29). On the other hand, in the present 443 

experiment the downstream target of AMPK, ACCser221 phosphorylation was not affected by the 444 
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training intervention, which was observed after a period of endurance training (4; 29). These 445 

findings indicate that high intensity training has an impact on AMPK signaling, but the effect is less 446 

pronounced than seen after endurance training. When the energy sensing and signaling protein 447 

AMPK is activated, it increases ATP production by stimulation of glucose uptake and fatty acid 448 

oxidation. Furthermore activation of AMPK inhibits ATP consuming processes such as protein 449 

synthesis (56). The observed decrease in the exercise induced AMPK thr172 phosphorylation after 450 

the training intervention may indicate an abolished AMPK activity during high intensity exercise 451 

even though other factors are involved. A decrease in AMPK activity will improve the ability for 452 

ATP consuming processes in the muscle cell, such as an increased NaK pump activity, which may 453 

contribute to improved K+ handling and the improved performance. In support for a link between 454 

AMPK and NaK pump activity, repeated treatment of mice with the AMPK activator AICAR 455 

increased FXYD1 phosphorylation and affected the NaK pump activity by increasing the Na+ 456 

affinity (27). 457 

AMPK may be involved in the regulation of mTOR, as elevated AMPK signaling lowers mTOR 458 

signaling in mouse skeletal muscles (14), while it is presently unclear whether it also occurs in 459 

humans (19). Thus, the abolished AMPK phosphorylation after the training intervention may have 460 

caused the increased expression of mTOR as well as mTOR ser2448 phosphorylation. These 461 

increases in mTOR and ser2448 phosphorylation were similar to the adaptations seen after 462 

moderate intensity training (4) and appear not to be intensity dependent. The mTOR signaling 463 

pathway is involved in many processes in the muscle cell including pathways controlling protein 464 

synthesis and muscle hypertrophy (12; 22). The increased actin expression may indicate muscle 465 

hypertrophy. It is supported by a training induced decrease in 4E-BP1 expression, which may have 466 

reduced eIF4E/4E-BP1 binding and elevated translation initiation (22). The mTORC1 readout 467 

p70S6K1 thr389 phosphorylation was in the present study higher during 2 x 2-4 min of high 468 

intensity exercise, which is in contrast to shorter high intensity exercise bouts (11; 21). During the 469 

training intervention both 30-s and 4-min bouts were performed, thus mTORC1 may have been 470 

activated during the training and may have induced hypertrophy. On the other hand, both exercise 471 

and training induced an increase in the downstream target of CaMKII, eEF2 thr56 phosphorylation 472 

(19; 37)¸ which is expected to lower protein synthesis by lowering the eEF2 interaction with the 473 

ribosome and, thereby, impairing the elongation rate (37). Likewise, acute endurance exercise and 474 

endurance exercise training intervention, where hypertrophy is not expected, do lead to higher eEF2 475 

thr56 phosphorylation levels (55). The higher eEF2 thr56 phosphorylation observed at rest after the 476 
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training intervention is expected to blunt the overall muscle protein synthesis (49) and does not 477 

indicate hypertrophy. In support, mean or peak power output during the initial sprint was not 478 

changed with the training intervention (23). Thus, it is unclear whether the intervention did lead to 479 

mTORC1 induced muscle hypertrophy and further studies are warranted to examine whether high 480 

intensity exercise training can lead to hypertrophy in already endurance trained individuals. 481 

In summary, seven weeks of high intensity training with reduced training volume in endurance 482 

trained cyclist increased FXYD1 expression and FXYD1 phosphorylation levels and may have 483 

caused the improved K+ reuptake during the intense repeated exercise, thus possibly contributing to 484 

the improved performance. Furthermore, the intense training intervention induced adaptations in 485 

CaMKII and PLN expression as well as CaMKII phosphorylation that may improve intracellular 486 

Ca2+ handling during exercise, which may potentially contribute to the improved performance. 487 

 488 

Perspectives and Significance 489 

The present study showed that high intensity exercise training in combination with a reduced 490 

training volume can induce significant adaptations in already endurance trained cyclists. It also 491 

demonstrated that it is important to examine changes in muscle protein phosphorylation and 492 

signaling during acute exercise before and after a training intervention. Higher FXYD1 expression 493 

and phosphorylation as well as CaMKII signaling may have elevated K+ reuptake (23), via 494 

increased NaK pump activity (13; 27; 34; 35), and improved Ca2+ handling (26; 47; 48), 495 

respectively, but these effects need to be examined and possible links to improved excitation-496 

contraction coupling should be investigated. Further studies are also warranted to clarify the effects 497 

of high intensity exercise training with reduced training volume on muscle hypertrophy and the 498 

signaling mechanisms regulating protein synthesis. 499 
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Figure and table legends 679 

Figure 1 680 

A Schematic illustration of the protocol performed on the experimental day. Muscle biopsies were 681 

obtained at the time points indicated by solid arrows. A fifth biopsy was as well obtained at rest in 682 

the morning, indicated by the dashed arrow, but data from this biopsy is not included in the article. 683 

The present article only includes data related to the repeated intense exercise protocol performed at 684 

the end of the experimental day. iPPO, incremental peak power output.  685 

 686 

Figure 2 687 

Representative western blots, including the molecular weight of band migration. 4E-BP1: 688 

eukaryotic initiation factor 4E-binding protein 1; ACCβ Ser221 phos: Acetyl-CoA carboxylase β 689 

serine 221 phosphorylation; AMPKα2: AMP-activated Protein Kinase α2; CaMKII: 690 

Ca2+/Calmodulin-dependent Protein Kinase II; eEF2: Eukaryotic elongation factor 2; FXYD1: 691 

phospholemman; mTOR: mammalian target of rapamycin; PKCα/β Thr638/641 phos: protein 692 

kinase Cα/β threonine 638/641 phosphorylation; p70S6K1: Ribosomal protein S6 p70 Kinase 1; 693 

PLN: Phospholamban. 694 

 695 

Figure 3A 696 

Muscle protein non-specific FXYD1 phosphorylation at rest and during repeated intense exercise 697 

(EX1 and EX2) before (PRE) and after (POST) 7 weeks of high-intensity training in combination 698 

with a reduced training volume in trained cyclist (n=7). Data are normalized to mean at rest before 699 

the intervention period (PRE) and expressed as means ± SEM. The overall statistical effects – Acute 700 

exercise: P>0.001, Training: P=0.012 and Interaction: P=0.232. * Post higher than Pre. # Rest lower 701 

than all other time points. $ Rest lower than all other time points after IT (Post). ¤ End of EX1 and 702 

EX2 higher than rest before IT (Pre) and ¤¤ End of EX2 higher than before EX2 before IT (Pre). 703 

 704 

 705 
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Figure 3B 706 

Muscle protein FXYD1 ser63 phosphorylation at rest and during repeated intense exercise (EX1 707 

and EX2) before (PRE) and after (POST) 7 weeks of high-intensity training in combination with a 708 

reduced training volume in trained cyclist (n=7). Data are normalized to mean at rest before the 709 

intervention period (PRE) and expressed as means ± SEM. The overall statistical effects – Acute 710 

exercise: P=0.359, Training: P=0.938 and Interaction: P=0.165. 711 

 712 

Figure 3C  713 

Muscle protein FXYD1 ser68 phosphorylation at rest and during repeated intense exercise (EX1 714 

and EX2) before (PRE) and after (POST) 7 weeks of high-intensity training in combination with a 715 

reduced training volume in trained cyclist (n=7). Data are normalized to mean at rest before the 716 

intervention period (PRE) and expressed as means ± SEM. The overall statistical effects – Acute 717 

exercise: P=0.053, Training: P=0.046 and Interaction: P=0.520. * Post higher than Pre. 718 

 719 

Figure 3D  720 

Muscle protein FXYD1 ser68 phosphorylation, considering antibody phospho-sensitivity, at rest 721 

and during repeated intense exercise (EX1 and EX2) before (PRE) and after (POST) 7 weeks of 722 

high-intensity training in combination with a reduced training volume in trained cyclist (n=7). Data 723 

are normalized to mean at rest before the intervention period (PRE) and expressed as means ± SEM. 724 

The overall statistical effects – Acute exercise: P<0.001, Training: P=0.004 and Interaction: 725 

P=0.920. * Post higher than Pre. # End of EX1 higher than all other time points. ## End of EX2 726 

higher than Rest and before EX2. $ End of EX1 higher than all other time points after IT (Post). ¤ 727 

End of EX1 higher than Rest and before EX2 before IT (Pre). 728 

 729 

Figure 3E  730 

Muscle protein FXYD1 thr69 phosphorylation at rest and during repeated intense exercise (EX1 731 

and EX2) before (PRE) and after (POST) 7 weeks of high-intensity training in combination with a 732 
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reduced training volume in trained cyclist (n=7). Data are normalized to mean at rest before the 733 

intervention period (PRE) and expressed as means ± SEM. The overall statistical effects – Acute 734 

exercise: P=0.824, Training: P=0.001 and Interaction: P=0.937. * Post lower than Pre. 735 

 736 

Figure 3F  737 

Muscle protein FXYD1 thr69 phosphorylation, considering antibody phospho-sensitivity, at rest 738 

and during repeated intense exercise (EX1 and EX2) before (PRE) and after (POST) 7 weeks of 739 

high-intensity training in combination with a reduced training volume in trained cyclist (n=7). Data 740 

are normalized to mean at rest before the intervention period (PRE) and expressed as means ± SEM. 741 

The overall statistical effects – Acute exercise: P=0.006, Training: P=0.071 and Interaction: 742 

P=0.723. # Rest lower than all other time points. ¤ End of EX1 and End of EX2 higher than Rest 743 

before IT (Pre). 744 

 745 

Table 1 746 

Antibody overview 747 

4E-BP1: eukaryotic initiation factor 4E-binding protein 1; ACCβ Ser221 phos: Acetyl-CoA 748 

carboxylase β serine 221 phosphorylation; AMPKα2: AMP-activated Protein Kinase α2; CaMKII: 749 

Ca2+/Calmodulin-dependent Protein Kinase II; eEF2: Eukaryotic elongation factor 2; FXYD1: 750 

phospholemman; mTOR: mammalian target of rapamycin; PKCα/β Thr638/641 phos: protein 751 

kinase Cα/β threonine 638/641 phosphorylation; p70S6K1: Ribosomal protein S6 p70 Kinase 1; 752 

PLN: Phospholamban. 753 

 754 

Table 2 755 

Muscle protein expression at rest, before and after 7 weeks of high-intensity training in 756 

combination with a reduced training volume in trained cyclist 757 

4E-BP1: eukaryotic initiation factor 4E-binding protein 1; AMPKα2: AMP-activated Protein 758 

Kinase α2; CaMKII: Ca2+/Calmodulin-dependent Protein Kinase II; eEF2: Eukaryotic elongation 759 
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factor 2; FXYD1: phospholemman; mTOR: mammalian target of rapamycin; p70S6K1: Ribosomal 760 

protein S6 p70 Kinase 1; PLN: Phospholamban. Values are means ± SE in arbitrary units; n = 7. 761 

The main statistical P-values obtained from a Two-way RM ANOVA statistical analysis are 762 

expressed. Protein expression is different after compared to before the training intervention * P < 763 

0.05, and ** P < 0.01. Protein expression tended to be different after compared to before the 764 

training intervention # P < 0.10. 765 

 766 

Table 3 767 

Changes in protein phosphorylation at rest and during the repeated intense exercise protocol 768 

before and after 7 weeks of high-intensity training with a reduced training volume in trained 769 

cyclist 770 

4E-BP1: eukaryotic initiation factor 4E-binding protein 1; ACCβ: Acetyl-CoA carboxylase β; 771 

AMPKα2: AMP-activated Protein Kinase α2; CaMKII: Ca2+/Calmodulin-dependent Protein Kinase 772 

II; eEF2: Eukaryotic elongation factor 2; mTOR: mammalian target of rapamycin; PKCα/β: protein 773 

kinase C α/β; p70S6K1: Ribosomal protein S6 p70 Kinase 1; PLN: Phospholamban. E: Acute 774 

exercise, T: Training, I: Interaction, End of EX1: After the first intense exercise bout lasting 2min, 775 

Before EX2: Before the second exercise bout and End of EX2: after the second high intensity 776 

exercise bout performed to exhaustion. Data are expressed as means±SE. * PRE higher than POST. 777 

** POST higher than PRE. $ Higher than Rest within PRE or POST, $$ Higher than all other time 778 

points within PRE or POST, # Higher than Rest, ## Higher than all other time points, ¤ Higher than 779 

before EX2.  780 
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Table 1 Antibody overview 781 

Protein target Ab cat. number or name Company or donor Ab source Migration MW 
4E-BP1 #9452 Cell Signaling Technology rabbit 15-20 kDa 

4E-BP1 Thr37/46 phos #2855 Cell Signaling Technology rabbit 15-20 kDa 
ACCβ Ser221 phos #07-303 Millipore rabbit 259 kDa 

Actin A2066 Sigma Aldrich rabbit  42 kDa 
AMPKα2 AMPK α2 Dr. J. Birk, University of Copenhagen sheep 63 kDa 

AMPKα Thr172 phos #2531 Cell Signaling Technology rabbit 63 kDa 
CaMKII 611293 BD Transduction Laboratories mouse 55-75 kDa 

CaMKII Thr286 phos #3361 Cell Signaling Technology rabbit 55-75 kDa 
eEF2 ab130187 Abcam mouse 95 kDa 

eEF2 Thr56 phos #2331 Cell Signaling Technology rabbit 95 kDa 
FXYD1 13721-1-AP Proteintech rabbit 12 kDa 

FXYD1 unphosphorylated AB_FXYD1 – C2 Dr. J. Randall Moorman, University of Virginia rabbit 12 kDa 
FXYD1 Ser68 phos AB_FXYD1ser68 – CP68 Dr. D. Bers, Loyola University rabbit 12 kDa 
FXYD1 Ser63 phos FXYD1ser63 phos Professor M. Shattock, King’s College London rabbit 12 kDa 
FXYD1 Ser68 phos FXYD1ser68 phos Professor M. Shattock, King’s College London rabbit 12 kDa 
FXYD1 Thr69 phos FXYD1thr69 phos Professor M. Shattock, King’s College London sheep 12 kDa 

mTOR #2972 Cell Signaling Technology rabbit 289 kDa 
mTOR Ser2448 phos #2971 Cell Signaling Technology rabbit 289 kDa 

p70S6K1 #2708 Cell Signaling Technology rabbit 70 kDa 
p70S6K1 Thr389 phos #9234 Cell Signaling Technology rabbit 70 kDa 

PKCα/β Thr638/641 phos #9375 Cell Signaling Technology rabbit 80-82 kDa 
PLN PA5-19351 Pierce – ThermoScientific goat 6 kDa 

PLN Thr17 phos Sc-17024 Santa Cruz Biotechnology rabbit 6 kDa 
4E-BP1: eukaryotic initiation factor 4E-binding protein 1; ACCβ Ser221 phos: Acetyl-CoA carboxylase β serine 221 phosphorylation; AMPKα2: AMP-782 
activated Protein Kinase α2; CaMKII: Ca2+/Calmodulin-dependent Protein Kinase II; eEF2: Eukaryotic elongation factor 2; FXYD1: phospholemman; 783 
mTOR: mammalian target of rapamycin; PKCα/β Thr638/641 phos: protein kinase Cα/β threonine 638/641 phosphorylation; p70S6K1: Ribosomal 784 
protein S6 p70 Kinase 1; PLN: Phospholamban. 785 

 786 

  787 
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Table 2 Muscle protein expression before and after 7 weeks of high-intensity training in combination with a reduced 788 
training volume in trained cyclist.  789 

  Main statistical P-values for a Two-way RM ANOVA 
Protein / Antibody Before After Training Acute exercise Interaction 

4E-BP1 0.99 ± 0.06   0.75 ± 0.05* 0.013 0.896 0.850 
Actin 0.86 ± 0.05   1.26 ± 0.09* 0.018 0.399 0.828 

AMPKα2 1.00 ± 0.03 1.04 ± 0.04 0.325 0.285 0.965 
CaMKII βM 0.96 ± 0.07  1.19 ± 0.13# 0.072 0.563 0.771 
CaMKII γ/δ 0.92 ± 0.07    1.17 ± 0.11** 0.006 0.382 0.179 

eEF2 0.74 ± 0.05 0.80 ± 0.06 0.357 0.143 0.051 
FXYD1 0.98 ± 0.05    1.28 ± 0.08** 0.005 0.215 0.081 
mTOR 0.95 ± 0.05   1.07 ± 0.06* 0.015 0.630 0.211 

p70S6K1 0.87 ± 0.03 0.88 ± 0.04 0.570 0.106 0.030 
PLN 1.06 ± 0.05    1.22 ± 0.06** 0.007 0.470 0.328 

4E-BP1: eukaryotic initiation factor 4E-binding protein 1; AMPKα2: AMP-activated Protein Kinase α2; CaMKII: 790 
Ca2+/Calmodulin-dependent Protein Kinase II; eEF2: Eukaryotic elongation factor 2; FXYD1: phospholemman; 791 
mTOR: mammalian target of rapamycin; p70S6K1: Ribosomal protein S6 p70 Kinase 1; PLN: Phospholamban. 792 
Values are means ± SE in arbitrary units; n = 7. The main statistical P-values obtained from a Two-way RM ANOVA 793 
statistical analysis are expressed. Protein expression is different after compared to before the training intervention * P 794 
< 0.05, and ** P < 0.01. Protein expression tended to be different after compared to before the training intervention # 795 
P < 0.10. 796 

  797 
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Table 3. Changes in protein phosphorylation at rest and during the repeated intense exercise protocol before and after 7 weeks of 798 
high-intensity training in combination with a reduced training volume in trained cyclist 799 

Target Main effects 
ANOVA P-values Time Rest End of EX1 Before EX2 End of EX2 

       

PKCα/β thr638/641 
E: P=0.240 
T: P=0.036 
I: P=0.029

PRE 
POST 

1.00±0.12 
0.81±0.09 

0.75±0.09 
   1.03±0.20** 

0.88±0.09 
     1.27±0.16**$ 

0.93±0.07 
1.05±0.16 

       

CaMKIIβ thr287 
E: P=0.156 
T: P=0.014 
I: P=0.337 

PRE 
POST 

1.00±0.24 
6.03±1.04 

4.37±2.12 
8.95±2.34 

1.08±0.15 
    8.61±2.23** 

2.45±0.68 
  11.32±3.77** 

       

CaMKIIγ/δ thr287 
E: P=0.279 
T: P=0.004 
I: P=0.263 

PRE 
POST 

1.00±0.27 
    5.48±1.21** 

3.81±1.38 
6.10±1.37 

1.06±0.13 
    6.22±1.52** 

1.96±0.35 
   7.30±2.09** 

       
       

PLN thr17 
E: P=0.117 
T: P=0.235 
I: P=0.039 

PRE 
POST 

1.00±0.16 
   1.42±0.07** 

1.37±0.05 
1.31±0.07 

  1.52±0.12$ 
1.44±0.14 

1.14±0.10 
1.21±0.09 

       
       

eEF2 thr56 
E: P=0.007 
T: P=0.002 
I: P=0.086

PRE 
POST 

1.00±0.19 
   3.16±0.64** 

2.90±0.37 
2.87±0.47 

2.75±0.32 
2.60±0.51 

3.52±0.24##$ 
   5.29±0.99**##$$

       

mTOR ser2448 
E: P=0.064 
T: P=0.018 
I: P=0.139 

PRE 
POST 

1.00±0.13 
1.32±0.22 

1.63±0.25 
1.59±0.19 

0.99±0.13 
   1.62±0.30** 

1.28±0.15 
   1.72±0.14** 

       

p70S6K1 thr389 E: P=0.021 
T: P=0.524 

PRE 
POST 

1.00±0.12 
1.47±0.29 

2.36±0.39#$ 
2.60±0.36#$ 

 1.96±0.34$ 
2.09±0.46 

 2.27±0.26$ 
1.95±0.23 
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I: P=0.178 
       
       

4E-BP1 thr37/46 
E: P=0.271 
T: P=0.197 
I: P=0.296 

PRE 
POST 

1.00±0.16 
1.01±0.25 

0.67±0.11 
0.73±0.11 

0.82±0.09 
0.93±0.17 

0.59±0.10 
0.88±0.18 

       

AMPKα thr172 
E: P=0.003 
T: P=0.210 
I: P=0.047 

PRE 
POST 

1.00±0.09 
0.90±0.10 

0.74±0.08 
0.65±0.14 

0.74±0.09 
0.79±0.11 

1.46±0.19*$$## 
1.03±0.10## 

       

ACCβ ser221 
E: P<0.001 
T: P=0.182 
I: P=0.558 

PRE 
POST 

   1.00±0.18 
  1.00±0.15 

 3.25±0.76#$ 
 2.51±0.37#$ 

 2.98±0.84#$ 
1.84±0.37# 

    3.99±0.86#$¤ 
    3.00±0.60#$¤ 

       
4E-BP1: eukaryotic initiation factor 4E-binding protein 1; ACCβ: Acetyl-CoA carboxylase β; AMPKα2: AMP-activated Protein Kinase α2; CaMKII: 800 
Ca2+/Calmodulin-dependent Protein Kinase II; eEF2: Eukaryotic elongation factor 2; mTOR: mammalian target of rapamycin; PKCα/β: protein kinase 801 
C α/β; p70S6K1: Ribosomal protein S6 p70 Kinase 1; PLN: Phospholamban. E: Acute exercise, T: Training, I: Interaction, End of EX1: After the first 802 
intense exercise bout lasting 2min, Before EX2: Before the second exercise bout and End of EX2: after the second high intensity exercise bout 803 
performed to exhaustion. Data are expressed as means±SE. * PRE higher than POST. ** POST higher than PRE. $ Higher than Rest within PRE or 804 
POST, $$ Higher than all other time points within PRE or POST, # Higher than Rest, ## Higher than all other time points, ¤ Higher than before EX2. 805 
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