
 
 

UHTC-carbon fibre composites
Paul, A.; Venugopal, S.; Binner, Jon; Vaidhyanathan, B.; Heaton, A. C J; Brown, P. M.

DOI:
10.1016/j.jeurceramsoc.2012.08.018

License:
Unspecified

Document Version
Peer reviewed version

Citation for published version (Harvard):
Paul, A, Venugopal, S, Binner, J, Vaidhyanathan, B, Heaton, ACJ & Brown, PM 2013, 'UHTC-carbon fibre
composites: Preparation, oxyacetylene torch testing and characterisation', Journal of the European Ceramic
Society, vol. 33, no. 2, pp. 423-432. https://doi.org/10.1016/j.jeurceramsoc.2012.08.018

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185492956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jeurceramsoc.2012.08.018
https://research.birmingham.ac.uk/portal/en/publications/uhtccarbon-fibre-composites(499a48ad-48e0-49cf-983f-92473d700463).html


 1 

UHTC – Carbon Fiber Composites: Preparation, Oxyacetylene Torch 

Testing and Characterisation 

 

A. Paula, S. Venugopala, J.G.P. Binnera, B. Vaidhyanathana, A.C.J. Heatonb and P.M. 

Brownb 

aDepartment of Materials, Loughborough University, UK, LE11 3TU 

bDSTL, Porton Down, Salisbury, UK, SP4 0JQ 

 

Abstract 

 

Current generation carbon-carbon (C-C) and carbon-silicon carbide (C-SiC) materials 

are limited to service temperatures below 1800°C and materials are sought that can 

withstand higher temperatures and ablative conditions for aerospace applications. One 

potential materials solution is carbon fiber-based composites with matrices composed of 

one or more ultra high temperature ceramics (UHTCs); the latter are intended to protect 

the carbon fibers at high temperatures whilst the former provides increased toughness 

and thermal shock resistance to the system as a whole. Carbon fiber-UHTC powder 

composites have been prepared via a slurry impregnation and pyrolysis route. Five 

different UHTC compositions have been used for impregnation, viz. ZrB2, ZrB2-20 vol% 

SiC, ZrB2-20 vol% SiC-10 vol% LaB6, HfB2 and HfC. Their high-temperature oxidation 

resistance has been studied using a purpose built oxyacetylene torch test facility at 

temperatures above 2500°C and the results are compared with that of a C-C 
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benchmark composite. 1The oxidation products have been characterized using various 

techniques and the results show that hafnium diboride-based UHTC composites offered 

the greatest resistance to ultra high temperature oxidation. 

Key words: Ultra high temperature, oxyacetylene torch testing, oxidation 

Introduction 

 

Refractory transition metal borides and carbides have extremely high melting points of 

over 3000°C and hence are referred to as ultra high temperature ceramics (UHTCs). 

Even though they have been studied since the1960s, there has been recent interest in 

these materials as potential candidates for thermal protection systems on hypersonic 

vehicles. A developmental history of UHTC materials can be found in Opeka et al.,1 and 

they have recently been reviewed by Paul et al.2 The initial selection of UHTC materials 

was based on their melting temperatures, however oxidation temperature and the 

melting points of their oxides is, in fact, more critical. There are a number of materials 

with melting points over 3000°C, whose oxides also have melting points in excess of 

2500°C, for example ZrB2, HfB2 and HfC. These materials are widely studied for high 

temperature applications as monolithic components, however single phase ceramics 

are significantly limited in this area as a result of their very poor thermal shock and 

oxidation resistance.3 Even with the addition of a second or third ceramic phase such as 

SiC or LaB6, these materials do not possess the high temperature resistance, thermal 

shock resistance or fracture toughness because of the volatilization and decomposition 

of the oxidation products.4 
                                            
© Crown copyright 2012. Published with the permission of the Defence Science and Technology 
Laboratory on behalf of the Controller of HMSO 
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The desired properties may require the development of fiber reinforced UHTC 

composites to enable viable application development beyond 2500°C. For such hybrid 

materials, carbon fiber is the preferred choice owing to its high strength, ready 

availability and ability to be formed into complex shapes,5 provided it can be protected 

from oxidation. 

 

There are a number reports in the literature describing the preparation of fiber 

reinforced composites for UHT applications, of which those developed by Levine et al.6,7 

are amongst the earliest. They studied the high temperature oxidation resistance of SiC 

fiber reinforced ZrB2-20 vol% SiC, prepared via filament winding, slurry impregnation 

and hot pressing, against that of non-reinforced ZrB2-20 vol% SiC  at up to 1927°C for 

periods of up to 100 minutes.6 Whilst the non-reinforced material showed the best 

oxidation protection at 1327°C and 1627°C, at 1927°C both compositions underwent 

severe degradation and bloating and the authors expressed concerns about the thermal 

shock resistance of the non-reinforced materials in high heat flux, aeroconvective 

environments. The same group7 prepared UHTC composites using Zoltek Panex® 30 

carbon fabric, allylhydridopolycarbosilane preceramic polymer, HfB2 and SiC powders, 

to create a graded structure, from a HfB2-rich surface through to a SiC-rich surface with 

Si-O-C pre-ceramic polymer throughout, although micro-cracks were present in the final 

composites. Oxidation testing was carried out in a furnace at 1617°C and using an 

oxyacetylene flame at 1805-2015°C. Following cyclic heating in the furnace, a non-

uniform HfSiO4 and monoclinic HfO2 surface was formed on the HfB2-rich surface and a 
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glassy SiO2 layer was formed on the SiC-rich surface. Damage to the carbon fibers in 

the furnace testing was found to be lower at the HfB2-rich surface compared to the SiC-

rich surface. In comparison, during the oxyacetylene flame testing the HfB2-rich surface 

suffered a greater degree of damage during a four minute test than that experienced by 

the SiC-rich surface. This highlights the significant differences between the results 

arising from different test methods in which not only temperature but also gas flow rates 

differ and the effect this has upon the surface reactions and damage. As a result, direct 

comparisons between different high temperature test methods are rarely meaningful. 

 

Tang et al.8 prepared a range of UHTC composites using 2D carbon fiber (ex-PAN 

Toray T700) preforms and five different mixes of aqueous UHTC powder slurries based 

on ZrB2, SiC, HfC and TaC. A pressure assisted technique was used to impregnate the 

powders into the fiber preforms and then pyrolytic carbon deposition was used to hold 

the powders in place. Analysis showed the UHTC powders to be concentrated in a 

surface layer no more than ~2 mm deep. The hybrid UHTC composites were tested 

using an oxyacetylene flame; different gas ratios were used to obtain different 

temperatures and heat fluxes. At 1800°C and 2380 kW m-2 the compositions containing 

SiC demonstrated the lowest erosion depth. However, at the more aggressive 

conditions of 2700°C and 3920 kW m-2 a C/C-ZrB2 composite outperformed the other 

compositions. Recently Zhao et al.9 prepared 3D Cf-ZrC composites using a precursor 

impregnation and pyrolysis route, studied the mechanical properties and evaluated the 

high temperature resistance using an oxyacetylene torch. They reported that the 
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formation of ZrO2 melt on the surface contributed to a superior high temperature 

performance. 

 

The present study is designed to investigate further the potential of carbon fiber based 

UHTC composites for ultra high temperature applications. A number of UHTC powder 

compositions were used to prepare composites and the high temperature performance 

was evaluated using a custom built oxyacetylene torch test facility. The composites 

were characterized before and after high temperature testing. 

  

Experimental 

 

ZrB2 (Grade B, 1.5 – 3 µm), SiC (Grade UF-25, 0.45 µm), LaB6 (Grade C, 2 – 3 µm), 

HfB2 (325 mesh, <44 µm) and HfC (325 mesh, <44µm) were procured from H. C. Starck 

(H. C. Starck GmbH, Goslar, Germany). Prior to further processing, they were 

characterized using XRD (Bruker D8 diffractometer, Bruker AXS GmbH, Karlsruhe, 

Germany), FEGSEM (Leo 1530VP FEGSEM, LEO Elektronenskopie GmbH, 

Oberkochen, Germany), EDS (EDAX, EDAX Inc., NJ, U.S.A.), XPS (ESCALAB 5, VG 

Scientific, West Sussex, UK), BET (Tristar 3000, Micromeritics Instrument Corporation, 

Norcross, U.S.A) and particle size analysis (Mastersizer 2000, Malvern Instruments Ltd, 

Worcestershire, UK). 30 mm dia x 17 mm thick 2.5 D needled Cf preforms with 23 vol% 

fibers were obtained from Surface Transforms plc., Cheshire, UK, whilst phenolic resin 

(Cellobond J2027L) with a carbon content of ~45.5% (at 900°C under an inert 

atmosphere) was obtained from Hexion Specialty Chemicals, B. V., Rotterdam, The 
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Netherlands. UHTC powder / phenolic resin / acetone slurries were prepared by ball 

milling the ingredients in a plastic container using alumina milling media for 48 h. A 

typical slurry composition consisted of 40 g of UHTC powder, 20 g phenolic resin and 

12.5 g acetone.  5 different UHTC powder/compositions were used to prepare the 

slurries including ZrB2, ZrB2-20 vol% SiC (ZS20), ZrB2-20 vol% SiC-10 vol% LaB6 

(ZS20-1La), HfB2 and HfC. 

 

The Cf preforms obtained from Surface Transforms were impregnated with the prepared 

slurries using a squeeze impregnation technique where the preforms were fully 

immersed in a beaker containing the slurry and squeezed manually repeatedly to 

achieve maximum slurry intake. Four composites were prepared for each composition 

and the impregnated preforms were dried in an air oven at 75°C for 4 h followed by 

curing at 150°C for 2 h. This entire cycle was repeated 3 times to maximize the amount 

of UHTC powder within the composite. After the third impregnation and curing, the 

samples were pyrolysed at 900°C for 2 h using a tube furnace under flowing argon 

(99.998% pure) using a heating and cooling rate of 1.5°C min-1. After pyrolysis, a 10 

mm dia. x 5 mm deep hole was drilled at the bottom of the composites and further 

densification was achieved using chemical vapor infiltration (CVI) of carbon at Surface 

Transforms using a commercial process. Benchmark carbon-carbon (C-C) composites 

were also prepared by CVI that had not undergone UHTC powder impregnation. The 

change in mass of the samples was recorded after each stage in the preparation 

process and the bulk density of the composites was measured geometrically. 
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Representative composites were mounted in epoxy resin, cross sectioned and polished 

using a semi-automatic polishing machine (TegraPol-25, Struers Ltd., Solihull, UK) with 

successively finer diamond polishing discs. The final polish used a 1 µm diamond slurry 

and the samples were analyzed using SEM (Leo 1530VP FEGSEM, LEO 

Elektronenskopie GmbH, Oberkochen, Germany) to find the depth of impregnation of 

the powder into the carbon fibre preform. The powder distribution and the efficiency of 

powder mixing were evaluated using EDS mapping (EDAX, EDAX Inc., NJ, U.S.A.). 

After CVI, the samples were analyzed using micro-CT (Metris X-Tek 160Xi, X-Tek 

Systems Ltd., Hertfordshire, UK) to determine again the depth of impregnation and the 

distribution of UHTC powder within the Cf preform.  

 

The high temperature oxidation performance of the UHTC composites was studied 

along with the benchmark carbon-carbon composites utilizing a custom built 

oxyacetylene torch test rig, shown in Figure 1, with an oxygen rich flame (1:1.35 

acetylene to oxygen ratio). The specimens were fixed in a water cooled graphite sample 

holder with three graphite bolts and a K type thermocouple, connected to a data logger, 

was placed in contact with the back face of the sample through a hole drilled in the 

sample holder to record the local temperature. The front face temperature was recorded 

using a 2 color pyrometer (Marathon MR1SCSF, Raytek GmbH, Berlin, Germany) and 

the temperature distribution was recorded using a modified infrared thermal imaging 

camera (Thermovision A40 FLIR Systems AB, Danderyd, Sweden). The 2 color 

pyrometer was capable of recording temperatures from 1000° to 3000°C and the 

modified thermal imaging camera could record temperatures up to 2800°C when 
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combined with the neutral density filter.2 The aim of the preliminary testing was to rank 

the UHTC composites according to their oxidation performance and hence the tests 

were carried out for 30 s and 60 s. The mass loss of the samples after oxyacetylene 

torch testing was recorded and the depth of erosion was determined from micro-CT 

images. The oxidation products were characterized using FEGSEM, EDS, XRD and 

micro-CT. 

 

Results and Discussion 

 

The mass of the Cf preforms before impregnation and the mass and bulk density of the 

composites after impregnation and CVI are summarized in Table 1. The mass increase 

for the two Hf - based compositions was proportionately lower than for the ZrB2 - based 

compositions, given that the density of the former is higher. This was due to the larger 

particle size of the Hf - based powders (<44 µm) compared to ZrB2 (1.5 – 3 µm), which 

limited penetration into the carbon fiber preform.  

  

Figure 2a shows a cross-sectional analysis of one of the composites. 15 Cf layers with 

alternating fiber orientation (0/90) can be distinguished within the composite and the 

UHTC powder penetrated from one side of the preform to the other. From the higher 

magnification images of the outermost layers, figure 2b and c, it can be observed that 

these layers are somewhat denser as they are rich with UHTC powder, which is ideal 

for the potential to offer better oxidation and erosion resistance. The level of powder 

impregnation achieved with the pressureless slurry impregnation technique was better 
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than that achieved by Tang et al.;8 they reported a dense outer layer thickness of just 

0.75 mm, even with a pressure assisted technique. This could be due to a difference in 

viscosity between the slurries, differences in UHTC powder particle size or differences 

in porosity between the preforms; none of these parameters were reported previously.8 

 

The depth of impregnation was further analyzed on carbon CVI densified composites 

using micro-CT and a representative image is shown in Figure 3. The 10 mm dia x 5 

mm deep hole drilled into the back face of the sample to facilitate the CVI is also clearly 

distinguishable. The brighter areas indicate the presence of UHTC powder; it is very 

evident that the UHTC powder has penetrated very well into the preform with the depth 

of impregnation being ~7 mm. 

 

In addition to the depth of impregnation, a good powder distribution is also important to 

achieve superior high temperature performance. Figure 4 shows the EDS mapping on 

the cross section of a Cf-ZS20 composite. This image shows that good powder mixing 

was achieved after ball milling, leading to a uniform distribution of the UHTC powder 

constituents within the preform. 

 

The time-temperature plots for the UHTC composites tested for 30 s using the 

oxyacetylene torch are presented in Figure 5. The composites were introduced into the 

flame by manually moving the sample stage, a process that took ~2 s. As the 2 color 

pyrometer can only record the temperature above 1000°C, the moment at which this 

first reading was recorded on the pyrometer was taken as ‘zero time’ when plotting the 
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time-temperature graphs. This, along with the manual monitoring of test duration 

resulted in slight differences in the total test duration (1-2 s). From the graph it can be 

seen that the temperature increased at a rate of ~500°C s-1 to ~2200°C and then 

continued to increase slowly for all the samples, except for the C-C sample where the 

recorded temperature was much lower than that of all other samples. The initial cooling 

rate was ~1000°C s-1 and all the composites survived the high heating/cooling rates. 

 

The time-temperature plot for the samples tested for 60 s is shown in Figure 6. Two C-C 

samples were tested at this temperature and as for the 30 s test, the recorded 

temperatures were much lower for the C-C samples even though the same gas flow 

rates were used for testing all the samples. This is believed to be due to the absorption 

of some of the heat by the carbon matrix during ablation.10 

 

Photographic images of the various composites after 30 s oxyacetylene torch testing 

are shown in Figure 7. Whilst the effects of oxidation are clear, no appreciable erosion 

was observed for any of the UHTC-based samples, even though cracking was visible on 

the front face. An interesting feature observed for the Cf-HfC composite is the lack of 

adhesion of the oxide layer that formed to the base composite; it fell off during cooling. 

The main reasons for this is believed to be the build-up of pressure below the oxide 

layer due to CO/CO2 gas formation and the absence of formation of any glassy phases 

during the test.  

 



 11 

Figure 8 shows the images of the composites after 60 s of oxyacetylene torch testing 

whilst Figure 9 shows the 2D micro-CT images highlighting the depth of erosion. Table 

2 summarizes the peak front and back face temperature, mass loss data and erosion 

depth after the 30 and 60 s oxyacetylene torch tests; note that the Cf-HfC sample was 

analyzed after the surface oxide layer had dropped off. The depth of erosion was found 

to be the lowest for the Cf-HfB2 system. From Figure 8, it can be observed that the C-C 

sample was eroded over a 20 mm diameter area on the front face of the sample and the 

depth of erosion was measured to be ~4 mm. The surface erosion of the Cf-ZrB2 and 

Cf-ZS20 composites were similar to each other, with the damage mainly focused over 

an area of ~5 mm in diameter and the depth of erosion was 4.8 mm and 5.3 mm 

respectively. In the case of Cf-ZS20-1La composite, the high temperature flame 

penetrated through the dense UHTC powder rich layer attacking the C-C layer below, 

resulting in increased erosion to a depth of ~6.2 mm. The extent of damage was 

observed to be much lower for the preforms impregnated with either HfB2 or HfC. The 

surface oxide layer formed on the Cf-HfC sample detached within a few minutes of 

extinguishing the flame. The presence of molten phases can be seen on the HfB2 and 

HfC-based composites. On visual inspection, the amount of melting was much lower 

than that for the ZrB2-based composites, Figure 8, because of the higher melting 

temperature of HfO2 (reported to be as high as 2900°C11 compared to 2715°C for 

ZrO2.12) 

 

It is not entirely valid to make a direct comparison between the measured back face 

temperatures as the distances between the front face of the samples, where the flame 
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was focused, and the position where the thermocouple was placed were not the same 

for all the samples. Also the distance between the flame and the thermocouple changed 

with time as the high temperature flame eroded the composite. 

 

The reactions schemes for the oxidation of the various UHTC constituents used in the 

composites are given below. 

 

𝑍𝑟𝐵2 (𝑠)  + 5
2
𝑂2 →  𝑍𝑟𝑂2 (𝑠)  + 𝐵2𝑂3(𝑙)   Eqn..(1) 

𝐵2𝑂3 (𝑙)  →  𝐵2𝑂3 (𝑔)     Eqn..(2) 

𝑆𝑖𝐶 (𝑠)  +  3
2
𝑂2 (𝑔)  → 𝑆𝑖𝑂2 (𝑙) +  𝐶𝑂 (𝑔) (𝑝𝑎𝑠𝑠𝑖𝑣𝑒)   Eqn..(3) 

𝑆𝑖𝑂2 (𝑙)  → 𝑆𝑖𝑂2 (𝑔)     Eqn..(4) 

𝑆𝑖𝐶 (𝑠) +  𝑂2 (𝑔) → 𝑆𝑖𝑂 (𝑔) + 𝐶𝑂 (𝑔) (𝑎𝑐𝑡𝑖𝑣𝑒)   Eqn..(5) 

𝐿𝑎𝐵6 (𝑠)  +  21
4

 𝑂2 (𝑔)  → 1
2

 𝐿𝑎2𝑂3 (𝑠) + 3𝐵2𝑂3 (𝑙)  Eqn..(6) 

𝐿𝑎2𝑂3 (𝑠)  +  𝑍𝑟𝑂2 (𝑠)  → 𝐿𝑎2𝑍𝑟2𝑂7 (𝑠)   Eqn..(7) 

𝐻𝑓𝐵2 (𝑠)  + 5
2

 𝑂2 (𝑔)  → 𝐻𝑓𝑂2 (𝑠) + 𝐵2𝑂3 (𝑙)  Eqn..(8) 

𝐻𝑓𝐶 (𝑠)  +  3
2

 𝑂2 (𝑠)  → 𝐻𝑓𝑂2 (𝑠)  +  𝐶𝑂 (𝑔)  Eqn..(9) 

 

The reaction products formed after the high temperature testing were characterized 

using XRD as shown in Figure 10 and the results revealed that the surface layer 

contained only monoclinic-zirconia (m-ZrO2) for all the ZrB2 containing UHTC 

composites and monoclinic hafnia (m-HfO2) for the HfB2 and HfC containing 

composites. Of the various reaction products mentioned in the reaction schemes, ZrO2 
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and HfO2 are stable at >2500°C. B2O3 has a very low melting point of 450°C and high 

vapor pressure and hence it will have quickly vaporized at temperatures above 

1100°C.13 This will have generated porosity and have accelerated the oxidation process 

above this temperature. Addition of SiC can significantly improve the oxidation 

resistance in the intermediate temperature range from 1200 to ~1700°C by forming an 

SiO2 scale which reduces the oxygen diffusivity,14 but no SiO2 peaks were observed in 

the XRD. Above ~1500°C, SiC undergoes active oxidation leading to the formation of 

SiO and CO without forming a protective silica layer and hence it does not offer any 

additional protection.15 Furthermore, the formation of water molecules as a result of the 

burning of the acetylene gas can reduce the stability of any SiO2 that does form by 

generating Si(OH)4, SiO(OH)2 and/or SiO(OH).16 Addition of LaB6 to ZrB2 is reported to 

stabilize the ZrO2, formed as a result of the oxidation of ZrB2, in the tetragonal phase. 

The formation of La2Zr2O7 pyrochlore, which has a high melting point (>2300°C), has 

also been reported.16 From the oxidation testing it was found that the addition of LaB6 

actually reduced the high temperature performance of the UHTC composites and XRD 

analysis did not detect the presence of any La2Zr2O7. FEGSEM images of one of the 

molten droplets formed on the surface of a Cf-ZS20-1La composite showed the 

formation of platelet-like structures and an EDS spectrum confirmed the presence of La, 

Zr, and O, Figure 11. So it can be assumed that La2Zr2O7 formed during the torch 

testing, but melted, segregated and recrystallized without offering any additional 

protection. Addition of lower valence cations such as La3+ to ZrB2 has been reported to 

increase the oxygen transport through the oxide layer and also to lower the eutectic 

temperature of the oxide scale leading to accelerated oxidation during high temperature 
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testing.17 Based on the torch test and XRD results it can be concluded that the addition 

of SiC or LaB6 did not significantly improve the oxidation resistance of UHTC 

composites when exposed to temperatures >2500°C using the oxyacetylene torch 

facility. 

 

Many interesting microstructures were developed in the composites as a result of the 

combination of the high temperature, rapid heating/cooling and thermal gradients during 

torch testing. The carbon fibers of the C-C composites underwent severe degradation, 

Figure 12 a and b. The surfaces of the fibers were also oxidized leading to pitting, 

Figure 12 c and d and this type of fiber degradation has been reported for Cf 

composites at elevated temperatures.10,18,19 

 

The microstructures formed after the oxyacetylene torch testing of the Cf-ZrB2 

composites, Figure 13, revealed that near the edges the UHTC particles formed large 

agglomerates that were not strongly bonded to one another, Figure 13a. This is 

because the temperatures experienced by these particles were lower than in the flame 

tip region. At 1 – 2 mm from the flame tip, Figure 13b, there was good bonding between 

the particles and signs of necking. This area was porous and many cracks are also 

visible. At the flame tip boundary, Figure 13c, liquid phases formed and large, ~5 µm, 

grains may be seen. Figure 13d is a higher magnification image of one of the droplets 

formed after the test. This also shows signs of fusing between the particles. 
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The microstructures of the Cf-ZS20and Cf-ZS20-1La composites were more or less 

similar to those of the Cf-ZrB2 composites. Two additional features observed on the 

surface of the Cf-ZS20 composite are shown in Figure 14. The porosity in what had 

been molten droplets at higher temperature, Figure 14a, is believed to be due to the 

escape of B2O3, SiO and CO/CO2 gases generated as a result of the oxidation of ZrB2 

and SiC respectively. The formation of glassy microstructures on the surface, Figure 

14b, indicated the formation of borosilicate glasses away from the flame tip, where the 

sample experienced <2000°C. 

 

The microstructure of the Cf-HfB2 composite subjected to 60 s oxyacetylene torch 

testing is shown in Figure 15. This composition offered the best high temperature 

oxidation protection, even though the powder impregnation was not as good as that 

achieved for the ZrB2 based composites, as discussed earlier. Figure 15a reveals the 

presence of what had been molten HfO2 and Figure 15b reveals fiber degradation that 

occurred directly below the flame tip. Figure 15c is a high magnification image on one of 

the frozen droplets and Figure 15d shows a porous microstructure ~1 – 2 mm away 

from the flame tip. It may be possible to reduce the extent of fiber damage by improving 

the HfB2 impregnation and experiments are underway to achieve this. UHTC powder 

with finer particle sizes are required to improve further the impregnation. 
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Conclusions 

 

The potential of Cf-UHTC composites for ultra high temperature applications where 

ablation is also relevant has been assessed in this study by preparing composites 

utilizing a slurry impregnation and carbon CVI route. Based on the high temperature 

oxidation testing, it can be concluded that impregnation of Cf preforms with UHTC 

powders significantly improves the high temperature oxidation resistance of the 

composites compared to C-C composites. Hf-based UHTC powders offered superior 

oxidation protection compared to Zr-based compositions, even though less could be 

impregnated into the preforms due to a larger mean particle size, and the addition of 

SiC and LaB6 did not improve the oxidation resistance at the very high temperatures, 

>2500°C, investigated Of the two Hf-based compounds, HfB2 composites showed better 

oxidation performance as the oxidation products were adherent to the base composite. 

The thermal shock resistance of all the UHTC composites was found to be excellent. 
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Tables 
 
Table 1 Mass and density of UHTC powder impregnated composites. 

Composite Average mass of carbon 

fiber preform / g 

Final bulk 

density / g cm-3 

Initial 

After UHTC powder 

impregnation and 

CVI 

C-C 7.0 26.2 1.86 ± 0.01 

Cf-ZrB2 6.9 29.9 2.11 ± 0.01 

Cf-ZS20 6.9 28.8 2.01 ± 0.03 

Cf-ZS20-1La 6.8 26.7 1.91 ± 0.03 
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Cf-HfB2 7.0 29.3 1.93 ± 0.03 

Cf-HfC 7.0 30.3 2.07 ± 0.04 
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Table 2 Summary of the results after 30 s and 60 s oxyacetylene torch testing 

Composite 

Test 

Duration 

/ s 

Peak temperature / °C Weight 

loss / g 

Erosion 

depth / 

mm 

Front face 

(±150°C) 

Back face 

(±10°C) 

CC 30 2210 447 0.38 1.0 

Cf-ZrB2 30 2560 491* 0.22 Negligible 

Cf-ZS20 30 2520 477* 0.18 Negligible 

Cf-ZS20-1La 30 2575 582* 0.17 Negligible 

Cf-HfB2 30 2625 548* 0.77** Negligible 

Cf-HfC 30 2680 530* 0.55** Negligible 

CC 60 2315 763 1.63 4.0 

Cf-ZrB2 60 2590 857* 0.67 4.8 

Cf-ZS20 60 2550 723* 0.63 5.3 

Cf-ZS20-1La 60 2525 877* 0.74 6.2 

Cf-HfB2 60 2640 918* 0.57 <2.0 

Cf-HfC 60 2530 847* 1.69# NM 

* Back face thermocouple placed inside the drilled hole 

** Some of the oxide layer fell off during the test 

# Includes weight of the lost surface layer 

NM Not measured as the surface layer fell off 
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Figure Captions 

Figure 1 Oxyacetylene torch test rig. (1) back face thermocouple, (2) water cooling, (3) 

sample holder, (4) sample, (5) sample guide, (6) protective insulation, (7) oxyacetylene 

torch (8) neutral density filter, (9) thermal imaging camera and (10) 2 color pyrometer. 

 

Figure 2 a) Powder distributions across the cross section of a UHTC sample and b) the 

top and c) bottom layers at higher magnifications. 

 

Figure 3 2D micro-CT images of Cf-ZrB2 after impregnation and CVI. 

 

Figure 4 FEGSEM image and EDS mapping on the cross section of a Cf-ZS20 

composite showing the powder distribution. Carbon (red), silicon (blue) and zirconium 

(green). 

 

Figure 5 Time-temperature plot for the C-C and UHTC composites tested for 30 s. 

 

Figure 6 Time-temperature plot for the C-C and UHTC composites tested for 60 s. 

 

Figure 7 Photographs of C-C and Cf-UHTC powder composites after 30 s oxyacetylene 

torch testing. The diameter of the composites was 30 mm. 
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Figure 8 Photographs of C-C and Cf-UHTC powder composites after 60s oxyacetylene 

torch test. The diameter of the composites was 30 mm. 

 

Figure 9 Micro-CT images of C-C and Cf-UHTC composites after 60 s oxyacetylene 

torch test. The images were taken where the depth of erosion was maximum. 

 

Figure 10 XRD analysis of the oxidation products after 60 s oxyacetylene torch testing. 

All the peaks for the ZrB2 containing compositions correspond to monoclinic zirconia 

and the all the peaks corresponding to HfB2 and HfC containing compositions 

correspond to monoclinic hafnia. 

 

Figure 11 FEGSEM images and EDS patterns on the molten products formed on the 

surface of Cf-ZS20-1La composite after torch testing. 

 

Figure 12 Degradation of carbon fiber after the oxyacetylene torch testing of the C-C 

composites. 

 

Figure 13 Microstructures after 60 s oxyacetylene torch testing of a Cf-ZrB2 composite 

a) near the edge of the composite b) 1-2 mm from flame tip c) frozen droplets which had 

been molten during the test and d) high magnification on one of the frozen droplets. 
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Figure 14 Microstructure after oxyacetylene torch testing of a Cf-ZS20 composite. a) 

Porosity observed on the frozen droplets which had been molten at the test temperature 

and b) glassy structure formed on the composite ~10 mm from the flame tip. 

 

Figure 15 Damage to the Cf-HfB2 composite after 60 s oxyacetylene torch testing. a) 

Frozen droplets of HfO2, b) fiber degradation directly below flame tip c) higher 

magnification on the frozen droplets and d) porous microstructure. 
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