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Abstract 

Dicalcium phosphates (DCP) are calcium phosphates and there are two types of DCP: 

dihydrated (brushite) and unhydrated (monetite). After implantation, brushite converts to 

hydroxyapatite (HA) which resorbs very slowly. This conversion is not observed after 

implantation of monetite cements and results in greater resorption. The mechanisms of 

resorption and degradation however of these ceramics remain largely unknown. This 

study was designed to investigate the effect of: porosity, surface area and hydration on in 

vitro degradation and in vivo resorption of DCP. Brushite and two types of monetite 

cement based grafts (produced by wet and dry thermal conversion) were aged in 

phosphate buffered saline (PBS), bovine serum solutions in vitro and implanted 

subcutaneously in rats. Here we show that for high porosity grafts (50-65%), solubility 

and surface area does not play a significant role towards in vitro mass loss with 

disintegration and fragmentation being the main factors dictating mass loss. For grafts 

having lower porosity (35-45%), solubility plays a more crucial role in mass loss during 

in vitro ageing and in vivo resorption. Also, serum inhibited dissolution and the formation 

of HA in brushite cements. However, when aged in PBS, brushite undergoes phase 

conversion to a mixture of octacalcium phosphate (OCP) and HA. This phase conversion 

was not observed for monetite upon ageing (in both serum and PBS) or in subcutaneous 

implantation. This study provides greater understanding of the degradation and resorption 

process of DCP based grafts, allowing us to prepare bone replacement materials with 

more predictable resorption profiles. 
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1. Introduction 

Dicalcium phosphates (DCP) are calcium phosphates of great interest for orthopaedic and 

dental applications. Brushite cements set via a dissolution/precipitation process at low pH  

(<6) [1, 2]. One of methods by which brushite cements can be prepared is by mixing an 

acidic calcium phosphate such as monocalcium phosphate monohydrate (MCPM) and a 

basic calcium phosphate like beta tricalcium phosphate (β-TCP) with water. This method 

results in a moldable paste that sets into a solid cementitious material composed mainly 

of dicalcium phosphate dihydrate (DCPD) [3-5]. Brushite cements can also be utilized as 

precursors to the anhydrous form of dicalcium phosphate (DCPA), also known as 

monetite. Brushite crystals when heated above 60°C start to dehydrate into monetite [6], 

and if moisture is maintained during the heating process (as in autoclaving) then bulk 

shrinkage is prevented and an increase in the internal pore size is observed [7]. This 

conversion into monetite can also be carried out by dry heating the preset brushite 

cements [8]. These wet and dry heat conversions of brushite to monetite results in two 

materials that are chemically very similar yet differ with respect to physical properties 

(total porosity, pore size distribution, density and surface area) [8, 9]. 

    The success of bone replacement procedures is limited by the low or negligible 

resorption rates associated with the use of calcium phosphate cements [2]. A significant 

reduction in the rate of resorption is frequently reported due to the phase conversion of 

brushite to hydroxyapatite (HA) [10, 11]. It has been observed that monetite does not re-
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precipitate into HA in vivo, and recent research demonstrates its good osteoconductive 

and osteoinductive properties [8, 9, 12-15]. 

    Studies investigating behaviour of brushite cements after implantation or immersion in 

aqueous media have reported resorption, disintegration or long-term stability [16-18]. 

Brushite cements have been shown to exhibit a decrease in mass, an increase in porosity, 

and a deterioration in mechanical properties upon in vitro incubation [19]. It has been 

reported that cement porosity, as well as the properties of surrounding medium and the 

rate of fluid exchange affects initial brushite resorption [20]. Disintegration and 

fragmentation of cement matrix rather than simple dissolution can also contribute to mass 

loss during brushite incubation in vitro [20]. 

    Brushite cements have been shown to experience an initially linear degradation rate of 

0.25 mm per week once implanted in vivo [16]. However, degradation rate is dependent 

on a variety of factors such as: cement physico-chemical properties, species of animal in 

which implanted site of implantation and blood flow. After implantation, during initial 

few weeks brushite cements appear to resorb by disintegration, simple dissolution and 

cellular activity (macrophages and osteoclasts) [17, 21, 22]. It has also been observed that 

serum can adsorb onto cement surface altering the interfacial properties promoting 

brushite resorption in vivo and in vitro [20]. The resorption mechanism of monetite is 

similar to that observed for brushite cement grafts, in that it is mainly mediated by 

cellular activity and simple dissolution [23]. Recent studies have shown that monetite 

grafts produced by autoclaving of preset brushite cements appear to resorb more in 

comparison to the original brushite grafts [9, 24]. 
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    In this study, brushite cement grafts were prepared and monetite grafts obtained from 

them via wet heat and dry heat conversion. The in vitro and in vivo behaviour of these 

grafts was investigated by ageing in phosphate buffered saline (PBS) and bovine serum 

solutions and also subcutaneous implantations in rats. We attempted to discern the effect 

of DCP hydration, porosity and surface area on in vitro and in vivo degradation and 

resorption. 

 

2. Method and materials        

2.1 Synthesis        

Brushite cement grafts were prepared with a mixture of β-TCP (Merck) and 

commercially available monocalcium calcium phosphate monohydrate (MCPM) (ABCR, 

GmbH & Co.KG) using a ratio of 1.2 to 1 respectively. In order to investigate the effect 

of powder to liquid (P/L) ratio on physical properties and degradation, brushite and 

monetite cements were produced at P/L mixing ratio of 3 and 1 g/ml. The powders were 

hand ground with a pestle and mortar and cement pastes prepared by mixing the powder 

with appropriate amount of distilled water on a glass slab for 20 s. Once all of the powder 

was combined with the liquid, the cement paste was kneaded for a further 30 s. The 

manipulated cement slurry was cast into a polytetrafluoroethylene (PTFE) split mould 

forming hardened cement cylinders Ø (~12 mm (height) х 6 mm (diameter)). The 

cylinders were allowed to set for 24 h at 37°C ± 1˚C in a vacuum desiccator to form hard 

brushite. At the end of the incubation period, the samples were removed from the mould 

and weighed until constant mass was reached.  Five different batches of thirty cylinders 

each were produced to obtain a total of one hundred and fifty cylinders with 3 and 1 P/L 
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ratios. Even though samples were prepared using same protocol, the sample assignment 

was randomized to minimize variations.  

 

   Monetite cement grafts (n=70 in total) were synthesized by conversion of the preset 

brushite cement cylinders utilizing two different methods: thermal and hydrothermal 

conversion. For thermal conversion, the brushite cylinders (n=35) were dry heated at 

250°C for 30 minutes under vacuum (80 mTorr). Hydrothermal transformation was 

performed with the brushite cylinders (n=35) being autoclaved at sterilizing conditions 

(120°C, 100% humidity and 15 psi, for 30 min).  

 

2.2 Characterisation      

The phase purity of the prepared brushite and the monetite grafts was confirmed using X-

ray diffraction (XRD). XRD data was collected (Bruker Discover D8 diffractometer) 

from the surface of the graft materials with Ni filtered CuKα radiation (λ = 1.54A) with a 

two dimensional VANTEC area detector at 40 kV and 40 mA. A step size of 0.02° was 

used to measure from 10 to 50° 2θ over 3 frames with a count time of 300 s per frame. 

The phase composition was compared and confirmed with the International Centre for 

Diffraction Data reference patterns for brushite (PDF Ref. 09-0077) and monetite (PDF 

Ref. 09-0080), JCPDS 2010 database. 

    The compressive strength of all prepared grafts was measured before and after in vitro 

ageing and subcutaneous implantation. Before testing, geometrical measurements of the 

graft cylinders were made in triplicate and the samples weighed. Samples were mounted 

on the testing machine (5544, Instron) so that the long axes of the cement cylinders were 
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perpendicular to the lower anvil. A compressive force was then applied to the upper 

surface of the cylinders at a constant crosshead displacement rate of 1 mm/min until 

failure occurred. The applied load was measured using a 100 N load cell (5544, Instron). 

Mean compressive strength was determined from the average of 10 measurements. 

    After testing in compression, cement fragments were retrieved, weighed and dried in a 

vacuum desiccator at a temperature of 37°C. The fragments were then ground to powder 

using a pestle and mortar. The true density of the powdered grafts was determined using a 

helium pycnometer (Accupyc 1330, Micromeritics). The volume of each sample was 

measured 10 times following 10 purges of the measurement chamber with helium. The 

relative porosity (bulk porosity) of the cements was calculated from apparent and true 

density measurements. The specific surface area (SSA) of the cement grafts in their solid 

cylindrical form was determined by using the Brunauer–Emmett–Teller (BET) method 

with helium adsorption–desorption (Tristar3000, Micromeritics).  

    Bioceramic microstructure was observed using scanning electron microscopy (SEM) 

(Hitachi S-4700 FE-SEM; Tokyo, Japan), at an accelerating voltage of 2 kV. Elemental 

composition of the bioceramics was assessed with energy dispersive X-ray (EDX) 

analysis using Oxford detector and INCA software (Oxford Instruments, Abingdon, UK). 

The pore size distribution of the prepared brushite and monetite cement grafts prior to in 

vitro and in vivo experiments was measured by using mercury intrusion porosimetry 

(9420, Micromeritics, Bedfordshire, UK). 

 

2.3 In vitro ageing      
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After initial characterisation was complete, the graft cylinders were stored at 37 ± 1°C 

and ~100% relative humidity for 24 h. Brushite and the autoclaved and dry heat monetite 

grafts (n=3) were immersed in PBS solutions (MP Biomedicals, LLC. Solon, OH. Cat 

no: 2810305), and also in bovine serum (Gibco, product code:16170, New Zealand) 

containing sodium azide (Sigma-Aldrich) at a concentration of 0.1%. The graft cylinders 

were aged at a liquid to cement volume ratio (LCVR) of 60 as used by Grover et al. [20] 

for 7, 30 and 60 days at 37 ± 1°C. Dynamic ageing protocols were achieved by refreshing 

the liquid every 24 h throughout the experiment to remove any dissolution products. To 

quantify the amount of mass loss over time, the graft cylinders were removed daily from 

the ageing medium and weighed. After periods of 7, 30 and 60 days of ageing, the grafts 

were removed from the solutions and tested in compression and characterised for changes 

in phase composition, SSA, density and porosity. A repeat experiment was performed to 

examine fragment composition from monetite grafts in serum.  As soon as sufficient 

material for characterization had formed (3 weeks) the fragments were washed and dried 

before SEM and XRD analyses. 

 

2.4 Animal study      

The surgical protocol for animal testing for research was approved by the McGill 

University Ethical Committee (Animal use protocol # 6020). For evaluation of bio-

resorption and changes in the physicochemical properties in vivo, the prepared calcium 

phosphate grafts were implanted subcutaneously in rats (n=6). 36 male Wistar rats (35-40 

days old, 126-150 g weight) were purchased from Charles River Laboratories, Montreal, 

Quebec, Canada. Briefly, two subcutaneous pockets on either side in the flanks of the 
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animals were accessed via a mid-scapular surgical incision. The implants were placed 

(unfixed) into the pocket. It was ensured using blunt dissection that the subcutaneous 

pocket is made and that the graft does not rest directly beneath the incision, as this could 

have potentially interfered with wound healing. After placement of grafts in their 

respective pockets, the incision was closed using resorbable monocryl sutures. After 4 

and 12 weeks of implantation, animals were sacrificed and implants retrieved. Digital 

radiographs were obtained using Kubtec® XPERT80 X-ray system (KUB Technologies 

Inc. Milford, CT) employing a voltage of 90 kV and a tube current of 1.0 µa. The 

retrieved grafts were tested in compression, characterised for changes in phase structure, 

SSA, density, porosity and mass loss.  

 

2.5 Statistical analysis      

Statistical analysis was performed using the statistical software IBM®SPSS® (v. 19, IBM 

SPSS Inc., Chicago, IL). Statistical significance between groups was determined by non-

parametric analysis with Wilcoxon sign rank test (p < 0.05). 

 

3. Results 

3.1 Mechanical properties of the prepared grafts 

The powder to liquid ratio (P/L ratio) employed to prepare brushite and monetite grafts 

had a marked influence on compressive strength. The compressive strength 

approximately doubled when the P/L ratio for brushite grafts was increased from 1 to 3 

g/ml (Table 1). An approximate three-fold increase and a four-fold increase was observed 

when the P/L ratio was increased from 1 to 3 for the dry heat and autoclave converted 
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monetite grafts respectively (Table 1). The increase in compressive strength of brushite 

grafts when the P/L ratio was increased from 1 to 3 was associated with a reduction in the 

relative porosity from ~65% to ~36%. Similar effects of reduction in relative porosity 

with increase in the P/L ratio were observed for the dry heat monetite and autoclaved 

monetite grafts. 

 

3.2 Pore size evaluation of the prepared grafts 

Mercury porosimetry of the grafts prepared with a P/L mixing ratio of 3 prior to 

immersion in PBS, serum and subcutaneous implantation showed that the diameter of the 

majority of pores were between ~500 nm and ~600 nm for brushite, ~800 nm to ~1 µm 

for autoclaved monetite, and ~700nm to ~1 µm for the dry heat monetite (Fig. 1). The 

results for the 1:1 P/L ratio grafts revealed  bimodal pore diameter distribution with 

modal values of ~4 µm and ~9 µm for brushite, ~5 µm to ~8 µm for autoclaved monetite, 

and ~3 µm to ~8 µm for the dry heat monetite (Fig. 1).  

 

3.3 Mass loss quantification after subcutaneous implantation and in vitro 

ageing 

Upon visual inspection and mass loss quantification of the retrieved grafts (prepared with 

P/L ratio of 3) from rats, brushite explants after 4 weeks of implantation showed slightly 

less resorption (~6%) (Fig. 2a) in comparison to the dry heat (~9%) (Fig. 2b) and 

autoclaved (~12%) (Fig. 2c) monetite explants. Similar observations were made for the 

brushite (~17%) (Fig. 2d), dry heat monetite (~25%) (Fig. 2e), and autoclaved monetite 

(~30%)(Fig. 2f) grafts retrieved after 12 weeks. The radiographs obtained from the 
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animals after implantation of the grafts (Fig. 2g), after 4 weeks (Fig. 2h), and after 12 

weeks (Fig. 2i) also demonstrated the visual difference in the extent of resorption 

between brushite and the monetite grafts in vivo. 

    All grafts aged in serum showed a greater loss of mass over 60 days when compared to 

ageing in PBS (P < 0.05) (Table 2 and Fig. 6). Brushite grafts prepared with P/L ratio of 

3 after 26 days of ageing in PBS started to lose more mass daily and this trend continued 

till about day 56 (Fig. 6a). After day 56, the brushite seemed to have stopped losing mass 

(Fig. 6a). When this was compared with the results from the in vitro ageing in serum for 

the 3:1 P/L ratio grafts, we observed that brushite lost mass continuously till day 60 (Fig. 

6b). When the 1:1 P/L ratio grafts were aged in PBS and serum, they lost similar amount 

of mass (~10%) during the first 10 days (Fig. 6c & d). However after the first 10 days, 

the grafts aged in serum continued to lose more mass daily over the next 50 days. The 1:1 

P/L ratio grafts being more porous than their 3:1 P/L ratio counterparts demonstrated a 

quicker rate of disintegration (Fig. 6c & d). In comparison, the 3:1 P/L ratio grafts 

underwent less fragmentation and maintained physical integrity better. The difference in 

the mechanical properties of these grafts also matches with this observation, since 3:1 P/L 

ratio grafts had higher compressive strength when compared with the 1:1 P/L ratio grafts 

(Table 1). The 3:1 P/L ratio grafts aged in PBS showed minimal mass loss for the first 26 

days (~2.5%). Autoclaved monetite grafts continued to lose mass at a similar rate for the 

next 34 days and at the end lost ~4.5% of its starting mass. Autoclaved monetite 

demonstrated the greatest amount of in vivo resorption (P < 0.05) followed by dry heat 

monetite grafts, while the least amount of resorption was shown by brushite grafts for the 

similar P/L ratios employed (Table 2 and Fig. 7). 
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3.4 XRD phase analysis 

Phase analysis via XRD confirmed that the bioceramic grafts were comprised of brushite 

after setting, and that the autoclaving and dry heating processes resulted in conversion of 

brushite to monetite (Fig. 3 and Fig. 4). The brushite grafts aged in PBS showed phase 

conversion from brushite to a mixture of octacalcium phosphate (OCP) and HA after 60 

days (Fig. 3). In order to confirm the presence of OCP XRD patterns were recorded from 

3° 2θ and the characteristic intense peak of OCP at 4.75 º2θ was observed (Fig. S7). The 

brushite grafts aged in serum did not show phase change at any time point (data not 

shown). Similar results were obtained for the brushite grafts after 4 weeks of implantation 

with no phase change observed. A mixture of OCP and HA peaks were seen in the XRD 

patterns of the surface of brushite at 12 weeks in vivo but not for the core (Fig. 4). The 

monetite cement grafts (autoclaved and dry heated), aged in vitro, and implanted 

subcutaneously, did not show any phase change or conversion to apatite when 

characterised after 4 and 12 weeks (surface and core analysed for 12 week time point) 

(Fig. 3 and Fig. 4). 

 

 3.5 SEM analysis 

     SEM micrographs were obtained from the surface of all grafts prior to and after 

implantation and ageing. The prepared brushite grafts showed blade like crystals in the 

~5 µm size range (Fig. 5a). When aged in PBS, the brushite grafts showed blade or 
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needle like crystal growth of OCP (Fig. 5b). When the same brushite grafts were aged in 

serum, smaller crystals were observed with the size being less than 2-3 µm (Fig. 5c). 

Subcutaneously implanted brushite grafts showed similar blade like crystal morphology 

of OCP (Fig. 5d). These microstructural observations were consistent irrespective of P/L 

ratio used to prepare the bioceramics. The primary crystal morphology of the autoclaved 

monetite grafts when prepared showed crystals mostly in the ~2-4 µm size range (Fig. 

5e). After ageing in serum, the microstructure of autoclaved monetite grafts changed to 

~1 µm in size (Fig. 5g). Autoclaved monetite grafts aged in PBS solution and implanted 

subcutaneously also showed small sized crystals (Fig. 5f & 5h). The dry heat monetite 

grafts prepared for the ageing experiments and implantations had mostly extremely small 

crystals with size smaller than 1 µm (Fig. 5i). After ageing in PBS, we observed similar 

crystal morphology with the original grafts yet the crystal size had become smaller (Fig. 

5j). It was interesting to note the appearance of the dry heat graft microstructure after 

ageing in serum as the original brushite crystal morphology seemed to have been 

maintained but they had transformed into porous assemblies of nanocrystals (Fig. 5k). 

After subcutaneous implantation the dry heat monetite grafts showed an appearance 

which was a mixture of that seen in the PBS aged samples (smaller crystals) and the 

subcutaneously implanted samples (porous blocks) (Fig. 5k).  No blade like crystals of 

OCP were observed in any of the monetite grafts after being in PBS, serum or in vivo for 

any given time period. 

 

3.6 Elemental analysis   
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Elemental analysis of the bioceramics revealed that brushite and both the autoclaved and 

dry heat monetite grafts had a similar calcium-to-phosphate (Ca/P) ratio, slightly higher 

than 1.0 (Table 3). However when the samples were aged in PBS and implanted 

subcutaneously it was observed that the Ca/P ratio for brushite grafts increased, matching 

closely to the Ca/P ratio expected for OCP (1.33). This increase was not observed for the 

grafts aged in serum. The autoclaved and dry heat monetite grafts did not show 

significant changes in the Ca/P ratio after being aged in PBS or implanted (Table 3). 

 

 

4. Discussion 

4.1 In vitro dissolution & in vivo resorption 

                            Passive dissolution, fragmentation, cellular activity and phase conversion are the key 

mechanisms that determine the rate and amount of mass loss from brushite cements 

during in vitro incubation and in vivo implantation  [20, 25, 26]. Dissolution occurs when 

brushite is placed in an environment that is under saturated in calcium and phosphate ions 

and proceeds according to the following equation: 

                    CaHPO4·2H2O → Ca2+ + HPO4 
2- + 2H2O                (1)                                                                   

   The process of dissolution stops once the solubility limit has been reached [19, 20, 27]. 

Brushite dissolution supersaturates the environment with respect to HA, ultimately 

resulting in HA precipitation (possibly non-stoichiometric). Brushite conversion to HA 

occurs via two steps; dissolution and precipitation [28] and proceeds according to the 

following equation: 

                10CaHPO4·2H2O → Ca10(PO4)6(OH)2 + 4H3PO4 + 18H2O           (2)                                            
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   Once the cement was immersed in ageing media, the process of brushite dissolution 

could begin immediately since PBS used in our study contained no calcium ions. This 

would be expected to increase calcium and phosphate ion concentration, resulting in 

reduction of cement dissolution rate. By removing the dissolution products on a daily 

basis a relatively higher rate of dissolution was maintained, analogous to the in vivo 

process of fluid turn over. 

    Phase conversion to OCP and HA along with limited mass loss observed for brushite 

grafts aged in PBS match with the results obtained from same grafts after subcutaneous 

implantation (Fig. 3 & 4). It is already known that the Ca/P ratio of OCP and HA are 1.33 

and 1.67 respectively [8, 9]. The Ca/P ratio noted for the PBS aged and subcutaneously 

implanted brushite grafts was between these two values indicating a mixed phase content 

of the remaining cement. In a previous study, brushite cement set by mixing β-TCP with 

orthophosphoric acid showed the presence of HA after 14 days of immersion in PBS 

resulting in reduction in the rate at which mass was lost from the cement [20].  It has 

been reported that formation of HA in brushite cement can occur as early as 72 h after 

initial immersion in PBS, reaching complete conversion within 19 days of ageing [29]. In 

our in vitro and in vivo experiments this early conversion of brushite grafts was not 

observed. The late conversion of brushite phase to a mixture of OCP and HA observed in 

this study can be attributed to the in vitro media refreshment performed daily and fluid 

turnover in vivo after subcutaneous implantation.  

    The presence of calcium in serum reduces the solubility of brushite cements [30]. 

However, we did not observe this reduction in solubility when the grafts were aged in 

bovine serum. Conversion of brushite cements to HA has been reported previously in 
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vivo [18, 29], and therefore this could be expected after ageing in bovine serum as well. 

As there was no HA detected at any time point investigated it appeared that serum 

constituents inhibited apatite formation. Several studies have reported that proteins 

depending on their types and levels can either inhibit or encourage the formation of HA 

or its precursor (OCP) in calcium phosphates [9, 31]. It has also been observed that the 

proteins present in serum can adsorb onto cement surfaces, altering interfacial properties 

of the crystals [32], favoring  in vitro resorption.  It has already been demonstrated in 

vitro previously that albumin retards the transformation of brushite to HA [28, 33]. The 

precise role albumin plays in this regard is not known and other proteins present in serum 

may also play a role in this phenomenon. Since serum contains all of the proteins and 

ionic constituents that are present in vivo, other factors such as enzymes or cellular 

activity may be responsible for HA formation in brushite cements after implantation. 

These observations are also supported by the results from our in vivo study which 

demonstrated phase conversion of brushite to OCP & HA after subcutaneous 

implantation (Fig. 4).  

     Following subcutaneous implantation, the retrieved monetite grafts had a notably 

darker appearance compared with the brushite grafts retrieved, suggesting a greater 

degree of protein adsorption (Fig. 2). However doubt remains as to whether this 

observation was related to inhibition of HA formation since inhibition was also observed 

during protein-free PBS incubation (Fig. 3). Further experiments specifically aimed 

towards determining the reasons for non-conversion of monetite to HA need to be 

conducted reveal the cause of this effect. A major factor that affects the aqueous 

chemistry of calcium phosphate cements is the pH [34], and it would be helpful in future 
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to monitor the pH changes occurring in the incubation media to see how this affects the 

phase conversion and dissolution.  

    The results from our study showed that monetite grafts although having lower 

solubility than brushite cements [8], still resorbed faster in vivo (Table 2 and Fig. 7). This 

was also observed in other recent studies [9, 24]. The mechanism of in vivo resorption of 

monetite cements is similar to that of brushite, with cellular activity accounting for most 

of the resorption with passive dissolution being less crucial [23].  The possible reason for 

the monetite grafts showing greater resorption in vivo could be the greater total porosity 

present than brushite. It has been reported that materials with macroporosity can be 

invaded by resorbing cells and show an increase in the rate and amount of resorption 

[35]. In light of the greater total porosity and macroporosity present in monetite in 

comparison to brushite one can envisage that monetite would resorb to a greater extent 

than brushite. The subcutaneous in vivo model used in this study has the inherent 

limitation of not having osteoclast mediated resorption which would be observed in a 

bone implantation model. Different resorption behaviour may be expected in a clinically 

relevant bone defect model and additional work needs to be carried out to evaluate this. 

 

4.2 Disintegration 

It was observed that a large proportion of mass lost in PBS and serum for cement grafts 

prepared with P/L ratio of 1 (Fig. 6c & d) could be attributed to disintegration of the 

cements due to their highly porous and mechanically weak structure (Table 1) rather than 

dissolution. This mass loss due to disintegration has also been noted in other in vitro [20] 

and also in vivo [29] studies. The fragmentation of high porosity monetite grafts in our 
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experiments was observed with serum solutions collected every day having murky 

appearance and particulate matter that collected at the bottom. This was a result of 

disintegration and release of particulate matter from the cements. XRD analysis revealed 

that the materials collected were DCPA from the monetite grafts (Fig. S8). This indicates 

that the particulate matter collected after incubation were likely fragments originating 

from the ageing sample. The SEM micrograph obtained for the monetite fragments 

showed crystals mostly in the ~ 2-4 µm size range (Fig. S8), again similar in appearance 

to that observed for monetite grafts prior to ageing in serum (Fig. 5e). As a consequence 

of this physical disintegration, the higher porosity brushite grafts lost mass throughout the 

experiment at a constant rate (Fig. 6c & d). The greater mass loss of the brushite and 

monetite cements prepared with P/L ratio of 1 when compared with cements prepared 

with P/L ratio 3 and aged in serum and PBS is thought to be due to higher relative 

porosity of the P/L ratio 1 grafts. The differences in weight loss observed for the less 

porous brushite and monetite cements (Table 2) could be attributed to the difference in 

the solubility constants and not so much dependent upon fragmentation or disintegration 

of the cement matrix.  

 

4.3 Physical properties 

The density of the brushite grafts (Table 1) was higher than what is expected from phase 

pure brushite (2.27 g/cm3) [8]. This is due to the presence of small amounts of β-TCP 

(3.14 g/cm3) in the brushite cement grafts. The monetite grafts prepared by the two 

different conversion methods from brushite had lower density (Table 1) than the pure 

form of monetite (2.92 g/cm3) [8], indicating some trace amounts of brushite cement 
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remained unconverted. The increase in the SSA (Table 1) observed after conversion of 

brushite to monetite was due to the autoclaving process resulting in smaller sized 

monetite crystals (Fig. 5a & 5c) and an increase in total porosity percentage (Table 1). 

The brushite cement grafts converted to monetite by dry heating under vacuum 

demonstrated a greater increase in the SSA (Table 1) and this was observed via SEM 

imaging (Fig. 5i) which shows decreased size of crystals in comparison with the 

autoclaved monetite crystals. However, this significant increase in SSA for the dry heat 

monetite grafts did not enhance in vivo resorption or mass loss in vitro when compared 

with the autoclaved monetite grafts. 

    The relationship between porosity and strength is inversely logarithmic [36, 37]; thus 

the effect of increase in relative porosity resulted in the loss of compressive strength 

observed (Table 1). Relative porosity, crystal morphology, degree of conversion, 

homogeneity of the cement matrix, compaction of the setting cement and critical flaw 

size are a number of factors which may influence cement strength [38-41]. The highest 

wet compressive strength value measured for our prepared cement grafts was for the 

brushite cylinders prepared with P/L ratio of 3 being ~16 MPa (Table 1).  The highest 

compressive strength  of ~52 MPa has been reported in literature for hand mixed brushite 

cements [36]. The reduction in compressive strength observed after ageing was caused by 

dissolution of the brushite cement that resulted in an increase in the relative porosity in 

vitro and in vivo (Fig. S1 and Fig. S2).  Mirtchi et al. have reported a similar reduction in 

compressive strength in brushite cements formed from β-TCP and MCPM following 

ageing in water [42]. A significant reduction in the compressive strength was also noted 

upon the conversion of brushite grafts to monetite by autoclaving (Table 1). The 
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detrimental effect on mechanical properties can be attributed to the increase in the 

relative porosity observed after autoclaving. This increase in porosity and the decrease in 

mechanical strength is likely one of the reasons for monetite grafts showing greater 

resorption in vivo and mass loss in vitro. Interestingly, the brushite grafts converted to 

monetite by dry heating demonstrated a much higher compressive strength in comparison 

to their autoclaved counterparts (Table 1) and did not exhibit as great a loss of 

compressive strength after ageing and implantation. The dry heating process under 

vacuum not only converts brushite to monetite but also crystals get aggregated as 

observed by the SEM micrographs (Fig. 5i). This aggregation and interlocking of 

monetite crystals resulted in the higher compressive strength observed. These dry heat 

prepared monetite grafts had lower porosity in comparison to their autoclave prepared 

counterparts and this resulted in comparatively less resorption in vivo and mass loss after 

in vitro ageing. 

 

5. Conclusion 

This study shows that serum inhibits both the dissolution of brushite and the formation of 

HA in brushite cement. Serum alters the interfacial properties of the brushite graft surface 

and this reduces the solubility possibly blocking apatite formation. Further investigation 

would be required to confirm this.  Monetite cements produced by autoclaving and dry 

heating methods do not demonstrate any phase conversion when aged in PBS or serum. 

The phenomenon of non-conversion of monetite to apatite in PBS, serum and in vivo 

might be related to how low the pH levels are after monetite dissolution occurs in 

comparison with brushite. In future research there is a need to monitor pH changes in 
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order to able to come to a definitive conclusion. While surface area does not play a 

significant role, disintegration and fragmentation of grafts seems to be the main factors 

which dictate mass loss in high porosity bioceramics. For cements having lower porosity, 

solubility plays a more crucial role towards mass loss during in vitro ageing and in vivo 

resorption. It appears that it is not only the material composition that dictates cement 

behavior in vitro and in vivo, but is a combination of various physical and chemical 

characteristics. Cement removal from implant site is a complex phenomenon and 

dependent on a variety of physiologic processes other than simple dissolution. The results 

obtained from this study lays down the ground work for further investigation to obtain a 

better understanding of the degradation processes and hence achieving the possibility of 

graft preparation with higher clinical efficacy. 
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Figure legends: 

Fig. 1. Pore size distribution of (a) 3:1 P/L ratio brushite, autoclaved monetite and dry 

heat monetite grafts, and (b) 1:1 P/L ratio brushite, autoclaved monetite and dry heat 

monetite grafts. 

 

Fig. 2. Photographs of  the retrieved brushite, dry heat monetite and autoclaved monetite 

grafts after 4 weeks of implantation (a,b,c) and after 12 weeks (d,e,f) [yellow dotted lines 

denote 6 x 12mm initial dimensions of the grafts]. Radiographs showing brushite (right) 

and autoclaved monetite (left), (g) upon implantation, (h) after 4 weeks, and (i) after 12 

weeks in vivo. The monetite grafts were clearly a darker color compared to the brushite 

grafts indicating greater amount of protein adsorption. 

 

Fig. 3. X-ray diffraction patterns indicating the initial and post ageing in PBS phase 

composition of brushite, autoclaved and dry heat monetite grafts. Grafts initially 

consisted of phase pure DCPD (*). The dry heat and autoclaved monetite grafts show the 

conversion from DCPD to DCPA (†). After ageing in PBS for 60 days the brushite shows 

conversion from DCPD to OCP (O) and HA (X) and remnants of DCPD. The dry heat 

and autoclaved monetite grafts do not show any phase change upon ageing in PBS for 60 

days. 

 

Fig. 4. X-ray diffraction patterns showing phase composition before and post 

implantation of:   

a. Brushite graft cylinders. The grafts initially consisted of phase pure DCPD (*). After 

12 weeks of subcutaneous implantation, the analysis of the grafts revealed the presence of 
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a mixture of OCP (O), HA (X) and remnants of DCPD. (The surface and core of the 

grafts retrieved after 12 weeks were analysed).  

b. Autoclaved and dry heat monetite grafts. Analysis of both monetite grafts confirmed 

conversion from DCPD to DCPA (†) before implantation. The autoclaved and dry heat 

monetite grafts did not show any phase change upon implantation for 12 weeks. (The 

surface and core of the grafts retrieved after 12 weeks were analysed). 

 

Fig. 5. SEM images obtained from the surface of brushite (a, b, c, d), autoclaved monetite 

(e, f, g, h) and dry heat monetite (i, j, k, h) grafts before and after immersion in PBS, 

serum, and subcutaneous implantation in rats on Days 0, 60, and 84 respectively (Scale 

bars represent 5µm). 

 

Fig. 6. Mass loss of grafts in vitro for up to 60 days; (a) 3:1 P/L ratio brushite and monetite 

grafts in PBS, (b) 3:1 P/L ratio brushite and monetite grafts in serum, (c) 1:1 P/L ratio 

brushite and monetite grafts in PBS, and (d) 1:1 P/L ratio brushite and monetite grafts in 

serum. 

 

Fig. 7. Comparison between mass loss of all bioceramic grafts implanted subcutaneously. 

 
 

 

Tables:  

Table 1. Summary of physicochemical properties of brushite, autoclaved and dry heat 

converted monetite. 

 

  Table 2. Summary of the total percentage of mass loss of brushite and monetite cements 

after in vitro ageing in PBS and bovine serum and after subcutaneous implantation.  
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 Table 3. Summary of changes in calcium-to-phosphorous ratio of brushite and monetite 

grafts after ageing in PBS, serum, and subcutaneous implantation. 

 

 

 

 

 

 

 Supplementary figure legends: 

 

Fig. S1. Effect of in vitro ageing on relative porosity of, (a) 3:1 P/L ratio grafts in PBS; 

(b) 3:1 P/L ratio grafts in serum; (c) 1:1 P/L ratio grafts in PBS; and (d) 1:1 P/L ratio 

grafts in serum. (Grey-brushite, Blue- autoclaved monetite, and Red-dry heat monetite). 

 

Fig. S2. Effect of subcutaneous implantation on relative porosity of, (a) 3:1 P/L ratio 

grafts, and (b) 1:1 P/L ratio grafts. (Grey-brushite, Blue- autoclaved monetite, and Red-

dry heat monetite). 

 

Fig. S3. Effect of in vitro ageing on specific surface area (SSA) of, (a) 3:1 P/L ratio grafts 

in PBS; (b) 3:1 P/L ratio grafts in serum; (c) 1:1 P/L ratio grafts in PBS; and (d) 1:1 P/L 

ratio grafts in serum. (Grey-brushite, Blue- autoclaved monetite, and Red-dry heat 

monetite). 

 

Fig. S4. Effect of subcutaneous implantation on specific surface area (SSA) of, (a) 3:1 

P/L ratio grafts, and (b) 1:1 P/L ratio grafts. (Grey-brushite, Blue- autoclaved monetite, 

and Red-dry heat monetite). 

 

Fig. S5. Effect of in vitro ageing on density of, (a) 3:1 P/L ratio grafts in PBS; (b) 3:1 P/L 

ratio grafts in serum; (c) 1:1 P/L ratio grafts in PBS; and (d) 1:1 P/L ratio grafts in serum. 

(Grey-brushite, Blue- autoclaved monetite, and Red-dry heat monetite). 
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Fig. S6. Effect of subcutaneous implantation on density of, (a) 3:1 P/L ratio grafts, and 

(b) 1:1 P/L ratio graft. (Grey-brushite, Blue- autoclaved monetite, and Red-dry heat 

monetite). 

 

Fig. S7. X-ray diffraction pattern indicating the phase composition of brushite graft after 

12 weeks of ageing in PBS. The characteristic peak of 4.75º 2θ (O) indicates OCP.   

 

Fig. S8.  (A) SEM image of the disintegration products/fragments collected from the 

monetite grafts incubated in serum (Scale bars represent 20 µm). (B) X-ray diffraction 

pattern indicating the phase composition of disintegration products/fragments collected 

from the monetite grafts incubated in serum († represents monetite peaks). 
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Graft type and  

P/L ratio 
 

Porosity (%) 
 

S.S.A (m2/g) 
 

Density (g/cm3) 
Compressive 

strength (MPa) 

3:1 Brushite 36 ± 1.75 0.62 ± 0.18   2.42 ± 0.05 16.6 ± 0.88 
3:1 AC monetite 53 ± 1.75 1.66 ± 0.08   2.87 ± 0.02   8.1 ± 1.14 
3:1 DH monetite 45 ± 2.63     20.05 ± 1.00   2.85 ± 0.04 15.0 ± 1.40 
1:1 Brushite 65 ± 1.75 0.89 ± 0.11   2.45 ± 0.04   8.4 ± 0.96 
1:1 AC monetite        60 ± 2.63 1.12 ± 0.11   2.89 ± 0.04   2.4 ± 0.70 
1:1 DH monetite        60 ± 1.75     19.36 ± 1.55   2.83 ± 0.08   5.3 ± 0.53 

Data presented as average values with confidence intervals (95%) 
AC- Autoclaved 
DH- Dry heat 
S.S.A - Specific surface area 
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Biomaterial 
(P/L ratio) 

PBS 60 days 
(mass loss %) 

Serum 60 days 
(mass loss %) 

Subcutaneous 84 days 
(mass loss %) 

3:1 Brushite  13 ±1.13           16 ±1.13 17 ± 1.6 
3:1 DH monetite 10 ±1.70        12.5 ±1.13 25 ± 2.0 
3:1 AC monetite 4.5 ± 0.57    7 ± 0.57 30 ± 1.6 
1:1 Brushite 26 ±2.26        42.5 ± 2.26 29 ± 2.4 
1:1 DH monetite 29 ±1.70  37 ± 3.26 39 ± 1.6 
1:1 AC monetite 33 ±1.70  47 ± 1.70 48 ± 3.6 
Data presented as average values with confidence intervals (95%) 
AC- Autoclaved 
DH- Dry heat 
S.S.A - Specific surface area 
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Biomaterial 

Before 
experiments 

PBS 
(60 days) 

Serum 
(60 days) 

Subcutaneous 
(84 days) 

3:1 Brushite  1.10 ± 0.07       1.42 ± 0.09* 1.10 ± 0.12   1.59 ± 0.15* 
1:1 Brushite  1.04 ± 0.10      1.38 ± 0.08*  1.15 ± 0.08   1.51 ± 0.09* 
3:1AC monetite  1.17 ± 0.05       1.13 ± 0.07  1.14 ± 0.01 1.23 ± 0.07 
1:1AC monetite  1.15 ± 0.09       1.18 ± 0.09  1.12 ± 0.12 1.31 ± 0.16 
3:1 DH monetite  1.13 ± 0.06       1.11 ± 0.14  1.11 ± 0.14 1.23 ± 0.01 
1:1 DH monetite  1.06 ± 0.11       1.15 ± 0.11  1.14 ± 0.06 1.21 ± 0.09 
Data presented as average values with confidence intervals (95%) 
AC- Autoclaved 
DH- Dry heat 
S.S.A - Specific surface area 
(*) signifies the statistical significance of increase in Ca/P ratio from start of experiments (P < 0.05) 
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