UNIVERSITY^{OF} BIRMINGHAM

Research at Birmingham

Murine Models of Acute Alcoholic Hepatitis and Their Relevance to Human Disease

Wilkin, Richard; Lalor, Patricia; Parker, Richard; Newsome, Philip

DOI: 10.1016/j.ajpath.2015.12.003

License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version Peer reviewed version

Citation for published version (Harvard):

Wilkin, RJW, Lalor, PF, Parker, R & Néwsome, PN 2016, 'Murine Models of Acute Alcoholic Hepatitis and Their Relevance to Human Disease', The American Journal of Pathology, vol. 186, no. 4, pp. 748–760. https://doi.org/10.1016/j.ajpath.2015.12.003

Link to publication on Research at Birmingham portal

Publisher Rights Statement: Eligibility for repository: Checked on 22/3/2016

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.

• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1 Title Page:

2	
3	Murine models of acute alcoholic hepatitis and their relevance to human disease
4	Richard J.W. Wilkin ^{1,2*} , Patricia F. Lalor ^{1,2} , Richard Parker ^{1,2} , Philip N. Newsome ^{1,2*}
5	
6	¹ National Institute for Health Research (NIHR) Birmingham Liver Biomedical
7	Research Unit and Centre for Liver Research, University of Birmingham,
8	Birmingham, UK.
9	² Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham
10	
11	Running head: Murine models of alcoholic liver injury (39 characters)
12	
13	22 text pages, 3 tables, 1 figure. 1 table as Supplemental Table S1.
14	
15	Manuscript word count: 5830 excluding tables, figures and references.
16	
17	RJWW is supported by UHB Charities, PNN & PFL are supported by the NIHR
18	Biomedical Research Unit, RP is employed by the University of Birmingham and
19	supported by an EASL Sheila Sherlock Physician Scientist Fellowship.
20	
21	No conflicts of interest to declare.

- 23 Footnote page:
- 24
- 25 Corresponding author:
- 26 Mr Richard Wilkin
- 27 National Institute for Health Research (NIHR) Birmingham Liver Biomedical
- 28 Research Unit and Centre for Liver Research,
- 29 5th Floor Institute of Biomedical Research
- 30 University of Birmingham
- 31 Vincent Drive
- 32 Birmingham
- 33 B15 2TT
- 34 UK
- 35 Telephone: +44-121-414-6846
- 36 Fax: +44-121-415-8701
- 37 Email: wilkinr@bham.ac.uk
- 38
- 39 Professor Philip Newsome
- 40 National Institute for Health Research (NIHR) Birmingham Liver Biomedical
- 41 Research Unit and Centre for Liver Research,
- 42 5th Floor Institute of Biomedical Research
- 43 University of Birmingham
- 44 Vincent Drive
- 45 Birmingham
- 46 B15 2TT
- 47 UK
- 48 Telephone: +44-121-415-8700
- 49 Fax: +44-121-415-8701
- 50 Email: P.N.Newsome@bham.ac.uk

51 Abstract

52

Alcohol induced liver damage is a major burden for most societies, and murine studies can provide a means to better understand its pathogenesis and test new therapies. However, there are many models reported with widely differing phenotypes, not all of which fully recreate the spectrum of human disease. Thus understanding the implications of these variations is key for clinicians/clinician scientists who wish to model human disease.

59

60 This review critically appraises key papers in the field, detailing the spectrum of liver 61 damage seen in different models, and how they relate to the phenotype of disease 62 seen in patients. A range of different methods of alcohol administration have been 63 studied ranging from ad libitum consumption of alcohol and water to modified diets 64 e.g. Lieber deCarli liquid diet. Other feeding regimens have taken more invasive 65 routes using intra-gastric feeding tubes to infuse alcohol directly into the stomach. 66 Notably, models utilising wild-type (WT) mice generally produce a milder phenotype 67 of liver damage than those using genetically modified mice, with the exception of the 68 chronic binge feeding model.

69

The review also recommends panels of tests that should be considered so as to standardise end-points for the evaluation of the severity of liver damage. This is key for comparison of models of injury, testing of new therapies, and for subsequent translation of findings into clinical practice.

Comment [RW1]: Abstract cut down to 220 words.

75 Introduction

76

77 The burden of alcohol and related liver disease is significant, in terms of both human 78 and financial costs. In 2010, 7.2 deaths per 100 000 people globally were caused by 79 alcohol related cirrhosis equating to 0.9% of deaths from all causes(1). The economic 80 burden is much more difficult to calculate, and the World Health Organisation 81 estimated that in 2003, the total tangible cost of alcohol to EU society was 125 billion 82 euros, with non-tangible costs (value placed on pain, suffering and lost life due to 83 social and health harms caused by alcohol) amounting to 150-760 billion euros(2). 84 Whilst alcohol excess is a major cause of cirrhosis, as many as 60% of patients 85 presenting with alcohol induced liver damage also have evidence of concomitant 86 acute alcoholic hepatitis (AAH)(3). As the most dramatic presentation of alcohol-87 induced liver injury, AAH has a much higher short and long-term mortality 88 approaching 20% and 50% respectively, despite current medical therapy(4, 5). The 89 understanding of its pathogenesis and hence development of novel therapies has 90 been in part hampered by the lack of relevant, reproducible animal models of 91 AAH(6).

92

93 Whilst there are limitations of using animal models to investigate alcoholic liver injury, 94 this approach does provide research opportunities not found in in vitro or clinical 95 studies. Animal models allow control over multiple pathogenetic factors such as the 96 environment, contribution of specific pathways and the amount of alcohol consumed, 97 which are difficult to replicate in human studies. Mice that are transgenic for key 98 inflammatory and metabolic disease modifying genes are widely available, and 99 confer the ability to assess the impact of regulatory processes on the induction of 100 alcoholic liver injury(7). While transgenic rats are available their use has been 101 restricted by a limited knowledge of their reproductive system and more difficult in 102 vitro embryo manipulation which is needed to develop transgenic breeds. Therefore,

- in this review we will critically appraise the published models of acute murine alcoholinduced liver injury, paying particular attention to the parameters used to define the
 extent of liver damage, in order to highlight advantages of those models with the
 greatest promise for new treatment options.

108 Phenotype of disease

109

110 Alcohol induces a broad spectrum of liver injury in patients ranging from steatosis, to 111 more florid inflammation and hepatocyte necrosis, and finally to fibrosis and the 112 development of hepatocellular carcinoma. The particular phenotype induced is 113 determined in part by the quantity and duration of alcohol exposure as well as patient 114 specific factors. A variety of models have been used by researchers to model this 115 spectrum(6), with each utilising a different method of alcohol administration to 116 produce a desired pattern of liver injury. In general however, whilst many of the 117 available murine models reproduce some of the early stages of liver injury, the 118 development of fibrosis and cirrhosis is harder to replicate and commonly requires an 119 injury additional to alcohol exposure. Thus, whilst steatosis has been achieved by ad 120 libitum feeding for between approximately one week to several months(7, 8), most 121 models require a second insult alongside an extended course of alcohol 122 administration in order to induce fibrosis such as either concomitant genetic 123 manipulation(9) or the addition of a second chemical insult such as carbon 124 tetrachloride (CCl₄)(10).

125 Use of Wild Type mice to model alcohol induced liver damage

126

127 Alcohol has been administered to mice by a variety of different routes/regimens, each 128 having their respective advantages and disadvantages (Table 1). Choice of model is 129 often governed by the features of liver injury that are required and the 130 skills/resources available. The simplest method of administering alcohol, known as 131 ad libitum, is to mix it into the drinking water and allow the mouse free access to this 132 alongside their normal chow. However, due to a natural aversion to alcohol, the mice 133 generally only develop low blood alcohol levels (BAL) and mild liver injury(11). This 134 model can be useful in some circumstances as it replicates human patterns of 135 alcohol exposure and dietary intake. The other ad libitum option involves the addition 136 of alcohol to a Lieber deCarli (LdC) diet, in which normal mouse chow is replaced by 137 a high fat, nutritionally complete liquid diet. This partially overcomes the murine 138 dislike of alcohol and tends to produce a more significant liver injury than the 139 conventional water/alcohol mix(12). There is conflicting evidence as to whether the 140 increased liver injury is a reflection of higher blood alcohol levels or the additive effect 141 of combining a high fat diet with alcohol exposure(12, 13).

142

143 Another ad libitum method is to provide the ethanol in an agar gel(14). This has been 144 used much less commonly than a liquid diet although there is some evidence that the 145 alcohol evaporation from a gel is low. The model was developed to try and simplify 146 the administration of alcohol. The gel diet does appear to induce a liver injury- the 147 alcohol fed mice developed a significantly higher steatosis score, triglyceride level 148 and ALT level than control mice not fed alcohol. The drawback for this method is the 149 complicated gel preparation and custom made feeding tubes required. In contrast the 150 Lieber deCarli liquid diet is easier to make and Richter tubes are a simple delivery 151 method.

153 Another approach consists of administering alcohol via gavage directly into the 154 animal's stomach, which is a relatively straightforward procedure that can be easily 155 taught(15). However, the procedure needs to be repeated on a daily basis, thus 156 inducing stress in the mouse, and again only produces mild liver injury with a 25% 157 increase in serum alanine aminotransferase (ALT) levels in ethanol fed animals(16). 158 The gavage model can be used in combination with ad libitum delivery of alcohol, 159 such as in the chronic-binge model(17), where mice have access to a Lieber-160 deCarli/ethanol mix and also receive a single gavage of ethanol on the day the 161 experiment is terminated. This produces a more significant liver injury than just 162 gavage or ad libitum delivery alone, with peak levels of ALT and aspartate 163 aminotransferase (AST) 9 hours post-gavage of 250IU and 420 IU respectively(18). 164 Notably, there is also evidence of greater triglyceride deposition in the liver and 165 increased hepatic inflammation in the chronic binge group. The ability of this 166 relatively simple model to induce a moderately severe alcoholic liver injury has led to 167 its adoption by many groups(19).

168

169 Recently, a hybrid model of a solid chow high in cholesterol and saturated fat along 170 with intra-gastric feeding of a liquid high fat/ethanol diet has been developed by the Tsukamoto group(20). The intra-gastric feeding model was first described by 171 172 Tsukamoto and French in 1985(21), and involves complex surgery to place a tube 173 through the skin into the rodent's stomach. This tube is then used to administer feed 174 and alcohol to the mouse. It has been shown to produce higher BALs (between 100 175 to 500mg/dL in rats)(6) and a more severe liver injury than ad libitum feeding 176 methods(22). The hybrid model produces a liver injury consistent with chronic 177 alcoholic steatohepatitis- with a marked transaminase rise, and significant steatosis 178 with inflammation and occasional neutrophil infiltration present. The addition of 179 weekly alcohol binges induces an increased neutrophil infiltration with clustering seen

around dead and fat-loaded hepatocytes. This provides a better representation of anacute alcoholic hepatitis injury (Figure 1).

182

183 The length of high fat diet administration has been investigated by Chang et al. who 184 fed mice for either three days or three months of high fat diet with a single gavage of 185 alcohol on the final day of feeding(23). This model produced raised ALT/AST in the 3 186 day model, with higher levels in the 3 month model. Increases in infiltrated 187 neutrophils and serum free fatty acids were also seen, however, the activation 188 markers of macrophages was only slightly increased by the alcohol binge compared 189 to the model without the alcohol. This seems to partially correlate with the human 190 picture of alcoholic hepatitis (see below).

191

192 The diet composition is also very important. Lieber and deCarli developed their 193 eponymously named diet to accentuate the liver injury that could be induced by 194 alcohol administration and it has since been shown that a diet that is high in 195 saturated fats can reduce hepatic lipid accumulation, whilst a diet containing 196 polyunsaturated fats promotes liver injury. You et al. found that adiponectin mediated 197 the protective effect of saturated fats, which may provide therapeutic options that 198 should be explored(24). However, recently Chen et al. showed that while saturated 199 fats can reduce hepatic fat deposition, they increased fibrotic changes within the 200 liver(25). Importantly, the majority of murine studies follow a pair fed diet protocol. 201 This involves matching the amount of diet without alcohol that is provided to control 202 mice to the amount of diet and alcohol that the main study mice consumed in the 203 previous 24 hours. This provides a control group to show that the liver injury is due to 204 the alcohol and not the high fat diet. Ultimately, logistical issues may determine 205 choice of regimen; ad libitum models require considerably less expertise and 206 specialist equipment, whilst the more involved intra-gastric feeding model requires

207 metabolic cages, single mouse housing, specialist infusion equipment and surgery to208 be performed by the researcher.

209

210 In WT mice the severity of liver damage is closely linked to the duration and quantity 211 of alcohol consumption, both of which are strongly influenced by the method of 212 alcohol delivery. The ad libitum methods are limited by the mouse's appetite whereas 213 the intra-gastric feeding method is limited by the length of time the mouse can 214 tolerate a feeding cannula in its stomach. Consequently, the duration of each model 215 is determined both by the tolerability of the model and the level of liver injury that is 216 required. Thus, whilst there are advantages to using WT mice in such studies, the 217 extended duration of alcohol exposure needed to generate more severe liver injury 218 may be challenging, highlighting the potential advantages of using transgenic mice 219 that have an increased susceptibility to the injurious effects of alcohol.

220 Models of alcohol induced liver damage using genetically modified mice

221

222 To date, multiple different regulatory and metabolic genes have been knocked out to 223 assess their impact on the process of liver injury (see Table 2). Some of these affect 224 normal pathways of ethanol metabolism or metabolism of harmful by-products of 225 ethanol, such as the Nrf2 knockout mouse that is susceptible to oxidative stress 226 caused by alcohol breakdown products(7). Others, such as the Hfe knockout mouse, 227 which results in hepatic iron overload, augment the injurious effect of alcohol(11). 228 Some of the more commonly used models with profound phenotypes are described 229 in greater detail below, with a more comprehensive summary of models in Table 2.

230

231 Nuclear factor-erythroid 2-related factor 2 (Nrf2) protects cells against xenobiotic and 232 oxidative stress, such that mice with this gene knocked out incur a severe, acute 233 form of acute liver injury after they ingest alcohol(7). Mice are typically given three 234 days of Lieber deCarli diet for adaptation purposes, and then alcohol is added at 235 increasing concentrations of 2.1%, 4.2% and 6.4% v/v for three-day blocks 236 respectively. This gives a total of nine days of alcohol administration during which 237 time significant amounts of hepatocellular damage were reported, as demonstrated 238 by marked rises in ALT and development of clinical signs (7). The Nrf2^{-/-} mouse thus 239 provides a good model to study severe acute liver injury as seen in the setting of 240 AAH where oxidative stress is an important factor (26, 27), although the high level of 241 mortality reported necessitates close monitoring of mice. No evidence of liver fibrosis 242 was presented in this model which potentially limits its utility given most patients with 243 AAH have concomitant fibrosis, although its absence may be explained by the short 244 duration of alcohol administration. However, it is possible that modification and 245 extension of the regimen could potentially induce development of fibrosis. The acute 246 onset of injury in this model presents a challenge as the cohort of mice with severe 247 liver injury are identified by their moribund appearance and this occurs at varying

time points after exposure to the high concentration of alcohol making the modeldifficult to use for both logistic and ethical reasons.

250

251 Other groups have targeted hepatic lipid homeostasis to exacerbate alcohol-induced 252 liver injury. Lipin-1 is a vital regulator of lipid metabolism, acting as an enzyme in the 253 triglyceride synthesis pathway and a transcriptional co-regulatory protein that is 254 highly upregulated in alcoholic fatty liver disease. Hu et al. demonstrated that 255 administering alcohol to mice with deletion of lipin-1 led to the rapid onset of severe 256 liver injury, as indicated by levels of serum ALT and inflammatory cytokines, and 257 progression to alcoholic steatohepatitis(28). In this study mice were fed low fat Lieber 258 deCarli diet, with and without ethanol for four weeks. Wild type mice typically 259 developed only mild liver injury while the lipin-1 knockout mice showed increased 260 serum levels of ALT, AST, and free-fatty acids, as well as micro and macrovesicular 261 steatosis suggesting that lipin-1 may exert a protective role by limiting inflammation 262 and promoting efficient lipid storage and metabolism.

263

264 Nishiyama et al. also investigated fat deposition(29). They used a hepatocyte specific 265 HIF-1a null mouse to show that HIF-1 (Hypoxia inducible factor-1) has a protective 266 role that reduces accumulation of lipids in the liver after ingestion of an alcohol/Lieber 267 deCarli liquid diet. They were also able to show that HIF-1a suppresses Srebp-1c 268 activity and that is at least part of the reason that when HIF-1 α is removed, steatosis 269 increases. However, there are conflicting reports regarding the role of hypoxia 270 inducible factors. Nath et al. also used a HIF-1a null mouse and found a reduced 271 injury in this knockout mouse(30) while Ni et al. achieved similar results using a HIF-272 1b null mouse(31). The reasons for these contrasting results are not clear, although 273 different housing conditions or development of sub-strains within the knockout 274 populations have been suggested(32).

276 It is interesting to note that HIF have been implicated in the tissue repair response 277 within the liver. They may be involved in regulating the angiogenic effect of hepatic 278 macrophages that induce liver sinusoidal endothelial cell proliferation and 279 migration(33). This appears to be a key step in liver repair after an acute injury. 280 Macrophages are likely to be key to fully understanding the process of tissue repair in 281 the liver. It has been shown that initially pro-inflammatory (Ly6C^{hi}) macrophages can 282 switch to a Ly6C^{low} phenotype important in tissue repair(34) after phagocytosis of 283 apoptotic hepatocytes. Further characterization of the mechanisms driving tissue 284 repair in alcoholic liver injury are needed to identify targets for potential therapies.

285

286 Other pathways that have been targeted in the attempt to augment hepatic injury 287 following alcohol exposure include Ppara. Ppara is a nuclear hormone receptor and 288 transcription factor that regulates hepatic inflammation and lipid metabolism. The role 289 of this receptor is to stimulate fatty acid catabolism under fasting conditions and so 290 the authors of this study(8) anticipated that free fatty acid production associated with 291 alcohol consumption would normally activate Ppara. The Ppara knockout mouse was 292 given ad libitum Lieber deCarli liquid diet with 4% ethanol for up to six months 293 resulting in the development of both an inflammatory cell infiltrate and fibrotic 294 changes that were not seen in alcohol fed WT mice. This was confirmed by both 295 Picrosirius red and alpha smooth muscle actin staining, and demonstration of 296 induction of genes involved in fibrosis including Thbs1, Col1a1 and Col1a2. Ppara 297 transgenic mice with additional genetic alterations provide further options to 298 investigate liver injury. The Glutathione S-transferase A4-4/ Peroxisome proliferator 299 activated receptor-a (Gsta4-4/Ppara) mouse has been described recently(35). Gsta4-300 4 is an enzyme that protects against natural and environmental toxicants through 301 glutathione conjugation which protects against harmful aldehydes, including 4-302 Hydroxynonenal (4-Hne). Ronis et al. have used this double knockout in an ad libitum 303 Lieber deCarli/5% EtOH model to show the central role lipid peroxidation plays in **Comment [RW2]:** New text added to discuss the papers investigating HIF and the tissue repair response.

mediating progression of alcohol-induced necro-inflammatory liver injury, stellate cell
 activation, matrix remodeling and fibrosis(35).

306

307 Other alternatives to transgenic knockout mice include transfecting mice with 308 adenoviruses to silence the expression of a specific gene, This reduces but does not 309 completely turn off gene expression. The Postic group used this method to show that 310 silencing the Carbohydrate Responsive Element Binding Protein (ChREBP) prevents 311 alcohol induced steatosis in an acute model of injury(36). Another strategy is to 312 genetically alter mice to over express a certain gene. Butura et al. used this method 313 to investigate the role of the Cyp2e1 gene(37). They inserted approximately 20 extra 314 copies of the gene into mice. They found that overexpression of this gene aggravates 315 the liver injury with increased levels of oxidative stress.

316

317 Fibrosis

318

The generation of alcohol induced fibrosis in mouse models is more challenging than steatosis and inflammation and often requires a second injurious element in addition to alcohol ingestion. Bataller and Gao have published a comprehensive review on liver fibrosis in alcoholic liver disease and should be read for further information(38).

323 There are a variety of non-alcohol models that are utilized to induce liver fibrosis, with 324 one of the most commonly used being carbon tetrachloride(CCl₄). This involves 325 repeated intraperitoneal injections of CCl₄ over a period of weeks, although there are 326 no studies directly comparing the liver fibrosis induced by CCl₄ or alcohol. The Nagy 327 research group were able to induce liver fibrosis by administering CCl₄ and moderate 328 alcohol intake at a level not usually producing a significant liver injury. This proves 329 the additive effect of the two agents through common pathways(10). Roychowdury et 330 al. compared a high ethanol feeding regime against a moderate ethanol regime with 331 the addition of CCl₄(39). They demonstrated that steatosis, inflammation and

apoptosis were more prevalent in the alcohol only group as compared to the group
that also received CCl₄, which had more prominent fibrosis.

334

335 Chiang et al. exposed mice to 2% alcohol ad libitum for either 2 days, 2 weeks or 5 336 weeks alongside administration of CCI₄, which resulted in characteristic hepatic 337 extracellular matrix deposition and a change in sinusoidal architecture(10). 338 Genetically modified mice deficient in the HFe iron transporter, which causes 339 accumulation of hepatic iron, develop a marked steatohepatitis and fibrosis upon 340 administration of a high fat diet with ethanol(9). Versions of this dietary protocol have 341 also been used by other groups combined with other genetic backgrounds. For 342 example, Li et al. treated Ppara knockout mice with a 4% ethanol/Lieber deCarli 343 diet(8), and after 4-6 months reported fibrosis with a small amount of collagen 344 deposition in peri-venular and peri-cellular regions. Importantly, in common with other 345 models, a major drawback of this study was the length of time required for fibrosis to 346 develop, as well as the relatively modest amount of fibrosis seen. Notably, other 347 groups have demonstrated that similar or longer regimens are not able to induce 348 significant fibrosis in WT mice, necessitating further study of specific transgenic 349 animals and alternate models of alcohol delivery(8, 40).

351 Mouse variables that affect experimental endpoints

352

353 There are practical benefits in using a model where mice freely consume alcohol in 354 large quantities. However as noted above, most mouse strains are not inclined to 355 voluntarily ingest alcohol and this means that modified liquid diets, gavage or intra-356 gastric infusion are often required. There are marked strain differences in murine 357 attraction to alcohol, and one of the more comprehensive studies compared the 358 consumption of unsweetened alcohol, sweetened alcohol and sweetened water in 22 359 in-bred strains of mouse(41). C57BI/6J strain of mice freely consumed the most 360 alcohol, drinking more than 10g/kg/day compared to less than 2g/kg/day consumed 361 by DBA/2J mice. Moreover, it has been shown that C57BI/6 mice would consume 362 diet containing a higher concentration of alcohol than other strains of mice(42). 363 Patterns of alcohol consumption over time were also explored, and notably, mice with 364 restricted daily access to alcohol consumed similar quantities to mice that had 365 unlimited 24 hour access(43), with both groups having similar blood alcohol 366 levels(42). It is not clear why the C57BI/6 mice are able to consume higher 367 concentrations of alcohol but there are parallels with consumption in humans where 368 there is a marked difference in susceptibility to alcohol induced liver damage across 369 ethnic groups (44).

370

371 Gender is also an important factor in development of alcohol induced liver injury. 372 Female patients are more susceptible to developing more advanced alcoholic liver 373 damage both after acute and chronic administration(45), and similarly female mice 374 develop more florid liver injury than males after exposure to ethanol(46). There are 375 several different theories pertaining to this gender difference including different 376 alcohol elimination rates, different alcohol pharmacokinetics and different oestrogen 377 levels. Frezza et al. were the first to show that in humans, females have decreased 378 levels of gastric ADH which lessens the 'first pass effect' on alcohol and increases

379 the bioavailability of ingested alcohol when compared to males(47). Female mice 380 develop less liver fibrosis when exposed to other types of chronic liver damage, such 381 as CCl₄ injury or hepatitis C virus infection, suggesting that oestrogens may have a 382 protective effect in some disease settings(48, 49). Work still needs to be done to 383 ascertain whether this also applies to alcoholic liver injury but it does appear that 384 treatment with oestrogen in females lacking ovaries reduces hepatic steatosis(50). 385 Also, there are significant gender differences in the response to alcohol at a 386 proteomic level. Wang et al. found that 78 protein levels were altered by either male 387 or female mice undergoing chronic alcohol feeding and this included several 388 oxidative stress related proteins. This is consistent with studies in rats that have 389 found that oxidative stress is a possible reason for increased liver injury in females 390 after ethanol feeding(51).

391

392 Alcohol consumption is different from alcohol metabolism, but female mice seem to 393 have an equal or increased consumption compared to males. Female mice will ingest 394 more alcohol than their male counterparts if given free access to alcohol, although 395 when access is restricted to a defined time period, their intake is similar(52). The 396 females will also achieve higher blood alcohol levels after ingesting an equal amount 397 of alcohol as male mice(52). This would also seem to mirror the human setting in 398 which women need a lower alcohol intake to achieve equal blood levels to men 399 (National Institute on Alcohol Abuse and Alcoholism. Women and alcohol 2015. 400 Available from: http://pubs.niaaa.nih.gov/publications/womensfact/womensfact.htm. 401 Accessed 14/09/15). Also, women that drank a moderate amount_of alcohol were at 402 higher risk of developing alcoholic liver disease than men that drank a similar 403 amount(53, 54). All of the above underlines the importance of gender in induction of 404 an alcoholic liver injury and reinforces the need to use mice of a single gender in 405 murine models to achieve consistent results.

Comment [RW3]: Text added to expand and clarify the importance of gender as a variable affecting liver injury.

17

407 Age is also an important variable when investigating the effects of alcohol ingestion. 408 Vogt et al. showed that glutathione levels take longer to recover after administration 409 of alcohol in mice aged 24 months compared to mice at 12 months(55). This would 410 appear to be replicated by other studies (56, 57). Glutathione is involved in the 411 detoxification of alcohol and this result would seem to indicate that older mice are 412 less able to metabolise repeated alcohol doses. Further work is required to establish 413 whether this results in increased toxicity and an increased liver injury. However, 414 Ramires et al. found an increased liver injury in mice over 24 months when compared 415 with younger mice though this may be due to decreased rates of autophagy in the 416 older mice(58). It is not clear whether age reduces a human's ability to metabolise 417 alcohol. Wynne et al. showed that age did not diminish the activity of alcohol 418 dehydrogenase in the livers of male or female healthy volunteers(59). However, 419 studies suggest that both age and ethnicity influence the severity of alcoholic liver 420 disease in humans(60), and decline in mitochondrial function combined with 421 accumulated oxidative damage in older individuals may render older livers more 422 susceptible to damage from alcohol(61). Thus age is a variable that should be 423 investigated more fully in the context of alcoholic hepatitis.

425 Comparison of mouse models to human AAH

426

427 Inflammation of the liver caused by excess alcohol intake occurs after sustained 428 excessive intake and consists of a combination of signs, symptoms and histological 429 findings(62). Clinically, it causes a rapid onset of jaundice with fever, ascites and 430 proximal muscle loss that may be accompanied by an enlarged and tender liver. 431 Unfortunately, none of these parameters can be used to demonstrate the relevance 432 of a mouse model to human disease. In patients, serum ALT/AST, bilirubin and INR 433 are commonly raised and liver histology will reveal the presence of hepatocyte 434 ballooning which represent amorphous eosinophilic inclusion bodies, called Mallory-435 Denk bodies(63), and a high number of infiltrating neutrophils. Bilirubinostasis is 436 common and associated with susceptibility to infection (64) and poor survival (65). 437 Due to the long history of alcohol excess, steatosis and fibrosis are also commonly 438 seen in human livers.

439

440 The level of neutrophil infiltration in the murine liver has been suggested as a 441 measure of how representative a model is of the picture of AAH seen in patients. 442 However, a mouse model that induces a neutrophil infiltration similar to that seen in 443 AAH has been elusive(66). Moreover, greater neutrophil infiltration is associated with 444 better survival in humans (65) and thus may not be a sensible therapeutic target. 445 Two older models that have been used in this context are the 3,5-diethoxycarbonyl-446 1,4-dihydrocollidine (DDC) or griseofulvin (GF) models. These produce ballooning of 447 hepatocytes and accumulation of Mallory bodies but do not involve the administration 448 of alcohol to the mice.

449

Lamle *et al.* were able to induce inflammation within the livers of the *Nrf2*^{-/-} mice that received Lieber deCarli and ethanol diet which was characterised by histological finding of Kupffer cell and neutrophil infiltration of the liver(7). The chronic-binge

alcohol feeding method also seems to induce a liver injury that is reasonably similar
to human AAH and Bertola *et al.* describe raised serum ALT/AST, TNF and hepatic
neutrophil infiltration in this model albeit without describing the other characteristic
histological findings such as hepatocyte ballooning found in human AAH(17).

457

458 Human alcoholic hepatitis(AH) commonly occurs after repeated, long-term alcohol 459 ingestion with an acute flare up producing the inflammation. It may be that our mouse 460 models do not reflect this longer term ingestion and thus do not produce the same 461 phenotype of disease. This is supported by the findings of cirrhosis in human 462 biopsies which is not normally reflected in the mouse models. An elevated bilirubin is 463 not reproduced by any of the mouse models which may indicate that this feature is 464 linked to the more chronic features of the disease, although how this occurs still 465 needs further clarification.

466

467 In the search for murine model/human disease crossover, Xu et al. identified murine 468 hepatic Fsp27 and the human homolog Cidec(67). Both genes are elevated in 469 correlation within a setting of AAH and Fsp27 is thought to be upregulated by 470 ChREBP and Ppar-y. Interestingly, Cidec up-regulation was found to correlate with 471 the degree of hepatic steatosis, severity of disease and the mortality of the AH 472 patients. Xu et al. were able to show that knocking out Fsp27 in the mouse, 473 ameliorated the liver injury seen. This suggests that Cidec may be a therapeutic 474 target that could reduce the level of liver injury sustained by patients with AH.

475

476 Standardisation of endpoints for use in models of alcohol-induced liver injury

477

The literature includes a range of different read-outs and experimental endpoints that are used to quantify the nature and severity of alcohol-induced liver injury. This diversity can be useful for understanding pathogenesis but is challenging when trying

to compare the phenotype of liver damage reported across different models. Moreover, there is value in tailoring the read-outs to the focus of a particular study or clinical discipline, whether it is generation of steatosis, inflammation, fibrosis or cancer. Certain analyses are useful in the majority of studies, such as serum ALT levels, whereas other tests will be specific for the question being asked, such as the amount of fibrosis as indicated by alpha-smooth muscle actin. Detail of some of the more common experimental parameters is given below and summarised in Table 3.

488

489 **Overall assessment of murine behaviour and well-being**

490 Murine behavioural patterns are often monitored with a view to animal welfare, although their assessment with standardised scoring systems can provide important 491 492 information on the effect of alcohol on the mouse. Done reliably, such scoring 493 systems have the potential to provide objective information on the severity of illness 494 in mice thus providing a censorable end-point for experiments, whether they be 495 induction of injury or response to treatment (Supplemental Table S1). This bears 496 comparison with clinical scoring systems such as the Glasgow alcoholic hepatitis 497 score (GAHS), which increasingly focus on clinical features of function rather than 498 static measures of liver damage. Given the reported individual variation in level of 499 liver damage following some murine models of ethanol exposure, the added 500 advantage of a clinical assessment is that it ensures mice are more likely to have 501 developed a similar level of liver damage.

502

503 Biochemical assessment of liver function

In the setting of severe liver injury, the most robust assessment of a model should include measurement of parameters of liver synthetic function such as prothrombin time, serum bilirubin, glucose and albumin levels. These provide important information on the severity of injury, and can be performed on peripheral blood samples whilst models are ongoing thus allowing for the rigorous assessment of 509 potential new therapies. However, as mice have approximately 50-60 ml/kg of 510 circulating blood (approximately 1.5 ml for a 25 gram mouse) (National centre for the 511 replacement raroair. Mouse : Decision tree for blood sampling. Available from: 512 <u>http://www.nc3rs.org.uk/mouse-decision-tree-blood-sampling</u>. Accessed 14/09/15), 513 there are limitations on the number of blood tests that can ethically and 514 physiologically be performed on living animals.

515

516 Assessment of liver damage and hepatocyte death

517 Liver damage, as opposed to function, can be assessed in a variety of ways ranging 518 from measurement of serum ALT/AST through to scoring of liver histology. Serum 519 ALT/AST are commonly measured in studies and provide a standardised 520 measurement of liver damage. This is generally used to compare the extent of liver 521 damage across studies using different models and different strains of mice, although 522 there is strain-dependent difference in susceptibility to injury. For example, Mizuhara 523 et al. have shown that ALT levels vary significantly between C57BI/6 and BALB/c 524 mice following induction of liver injury with concanavalin A(68). Haematoxylin & Eosin 525 (H&E) staining of liver sections provides valuable information on the extent of tissue 526 necrosis, inflammation and steatosis, and TUNEL staining can allow quantification of 527 the amount of apoptosis. Histological analysis for the presence of hepatocyte 528 ballooning and presence of Mallory bodies by ubiquitin staining(69) is of particular 529 relevance in the setting of AAH, whilst analyses of superoxide dismutase 1 (SOD1) 530 and malondialdehyde (MDA) may provide useful insights into the level of oxidative 531 stress during acute liver injury(70).

532

533 Assessment of liver steatosis

Although H&E staining gives a qualitative indication as to the extent of steatosis, quantitative assessment can be performed using Oil Red O staining of liver sections and digital imaging or morphometric analysis alongside quantification of hepatic triglycerides and lipids. Liver to body weight ratio can also provide an indication of the extent of steatosis although it can be confounded by concomitant liver necrosis. More detailed analysis of steatosis can also include analysis of key molecules in pathways contributing to its development, such as SREBP, which are involved in cholesterol and fatty acid biosynthesis(71).

542

543 Assessment of liver inflammation

544 Immunohistochemical staining of liver provides data on the extent and composition of 545 liver infiltrating inflammatory cells, which can be complemented by flow cytometric 546 analysis of resident immune cells from liver cell digests. For example neutrophil 547 infiltration in models of alcoholic hepatitis has been assessed using both 548 immunochemical staining(72) and cytometric detection of Ly6G positive cells in liver 549 digests(73). Cell digest analysis can provide detailed quantitative information on the 550 composition of the liver infiltrate as well as determination of the activation status of 551 any infiltrating cells. This can also be supplemented with analysis of cytokines, such 552 as tumour necrosis factor (TNF), IL-6 and IL-10, from serum and liver tissue at 553 message and protein level to provide useful information on the level of inflammation 554 and the impact of any therapeutic intervention(74). For example, in humans, IL-6, IL-555 8, TNF and MCP-1 have all been implicated in neutrophil infiltration in patients with 556 alcoholic hepatitis(75) (76), whilst in mice IL-4 appears to promote neutrophil survival 557 and hepatitis(77).

558

559 Assessment of liver fibrosis

Standardised assessment of liver fibrosis should include morphometric analysis of fibrotic areas by picrosirius red (PSR) or Van Gieson staining, qPCR for *Col1* transcripts and biochemical assays of fibrosis such as hepatic hydroxyproline quantification(78). Useful additional insights can be gained by studying staining for activated hepatic stellate cells using alpha-smooth muscle actin (α -SMA) and transcription levels of matrix metallo-proteinases (MMP) and their tissue inhibitors(TIMP).

567

568 Additional mechanistic studies

569 Existing mouse models are useful in replicating human disease but, as discussed 570 above, they have limitations. One interesting area that could be expanded upon in 571 the future is the use of genome wide association studies (GWAS) to identify human 572 pathways/molecules involved in alcoholic liver injury. Current results from these 573 studies have helped identify an allele that has an association with alcoholic liver 574 injury(79). Other studies have identified specific genes that have a role in the 575 pathogenesis of alcoholic liver injury, such as osteopontin(80). There is potential to 576 expand on this work to identify further genes that put individuals at risk of developing 577 severe alcoholic liver injury. This clinical information could be used to create new 578 transgenic mice to investigate pathways involved in alcohol metabolism, help future 579 refining of animal models and discover new treatments for alcoholic liver disease.

580

581 Thus, future mechanistic studies may consider useful biomarkers to identify 582 individuals at risk of experiencing alcoholic liver injury(81). Manna et al. used 583 metabolomics to show that indole-3-lactic acid and phenyl lactic acid are potential 584 biomarker candidates(82), while microarray data has identified that serum insulin-like 585 growth factor binding protein 1 could provide an easily measured biomarker for early 586 detection of alcohol-induced liver injury(83). The Szabo group reported that 587 microRNAs may serve as biomarkers that can differentiate between hepatocyte 588 inflammation and injury. They found that different miRNAs can be elevated by either 589 alcoholic, drug-induced or inflammatory liver disease(84).

590 **Conclusion**

591

592 In conclusion, murine models of alcoholic liver disease are an invaluable tool that can 593 be used to investigate the whole spectrum of alcohol-induced liver damage 594 encountered in the human population. Murine models have several advantages 595 which allow researchers to investigate the full time-course and specific mechanisms 596 of the disease in more depth than is possible from human studies. It is clear that 597 before commencing any mouse model work, the human liver injury feature to be 598 replicated must be identified. When this is known, a specific mouse model can be 599 chosen by selecting a transgenic mouse, the alcohol administration method and the 600 duration/amount of alcohol required to replicate that clinical picture. However, 601 researchers should exert caution and ensure that factors such as gender, age and 602 strain of mice are carefully considered. This is vital to ensure the mouse liver injury 603 mirrors that seen in patients and thus provides a robust means in which to test new 604 pathophysiological mechanisms or therapeutic agents.

606 Tables

Mode of Delivery	Liver histology findings	Change in serum ALT	Practical/resource issues	
Ad Libitum- Water + EthanolHistologically normal liver or mild steatosis(11),(85) (86), (87)only.		Minimal or no rise in ALT up to 160 U/L.	Easy to deliver.	
Ad libitum- Lieber-DeCarli diet + Ethanol (8), (10), (17), (28), (88), (89), (90), (91), (92) Histological evidence of mild to moderate micro and macrosteatosis only.		Variable rise in ALT from a minimal increase up to 350 U/L with long term feeding.	Easy to deliver, special diet needed.	
Acute gavage (16), (93)	Histological evidence of mild steatosis and inflammatory injury only.	A rise of between 30 to 50 U/L.	Skill needed for gavage technique.	
Ad libitum + gavage (18), (19), (22)	Histological evidence of neutrophil infiltration into the liver. Steatosis with occasional areas of necrosis, but no fibrosis.	Increase of up to 270 U/L.	Skill needed for gavage technique.	

Intra-gastric infusion (21), (71), (94), (95), (96), (97)	Histological evidence of severe steatosis, inflammation, necrosis and hepatic stellate activation.	ALT up to 450 U/L.	Specialist surgical skill needed, extensive amount of specialist equipment and intensive monitorin needed.	ng

610 Table 1- Established routes for administration of alcohol to mice

Genetic manipulation	Function of key gene	Liver injury indices	Conclusions
Hepatic <i>ADH</i> knockout, <i>ad</i> <i>libitum</i> LdC + 1, 2 or 3.5% EtOH (98), (99)	ADH catalyses the oxidation of ethanol - the main pathway by which ethanol is metabolized during chronic alcohol abuse.	No significant oxidative stress levels or inflammatory response. Produced pan lobar vacuolization in response to 3.5% EtOH diet.	Dose of ethanol and ADH deficiency are key factors in initiation and progression of alcoholic fatty liver disease. The <i>ADH</i> KO mice produced higher BALs(99) and consequently increased hepatic lipid vacuolization. Deer mice and this model can be used to study chronic alcoholic liver injury.
<i>BiP</i> (heavy chain immunoglobulin binding protein/ Grp78) knockout, <i>ad</i> <i>libitum</i> high fat diet + 4 g	<i>BiP</i> mediates the unfolded protein response which reduces protein translation, enhances protein folding and increases degradation	Raised ALT to approximately 320 U/L in <i>BiP</i> KO mice compared to approximately 45 U/L in WT mice. Also showed increased lipid	HCCs were only found in the knockout mice, suggesting that more than one 'insult' needs to be present to induce

alcohol/kg body weight(89)	of unfolded proteins. This serves	accumulation and increased rate of	carcinogenesis. Alcohol induced
	as a model of ER stress with	HCC.	stress was age related, with
	alcohol added to study the		younger animals more resistant
	development of hepatocellular		to stress.
	carcinoma (HCC).		
<i>CHOP</i> knockout, intra gastric infusion of high fat diet + 18 g/kg/day increased to 29 g/kg/day of alcohol for a total of 4 weeks(100)	CHOP is a transcriptional regulator involved in apoptosis caused by endoplasmic reticulum stress.	WT & transgenic mice had significant changes in steatosis score, liver triglyceride levels (fivefold increase in WT but 50% decrease in <i>CHOP -/-</i> mice) and ALT (112 U/L). <i>CHOP -/-</i> mice had no apoptosis.	As a response to ER stress, <i>CHOP</i> upregulates and is involved in causing apoptosis.
<i>Cyp2e1</i> knockout, intra gastric infusion of high fat diet + 14 g/kg/day increased to 28g/kg/day of alcohol for a	Cyp2e1 (cytochrome P450) is induced in the hepatocyte by ethanol and appears to correlate with the level of liver injury.	Mild steatosis, slight inflammation and necrosis as shown by pathology scores.	Shows that CYP2E1 has a minimal role in early alcohol induced liver injury.

total of 4 weeks(97)			
<i>Gsta4-4/Ppara</i> double knockout, ad libitum 5% EtOH/ LdC for 40 days(35)	Gsta4-4 (Glutathione S-transferase A4-4) is a detoxification enzyme that eliminates toxins via glutathione conjugation. Ppar-α is a hormone receptor that regulates hepatic inflammation and lipid metabolism.	Produces increased hepatic injury with significantly increased inflammatory response, necrosis and fibrosis.	Shows the importance of lipid peroxidation products mediating the early progression of ALD.
<i>Hfe</i> knockout, High fat diet and ad libitum water + alcohol at 20% v/v for 8 weeks(9)	Model of iron overload consistent with haemochromatosis.	Produces profound steatohepatitis, significant fibrosis and increased apoptosis.	Highlights a combined effect of iron overload, alcohol and a high fat diet cause significant steatosis, inflammation, oxidative stress and apoptosis.
<i>Hif-1a</i> knockout mice, <i>ad</i> <i>libitum</i> 6% ethanol/LdC diet	HIF (hypoxia inducible factor) is a master controller adapting to	Increased steatosis, serum and liver cholesterol and triglycerides.	<i>HIF-1a</i> induction provides protection against alcohol

for 4 weeks(29)	hypoxia by controlling expression of hundreds of genes.		induced fatty liver disease and modulating its activity may provide therapeutic potential.
<i>Lipin-1</i> knockout, <i>ad libitum</i> low fat LdC + alcohol for 4 weeks*(28)	Lipin-1 is a vital regulator of lipid metabolism.	Produces an ALT of 90 U/L with fibrosis in <i>Lipin-1</i> knockout mice after 4 weeks of feeding.	Suggests a role for treatments to enhance lipin-1 as a treatment for ALD.
Nrf2 knockout, ad libitum LdC + 2.1% v/v alcohol for 3/7, 4.2% for 3/7 followed by 6.3% alcohol until the mice became moribund(7)	Nuclear factor-erythroid 2-related factor 2 (NrF2) is a transcription factor that protects against oxidative stress.	An ALT of 3000 U/L and severe steatosis with increased number of Kupffer cells.	Central role for Nrf2 in the protection against alcohol induced liver injury.
<i>Ppara</i> knockout, gavage of 0.4ml/10g 52% erguotou wine for 4/52(8)	Pparα stimulates fatty acid catabolism under fasting conditions (similar to chronic alcohol ingestion).	Fibrosis in knockout mice fed ethanol for 4-6 months, with severe steatosis and inflammatory cell infiltration.	Suggests a pathway for alcohol metabolism. Possible role for Pparα agonists in treatment of ALD.

Srebp-1c knockout, intra- gastric infusion of high fatSterol response binding proteinsgastric infusion of high fat diet + 18 g/kg/day of alcohol(SREBP) are normally induced in the liver by alcohol. They have an essential role in hepatic triglyceride a total of 4 weeks(71)		ALT rise up to 118 in WT mice and 80 in <i>Srebp-1c^{-/-}</i> mice with a steatosis score of 3.2 in WT and 0.9 in knockout mice.	Shows that hepatic triglyceride accumulation is dependent on <i>Srebp-1c</i> .
<i>Stat3</i> knockout, ad libitum LdC + 5% alcohol for 10/7 followed by a gavage of 5 g/kg of alcohol(18)	Involved in the activation of IL-22- a cytokine involved in controlling bacterial infection, homeostasis and tissue repair.	Produces significantly higher ALT (300 U/L), AST (450 U/L) + triglycerides (50 mg/g), with microsteatosis.	Shows the hepatoprotective role of IL-22 is dependent on <i>Stat3</i> .
<i>TNFR1</i> knockout, intra- gastric infusion of high fat diet + 18 g/kg/day of alcohol increased to 29 g/kg/day for a total of 4 weeks(95)	Tumour Necrosis Factor α(TNFα) is released by Kuppfer cells primed by gut endotoxins and plays a major role in early alcoholic liver injury- It's effect is stopped if its receptor (TNFR1) is knocked out.	Knock-out mice have smaller increases in ALT (45 vs 115 U/L), liver triglycerides (0.27 vs 0.34 mg/mg), inflammatory foci and apoptotic cells than WT mice.	ALD has multiple complex pathways, TNFα has a modest contribution to the liver injury seen.

- 613 Table 2. Summary of current transgenic models of alcohol induced liver injury. Abbreviations: ADH- Anti diuretic hormone, ALT- Alanine
- 614 transaminase, AST- Aspartate transaminase, CHOP- C/EBP-homologous protein of 29 kDa, EtOH- Ethanol, Stat3- signal transducer and
- 615 activator of transcription 3.
- 616 * Ethanol level calculated according to percentage of calories in the liquid diet. Mice given 29% of the daily calories as ethanol.

Phenotype of liver injury	Blood analyses	Histological assessment	Flow cytometry	PCR
Steatosis	Serum AST/ALT, Triglycerides, free fatty acids, cholesterol.	H&E staining, Oil Red O staining.	Fatty Acid Synthase.	Chrebp/ Srebp, TNF-α.
Acute alcoholic hepatitis	Serum AST/ALT, markers of synthetic function (PT or bilirubin) and TNF, IL-6, IL-10.	CD45, CD68, CD11b, MPO staining.	Identification of inflammatory cells i.e. CD3, CD4, CD8, CD19 & CD45.	Sod1, Stat3, GRP-78, GRP-94.
Fibrosis		Van Gieson or Picro sirius red staining.	α-SMA.	Col1, MMP, TIMP.

Table 3. Summary of suggested tests according to phenotype of liver damage being established.

References

1. Rehm J, Samokhvalov AV, Shield KD. Global burden of alcoholic liver diseases. Journal of hepatology. 2013;59(1):160-8.

2. Saucedo R. Background Paper 6.14. Harmful use of Alcohol Alcohol Use Disorders and Alcoholic Liver Diseases. World Health Organisation: 2013.

3. Hislop WS BI, Allan JG, Brunt PW, Eastwood M, Finlayson ND, James O Russell RI, Watkinson G. Alcoholic liver disease in Scotland and northeastern England: presenting features in 510 patients. Quarterly Journal of Medicine. 1983;52(206):232-43.

4. Mathurin P, O'Grady J, Carithers RL, Phillips M, Louvet A, Mendenhall CL, Ramond MJ, Naveau S, Maddrey WC, Morgan TR. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: meta-analysis of individual patient data. Gut. 2011;60(2):255-60.

5. Mathurin P, Abdelnour M, Ramond MJ, Carbonell N, Fartoux L, Serfaty L, Valla D, Poupon R, Chaput JC, Naveau S. Early change in bilirubin levels is an important prognostic factor in severe alcoholic hepatitis treated with prednisolone. Hepatology. 2003;38(6):1363-9.

6. de la MHP, Lieber CS, DeCarli LM, French SW, Lindros KO, Jarvelainen H, Bode C, Parlesak A, Bode JC. Models of alcoholic liver disease in rodents: a critical evaluation. Alcoholism, clinical and experimental research. 2001;25(5 Suppl ISBRA):254S-61S.

7. Lamle J, Marhenke S, Borlak J, von Wasielewski R, Eriksson CJ, Geffers R, Manns MP, Yamamoto M, Vogel A. Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology. 2008;134(4):1159-68.

8. Li HH, Tyburski JB, Wang YW, Strawn S, Moon BH, Kallakury BV, Gonzalez FJ, Fornace AJ, Jr. Modulation of fatty acid and bile acid metabolism by peroxisome proliferator-activated receptor alpha protects against alcoholic liver disease. Alcoholism, clinical and experimental research. 2014;38(6):1520-31.

9. Tan TC, Crawford DH, Jaskowski LA, Subramaniam VN, Clouston AD, Crane DI, Bridle KR, Anderson GJ, Fletcher LM. Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury. Laboratory investigation; a journal of technical methods and pathology. 2013;93(12):1295-312.

10. Chiang DJ, Roychowdhury S, Bush K, McMullen MR, Pisano S, Niese K, Olman MA, Pritchard MT, Nagy LE. Adenosine 2A receptor antagonist prevented and reversed liver fibrosis in a mouse model of ethanol-exacerbated liver fibrosis. PloS one. 2013;8(7):e69114.

11. Tan TC, Crawford DH, Jaskowski LA, Murphy TL, Santrampurwala N, Crane D, Clouston AD, Subramaniam VN, Anderson GJ, Fletcher LM. A corn oilbased diet protects against combined ethanol and iron-induced liver injury in a mouse model of hemochromatosis. Alcoholism, clinical and experimental research. 2013;37(10):1619-31.

12. Gabele E, Dostert K, Dorn C, Patsenker E, Stickel F, Hellerbrand C. A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis. Alcoholism, clinical and experimental research. 2011;35(7):1361-7.

13. Matson L, Liangpunsakul S, Crabb D, Buckingham A, Ross RA, Halcomb M, Grahame N. Chronic free-choice drinking in crossed high alcohol preferring mice

leads to sustained blood ethanol levels and metabolic tolerance without evidence of liver damage. Alcoholism, clinical and experimental research. 2013;37(2):194-201.

14. Bykov I, Palmen M, Piirainen L, Lindros KO. Oral chronic ethanol administration to rodents by agar gel diet. Alcohol and alcoholism. 2004;39(6):499-502.

 Bertola A, Mathews S, Ki SH, Wang H, Gao B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nature protocols. 2013;8(3):627-37.
 Cui Y, Ye Q, Wang H, Li Y, Xia X, Yao W, Qian H. Aloin protects against chronic alcoholic liver injury via attenuating lipid accumulation, oxidative stress and inflammation in mice. Archives of pharmacal research. 2014;37(12):1624-33.

17. Bertola A, Park O, Gao B. Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E-selectin. Hepatology. 2013;58(5):1814-23.

18. Ki SH, Park O, Zheng M, Morales-Ibanez O, Kolls JK, Bataller R, Gao B. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology. 2010;52(4):1291-300.

19. Zhu L, Wang L, Wang X, Luo X, Yang L, Zhang R, Yin H, Xie D, Pan Y, Chen Y. Hepatic deletion of Smad7 in mouse leads to spontaneous liver dysfunction and aggravates alcoholic liver injury. PLoS One. 2011;6(2):e17415.

20. Lazaro R, Wu R, Lee S, Zhu NL, Chen CL, French SW, Xu J, Machida K, Tsukamoto H. Osteopontin deficiency does not prevent but promotes alcoholic neutrophilic hepatitis in mice. Hepatology. 2015;61(1):129-40.

21. Tsukamoto H, French SW, Benson N, Delgado G, Rao GA, Larkin EC, Largman C. Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology. 1985;5(2):224-32.

22. Nanji AA, French SW. Animal models of alcoholic liver disease--focus on the intragastric feeding model. Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism. 2003;27(4):325-30.

23. Chang B, Xu MJ, Zhou Z, Cai Y, Li M, Wang W, Feng D, Bertola A, Wang H, Kunos G, Gao B. Short- or long-term high fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: An important role for CXCL1. Hepatology. 2015.

24. You M, Considine RV, Leone TC, Kelly DP, Crabb DW. Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology. 2005;42(3):568-77.

25. Chen YL, Peng HC, Wang XD, Yang SC. Dietary saturated fatty acids reduce hepatic lipid accumulation but induce fibrotic change in alcohol-fed rats. Hepatobiliary Surg Nutr. 2015;4(3):172-83.

26. Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Archives of toxicology. 2009;83(6):519-48.

27. Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141(5):1572-85.

28. Hu M, Yin H, Mitra MS, Liang X, Ajmo JM, Nadra K, Chrast R, Finck BN, You M. Hepatic-specific lipin-1 deficiency exacerbates experimental alcohol-induced steatohepatitis in mice. Hepatology. 2013;58(6):1953-63.

29. Nishiyama Y, Goda N, Kanai M, Niwa D, Osanai K, Yamamoto Y, Senoo-Matsuda N, Johnson RS, Miura S, Kabe Y, Suematsu M. HIF-1alpha induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. Journal of hepatology. 2012;56(2):441-7.

30. Nath B, Levin I, Csak T, Petrasek J, Mueller C, Kodys K, Catalano D, Mandrekar P, Szabo G. Hepatocyte-specific hypoxia-inducible factor-1alpha is a determinant of lipid accumulation and liver injury in alcohol-induced steatosis in mice. Hepatology. 2011;53(5):1526-37.

31. Ni HM, Bhakta A, Wang S, Li Z, Manley S, Huang H, Copple B, Ding WX. Role of hypoxia inducing factor-1beta in alcohol-induced autophagy, steatosis and liver injury in mice. PLoS One. 2014;9(12):e115849.

32. Mehal WZ. HIF-1alpha is a major and complex player in alcohol induced liver diseases. Journal of hepatology. 2012;56(2):311-2.

33. You Q, Holt M, Yin H, Li G, Hu CJ, Ju C. Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem Pharmacol. 2013;86(6):836-43.

34. Wang M, You Q, Lor K, Chen F, Gao B, Ju C. Chronic alcohol ingestion modulates hepatic macrophage populations and functions in mice. Journal of leukocyte biology. 2014;96(4):657-65.

35. Ronis MJ, Mercer KE, Gannon B, Engi B, Zimniak P, Shearn CT, Orlicky DJ, Albano E, Badger TM, Petersen DR. Increased 4-hydroxynonenal protein adducts in male GSTA4-4/PPAR-alpha double knockout mice enhance injury during early stages of alcoholic liver disease. American journal of physiology Gastrointestinal and liver physiology. 2015;308(5):G403-15.

36. Marmier S, Dentin R, Daujat-Chavanieu M, Guillou H, Bertrand-Michel J, Gerbal-Chaloin S, Girard J, Lotersztajn S, Postic C. Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Hepatology. 2015.

37. Butura A, Nilsson K, Morgan K, Morgan TR, French SW, Johansson I, Schuppe-Koistinen I, Ingelman-Sundberg M. The impact of CYP2E1 on the development of alcoholic liver disease as studied in a transgenic mouse model. Journal of hepatology. 2009;50(3):572-83.

38. Bataller R, Gao B. Liver fibrosis in alcoholic liver disease. Seminars in liver disease. 2015;35(2):146-56.

39. Roychowdhury S, Chiang DJ, Mandal P, McMullen MR, Liu X, Cohen JI, Pollard J, Feldstein AE, Nagy LE. Inhibition of apoptosis protects mice from ethanol-mediated acceleration of early markers of CCl4 -induced fibrosis but not steatosis or inflammation. Alcoholism, clinical and experimental research. 2012;36(7):1139-47.

40. Ajmo JM, Liang X, Rogers CQ, Pennock B, You M. Resveratrol alleviates alcoholic fatty liver in mice. American journal of physiology Gastrointestinal and liver physiology. 2008;295(4):G833-42.

41. Matson LM, Grahame NJ. Pharmacologically relevant intake during chronic, free-choice drinking rhythms in selectively bred high alcohol-preferring mice. Addiction biology. 2013;18(6):921-9.

42. Le AD, Ko J, Chow S, Quan B. Alcohol consumption by C57BL/6, BALB/c, and DBA/2 mice in a limited access paradigm. Pharmacology, biochemistry, and behavior. 1994;47(2):375-8.

43. Finn DA, Belknap JK, Cronise K, Yoneyama N, Murillo A, Crabbe JC. A procedure to produce high alcohol intake in mice. Psychopharmacology. 2005;178(4):471-80.

44. Shield KD, Gmel G, Kehoe-Chan T, Dawson DA, Grant BF, Rehm J. Mortality and potential years of life lost attributable to alcohol consumption by race and sex in the United States in 2005. PLoS One. 2013;8(1):e51923.

45. Mandayam S, Jamal MM, Morgan TR. Epidemiology of alcoholic liver disease. Seminars in liver disease. 2004;24(3):217-32.

46. Nanji AA, Jokelainen K, Fotouhinia M, Rahemtulla A, Thomas P, Tipoe GL, Su GL, Dannenberg AJ. Increased severity of alcoholic liver injury in female rats: role of oxidative stress, endotoxin, and chemokines. American journal of physiology Gastrointestinal and liver physiology. 2001;281(6):G1348-56.

47. Frezza M, di Padova C, Pozzato G, Terpin M, Baraona E, Lieber CS. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med. 1990;322(2):95-9.

48. Zhang Y, Wu L, Wang Y, Zhang M, Li L, Zhu D, Li X, Gu H, Zhang CY, Zen K. Protective role of estrogen-induced miRNA-29 expression in carbon tetrachloride-induced mouse liver injury. The Journal of biological chemistry. 2012;287(18):14851-62.

49. Shimizu I. Impact of oestrogens on the progression of liver disease. Liver international : official journal of the International Association for the Study of the Liver. 2003;23(1):63-9.

50. Hong J, Holcomb VB, Kushiro K, Nunez NP. Estrogen inhibits the effects of obesity and alcohol on mammary tumors and fatty liver. Int J Oncol. 2011;39(6):1443-53.

51. Kono H, Wheeler MD, Rusyn I, Lin M, Seabra V, Rivera CA, Bradford BU, Forman DT, Thurman RG. Gender differences in early alcohol-induced liver injury: role of CD14, NF-kappaB, and TNF-alpha. American journal of physiology Gastrointestinal and liver physiology. 2000;278(4):G652-61.

52. Middaugh LD, Kelley BM, Bandy AL, McGroarty KK. Ethanol consumption by C57BL/6 mice: influence of gender and procedural variables. Alcohol. 1999;17(3):175-83.

53. Bellentani S, Tiribelli C, Saccoccio G, Sodde M, Fratti N, De Martin C, Cristianini G. Prevalence of chronic liver disease in the general population of northern Italy: the Dionysos Study. Hepatology. 1994;20(6):1442-9.

54. Becker U, Deis A, Sorensen TI, Gronbaek M, Borch-Johnsen K, Muller CF, Schnohr P, Jensen G. Prediction of risk of liver disease by alcohol intake, sex, and age: a prospective population study. Hepatology. 1996;23(5):1025-9.

55. Vogt BL, Richie JP, Jr. Glutathione depletion and recovery after acute ethanol administration in the aging mouse. Biochem Pharmacol. 2007;73(10):1613-21.

56. Tung BT, Rodriguez-Bies E, Ballesteros-Simarro M, Motilva V, Navas P, Lopez-Lluch G. Modulation of endogenous antioxidant activity by resveratrol and exercise in mouse liver is age dependent. J Gerontol A Biol Sci Med Sci. 2014;69(4):398-409.

57. Toroser D, Sohal RS. Age-associated perturbations in glutathione synthesis in mouse liver. The Biochemical journal. 2007;405(3):583-9.

58. Poster sessions. Hepatology. 2014;60 Suppl 1:92A-196A.

59. Wynne HA, Wood P, Herd B, Wright P, Rawlins MD, James OF. The association of age with the activity of alcohol dehydrogenase in human liver. Age Ageing. 1992;21(6):417-20.

60. Levy RE, Catana AM, Durbin-Johnson B, Halsted CH, Medici V. Ethnic differences in presentation and severity of alcoholic liver disease. Alcoholism, clinical and experimental research. 2015;39(3):566-74.

61. Boelsterli UA, Lim PL. Mitochondrial abnormalities--a link to idiosyncratic drug hepatotoxicity? Toxicology and applied pharmacology. 2007;220(1):92-107.

62. Lucey MR, Mathurin P, Morgan TR. Alcoholic hepatitis. N Engl J Med. 2009;360(26):2758-69.

63. Basra G, Basra S, Parupudi S. Symptoms and signs of acute alcoholic hepatitis. World J Hepatol. 2011;3(5):118-20.

64. Katoonizadeh A, Laleman W, Verslype C, Wilmer A, Maleux G, Roskams T, Nevens F. Early features of acute-on-chronic alcoholic liver failure: a prospective cohort study. Gut. 2010;59(11):1561-9.

65. Altamirano J, Miquel R, Katoonizadeh A, Abraldes JG, Duarte-Rojo A, Louvet A, Augustin S, Mookerjee RP, Michelena J, Smyrk TC, Buob D, Leteurtre E, Rincon D, Ruiz P, Garcia-Pagan JC, Guerrero-Marquez C, Jones PD, Barritt ASt, Arroyo V, Bruguera M, Banares R, Gines P, Caballeria J, Roskams T, Nevens F, Jalan R, Mathurin P, Shah VH, Bataller R. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology. 2014;146(5):1231-9 e1-6.

66. Jaeschke H. Neutrophil-mediated tissue injury in alcoholic hepatitis. Alcohol. 2002;27(1):23-7.

67. Xu MJ, Cai Y, Wang H, Altamirano J, Chang B, Bertola A, Odena G, Lu J, Tanaka N, Matsusue K, Matsubara T, Mukhopadhyay P, Kimura S, Pacher P, Gonzalez FJ, Bataller R, Gao B. Fat-Specific Protein 27/CIDEC Promotes Development of Alcoholic Steatohepatitis in Mice and Humans. Gastroenterology. 2015.

68. Mizuhara H, Kuno M, Seki N, Yu WG, Yamaoka M, Yamashita M, Ogawa T, Kaneda K, Fujii T, Senoh H, Fujiwara H. Strain difference in the induction of T-cell activation-associated, interferon gamma-dependent hepatic injury in mice. Hepatology. 1998;27(2):513-9.

69. Vyberg M, Leth P. Ubiquitin: an immunohistochemical marker of Mallory bodies and alcoholic liver disease. APMIS Supplementum. 1991;23:46-52.
70. Cui Y, Ye Q, Wang H, Li Y, Yao W, Qian H. Hepatoprotective potential of

Aloe vera polysaccharides against chronic alcohol-induced hepatotoxicity in mice. Journal of the science of food and agriculture. 2014;94(9):1764-71.
71. Ji C, Chan C, Kaplowitz N. Predominant role of sterol response element

binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. Journal of hepatology. 2006;45(5):717-24.

72. Zhong W, Zhao Y, Sun X, Song Z, McClain CJ, Zhou Z. Dietary zinc deficiency exaggerates ethanol-induced liver injury in mice: involvement of intrahepatic and extrahepatic factors. PLoS One. 2013;8(10):e76522.

73. Cui K, Yan G, Xu C, Chen Y, Wang J, Zhou R, Bai L, Lian Z, Wei H, Sun R, Tian Z. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1beta in mice. Journal of hepatology. 2015.

74. Das SK, Varadhan S, Gupta G, Mukherjee S, Dhanya L, Rao DN, Vasudevan DM. Time-dependent effects of ethanol on blood oxidative stress parameters and cytokines. Indian journal of biochemistry & biophysics. 2009;46(1):116-21.

75. Bautista AP. Neutrophilic infiltration in alcoholic hepatitis. Alcohol. 2002;27(1):17-21.

76. Fisher NC, Neil DA, Williams A, Adams DH. Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1alpha in alcoholic liver disease. Gut. 1999;45(3):416-20.

77. Wang H, Feng D, Park O, Yin S, Gao B. Invariant NKT cell activation induces neutrophil accumulation and hepatitis: opposite regulation by IL-4 and IFN-gamma. Hepatology. 2013;58(4):1474-85.

78. Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest. 2007;117(3):539-48.

79. Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. Nature genetics. 2010;42(1):21-3.

80. Seth D, Duly A, Kuo PC, McCaughan GW, Haber PS. Osteopontin is an important mediator of alcoholic liver disease via hepatic stellate cell activation. World journal of gastroenterology : WJG. 2014;20(36):13088-104.

81. Manna SK, Thompson MD, Gonzalez FJ. Application of mass spectrometrybased metabolomics in identification of early noninvasive biomarkers of alcoholinduced liver disease using mouse model. Advances in experimental medicine and biology. 2015;815:217-38.

82. Manna SK, Patterson AD, Yang Q, Krausz KW, Idle JR, Fornace AJ, Gonzalez FJ. UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. Journal of proteome research. 2011;10(9):4120-33.
83. Li HH, Doiron K, Patterson AD, Gonzalez FJ, Fornace AJ, Jr. Identification of

serum insulin-like growth factor binding protein 1 as diagnostic biomarker for early-stage alcohol-induced liver disease. J Transl Med. 2013;11:266.
84. Bala S, Petrasek J, Mundkur S, Catalano D, Levin J, Ward J, Alao H, Kodys K,

Szabo G. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012;56(5):1946-57.

85. Song K, Coleman RA, Zhu X, Alber C, Ballas ZK, Waldschmidt TJ, Cook RT. Chronic ethanol consumption by mice results in activated splenic T cells. Journal of leukocyte biology. 2002;72(6):1109-16.

86. Fan J, Edsen-Moore MR, Turner LE, Cook RT, Legge KL, Waldschmidt TJ, Schlueter AJ. Mechanisms by which chronic ethanol feeding limits the ability of dendritic cells to stimulate T-cell proliferation. Alcoholism, clinical and experimental research. 2011;35(1):47-59.

87. Zhang H, Meadows GG. Chronic alcohol consumption perturbs the balance between thymus-derived and bone marrow-derived natural killer cells in the spleen. Journal of leukocyte biology. 2008;83(1):41-7.

88. Roede JR, Stewart BJ, Petersen DR. Decreased expression of peroxiredoxin 6 in a mouse model of ethanol consumption. Free radical biology & medicine. 2008;45(11):1551-8.

89. Han H, Hu J, Lau MY, Feng M, Petrovic LM, Ji C. Altered methylation and expression of ER-associated degradation factors in long-term alcohol and constitutive ER stress-induced murine hepatic tumors. Frontiers in genetics. 2013;4:224.

90. Kirpich IA, Feng W, Wang Y, Liu Y, Barker DF, Barve SS, McClain CJ. The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcoholism, clinical and experimental research. 2012;36(5):835-46.

91. Shearn CT, Smathers RL, Backos DS, Reigan P, Orlicky DJ, Petersen DR. Increased carbonylation of the lipid phosphatase PTEN contributes to Akt2 activation in a murine model of early alcohol-induced steatosis. Free radical biology & medicine. 2013;65:680-92.

92. Wei X, Shi X, Zhong W, Zhao Y, Tang Y, Sun W, Yin X, Bogdanov B, Kim S, McClain C, Zhou Z, Zhang X. Chronic alcohol exposure disturbs lipid homeostasis at the adipose tissue-liver axis in mice: analysis of triacylglycerols using high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling. PLoS One. 2013;8(2):e55382.

93. Sun F, Xie ML, Xue J, Wang HB. Osthol regulates hepatic PPAR alphamediated lipogenic gene expression in alcoholic fatty liver murine. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2010;17(8-9):669-73.

94. Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E, Tsukamoto H, Nelson KE, Brenner DA, Schnabl B. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011;53(1):96-105.

95. Ji C, Deng Q, Kaplowitz N. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology. 2004;40(2):442-51.

96. Loftus N, Barnes A, Ashton S, Michopoulos F, Theodoridis G, Wilson I, Ji C, Kaplowitz N. Metabonomic investigation of liver profiles of nonpolar metabolites obtained from alcohol-dosed rats and mice using high mass accuracy MSn analysis. Journal of proteome research. 2011;10(2):705-13.

97. Kono H, Bradford BU, Yin M, Sulik KK, Koop DR, Peters JM, Gonzalez FJ, McDonald T, Dikalova A, Kadiiska MB, Mason RP, Thurman RG. CYP2E1 is not involved in early alcohol-induced liver injury. The American journal of physiology. 1999;277(6 Pt 1):G1259-67.

98. Fernando H, Bhopale KK, Boor PJ, Ansari GA, Kaphalia BS. Hepatic lipid profiling of deer mice fed ethanol using (1)H and (3)(1)P NMR spectroscopy: a dose-dependent subchronic study. Toxicology and applied pharmacology. 2012;264(3):361-9.

99. Kaphalia BS, Bhopale KK, Kondraganti S, Wu H, Boor PJ, Ansari GA. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol. Toxicology and applied pharmacology. 2010;246(3):154-62.

100. Ji C, Mehrian-Shai R, Chan C, Hsu YH, Kaplowitz N. Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcoholism, clinical and experimental research. 2005;29(8):1496-503.