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Abstract 

The exponential growth of high-throughput DNA sequence data has posed great challenges to genomic data storage, 

retrieval and transmission. Compression is a critical tool to address these challenges, where many methods have been 

developed to reduce the storage size of the genomes and sequencing data (reads, quality scores and metadata). 

However, genomic data are being generated faster than they could be meaningfully analysed, leaving a large scope 

for developing novel compression algorithms that could directly facilitate data analysis beyond data transfer and 

storage. In this article, we categorize and provide a comprehensive review of the existing compression methods 

specialized for genomic data and present experimental results on compression ratio, time for compression and de-

compression. We further present the remaining challenges and potential directions for future research.  

Keywords: next-generation sequencing; compression; reference-based compression; reference-free compression 

 

INTRODUCTION 

DNA sequencing has been one of the major driving forces in biomedical research. Sanger sequencing [1], the 

dominant technology for over three decades, has been gradually replaced by cheaper and higher throughput next-

generation sequencing (NGS) technologies in recent years. Examples of such sequencing technologies include 

pyrosequencing, sequencing by synthesis, and single-molecule sequencing [2-5]. As a result, the growth rate of 

genomic data in the past few years outpaced the rate predicted by Moore’s law and data are generated faster than can 

be meaningfully analyzed.  For example, the NGS data obtained by the 1000 Genomes Project in the first six months 

exceeded the sequence data in NCBI Genbank database accumulated in the past 21 years.  

  General-purpose compression algorithms like gzip (http://www.gzip.org/) and bzip2 (http://www.bzip.org), 

frequently used for efficient text storage and transferring, are directly applicable to genomic sequences. Only when 

longer genomic sequences were obtained and the storage and transferring of these data becomes routine, specialized 

compression algorithms [8-19] were developed. Compared to general-purpose text compression methods, these 

http://www.gzip.org/


specialized algorithms better utilize repetitive subsequences inherent to genomic sequences to achieve higher 

compression ratio. Evolutionarily association among genomic sequences have also been exploited such that a known 

genomic sequence can serve as a template for efficient compression of another homologous sequence. Before NGS 

techniques were introduced, compression algorithms were intended for relatively short sequences with an upper 

bound of tens of Megabases and compression of raw sequencing data were typically not required. NGS techniques 

have introduced major changes in data analysis needs. More scalable compression algorithms [20, 21, 25, 29-30, 32-

38, 47-57, 59, 61] have been introduced to handle much longer genomic sequences as well as raw sequencing data. 

The latter may consist of millions of short sequences (reads) and quality scores indicating the probabilities of 

corresponding bases being correctly determined. The distinct properties of genomic sequences and raw sequencing 

data, such as the differences in number, length and alphabet size, lead to distinct algorithmic strategies for data 

compression. Nonetheless, these methods can be generally categorized as reference-based or reference-free 

depending on whether known genomic sequences were used to facilitate compression.  

In this article, we discuss the compression of genomic sequences -- DNA fragments that correspond to partially or 

fully assembled chromosomes or genomes, and raw sequencing data – reads, quality scores and metadata produced 

by sequencer. For completeness, we include a brief discussion of traditional genomic sequence compression methods 

that were developed before NGS techniques were introduced, then focus on more recent methods developed for NGS 

data and present their performance on read datasets. Finally, we discuss remaining challenges and future perspectives. 

TRADITIONAL GENOMIC SEQUENCE COMPRESSION 

Although general-purpose compression methods such as gzip and bzip2are widely applied to genomic sequences, 

they do not take into account biological characteristics such as small alphabet size, rich in repeats and palindromes. 

Compression algorithms tailored for such properties are more likely to achieve better performance, which we outline 

in this section methods intended for compressing genomic sequences with relatively small size (e.g. 10s of 

Megabases) when Sanger was the dominant sequencing method. In general, these methods can be grouped as 

substitutional or dictionary based and statistical based [8]. 

In substitutional compression, highly repetitive subsequences are identified and stored in a codebook or 

dictionary. Compression is achieved by replacing each repetitive subsequence in the target genomic sequence by the 



corresponding encoded subsequence in the codebook, the representation of which has a much smaller size. The 

performances of different algorithms differ mainly based on how many repeated subsequences can be identified and 

how efficiently they can be encoded.  

Both BioCompress [9] and BioCompress-2 [10] methods use Lempel-Ziv (LZ) style substitutional algorithm [17] 

to compress the exact repeats and palindromes, where the latter also utilizes an order-2 context-based arithmetic 

encoding scheme [11] to store the non-repetitive regions. Alternatively, GenCompress [12] and DNACompress [13] 

identify approximate repeats and palindromes so that a larger fraction of the target sequence can be captured. 

Therefore, a higher compression ratio is achieved. Along the same line, GeNML [14] divides a sequence into blocks 

of fixed size. Then, blocks rich in approximate repeats are encoded with an efficient normalized maximum likelihood 

(NML) model; otherwise, plain or order-1 context based arithmetic encoding [11] is used.  

A typical statistical compression method consists of two steps. In the first step, a prediction model is established, 

where a conditional probability is assigned to a base given bases preceding it. For instance, such a prediction model 

can be a second order Markov chain. Then, an encoding scheme such as arithmetic coding is used to carry out 

efficient compression using the probability distribution of each base provided by the prediction model. The accuracy 

of the prediction model is the dominant factor that determines the overall performance of the compression.  

XM [18] was recognized as one of the most efficient traditional DNA sequence compression methods in statistical 

mode [8, 33]. XM uses the weighted summation of a panel of experts’ prediction to calculate the probability 

distribution of bases before compressing the symbols by means of arithmetic coding. The experts consist of second-

order Markov model, first-order context Markov model, whose probability distribution is not based on the entire 

history of the sequence but on a limited preceding context, and repeat expert, that considers the next base predicted is 

a repeat or complement of a pervious base in a particular offset. CTW-LZ [19] adopts both substitutional and 

statistical compression. It first uses hash and dynamic programming to search for palindromes and approximate 

repeats. Then, it utilizes context tree weighting (CTW) [16] prediction model, a method weighing on multiple models 

to predict succeeding base probabilities, to compress short repeats and uses LZ77 [17] to compress long repeats. 

As pointed out in [20, 21], although these traditional genomic sequence compression methods have shown 

encouraging performance, their performance in terms of compute time, memory usage, and compression rate limit 



their applicability to NGS data. We refer readers to a more thorough review [8] of these traditional methods and 

invest our effort to more recently developed methods for high-throughput sequencing data in the following sections. 

ADVANCES IN GENOMIC SEQUENCE COMPRESSION FOR THE NEXT 

GENERATION SEQUENCING 

The cost per raw Megabase of DNA sequence reduced from over 5,000 USD to under 0.1 USD over the past 10 

years (http://www.genome.gov/27541954). As a result, sequencing is no longer limited to a handful selected model 

organisms but is being used as a genomic material surveying method [22]. Meanwhile, resequencing has been 

applied to study Human populations [23], clinical sequencing of virulent bacterial strains [24] and beyond. The 

compression strategies of newly assembled sequences vary depending on whether any similar genomic sequence has 

been previously deposited into the database. Based on this, compression methods can be categorized as reference-

based and reference-free.  

Reference-based Compression 

When a large portion of a newly assembled genomic sequence, i.e. the target, has been captured by a similar, 

previously documented sequence, i.e. the reference, the target can be fully identified given the reference as well as 

the differences between the target and the reference. This is the basic idea of reference-based compression, where a 

typical procedure is given in Figure 1: the target is first aligned to the reference. Then mismatches between the target 

and the reference are identified and encoded. Each record of a mismatch may consist of the position with respect to 

the reference, the type (insertion, deletion, or substitution) of mismatch, and the value. Compression is achieved if 

the space required to encode the mismatches is less compared to store the target itself.   

  Brandon et al. [25] used various coders like Golomb [26],  Elias [27], Huffman [28] coding to encode the 

mismatches and achieved a best 345-fold compression rate when applied to Human mitochondrial genome sequences. 

Christley et al. [29] proposed DNAzip algorithm that relies on the human population variation database, where a 

variant can be a single nucleotide polymorphism (SNP) or an indel (an insertion or a deletion). All variants of a 

newly obtained sequence can be identified by comparing the sequence against the database. Because the number of 

variants in the human population is substantially smaller than the size of human genome, DNAzip was able to 

http://www.genome.gov/27541954


compress the James Watson genome using merely 4MB, i.e. a compression ratio of 750-fold. Different from DNAzip, 

which is dependent upon the knowledge of variation data, Wang et al. [30] presented a de novo compression 

program, GRS, that directly obtains variant information via a modified UNIX diff program [31]. Follow the 

motivation of de novo compression of GRS, GReEn [32] proposed a probabilistic copy model that calculates target 

base probabilities based on the reference. Given base probabilities as input, an arithmetic coder was then used to 

encode the target. GReEn was shown to be more effective compared to GRS when the target and the reference have 

less similarity. 

  Reference-based compression has also been applied to multiple homogeneous genomic sequences. Given a set of 

genomic sequences, RLZ method [33] arbitrarily selects one to be the reference. Then, each of the remaining target 

sequence is partitioned into a list of substrings in a greedy manner, where the next substring is selected to be the 

longest common substring between the reference and the suffix of the target sequence that has not yet considered. 

Therefore, every substring in any target sequence can be encoded by a substring in the reference in a LZ77 style [17]. 

RLZ-opt [34] improved upon RLZ by replacing the greedy partitioning method by the lookahead-by-h algorithm [35], 

where a shorter common substring can be selected between the target and the reference to achieve an overall better 

compression. GDC [36] further improved upon RLZ-opt in the following aspects (i) non-random selection of the 

reference, (ii) substrings in a target can be part of a non-reference sequence, (iii) approximate string matching is used 

to identify a substring. Together, these strategies lead to the identification of more repeats among input sequences. 

An equally important strategy used by GDC is to divide each input sequence into blocks of approximately equal size 

and encoded with Huffman coding to allow the random access of any specific sections of the compressed data 

without decompressing the whole data set.  

Reference-Free Compression 

Reference-based compression methods can achieve excellent compression results when a highly similar reference 

can be identified or variation data is available for methods dependent upon such information. Nonetheless, reference-

free methods are required such as in de novo sequencing, metagenomic sequencing and epigenomic sequencing [6], 

where target genomes share weaker similarities with known ones and variation information is not readily available.  

BIND [21] algorithm encodes each target sequence using two binary strings to achieve compression. In the first 



string, base A or T is assigned with bit 0 and base G or C with bit 1; whereas in the second string, T or C is assigned 

with bit 0 and A or G with bit 1. These two strings were subsequently stored by recording the length of alternating 

blocks of 1’s and 0’s using unary coding scheme. In DELIMINATE algorithm [37], the positions of the two most 

dominant types of bases are delta encoded [38] and eliminated from the sequence. The remaining bases are then 

represented with binary code. BIND and DELIMINATE were shown to achieve higher compression efficiency than 

the general-purpose compression algorithms such as gzip, bzip2 and lzma when applied to the FNA, FFN, eukaryotic 

and NGS genomic datasets. Kuruppu et al. [20] proposed a substitutional approach COMRAD for compressing a set 

of highly redundant sequences, i.e. homologous sequences or sequences with multiple identical copies. COMRAD 

first identifies repetitive substrings with length ranging from hundreds to thousands of base pairs in the input data 

and includes them in a corpus-wide codebook. Each type of repeat in the codebook is then encoded into a short word. 

Compression is accomplished by replacing all repeats in the input sequences with the corresponding words from the 

codebook. Since COMRAD constructs the codebook from the input sequences, no external reference is required 

during decoding process. By storing the codebook and the compressed sequences with additional space proportional 

to the length of each sequence, COMRAD also enables random access of the compressed sequences. 

Experimental Results 

We select a set of genomes that have different species origin, length, and repeat content to benchmark a subset of 

representative methods with implementations publicly accessible. The details of selected data are given in Table 1 

and the compression methods in Table 2.  

All methods are tested on a cluster running 64-bit Red Hat 4.4.4-13 with 32-core 3.1GHz Intel(R) Xeon(R) CPU 

E31220. The performance of each method is evaluated based on compression time, decompression time, and 

compression ratio (Table 3). For completeness, the compressed file sizes are also given. It can be seen that both 

reference-based and reference-free methods outperform the general-purpose methods in terms of compression ratio. 

Whereas on these datasets, the reference-free methods generally achieved a 15%--40% better compression ratio over 

general-purpose compression programs, the availability of homologous reference has made a striking difference, 

where the reference-based programs achieved a 40-fold to over a 10,000-fold better compression ratio. However, to 

recover the target sequence, reference-based methods require the presence of the same reference genome as used for 

compression. The reference-based methods could take much longer time for compression and decompression for 



genomes with large size (when reaching a scale of 100MB in the current experiment) because the 

compress/decompress process takes longer query time for bases/substrings for longer reference. Thus, when an 

appropriate reference is available and the compression gain on the target sequences can compensate the extract space 

requirement for the reference genome (such as in the case of multiple targets), reference-based methods should be 

favorable. As more genomic sequences have been uniquely documented in public databases, we expect a good use of 

reference-based methods in cases that require the transferring of large target sequences over the Internet. On the 

other hand, reference-free methods are self-contained and have a better balance between time efficiency and 

compression ratio compared to reference-based methods. Also, as shown in the current experiment, the total time 

used for compression and decompression is comparable between reference-free and general-purpose methods, 

making the former a more favorable choice.  

NEXT GENERATION SEQUENCING DATA COMPRESSION 

Each record of a NGS sequencing dataset typically consists of metadata (including read name, platform, project id, 

etc.), read (sequence) and the quality score sequence, stored either as FASTQ [39] or SAM/BAM format [40], where 

BAM is a compressed binary version of SAM. SAM or BAM format was designed for storing read alignment against 

a set of chosen references but has also been used to store unaligned data. Similar to genomic sequence compression, 

compression methods for reads can also be categorized as reference-based and reference-free. Nonetheless, metadata 

and quality score sequences consititute a large part of sequencing data. Because their alphabet size is much larger 

compared to reads,  compression of these data fall back on strategies used for general-purpose compression. 

Reference-based Read Compression  

Resequencing is a cost effective way to identify mutations present in a target genomic region, where mutations are 

identified by aligning reads against a reference sequence [41]. The complete read data need not be stored but the 

variant positions with respect to the reference.  

The typical reference-based read compression involves two major steps: read mapping and encoding of the 

mapping results, which is illustrated in Figure 2. First, reads are aligned to an appropriately selected reference 

genome (typically a reference with a high similarity to the target) using one of the NGS aligners such as Bowtie [42], 



BWA [43] and Novoalign (http://www.novocraft.com). The choice of aligner depends on the type of NGS data and 

the specific application, where we refer the readers to this recent review [44]. Then, the mapping results (Table 4) are 

encoded via schemes such as arithmetic coding and Huffman coding.  

GenCompress [45] uses Bowtie as the read aligner and then Golomb [26], Elias Gamma [27], MOV [46] or 

Huffman coding is used to encode the mapping results. Differently, SlimGene [47] carries out alignment using 

CASAVA software toolkit (http://www.illumina.com/pages.ilmn?ID=314). Then during encoding step, two binary 

vectors are generated. The first vector has the length equivalent to the reference, where a bit ‘1’ indicates that at least 

one read is mapped to the corresponding position. The second vector is a concatenation of binary encoding of read 

mapping results. Given that the chosen reference is highly similar to the target, the space required for the two binary 

vectors is substantially less compared to storing reads themselves. In addition to the mapping and encoding 

procedure, CRAM [41] incorporates de Bruijn graph [48] based assembly approach to reads that failed to be mapped 

to the chosen reference, where the assembled contigs are used as references. Similarly, in addition to the standard 

reference-based compression component (enabled with parameter –r), Quip [49] also has the de Bruijn graph based 

de novo assembly component (enabled with parameter -a) when the references are not available. Different from the 

aforementioned methods that treat each read separately, NGC [50] traverses each column of read alignment to 

exploit the common features among multiple reads mapped to the same genomic positions and represents the mapped 

read bases in a per-column way using run-length encoding [51]. It is worth noting that as an alternative to 

SAM/BAM format, a multi-tier data organization Goby file format (http://campagnelab.org/software/goby/) also 

explores the idea of reference-base compression for storing read alignment, sequences of aligned reads are not 

explicitly stored but looked up in a reference genome when necessary.  

Reference-Free Read Compression  

In applications such as de novo sequencing, metagenomic sequencing, and epigenomic sequencing, where there is no 

clear choice of a reference, reference-free compression algorithms are needed. 

[Are you able to insert some general description or summary of how reference-free methods described in this 

paragraph work? Like what we did for reference-based in the previous section]. The reference-free compression 

algorithms handle the redundancy of reads mainly with losslessly statistical encoding method, e.g., Huffman coding 

http://www.illumina.com/pages.ilmn?ID=314
http://campagnelab.org/software/goby/


and arithmetic coding, or substitutional method e.g. LZ77. Data transformation like BWT or reorganization like 

clustering are also imposed to aggregate similar reads to facilitate compression coding. Tembe et al. [52] proposed 

G-SQZ method. First, the frequency of each unique <base, quality> tuple is calculated given the input. Then, 

Huffman code is generated for each tuple where ones with higher frequency are encoded with less number of bits. 

Lastly, the encoded tuples along with a header containing meta-information such as the platform and the number of 

reads are written to a binary file to fulfill the compression. In DSRC algorithm [53], the input is divided into blocks 

of 32 records  and every 512 blocks is grouped into a superblock. Each superblock is indexed and compressed 

independently, such as via LZ77 encoding, to enable fast access to individual record. Bhola et al. [54] first divided 

each read into substrings of a fixed length, where each substring is queried against a dictionary for a highly similar 

word (string) and in the meanwhile, first order Markov encoding [55] is applied to the substring. The query substring 

is encoded by registering the differences compared to the similar word identified in the dictionary or Markov 

encoded if less space is required this way. Quip [49] program, in addition to the reference-based compression mode 

as discussed previously, also includes an implementation of reference-free statistical compression using arithmetic 

coding based on high order Markov chains. Bonfield and Mahoney [56] presented two methods Fqzcomp and Fastqz, 

both using order-N context model and arithmetic coder. Differently, Fastqz contains an additional preprocessing step 

before the context modeling to reduce the data volume and it can be applied to reference-based compression.  

Several algorithms have been introduced that explore similarities among input reads to achieve compression. 

ReCoil [57] algorithm first constructs a undirected graph with vertices denoting reads and edges carrying weights 

equivalent to the number of common kmers between the end nodes. Then a maximum spanning tree (MST) [58] is 

identified and traversed starting from an arbitrarily selected root node. The read corresponding to the root is stored 

directly whereas each remaining read is encoded via the set of maximal longest common substrings shared from its 

parent. 7-Zip compressor is further used to compress the encoded reads. Cox et al. [59] presented BEETL, which 

utilizes Burrows Wheeler Transformation (BWT) [60] to indirectly explore repeats among input reads. The 

transformed data are then further compressed via general-purpose compressors like gzip, bzip2, or 7-Zip. SCALCE 

algorithm [61] clusters input reads sharing the same longest ‘core’ substring identified by locally consistent parsing 

algorithm [62], then reads within a cluster are compressed by gzip or LZ77-like compression methods.  



Compression of Metadata and Quality Scores 

The metadata, such as read name, platform, and project identifiers, normally contain numeric and non-numeric text 

characters. Typically, they can be extracted from sequencing data and compressed separately using general text 

compression methods like Delta, Huffman, arithmetic, run-length, and LZ encoding. Sometimes, part of metadata 

can even be discarded [49, 61] when they do not affect downstream analysis.  

Quality score sequences, on the other hand, are typically more important and required to be distributed along with 

reads. A quality score is denoted by an ASCII character, which can be converted to the probability of the 

corresponding base been correctly determined during sequencing. The probability information is directly utilized in 

many NGS analysis programs. As the alphabet size is large e.g. 40, general-purpose compression schemes have been 

directly used to losslessly preserve the quality score information. For instance, as discussed previously, G-SQZ [52] 

uses Huffman coding to encode <base, quality> tuples based on frequency. SlimGene [47] uses Markov encoding 

taking account of the position-dependent distribution of the quality scores and the higher order Markovian property 

between adjacent quality values. In DSRC algorithm [53], if the variation of quality score values are small within a 

sequence, run-length encoding was used to encode such a sequence, otherwise, Huffman encoding was used. In both 

[50] and [61], arithmetic encoding approach has been used to compress quality scores but achieved no obviously 

superior performance compared to general-purpose compression algorithms.  

Because quality scores may not precisely determine base accuracy and adjacent bases with similar ASCII values 

of quality scores are likely to have similar sequencing accuracy, a series of algorithms have been introduced to 

cluster quality scores with similar values to achieve more aggressive compression. As the original quality score 

values are not exactly preserved, such methods are termed lossy compression. For example, SlimGene [47] employs 

randomized rounding strategy, a coarse quantization, to reduce the alphabet size of the quality scores and the 

resulting score sequences are compressed with Markov encoding. The experimental results show that this lossy 

scheme causes no significant loss of accuracy in downstream analysis such as variant calling. The reference-based 

method CRAM [41] stores quality scores for read bases that differ from the reference, and a user-specified percent of 

quality scores for read bases that are identical to the reference. Quip [49] uses the third order Markov chain based 

arithmetic coding to exploit the correlation of neighboring quality scores, where coarse binning is applied to read 

positions. QScores-Archiver [66] uses three lossy transformations based on coarse binning (UniBinning, Truncating, 



and LogBinning). The transformed quality scores are further compressed using Huffman encoding, gzip, or bzip2. 

NGC algorithm [50] uses a non-uniform quantization to bin quality scores, where smaller quantization intervals are 

used for quality scores of bases that differ from the reference than bases that match the reference. The size of interval 

sets can be adjusted to control the loss of information, which positively correlates with the accuracy of the 

downstream analyses.  QualComp [67] utilizes rate distortion theory [68] to minimize the distortion between input 

quality sequence and the compressed sequence post compression using the maximum allowable word size for storing 

each quality sequence as specified by the user. The word size controls the balance between the compression ratio and 

the accuracy for downstream analysis.  Janin et al. [69] proposed a method on the premise that if a base in a read can, 

with high probability, be predicted by the context of bases surrounding it, then the base is less informative and its 

quality score can be discarded or aggressively compressed. The majority of bases can be predicted by aggregating 

reads into a compressed index via BWT and longest common prefix array [70], the corresponding quality scores 

could then be converted to an average value and effectively compressed.  

Lossy compression on quality scores has obtained substantial reduction on the storage space of NGS data. Yet 

challenges and opportunities remain to apply lossy compression to improve the efficiency of NGS data storage and 

transmission. For example, to develop lossy compression methods to minimizing the loss of accuracy in storing read 

mapping results and in SNP calling [67]. 

Experimental Results 

In this section, the performance of the compression methods for raw sequencing data is tested using ten NGS data 

sets. Similar to our test for genomic sequence compression, we also choose datasets that correspond to difference 

species (Human, plant, worm, fungus, and bacteria) and have different sizes (ranging from 2.7G to 12.8G). In 

addition, we select data produced by several popular NGS sequencing platforms including Illumina, 454, SOLiD, Ion 

Torrent. For the Human genomic data, we selected data from all four types NGS platforms. All sequencing data and 

the reference genomic sequences (Table 5) are obtained from NCBI/Sequence Read Archive (SRA) as FASTQ and 

FASTA format, respectively. We select ‘Quip –a’, ‘Quip –r’, and CRAM to represent the reference-based methods; 

DSRC, Quip, and Fqzcomp for reference-free methods, and the general-purpose compression methods bzip2 and 

gzip to be used as the baseline (Table 6). Default parameters are used for all methods. For ‘Quip –r’ and CRAM, the 

FASTQ files are converted to BAM format following [41], i.e., the  reads in FASTQ are mapped to the reference 



based on BWA 0.5.9 [43] and the mapping results are then converted to BAM format using samtools-0.1.18 [40]. All 

methods were executed on the same compute-cluster as previously mentioned. Note that although we intentionally 

discussed the compression of reads and quality scores separately from algorithmic point of view, all methods apply 

compression to both in an integrated fashion, hence each program is applied to the complete sequencing data.  

The compression results are reported in Table 7. Note that the time spent on read mapping is included in the time 

of compression. In the current experiment, both reference-based and reference-free methods outperform the general-

purpose methods in terms of compression ratio. The superiority of reference-based methods to the reference-free 

methods is not as obvious as that in the previous experiment of genomic sequence. For instance, the reference-based 

method ‘Quip –r’ shows slightly better compression ratio and compression time than the other methods. In the 

reference-free methods, Quip and Fqzcomp are competitive in terms of both compression time and compression ratio. 

DSRC is observed to obtain lower compression ratio than the other two methods. The general-purpose compression 

program gzip is typically faster during decompression whereas when combined with the compression time, it has no 

clear advantage over other methods. Although CRAM utilized lossy compression strategy, in the current experiments, 

it doesn’t have superior performance over or reference-free compression, indicating a scope of improvement. Note 

that parameter settings of the tested methods could be optimized to improve the compression efficiency, yet it is not 

the focus of this article. We point readers to an interesting competition on NGS data competition by Pistoia Alliance 

at http://www.sequencesqueeze.org. 

 

CHALLENGES AND FUTURE PROSPECTS 

Despite advances in high-throughput DNA sequencing data compression, challenges remain. We list several aspects 

that may benefit from further development of compression algorithms for NGS data analysis.  

Toward compressive genomics: Most of the DNA sequence data compression methods have been used for 

improving the efficiency in data storage and transfer. However, algorithms that can directly work with compressed 

data may potentially reduce both memory and run time. Loh et al. [71] presented the compressive version of 

alignment algorithms BLAST and BLAT to operate on compressed non-redundant large genomic data sets and 



achieved a similar accuracy but substantial reduction in run time. The self-index data structures such as FM-index 

[72], compressed suffix arrays [73, 74], and LZ-index [75], enable the query, extract, retrieval and random access on 

compressed datasets directly. They have shown great promises in read mapping applications [44] and are expected to 

be the important support for designing compressive techniques. Routine analysis on compressed sequence data 

remains to be a challenge.  

High-performance DNA Sequence Compression: High-performance computing is a natural direct remedy for 

processing larger data. Although distributed computing on MapReduce cloud [76, 77] has been utilized, such 

solution is typically limited to jobs with inherent embarrassed parallelism and has been applied to process 

uncompressed data. Parallel compression methods are yet to be developed and more complicated tasks requiring 

synchronization among different processors require more sophisticated parallel algorithms, in which case, parallel 

programming model like Message Passing Interface (MPI) can be explored.  

Encrypted Compression: High-throughput sequencing has greatly promoted personalized genomics. As more 

people have their own genomes sequenced for the purpose of disease prevention, diagnosis, and treatment, 

transmission of the relevant compressed data over the Internet raises privacy concerns over information access and 

data security [6]. One solution for this issue could be the design of encrypted compression method.  

Redundancy Elimination of DNA Sequence Database: Currently, most of the public available high-throughput 

sequencing data are stored in the databases of some big data centers like NCBI, EBI, and KEGG. The data in these 

public databases suffer from high redundancy as many projects, like the 1000 Genomes Project, are set up to 

investigate genomes with high similarity. The redundancy adds cost of storage and reduces query efficiency. 

Compressed data structure could be utilized to eliminate the redundancy in the databases.  Although efforts have 

been made [20, 78], developing scalable algorithms to large databases such as NCBI remains open. 
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