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Highlights 

 

• We show that RARα is responsible for regulating VDR transcription in AML cells.  
• We show that the VDR transcriptional 1a variant is regulated by RARα in AML cells.  
• VDR gene expression is low in the absence of RARα agonist in KG1 cells.  
• We identify a VDR transcript variant originating from a new exon 1g. 
• The cis-regulatory element, used by RARα, is located in the promoter region of exon 1a. 
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Abstract 

Acute myeloid leukemia (AML) is the predominant acute leukemia among adults, 

characterized by an accumulation of malignant immature myeloid precursors. A very promising way 

to treat AML is differentiation therapy using either all-trans-retinoic acid (ATRA) or 1,25-

dihydroxyvitamin D3 (1,25D), or the use of both these differentiation-inducing agents. However, the 

effect of combination treatment varies in different AML cell lines, and this is due to ATRA either 

down- or up-regulating transcription of vitamin D receptor (VDR) in the cells examined. The 

mechanism of transcriptional regulation of VDR in response to ATRA has not been fully elucidated. 

Here, we show that the retinoic acid receptor α (RARα) is responsible for regulating VDR 

transcription in AML cells. We have shown that a VDR transcriptional variant, originating in exon 1a, 

is regulated by RARα agonists in AML cells. Moreover, in cells with a high basal level of RARα protein, 

the VDR gene is transcriptionally repressed as long as RARα agonist is absent. In these cells down-

regulation of the level of RARα leads to increased expression of VDR. We consider that our findings 

provide a mechanistic background to explain the different outcomes from treating AML cell lines 

with a combination of ATRA and 1,25D. 

 

 

Keywords: vitamin D receptor; retinoic acid receptor alpha; expression; mRNA; target gene; 

differentiation. 
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1. Introduction 

 Acute myeloid leukemia (AML) is the predominant acute leukemia among adults. This disease 

is difficult to treat due to variable underlying causes and most patients are elderly and often 

excluded from aggressive chemotherapy trials [1]. A very attractive and gentler way to treat patients 

with AML is so called differentiation therapy [2, 3]. The most successful differentiation therapy agent 

is all-trans-retinoic acid (ATRA). This is used routinely to treat a very rare form of AML called acute 

promyelocytic leukemia (APL), in which a PML-RARα fusion protein is generated by a 

t(15;17)(q22;q12) chromosomal translocation [4]. However, the success of ATRA-based 

differentiation therapy has not been extended to other forms of AML [5]. 1,25-dihydroxyvitamin D3 

(1,25D) is capable of inducing in vitro differentiation of AML cell lines [6], but was not found to be 

very effective in early clinical trials of AML [7]. Previous work has shown that a combination of 1,25D 

and ATRA can produce a synergistic differentiation effect [8]. However, our recent research has 

shown that the  effect  of this combination treatment varies in AML cell lines [9]. This is due to either 

down- or up-regulation of vitamin D receptor (VDR) transcription in response to ATRA in the AML cell 

lines examined. HL60 cells have a high constitutive level of VDR mRNA and VDR expression is down-

regulated by ATRA, whereas KG1 cells have a very low basal level of VDR mRNA, and ATRA up-

regulates VDR  expression [9]. 

 The gene encoding human VDR is located on chromosome 12, it covers about 100 kb of 

genomic DNA [10] and its composition is complex. The gene is composed of 14 exons, and translation 

of VDR protein spans from the exon 2 to the exon 9 [11, 12]. Due to T to C polymorphism, which 

eliminates the most 5’-located ATG codon in the exon 2, translation starts from the second in-frame 

ATG codon in some individuals. Thus, two variants of VDR protein exist, one three amino-acids 

shorter (aa and 424) than the other (427 aa) [13]. The 5’ region is very complex, and consists of the 

six exons 1a-1f, which together with the corresponding promoter regions are alternatively used in 

transcription regulation in various tissues [11]. Only three promoter regions have been identified in 

the region that codes for exons 1a-1f. Transcripts originating from exon 1a and from exon 1d are 

regulated by the promoter upstream to exon 1a, and exons 1f and 1c have their own upstream 

promoters (Figure 1A). The regulation of remaining exons remains to be elucidated [11-13]. 

 Transcripts which originate from exon 1a and 1d are expressed in most of the 1,25D-

responsive tissues, while a transcript originating in exon 1f is selectively expressed in tissues that play 

a role in calcium-phosphate homeostasis [11]. Moreover, it has been shown that the transcripts 

starting from exon 1d give rise to a longer VDR protein, named VDR B1 [11, 14]. ATRA-mediated up-

regulation of VDR transcription has been reported in the past. However, due to the lack of retinoic 

acid response elements (RARE) in VDR promoter region, the mechanism of the influence of ATRA on 
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VDR transcription remains unclear. Non-classical ATRA-responsive regions have been reported to be 

present in a regulatory element localized downstream of exon 1c (as detected in reporter assays 

using transfected HeLa cells) [13] and in the promoter region upstream of exon 1c (detected in 

similar assays using breast cancer cells) [15]. It is thus tempting to speculate that the mechanism of 

regulation of VDR by ATRA, and whether the outcome is up- or down-regulation of VDR expression, 

are cell-context dependent. 

 ATRA is a non-selective agonist of the three distinct isoforms of retinoic acid receptors (RAR) 

α, β and γ, and these occur as numerous splicing variants [16-18]. RARs, similarly to VDR, form 

heterodimers with retinoid X receptors (RXR) and act as ligand-regulated transcription factors via 

binding to specific RAREs. However, it should be remembered that un-ligated RARα, and to much 

lesser extent RARβ and γ, may act as transcriptional repressors to certain genes [19, 20]. Due to the 

differences in the ligand binding domains of distinct RAR isoforms, it has been possible to synthesize 

a number of selective RAR agonists and antagonists [21]. The means to selectively activate or inhibit 

distinct isoforms of RARs have led to discovery of their diverse functions, which often relate to 

various aspects of cell differentiation [22]. 

 To gain a better understanding of the molecular mechanisms of regulation of VDR 

transcription by RARs in AML cells we have examined the transcriptional variants produced by these 

cells. We have used a rapid amplification of cDNA ends (5’-RACE) method to investigate this problem. 

The use of selective RAR agonists has allowed us to identify the isoform of RAR that regulates a 

transcriptional variant of VDR in AML cells. Through luciferase reporter assays, we localized the 

region in the VDR promoter which is involved in the regulation of VDR expression in response to 

ATRA.  Finally, we have addressed the role of un-ligated RARα in AML cells by using shRNA gene 

silencing technology. 

 

 

2. Materials and Methods 

 

2.1. Cell lines and cultures 

HL60 cells were obtained from the local cell bank at the Institute of Immunology and 

Experimental Therapy in Wrocław, and KG1, U973, MV4-11, MOLM-13 and NB-4 cells were 

purchased from the German Resource Center for Biological Material (DSMZ GmbH, Braunschweig, 

Germany). The cells were grown in RPMI-1640 medium with 10% fetal bovine serum (FBS), 100 

units/ml penicillin and 100 µg/ml streptomycin (Sigma, St Louis, MO) and maintained at standard cell 

culture conditions. 
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2.2. Chemicals and antibodies 

1,25D was purchased from Cayman Europe (Tallinn, Estonia) and ATRA was from Sigma. The 

compounds were dissolved in an absolute ethanol to 1000x final concentrations, and subsequently 

diluted in the culture medium to the required concentration. AGN191183 (pan RAR agonist), 

AGN195183 (RARα agonist) and AGN205327 (RARγ agonist) have been described previously  [23] and 

were synthesized at the Shangai Institute of Materia Medica. Tazarotene (RARβγ agonist) [24] and 

BMS453 (RARβ agonist) [25] were purchased from Tocris Bioscience (Bristol, UK). These compounds 

were stored at 10 mM concentrations in 50% methanol/50% dimethylsulphoxide at -20°C and 

subsequently diluted in the culture medium to the required concentration. Rabbit polyclonal anti-

RARα (sc-550), anti-actin (sc-1616), anti-Histone H1 (sc-10806) and mouse monoclonal anti-VDR (sc-

13133) antibodies were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Anti-lamin C2 custom 

made antibody was a kind gift from Prof. Ryszard Rzepecki (Faculty of Biotechnology; University of 

Wrocław). Goat anti-rabbit IgG and a goat anti-mouse IgG conjugated to peroxidase were obtained 

from Jackson ImmunoResearch (West Grove, PA). 

 

2.3. cDNA synthesis and Real-time PCR 

Isolation of total RNA, reverse transcription into cDNA and Real-time PCR reactions were 

performed as published before [9], using CFX Real-time PCR System (Bio-Rad Laboratories Inc., CA). 

The sequences of VDR, CYP24A1 and GAPDH primers and reaction conditions were described 

previously [26]. The RARA, RARB and RARG primers were obtained from RealTimePrimers.com (Real 

Time Primers, LLC, PA). The primers for VDR variants were: forward for VDR1a: 

5’GCGGAACAGCTTGTCCACCC, for VDR1d: 5’GCTCAGAACTGCTGGAGTGG, for VDR1g: 

5’TTGCTCATCCAGCTTCCCAGAC, and reverse for all variants was: 5’GAAGTGCTGGCCGCCATTG. 

Quantification of gene expression was analyzed with either the ∆Cq or ∆∆Cq method using GAPDH as 

the endogenous control. Primers efficiencies were measured in all cell lines using a Real-time PCR 

reaction based on the slope of the standard curve. The results were normalized to primer efficiencies 

to compare gene expression in different cell lines. Real-time PCR assays were performed at least in 

triplicate. 

 

2.4. Flow cytometry 

The expression of cell surface markers of differentiation was determined by flow cytometry. 

The cells were incubated with 10 nM 1,25D or/and 1 µM ATRA for 96 h, then washed and stained 

with 1 µl of fluorescently labeled antibodies CD11b/FITC and CD14/PE or with the appropriate 
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control immunoglobulins (all from ImmunoTools; Friesoythe, Germany) for 1 hour on ice. Next, they 

were washed with ice-cold PBS and suspended in 0.5 ml PBS supplemented with 0.1% BSA prior to 

analysis on FACS Calibur flow cytometer (Becton Dickinson, San Jose, CA). The acquisition parameters 

were set for an isotype control. The experiments were repeated at least three times and data 

analysis was performed using WinMDI 2.8 software (freeware by Joseph Trotter). 

 

2.5. Identification of transcriptional start sites of VDR transcripts 

To identify the transcriptional start sites of VDR transcripts, 5’- RACE (rapid amplification of 

cDNA ends) was used [27]. Ten µg of RNA isolated from unstimulated or ATRA-stimulated HL60 and 

KG1 cells was digested with calf alkaline phosphatase (CIP, New England Biolabs) in the presence of 

RiboLock RNase inhibitor for 1 h at 37oC and purified by extraction with TRI reagent. Half of the CIP-

digested RNA was treated with tobacco acid pyrophosphatase (TAP, Epicentre) for 1h at 37oC in 10 µl 

reaction mixture containing TAP buffer, 0.5 U of TAP and 20 U of RiboLock RNase inhibitor. 2 µl of 

TAP-treated RNA was ligated with a RNA oligonucleotide (5'-

GCUGAUGGCGAUGAAUGAACACUGCGUUUGCUGGCUUUGAUGAAA) for 1 h at 37oC in a 10 µl reaction 

containing 0.3 µg of the oligonucleotide, 5 U of RNA ligase (New England Biolabs), RNA ligase buffer 

and 20 U of RiboLock RNase inhibitor. Two µl of RNA was then reverse transcribed using SuperScript 

III reverse transcriptase (Invitrogen) and random hexamers or gene-specific oligonucleotide 

complementary to exon 2 of VDR gene (5’-GCAGCCTTCACAGGTCATAGC). The cDNA was amplified in 

nested PCR reactions (2 x 20 cycles, annealing temp. 52oC, in the presence of 1.2 M  betaine)  using 

primers complementary to 5’-adapter (5'-GCTGATGGCGATGAATGAACACTG, 5'-

CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG) and exon 2 of VDR gene (5’-

GCAGCCTTCACAGGTCATAGC, 5’-GTGAAAGCCAGTGGCTCGGT). The amplification products were 

directly cloned into pGEMT-easy vector. For each type of cell and stimulation 15-20 individual 

plasmid clones were sequenced using SP6 primer (5’-ATTTAGGTGACACTATAG) and BigDye 3.1 

Terminator Cycle Sequencing Kit (Life Technologies). In total, 67 clones were sequenced. The 

sequencing reaction was analyzed using ABI Prism 310 Genetic Analyzer. The sequences of VDR 

transcripts obtained were aligned with the genomic sequence of VDR gene using Spidey software to 

identify exons and transcriptional start sites. 

 

2.6. Reporter assays 

Two forms of the VDR 1a promoter: 1a long (-1935/+71) and 1a short (-464/+71) were cloned 

upstream of the firefly luciferase gene in the pGL3 Basic vector (Promega) using SLIC cloning. First, 

promoter fragments were obtained by amplification of the genomic DNA isolated from KG1 cells in a 
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PCR reaction using Phusion Green High–Fidelity Polymerase (Thermo Scientific) and primer pairs: 

VDRp1aDF-pGL3, VDRp1aR and VDRp1aKF-pGL3, VDRp1aR-pGL3 for the long and the short form 

respectively. The SLIC reaction was performed as following: 0.038 pmol of BglII/HindIII-digested 

pGL3Basic, 0.08 pmol of VDR 1a promoter fragment (long or short form), 1 x BSA, 1 x NEB buffer 2, 

0.5 µl T4 polymerase were incubated for 2.5 minutes at room temperature in a final volume of 10 µl. 

Then 20 ng of RecA protein were added and the reaction was stored on ice. Chemically competent 

DH5α cells were transformed with 5 µl of the reaction product using thermal shock method (45 

seconds, 42oC). 

For the reporter assays, HL60 cells were co-transfected with 2.5 μg of the reporter pGL3 

plasmids and with the 1 μg of the control pRL-TK plasmid, using Neon®Transfection System 

(Invitrogen™, Carsbad, CA) according to the manufacturer’s manual. At 24 h after transfection, the 

cells were left untreated or stimulated for 96 h with 1 μM ATRA. After that time the luciferase 

activity was measured with Dual-Glo Luciferase Assay System (Promega Corp., Madison, WI) 

according to the manufacturer’s manual using EnVision Multilabel Plate Reader (Perkin Elmer, 

Waltham , MS). Firefly luciferase activities were determined in three independent co-transfections 

and were normalized to the Renilla luciferase activities of the internal control pRL-TK vector from the 

same culture. 

 

2.7. Gene silencing reagents and procedure 

The gene silencing was performed using shRNA lentiviral particles: the RARA shRNA lentiviral 

particles (sc-29465-V) containing three target-specific 19-25nt shRNAs designed to specifically 

knockdown RARA  gene expression, and the control shRNA lentiviral particles (sc-108080) containing 

scrambled shRNA sequences which were used as a negative control (both Santa Cruz Biotechnology, 

Inc.). KG1 cells were seeded on 24-well plates (2 × 104 cells per well) and after 24 h the cells were 

infected with 20 μl of lentivirus particles in medium containing 1 μg/ml polybrene (Santa Cruz 

Biotechnology, Inc.) for 8 h. The medium was changed and the cells were grown for two more days. 

After that time, the medium was replaced with selection medium containing 1 μg/ml puromycin 

(Santa Cruz Biotechnology, Inc.). 

 

2.8. Western blots 

In order to obtain cytosolic and nuclear extracts 5x106 cells/sample were washed and lysed 

using Pierce NE-PER Nuclear and Cytoplasmic Extraction Reagents according to the user’s manual. 

Lysates were denatured by adding 5x sample buffer (1/4 volume of the lysate) and boiled for 5 min. 

25 µl of each lysate were separated in SDS-PAGE and electroblotted to PVDF membrane. The 
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membranes were then dried, and incubated sequentially with primary and a horseradish peroxidase-

conjugated secondary antibody. The protein bands were visualized by chemiluminescence. Then the 

membranes were stripped, dried again and probed with subsequent antibodies. Western blots were 

repeated 3 times. 

 

2.9. Statistical analysis 

For statistical analysis one-way ANOVA was used to test the null hypothesis that samples in 

two or more groups are drawn from populations with the same mean values. When the ANOVA test 

had shown that the null hypothesis is not true, Student’s t-test for independent samples was used to 

analyze the differences between the pairs of groups (Excel, Microsoft Office and free ANOVA 

Calculator: http://www.danielsoper.com/statcalc3/calc.aspx?id=43). 

 

 

3. Results 

 

3.1. Regulation of VDR in response to ATRA in six AML cell lines 

 Our previous work has shown that transcription of VDR gene is regulated in an opposite 

manner in response to ATRA in two of the commonly used cell lines that typify AML cells. VDR 

transcription was observed to be up-regulated in KG1 cells and down-regulated in HL60 cells. Here, 

we have examined the regulatory patterns seen in additional human AML cell lines. The molecular 

and cytogenetic characteristics of the cell lines studied are complex and information is provided in 

the supplementary Table 1. HL60, KG1, U973, MOLM-13, NB-4 and NOMO-1 cells were exposed for 

24, 48, 72 and 96 h to 1 µM ATRA, and the expression of VDR was measured by Real-time PCR using 

GAPDH as a reference gene. The highest level of constitutive expression of VDR was observed in NB-4 

cells (Figure 2A). However, it should be remembered that NB-4 cells harbor one copy of the PML-

RARA fusion gene, which encodes the fusion protein PML-RARα. Previous studies have shown that 

PML/RARα impairs the localization of VDR in the nucleus by binding to VDR and by this means 

inhibits its transcriptional activity [28]. VDR expression was up-regulated by ATRA to a significant 

extent in NB-4 cells (2.4 times), but to a lesser extent than observed for KG1 cells (more than 7 

times). In contrast, VDR expression was down-regulated in response to ATRA in HL60 cells (3.2 

times), MOLM-13 (2.9 times) and NOMO-1 (5.2 times) cell lines (Figure 2B). The absolute level of VDR 

expression was very low in U937 cells, and it was further down-regulated in response to ATRA (1.8 

times). However, this decrease was not statistically significant. Additionally, constitutive VDR 

expression is about 10 times higher in HL60 than in KG1 cells.  
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The differentiating effects of 1,25D or/and ATRA were examined by flow cytometry. Figures 2C-2H 

show that for all the cell lines studied the combined effect of ATRA and 1,25D was to increase the 

level of granulocytic differentiation (increased CD11b expression). The situation was different in 

regard to expression of monocytic marker CD14. For the cell lines in which ATRA up-regulated VDR 

expression (KG1 and NB-4) combined treatment also up-regulated CD14, when compared to single 

treatment. For the cell lines in which ATRA down-regulated VDR expression it also down-regulated 

CD14, when compared to 1,25D alone. These results point to increased VDR expression shifts the 

differentiation option from the granulocytic to the monocytic pathway. 

 

3.2. Effects of 1,25D and ATRA on regulation of CYP24A1 expression 

The CYP24A1 gene encodes the enzyme 24-hydroxylase of 1,25D, which is the key enzyme in 

the degradation of 1,25D to calcitroic acid. It is well documented that CYP24A1 is the most strongly 

regulated of all the 1,25D-target genes [29], thus 1,25D-dependent up-regulation of CYP24A1 

confirms that VDR protein is expressed and active in cells. For the AML cell lines that responded well 

to 1,25D, the expression of CYP24A1 was slowly, but significantly, up-regulated up to a thousand-

fold, as compared to untreated cells [26]. As shown in Figure 3A and 3C, measurements of CYP24A1 

levels reflected ATRA-driven changes in VDR expression and activation levels in KG1 and in HL60 cells. 

Similarly in MOLM-13 (Figure 3D) and U937 (Figure 3F) cells ATRA-driven changes in VDR expression 

were further reflected in expression of CYP24A1. In the case of NB-4 (Figure 3B) and in NOMO-1 cells 

(Figure 3E) 1,25D-induced CYP24A1 expression was not altered to a significant degree by ATRA. The 

data presented in Figure 3 show that ATRA alone does not influence CYP24A1 expression. Moreover, 

ATRA-induced changes to CYP24A1 expression confirmed that increased VDR mRNA levels lead to 

increased translation of VDR protein, which is activated by ligand. It is noteworthy that the observed 

1,25D-induced CYP24A1 expression in HL60 cells is one order of magnitude higher than in MOLM-13 

and NOMO-1 cells, two orders of magnitude higher than in NB-4 cells and three to four orders of 

magnitude higher than in KG1 and U937 cells. 

 

3.3. Transcriptional variants of VDR in HL60 and KG1 cells as identified by 5’-RACE 

For these studies we chose to use the HL60 and KG1 cell lines as the most sensitive and least 

sensitive to 1,25D, respectively. We considered that variable regulation of VDR gene in these cell 

lines might result from the usage of different VDR promoters. Therefore, we decided to identify the 

promoter regions that regulate VDR transcription in un-stimulated and ATRA-stimulated HL60 and 
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KG1 cells, and examined the transcript variants occurring in those cells. We used the 5’-RACE method 

to identify 5’ portions of the VDR transcripts - upstream of the VDR exon 2. The results of our 

experiments are presented in Figure 1B and aligned to the published sequence. We found that in 

both un-stimulated and ATRA-stimulated HL60 cells, VDR transcripts originated from exon 1a which 

was spliced to exon 2 either directly or through exon 1c. The same transcript variants were the most 

frequently detected transcripts in un-stimulated and ATRA-stimulated KG1 cells. In addition, we 

observed that KG1 cells express a more diverse set of VDR transcripts than HL60 cells. In un-

stimulated KG1 cells, we detected transcript variants originating from exon 1d and, from a so-far-

unidentified exon, depicted in Figure 1B as exon 1g, and localized downstream of exon 1d. In contrast 

to HL60, in KG1 cells we detected also exon 1b present in transcripts originating either from exon 1a 

or 1g.  Aside from the differences between HL60 and KG1 cells, the majority of transcripts expressed 

in both cell types, regardless of the presence or absence of ATRA, originated from exons controlled 

by the 1a promoter. This strongly suggests a predominant role of the 1a promoter in regulating VDR 

expression in these cells. 

  

3.4. Regulation of VDR variants in response to ATRA and to selective RAR agonists  

 The most frequent transcriptional variants in HL60 and KG1 cells are the ones originating in 

exon 1a and exon 1d. Hence, we constructed variant-specific primers in order to quantify ATRA-

provoked changes in the expression of these transcripts. Our experiments have shown that only the 

transcript which originates from exon 1a (VDR 1a) is regulated in response to 1 µM ATRA. This 

transcript was significantly down-regulated in HL60 cells (Figure 4A), and significantly up-regulated in 

KG1 cells (Figure 4B). ATRA is a non-selective agonist of RARα, β and γ. We used selective agonists of 

RAR isoforms to determine the isoform responsible for regulating the VDR transcript that originates 

from exon 1a. The agents used at a concentration of 100 nM were AGN191183 (pan-RAR agonist), 

AGN195183 (RARα agonist), tazarotene (RARβγ agonist), AGN205327 (RARγ agonist) and BMS453 

(RARβ agonist) and their structures and classification are given in the supplementary Table 2. As 

shown in Figure 4C (HL60) and 4D (KG1), the pan-RAR agonist, the selective RARα agonist and the 

mixed RARβγ agonist (tazarotene) significantly regulated transcription of VDR 1a. Among the 

transcript variants of VDR gene in KG1 cells we identified rare transcripts, which originated from a 

newly discovered exon 1g. We tested whether these transcripts are also regulated by the RAR 

agonists. In HL60 cells such regulation did not occur (not shown), but VDR1g transcript appeared to 

be regulated by RAR agonists in KG1 cells (Figure 4E). The pattern of regulation of VDR1g and VDR1a 

in KG1 cells is similar, which suggests that the promoter region used to regulate both transcripts is 

the same. The data presented in Figure 4 indicate that the most important isoform of RAR involved in 
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VDR transcription is RARα. Significant up-regulation in KG1 cells, and significant down-regulation in 

HL60 cells of VDR1a by tazarotene suggests that RARβ and γ  also have limited regulatory effects, 

which is further supported by the observation that combination treatment using RARβ and RARγ 

agonists mimics the effect of tazarotene (not shown here).  

 

3.5. Reporter assays in HL60 cells treated with ATRA  

In order to determine whether the promoter of exon 1a responds directly to ATRA 

stimulation, two reporter vectors were constructed that contained different portions of the 1a 

promoter regions: -1935/+71 (1a long) and -464/+71 (1a short) relative to the start site of the 1a 

transcript variant. Transient transfection efficacy was too low in KG1, therefore the activities of the 

promoter regions could only be tested in HL60 cells. Firefly luciferase activities were normalized to 

the Renilla luciferase activities of the internal control vector transfected at the same time. The 

normalized luciferase activities in the cells treated with 1 µM ATRA for 96 h were compared to the 

respective untreated controls. When Firefly luciferase gene was under the control of 1a short 

promoter region, no effects of ATRA were observed, but when the 1a long promoter was used 

luciferase activity was significantly down-regulated by ATRA treatment, in keeping with the 

regulation of the VDR 1a variant in response to ATRA in HL60 cells (Figure 5A). 

 

3.6. Expression of VDR in the absence of RARα 

Having shown that RARα ligated by its selective agonist regulates transcription of the VDR 

gene in HL60 and KG1 cells, we investigated the role of un-ligated RARα in these cells. Our 

experiments had shown that constitutive expression of RARA mRNA in KG1 cells is much higher than 

in HL60 cells (Figure 5B). Also the protein level of RARα in the nucleus was higher in KG1 than in HL60 

cells (Figure 5C). Even though RARB mRNA levels were high in both cell lines, RARβ protein was 

undetectable in our experiments. RARG expression was low in both cell lines, and RARγ protein was 

not detectable. 

Therefore, we silenced the expression of RARA in KG1 cells. The gene silencing was 

performed using RARA shRNA lentiviral particles and the scrambled shRNA lentiviral particles as a 

control. After selecting transduced cells in puromycin containing medium, we obtained two KG1 

sublines; KG1-RARα(-), from the use of RARA shRNA, and KG1-CTR, from the use of scrambled shRNA. 

The level of gene silencing was examined by Real-time PCR (Figure 6A) and by Western blotting 

(Figure 6B, top panel). Whilst RARα silencing was not complete in KG1-RARα(-) cells the level was 

significant at around 85%. Next, we investigated whether the loss of RARα influenced the basal level 
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of transcription of VDR. The level of VDR mRNA in KG1-RARα(-) cells was observed to be almost 5 

times higher than in the cells transfected with the control plasmid (Figure 6C). This level was less 

than the basal level of VDR mRNA in HL60 cells, but more than the level in wild-type KG1 cells. In 

order to confirm that increased expression of VDR gene in KG1-RARα(-) cells resulted in the 

translation of functional VDR protein, we measured VDR protein levels in both sublines. It has been 

documented earlier that VDR protein is stabilized by 1,25D, and that a high level of VDR in the 

nucleus can be seen only after addition of 1,25D to AML cells (presented in Figure 5D) [30]. Thus, we 

exposed KG1-CTR cells and KG1-RARα(-) cells to 10 nM 1,25D for 24 h, or left untreated. As presented 

in Figure 6D, VDR protein level was observed to be higher in nuclear fractions from KG1-RARα(-) cells 

as compared to KG1-CTR cells, especially after exposure to 1,25D. 

We analyzed the influence of the selective RAR agonists on VDR expression levels in both KG1 

sublines. KG1-CTR cells were similarly responsive to wild-type KG1 cells, while KG1-RARα(-) had lost 

responsiveness to RAR agonists. The selective RARα agonist induced a significantly higher VDR 

expression in KG1-CTR cells than any other agonist. The mixed RARβγ agonist (tazarotene) induced 

significant up-regulation of VDR, but to a much lower extent than when the RARα agonist was used 

alone (Figure 6E). 

 

Discussion 

 The fact that retinoids regulate the expression of the VDR gene in bone and mammary cells is 

well described, and this effect is known to be cell-type dependent [12, 15]. Also, it is well established 

that RARα acts as transcriptional repressor when un-ligated [19], and after binding its physiological 

agonist ATRA then functions to activate transcription [20]. However, precise details are lacking of the 

molecular events that occur in AML cell lines. 

KG1 cells have a high basal level of expression of RARA gene, a high constitutive content of 

RARα protein and a low level of VDR protein. Here, we have shown that un-ligated RARα represses 

expression of the VDR gene in KG1 cells. When KG1 cells were treated with either a selective or non-

selective ligand to activate RARα, expression of VDR was observed to be up-regulated. A similar 

effect was obtained by silencing RARA gene expression. We interpret these findings to suggest that 

RARα protein devoid of ligand acts as transcriptional repressor to the VDR gene in these cells. 

Accordingly, HL60 cells have a low constitutive level of expression of RARA, a low level of RARα 

protein, and their basal level of expression of VDR is high. Treatment of these cells with a RARα 

ligand resulted in down-regulation of VDR expression, and the reason for this effect remains to be 

investigated. As to a higher level of RARα in KG1 cells as compared to HL60 cells; KG1 are viewed as 
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more primitive than the promyeloid cell line HL60 and a change in the level of expression of RARA as 

cells age developmentally may be the underlying reason. 

The transcriptional regulation of VDR gene is very complex because of the use of several 

alternative promoter regions in the large regulatory region encompassing 65 kb upstream of the 

coding region (exons 2–9) [13]. In our studies we have identified transcripts starting from exon 1a 

within KG1 and HL60 cells. These are the transcripts that are regulated when cells are treated either 

with ATRA or a RARα specific agonist. From our studies, we have also identified a new non-coding 

exon, here termed 1g, which either can be used as a transcript start, or alternatively spliced into the 

transcripts starting from exon 1a. 

A more complete understanding of the mechanism whereby expression of the VDR gene is 

regulated in response to retinoids is confounded by the fact that a classical RARE does not exist 

within the entire VDR promoter region. However, it should be remembered that the location of 

RAREs is highly variable, and ranges from 10,145 bases upstream to 8,141 bases downstream of the 

5’ end of known transcription start site [31], so the regulatory element does not need to be located 

in close proximity to the VDR gene. It has also been documented that RAREs are often located in 

intronic regions [32]. Moreover, recent studies have revealed a high level of diversity in the topology 

and spacing of RAREs. Classical RAREs are composed of two direct repeats of a core hexameric 

nucleotide sequence, spaced by 1, 2 or 5 random nucleotides (named DR1, DR2 and DR5). New data 

have revealed that RAREs do not have to be spaced at all (DR0), they can be spaced by 8 nucleotides 

(DR8) or composed of the inverted repeats (IR) [33]. To circumvent the, as yet, lack of a RARE 

involved in VDR regulation, it has been suggested that retinoids regulate VDR transcription in a 

secondary manner, by using cis-regulatory elements which cooperate with the promoter [13]. Until 

now, these elements have been localized in the vicinity of exon 1c, either downstream [13] or 

upstream [15], depending on the cell type. Here we have shown for AML cells that a putative cis-

regulatory element, which is used by RARs, is located in the promoter region of exon 1a, between 

nucleotides -1935 and -464 relative to the transcriptional start site of 1a. The attempts to specify the 

exact location of the regulatory element are underway in our laboratories. 

As mentioned above, whether ATRA treatment of AML cell lines leads to up- or down-

regulation of expression of VDR depends on the cell line tested. It is important to bear in mind that 

several kinase signal transduction pathways are rapidly activated when cells are treated with ATRA. 

[34]. This, in turn, might influence the phosphorylation status of particular RAR isoforms [35]. Kinase-

mediated signaling is also likely to lead to the activation of other transcription factors to change the 

transcriptional cell landscape. Differences between the AML cell lines as to their signaling and/or 

transcriptional landscapes may underlie the opposite effects on expression of VDR when different 
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AML cell lines are treated with ATRA. Such considerations are also important to what happens to VDR 

expression when patients’ AML cells are treated with ATRA as these cells often have mutations 

affecting signal transduction pathways. The KG1 cell line alludes to the importance of kinase signaling 

as these cells harbor a fusion protein kinase FOP2-FGFR1, arising from the FGFR1 Oncogene Partner 2 

(FGFR1OP2) - FGFR1 fusion gene, which is constitutively active [36]. 

The use of 1,25D in combination with ATRA may benefit some but not all AML patients. The 

addition of ATRA to 1,25D is likely to benefit patients if this leads to up-regulation rather than down-

regulation of VDR, as in the later case VDR protein is reduced to the detriment of combination 

differentiation therapy. As shown here, insight to the nature and mechanisms of ATRA-provoked 

changes to the level of VDR expression is important to consideration of the clinical use of ATRA with 

1,25D. 
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Figure captions 

 

Figure 1. Organization of the human VDR locus and regulation of VDR transcription in response to 
ATRA in AML cells 
 
(A) Composition of the 5’ regions of VDR are according to Crofts et al., 1998 and Zella et al., 2010, 
and (B) shows transcripts identified in our experiments in un-stimulated and ATRA-stimulated HL60 
and KG1 cells. For each type of cell and stimulation, 15-20 individual clones were sequenced (67 
altogether) and all the variants identified are presented here. Black boxes represent protein coding 
exons, grey – noncoding exons localized in the regulatory region of the gene. White boxes represent 
promoter regions. The hatched box represents the newly identified exon (1g). The frequencies of the 
transcripts identified are given on the left side of their graphical representation. 
 
 
Figure 2. Regulation of VDR transcription and cell differentiation in response to ATRA or/and 1,25D in 
AML cells 
 
(A) Up-regulation of VDR expression in response to ATRA in KG1 and NB-4 cells and (B) down-
regulation of VDR expression in response to ATRA in HL60, MOLM-13, NOMO-1 and U937 cells. The 
cells were exposed to 1 µM ATRA for the times given on the graphs and expression of the VDR gene 
was measured by Real-time PCR relative to GAPDH expression levels. The bar charts show mean 
values (±SEM) of absolute expression levels. Values that differ significantly (p<0.05) from those 
obtained for respective control cells are marked with asterisks.  
KG1 (C), NB-4 (D), HL60 (E), MOLM-13 (F), NOMO-1 (G) and U937 (H) cells were exposed to 10 nM 
1,25D or/and to 1 µM ATRA for 96 h and CD11b and CD14 differentiation markers were detected 
using flow cytometry. The bar charts show the mean percentages of CD11b and CD14 positive cells 
(±SEM). Values that differ significantly (p<0.05) from those obtained for 1,25D-treated cells are 
marked with ¥, while the values that differ significantly (p<0.05) from those obtained for ATRA-
treated cells are marked by ♦. 
 
 
Figure 3. Regulation of CYP24A1 transcription in response to 1,25D or/and ATRA in AML cells 

KG1 (A), NB-4 (B), HL60 (C), MOLM-13 (D), NOMO-1 (E) and U937 (F) cells were exposed to 10 nM 
1,25D or/and 1 µM ATRA and after 96 h the expression of CYP24A1 mRNA was measured by Real-
time PCR. The bar charts show the mean values (±SEM) of the fold changes in mRNA levels relative to 
GAPDH mRNA levels. Values that differ significantly (p<0.05) from those obtained for respective 
control cells are marked with asterisks, and values that differ significantly (p<0.05) in 1,25D+ATRA 
treated samples versus respective 1,25D-treated samples are marked by ¥. 
 
 
Figure 4. Regulation of VDR transcription variants in response to RAR selective and non-selective 
agonists in HL60 and KG1 cells 
 
Expression and regulation of VDR 1a and VDR 1d transcriptional variants was examined in HL60 (A) 
and KG1 (B) cells by Real-time PCR. The cells were exposed to 10 nM 1,25D or to 1 µM ATRA and 
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after 96 h the levels of VDR 1a and VDR 1d mRNA were measured relative to GAPDH mRNA levels. 
Results that differ significantly (p<0.01) from respective controls are marked with asterisks. 
The influence of non-selective and selective RAR agonists towards VDR 1a expression was examined 
in HL60 (C) and in KG1 (D) cells. The cells were exposed to 10 nM 1,25D or 100 nM RAR agonists and 
after 96 h the levels of VDR 1a mRNA were measured relative to GAPDH mRNA levels by Real-time 
PCR. The bar charts show the mean values (±SEM) of the fold changes. Results that differ significantly 
(p<0.05) from the respective control are marked with asterisks. 
The influence of non-selective and selective RAR agonists towards VDR 1g expression was examined 
in KG1 (E) cells. The cells were exposed to 10 nM 1,25D or 100 nM RAR agonists and after 96 h the 
levels of VDR 1g mRNA were measured relative to GAPDH mRNA levels by Real-time PCR. The bar 
charts show the mean values (±SEM) of the fold changes. Results that differ significantly (p<0.05) 
from the respective control are marked with asterisks. 
 
Figure 5. RAR isoforms and VDR in HL60 and KG1 cells 

(A) Long (-1935/+71) and short (-464/+71) 1a promoter regions were cloned upstream of the Firefly 
luciferase gene in the pGL3 Basic vector and transfected into HL60 cells together with the control 
Renilla luciferase vector. The cells were then left untreated or treated with 1 µM ATRA for 96 h and 
the luciferase activities were measured in these cells. The bar charts show mean values (±SEM) of 
Firefly/Renilla luciferase units, and the value that differs significantly (p=0.02) from the respective 
control is marked with asterisk. 
(B) The expression RARA, RARB and RARG was examined in untreated HL60 and KG1 cells by Real-
time PCR relative to GAPDH expression levels. The bar charts show the mean values of the absolute 
expression levels (±SEM). Results that differ significantly (p<0.01) in KG1 cells from HL60 cells are 
marked with asterisks. 
The levels of RARα (C) and VDR (D) proteins were determined in the cytosol and nuclei of HL60 and 
KG1 cells by Western blots. In order to visualize VDR protein, the cells were exposed to 10 nM 1,25D 
for 24 h. The cytosolic (C) and nuclear (N) extracts were separated by SDS-PAGE, transferred to PVDF 
membranes and the proteins were revealed using anti-RARα, anti-VDR and anti-actin. The OD ratio of 
each receptor band was calculated versus the OD of the respective actin band and the means (±SEM) 
are presented below the blots. 
 
Figure 6. VDR in KG1 cells post-silenced expression of RARα 
 
KG1 cells were transformed using lentivirus containing either scrambled shRNA (KG1-CTR) or RARA 
specific shRNA (KG1-RARα(-)). The expression levels of RARA mRNA (A)  and VDR mRNA(C)  in both 
cell lines were measured by Real-time PCR. The bar charts show the mean values (±SEM) of the fold 
changes in mRNA levels relative to GAPDH mRNA levels. The values that in KG1-RARα(-) cells are 
significantly (p<0.01) different than in KG1-CTR cells are marked by asterisks. 
The levels of RARα (B) and VDR (D) proteins were determined in the cytosol and nuclei of KG1-CTR 
and KG1-RARα(-) cells by Western blots. In order to visualize VDR protein, the cells were exposed to 
10 nM 1,25D for 24 h. The cytosolic (C) and nuclear (N) extracts were separated by SDS-PAGE, 
transferred to PVDF membranes and the proteins were revealed using anti-RARα, anti-VDR and anti-
actin. Anti-Lamin C antibody was used to show the purity of cell fractionation. The OD ratio of each 
receptor band was calculated versus the OD of a respective actin band and the means (±SEM) are 
presented below the blots.  
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(E) The expression of VDR mRNA was tested by Real-time PCR in KG1-CTR and KG1-RARα(-) cells 
exposed to 100 nM selective RAR agonists for 96 h. The bar charts show the mean values (±SEM) of 
the VDR mRNA levels relative to GAPDH mRNA levels.  
The untreated KG1-CTR samples were calculated as 1. The values that differ significantly (p<0.05) in 
treated cells from the respective untreated control are marked by hash. The values that differ 
significantly (p<0.05) from RARα-agonist treated cells are marked by diamond. 
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Figure 5 
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Supplementary Table 1. Cytogenetic and molecular abnormalities in cell lines studied 

 KG-1 HL60 NB-4 MOLM-13 NOMO-1 U937 

FAB AML M5 AML M2 AML M3 AML M5a AML M5a  

WHO 
classification 

Acute erythroid leukemia AML with maturation Acute promyelocytic 
leukemia (APL) 

Acute 
monocytic 
leukemia 

Acute monocytic 
leukemia 

Histiocytic 
lymphoma cell 
line 

Karyotype 46,XY,der(4)t(4;8)(q31;p21),−5,
del(7)(q22q35), 
der(8)t(8;12)(p11;q13),+idic(8)(
p11)x2,−12, 
der(17)(5pter 5p11::5q13 5
q31::17p11.2 cen  
17qter),der(20)t(12;20)(?;p13)[
20].ish der(4)t(4; 
8)(D8Z2−,RP11-
754L23−,MYC−),der(8)t(8; 1 
2)(D8Z2+,RP11-
754L23+,MYC+),+idic(8)(p11) 
(D8Z2++,RP11-
754L23++,MYC++)x2/43∼46, 
idem,−10[cp4]/46∼47,idem,+de
r(8)del(8)(p11) 
del(8)(q11)[cp8]/92∼98,idemx2
[cp2] 

[1]  

human flat-moded 
hypotetraploid karyotype 
with hypodiploid sideline 
and 1.5% polyploidy - 82-
88<4n>XX, -X, -X, -8, -8, -16, 
-17, -17, +18, +22, +2mar, 
ins(1;8)(p?31;q24hsr)x2, 
der(5)t(5;17)(q11;q11)x2, 
add(6)(q27)x2, 
der(9)del(9)(p13)t(9;14)(q?2
2;q?22)x2, 
der(14)t(9;14)(q?22;q?22)x2, 
der(16)t(16;17)(q22;q22)x1-
2, add(18)(q21) - sideline 
with: -2, -5, -15, 
del(11)(q23.1q23.2) - c-myc 
amplicons present in der(1) 
and in both markers [DSMZ] 

human hypertriploid 
karyotype with 3% 
polyploidy - 78(71-
81)<3n>XX, -X, +2, +6, 
+7, +7, +11, +12, +13, 
+14, +17, -19, +20, 
+4mar, 
der(8)t(8;?)(q24;?), 
der(11)t(11;?)(?-
>::11p15-
>11q22.1::11q13-
>22.1:), 
der(12)t(12;?)(p11;?), 
14p+, 
t(15;17)(q22;q11-
12.1), 
der(19)t(10;19)(q21.1;
p13.3)x2 - identity 
confirmed 

human 
hyperdiploid 
karyotype with 
4% polyploidy - 
51(48-
52)<2n>XY, +8, 
+8, +8, +13, 
del(8)(p1?p2?), 
ins(11;9)(q23;p2
2p23) - 
resembles 
published 
karyotype - 
sideline with 
idem, +19 - 
carries occult 
insertion 
effecting MLL-
MLLT3 (MLL-
AF9) fusion 

human 
hyperdiploid 
karyotype with 
8% polyploidy - 
46-47<2n>XX, +8, 
-13, +mar, 
add(7)(q32), 
der(9)del(9)(p11p
13-
21)t(9;11)(p22;q2
3), 
t(9;13)(q13;q11), 
der(11)t(9;11)(p2
2;q23) - carries 
reciprocal t(9;11) 
with 
rearrangement of 
MLL - matches 
published 
karyotype 

human flat-
moded 
hypotriploid 
karyotype - 
63(58-
69)<3n>XXY, -2, -
4, -6, +7, -9, -20, -
21, +3mar, 
t(1;12)(q21;p13), 
der(5)t(1;5)(p22;q
35), add(9)(p22), 
t(10;11)(p14;q23)
, i(11q), i(12p), 
add(16)(q22), 
add(19)(q13) - 
carries t(10;11) 
(seen in AML M5) 
- t(1;5) resembles 
variant of t(2;5)  
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[DSMZ] [DSMZ] [DSMZ] [DSMZ] 

Gene fusion FGFR1OP2-FGFR1 (OP2-FGFR1) 
[2] 

 PML-RARA (L-form) [3]  MLL-MLLT3(MLL 

AF9) fusion  

MLL-MLLT3 (MLL-
AF9) 

AF10/CALM [4, 5]  

Amplifica-
tions 

No more than 6 c-myc copies 
[1]  

+8(p11q11)[6]  

c-myc gene [7, 8] 

amp(8)(q24) genes: MYC, 
FLJ32440, TRIB1 [6] 

amp(8)(q24)  
FLJ32440, TRIB1, MYC 

amp(9)(P24)  JAK2 

amp(12)(p12)  KRAS 

amp(19)(p13)  TYK2, 
ICAM1 

amp(19)(q13)  CARD8 

+2, +10q, +20 [6] 

  Cyclin D3  [9]  

Rearranged 
genes 

 GM-SCF gene is rearranged 
and partially deleted (5q21 – 
32) [10]  

    

Mutations TP53 inserted 5 bases (ATCTG) 
between codons 224 and 225 
[11]  

N-ras (codon 61) [12]  

Most of p53 gene is deleted 
and retained part is 
rearranged [13]  

Smad5 gene is deleted and 
retained allele is not 
mutated [14]  

Max gene is deleted and 
retained allele is not 

K-ras (A18D) [9]  FLT3 mutation 
(insertion 21bp) 
[16]  

K-ras (G13D) [9]  

TP53 del1c [17]  

Heterozygous loss 
(allele deletion) 
of c-Ets-1, T3γ 
[18]  

TP53 deleted 46 
bases from 1st 
letter of codon 
172 [11] 
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mutated [15]  

Deletions del(13)(q14), del(16)(p13p11), 
del(17)(p13), del(1)(p31p13), 
del(5)(q21), del(7)(q34q36), 
del(8)(p22), -12, -17p, 
del(18)(q21) 

 5q11.2-q31, 6q12, 9p21.3-
p22, 10p12-p15, 14q22-q31, 
16q21, 17p12-p13.3 and –X 
[19]  

-1, -3, -5q (hTERT), 
gain(9)(p24p22), 
del(9)(p21) (CDKN1B), 
gain(13)(q14), 
del(17)(p13) (TP53) [6, 
20]  
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Supplementary Table 2. Characteristics of the RAR agonists used in the study 

RAR agonists Classification Structure References 

AGN191183  pan-RAR agonist 

 

[23] 

AGN195183 RARα agonist 

 

[23] 

Tazarotene RARβγ agonist 

 

[23, 24] 

BMS453 RARβ agonist 

 

[25] 

AGN205327 RARγ agonist 

 

[23] 

 

 

 
 

 

 


