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ABSTRACT 23 

 24 

Previous studies have reported exaggerated increases in arterial blood pressure during exercise in 25 

type 2 diabetes (T2D) patients. However, little is known regarding the underlying neural 26 

mechanism(s) involved. We hypothesized that T2D patients would exhibit an augmented muscle 27 

metaboreflex activation and this contributes to greater pressor and sympathetic responses during 28 

exercise. Mean arterial pressure (MAP), heart rate (HR), and muscle sympathetic nerve activity 29 

(MSNA) were measured in 16 patients with T2D (8 normotensive and 8 hypertensive) and 10 30 

healthy controls. Graded isolation of the muscle metaboreflex was achieved by post-exercise 31 

ischemia (PEI) following static handgrip performed at 30% and 40% maximal voluntary 32 

contraction (MVC). A cold pressor test (CPT) was also performed as a generalized sympatho-33 

excitatory stimulus. Increases in MAP and MSNA during 30 and 40% MVC handgrip were 34 

augmented in T2D patients compared to controls (P<0.05), and these differences were 35 

maintained during PEI (MAP: 30% PEI: T2D, Δ16 ± 2 vs. Controls, Δ8 ± 1 mmHg; 40% PEI: 36 

T2D, Δ26 ± 3 vs. Controls, Δ16 ± 2 mmHg, both P<0.05). MAP and MSNA responses to 37 

handgrip and PEI were not different between normotensive and hypertensive T2D patients 38 

(P>0.05). Interestingly, MSNA responses were also greater in T2D patients compared to controls 39 

during the CPT (P<0.05). Collectively, these findings indicate that muscle metaboreflex 40 

activation is augmented in T2D patients and this contributes, in part, to augmented pressor and 41 

sympathetic responses to exercise in this patient group. Greater CPT responses suggest that a 42 

heightened central sympathetic reactivity may be involved.  43 

 44 

  45 
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NEW & NOTEWORTHY 46 

Muscle metaboreflex activation is augmented in type 2 diabetic patients, and this 47 

contributes, in part, to augmented pressor and sympathetic responses to exercise in this patient 48 

group. These findings provide important insight to the neural mechanisms that contribute to the 49 

exaggerated increases in exercise blood pressure in type 2 diabetes.  50 

 51 

  52 
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INTRODUCTION 53 

Type 2 diabetes patients (T2D) exhibit exaggerated increases in arterial blood pressure 54 

(BP) during exercise (23, 25, 39, 44). Augmented BP responses have been observed even during 55 

moderate intensity handgrip (38), a level of isometric forearm muscle contraction that is 56 

equivalent to many activities of daily living such as opening jars, or carrying groceries. This is 57 

important because repeated surges in BP throughout the day have been related to increased 58 

cardiovascular risk (11, 37). Likewise, exaggerated increases in exercise BP are related to 59 

adverse cardiovascular and cerebrovascular events both during and after physical activity (19, 60 

27, 33). Indeed, the incidence of cardiovascular and cerebrovascular events such as myocardial 61 

infarction and stroke are significantly elevated among T2D patients (5, 26, 28, 57). An 62 

augmented pressor response to exercise is also a predictor for the development of hypertension 63 

(HTN) (10, 47), a common comorbidity among T2D patients (1, 3, 49, 50). However, despite 64 

exaggerated BP responses to exercise and the associated increase in morbidity and mortality in 65 

T2D, little is known regarding the underlying neural mechanism(s) involved. 66 

Exercise evokes increases in BP, muscle sympathetic nerve activity (MSNA), and heart 67 

rate (HR) that are a result of an integration of central signals originating from higher brain 68 

centers (i.e., central command) (15), feedback signals from mechanically and metabolically 69 

sensitive afferents in contracting skeletal muscle (i.e., exercise pressor reflex; EPR) (2), and 70 

input from the arterial and cardiopulmonary baroreceptors (14, 21). During static handgrip 71 

exercise, central command increases heart rate and cardiac output by withdrawing 72 

parasympathetic tone (15), whereas the metabolic component of the EPR (i.e., muscle 73 

metaboreflex) is primarily responsible for the intensity-dependent increase in MSNA and 74 

peripheral vasoconstriction (30, 45). A number of studies have examined the muscle 75 
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metaboreflex in subjects with risk factors for T2D (e.g., obesity) and have yielded mixed results 76 

(9, 29, 35, 40, 41, 52). Surprisingly, there is a paucity of studies examining the muscle 77 

metaboreflex in subjects with overt T2D. Furthermore, no studies have examined whether 78 

muscle metaboreflex activation in T2D leads to excessive MSNA responses that could contribute 79 

to an exaggerated EPR. A focus on the regulatory mechanisms underlying the augmented neural 80 

cardiovascular responses to exercise in T2D is important and clinically relevant. 81 

Given the vital contribution of the muscle metaboreflex to the BP response to exercise, 82 

and the previous work demonstrating exaggerated BP responses to exercise in T2D patients, the 83 

purpose of this study was to test the hypothesis that BP and MSNA responses to muscle 84 

metaboreflex activation would be greater in T2D patients compared to healthy control subjects. 85 

Additionally, because T2D is commonly associated with HTN, and previous work has shown 86 

that the muscle metaboreflex is augmented with HTN (9, 34, 41), we also hypothesized that 87 

muscle metaboreflex activation would be further enhanced in T2D patients with HTN. To test 88 

these hypotheses, BP, MSNA, and HR were measured during graded isolation of the muscle 89 

metaboreflex using post-exercise ischemia (PEI) following static handgrip performed at 30% and 90 

40% maximal voluntary contraction (MVC). PEI was used to trap local metabolites produced 91 

during exercise and isolate activation of metabolically sensitive skeletal muscle afferent nerve 92 

endings from the mechanical component of the EPR and central command (2, 30). A cold 93 

pressor test (CPT) was also performed to quantify BP and MSNA responses to a generalized 94 

non-exercise sympatho-excitatory stimulus. 95 

  96 
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Methods 97 

 98 

Subjects. A total of 27 subjects participated in the present study: Sixteen patients with T2D 99 

(reported duration of disease: 8 ± 2 years) and 10 healthy controls matched to T2D patients for 100 

age, sex and body weight. General baseline characteristics of the T2D patients and healthy 101 

control subjects are provided in Table 1. Eight of the T2D patients also had a clinical diagnosis 102 

of hypertension. These patients were all being treated for their hypertension but we excluded any 103 

patients taking medications directly influencing MSNA (e.g., central sympathoinhibitors such as 104 

clonidine). A listing of the medications being taken by the T2D patients is provided in Table 2. 105 

Importantly, none of the T2D patients were being treated for or had symptoms of peripheral 106 

neuropathy. Table 3 provides a comparison of baseline characteristics between the T2D patients 107 

with and without hypertension. Each subject received a verbal and written explanation of the 108 

goals of the study, the experimental measurements, and risks and benefits associated with the 109 

study after which each subject provided written informed consent. All subjects also completed a 110 

medical health history questionnaire and a 12-h fasting blood chemistry screening including a 111 

lipid panel and a metabolic panel that also includes insulin, glucose, and HbA1c measurement. 112 

The experimental procedures and protocols used conformed to the Declaration of Helsinki and 113 

were approved by the University of Missouri Health Sciences Institutional Review Board. 114 

 115 

Cardiovascular and Metabolic Measurements. HR and BP were continuously monitored using a 116 

lead II surface ECG (Q710; Quinton, Bothell, WA, USA) and a servo-controlled finger 117 

photoplethysmography (Finometer; Finapres Medical Systems, Amsterdam, The Netherlands), 118 

respectively. For Finometer measurements, return to flow calibrations were performed and 119 
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physiocal turned off before each recording. The changes in BP measured using the Finometer 120 

have been shown to provide an accurate estimate of directly measured intra-arterial BP (18, 46). 121 

Also, an automated sphygmomanometer (Welch Allyn, Skaneateles Falls, NY) recorded resting 122 

BP by the auscultation of the brachial artery of the right arm for absolute values of BP and to 123 

validate BP measurements from the Finometer (7, 54). Respiratory movements were monitored 124 

using a strain-guage pneumograph placed around the abdomen (Pneumotrace, UFI, Morro Bay, 125 

CA, USA) to avoid potential confound of large respiratory excursions on cardiovascular 126 

measurements during handgrip and PEI. Insulin was measured via an EIA assay (ALPCO, 127 

Salem, NH). Insulin resistance was assessed using the homeostatic model assessment of insulin 128 

resistance (HOMA-IR): HOMA-IR = (glucose X insulin) / 22.5. 129 

 130 

Muscle Sympathetic Nerve Activity. Multiunit postganglionic MSNA was recorded using 131 

standard microneurographic techniques, as previously described (13, 36, 53, 54). Briefly, a 132 

tungsten microelectrode was placed into the peroneal nerve near the left fibular head, and a 133 

reference microelectrode was inserted 2-3 cm away. Signals were amplified, filtered (bandwidth 134 

0.7-2.0 kHz), rectified and integrated (0.1 s time constant) to obtain mean voltage neurograms 135 

using a nerve traffic analyzer (Nerve Traffic analyzer, model 662c-3; University of Iowa 136 

Bioengineering, Iowa City, IA). MSNA was identified by the presence of spontaneous pulse 137 

synchronous bursts that were responsive to end-expiratory breath holds, but not to arousal or 138 

stroking of the skin. Although MSNA signals were obtained in all control subjects, 1 139 

normotensive and 1 hypertensive T2D patient were highly sensitive to the procedure so it was 140 

stopped, and we were unable to attain quality signals in 2 others (1 normotensive and 1 141 
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hypertensive T2D patient).  All neural cardiovascular data was acquired at a frequency of 1,000 142 

Hz using Chart version 5.2 (Powerlab, ADInstruments, Bella Vista, NSW, Australia). 143 

 144 

Isometric handgrip. Subjects were seated in a semi-recumbent position with a handgrip 145 

dynamometer held in the right hand (model 76618; Lafayette Instrument, Lafayette, IN) with the 146 

limb supported on an adjustable bedside table. Maximum voluntary contraction (MVC) was 147 

determined as the highest of three to five maximal efforts each separated by 1 min, and was used 148 

to calculate relative work rates of 30 and 40% MVC for the experimental protocol. During the 149 

experimental protocol, ratings of perceived exertion (RPE) were acquired using the Borg scale of 150 

6 to 20 at the end of each bout of handgrip. 151 

 152 

Experimental protocol. All experiments were performed in a dimly-lit room at an ambient room 153 

temperature of 22-24ºC with external stimuli minimized. On the experimental day, subjects 154 

arrived at the laboratory following an overnight fast, and were also requested to abstain from 155 

caffeinated beverages for 12 h and strenuous physical activity and alcohol for at least 24 h. T2D 156 

patients were also instructed to refrain from all medication use the morning of the study. Before 157 

the performance of the experimental protocol, each subject was familiarized with all 158 

measurements, the equipment and testing procedures.  159 

After instrumentation for all experimental measurements, a 10 min baseline recording 160 

was performed to determine resting cardiovascular variables and MSNA. Subjects then 161 

performed 2 min of isometric handgrip at either 30% or 40% MVC followed by 2 min and 15 s 162 

of forearm ischemia to isolate muscle metaboreflex activation (PEI). PEI was achieved by 163 

inflation of a blood pressure cuff around the upper arm to suprasystolic pressure (>240 mmHg) 5 164 
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s before the end of handgrip exercise. The additional 15 s of PEI was included to account for the 165 

initial decrease in BP and MSNA that occurs immediately following the cessation of handgrip 166 

exercise. Visual feedback regarding the handgrip force exerted was provided via a personal 167 

computer displayed at eye level (Chart v5.2, Powerlab). In all cases except one, the 30% MVC 168 

trial was performed first due to the greater probability for muscle tension and loss of the MSNA 169 

signal during 40% MVC handgrip. The handgrip trials were separated by at least 15 min to allow 170 

BP, MSNA, and HR to return to baseline values. 171 

 172 

Cold pressor test. A cold pressor test was used to determine BP, MSNA, and HR responses to a 173 

generalized, non-exercise sympathoexcitatory stimulus (55). The right hand was placed in ice 174 

water for 2 min. All variables were recorded during a 2 min baseline period, during the cold 175 

pressor test, and for 2 min during recovery.  176 

 177 

Data Analysis. Resting values for BP, MSNA, and HR were calculated as mean values over a 10 178 

min steady-state period. MSNA was analyzed using a custom LabVIEW program (12, 13). 179 

MSNA was quantified as burst frequency (bursts/min), burst incidence (bursts/100 cardiac 180 

cycles) and total activity (burst frequency multiplied by mean burst amplitude; AU/min). To 181 

account for variation in burst amplitude, MSNA burst amplitudes were expressed as a percentage 182 

of the average of the three largest bursts during baseline (assigned a mean value of 100 arbitrary 183 

units; AU). Thirty second averages of handgrip exercise (30-60 s and 90-120 s) and the final 60 s 184 

averages of PEI were used for group comparisons. The first 60 s and second 60 s of the cold 185 

pressor test were averaged and used for group comparisons. 186 
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To examine the interaction between the muscle metaboreflex and the arterial baroreflex, 187 

spontaneous baroreflex control of MSNA was calculated during PEI and compared to resting 188 

measures. Briefly, MSNA was averaged over 3-mmHg diastolic BP ranges (bins), and a 189 

weighted linear regression analysis between the spontaneous changes in MSNA and diastolic BP 190 

was performed. MSNA within each pressure bin was calculated as total MSNA (total area of all 191 

MSNA bursts relative to the number of cardiac cycles) and expressed as AU/beat. Burst 192 

incidence within each pressure bin was also calculated. Diastolic BP was used for this analysis 193 

because changes in MSNA correlate closely with changes in diastolic BP but not systolic BP 194 

(51).  195 

  196 

Statistical Analysis. All data are reported as mean ± SEM. Statistical comparisons of resting 197 

physiological variables between groups were made using one-way analysis of variance 198 

(ANOVA). Statistical comparisons of changes in BP, MSNA, and HR between groups during 199 

handgrip and PEI, and during the CPT, were made using two-way repeated measures ANOVA. 200 

Bonferonni post hoc testing was applied where significant main effects were found. Pearson 201 

product-moment correlation coefficients were performed between metabolic parameters and BP 202 

and MSNA responses to handgrip, PEI and the CPT. Data was analyzed using SigmaPlot 13 203 

(Systat Software Inc.).  204 

 205 

Results 206 

 207 

Subject Characteristics. Age and BMI were not different between Controls and T2D patients 208 

(Table 1). As expected, T2D patients had significantly elevated plasma glucose, HbA1c, and 209 
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HOMA-IR compared to Control subjects (Table 1). No significant differences in resting systolic, 210 

diastolic, or MAP were found between Controls and T2D Patients (Table 1). In this regard, all 211 

hypertensive T2D patients were currently on an active treatment regimen (≥ 1 antihypertensive 212 

medications) (Table 2). Resting MSNA burst frequency and burst incidence was also not 213 

different between Controls and T2D Patients (Table 1). A comparison of normotensive and 214 

hypertensive T2D patients demonstrated no significant differences in resting metabolic, 215 

cardiovascular or MSNA variables (Table 3). The only significant difference found was a greater 216 

BMI in hypertensive T2D patients.  MVC was not different between groups (Control: 40 ± 3 kg; 217 

T2D: 38 ± 3 kg; T2D+HTN: 42 ± 3 kg; P=0.908).  218 

 219 

Isometric handgrip and PEI.  220 

Original recordings of BP and MSNA at baseline, during 30% MVC handgrip, and 221 

during PEI in 3 T2D patients and 3 control subjects are displayed in Fig. 1. The increase in MAP 222 

was significantly greater during 30% and 40% MVC handgrip in T2D patients compared to 223 

control subjects and these augmented pressor responses in T2D patients were maintained during 224 

PEI (Fig. 2). Similar results were found with systolic BP (30% MVC, P=0.001 vs. Control; 40% 225 

MVC, P=0.011 vs. Control), and diastolic BP (30% MVC, P<0.001 vs. Control; 40% MVC, 226 

P=0.021 vs. Control) (data not shown). The increase in HR during handgrip was also 227 

significantly greater in T2D patients, but only during 30% MVC handgrip (P<0.001 vs. Control), 228 

and returned toward baseline values during PEI following both 30% and 40% handgrip in both 229 

T2D patients and controls (Figure 2). RPE values obtained at the end of handgrip were not 230 

different between groups (30% MVC: T2D, 13.5 ± 0.6 vs. Control, 11.8 ± 0.6, P=0.057; 40% 231 

MVC: T2D, 15.7 ± 0.5 vs. Control, 14.3 ± 0.8, P=0.161). 232 
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MSNA responses to handgrip and PEI were also significantly greater in T2D patients 233 

compared to controls (Fig. 3). In this regard, during handgrip exercise at 30% MVC, the change 234 

in MSNA burst frequency and percent change in total activity was augmented in T2D patients 235 

compared to controls, and this augmented MSNA response was sustained during PEI (Fig 3A). 236 

Likewise, MSNA burst incidence was greater in T2D patients during 30% MVC handgrip and 237 

PEI (HG 120: T2D, Δ20.1 ± 3.8 vs. Control, Δ6.5 ± 1.7 burst/100 heartbeats, P<0.001; PEI: 238 

T2D, Δ23.8 ± 6.5 vs. Control, Δ9.9 ± 2.5 burst/100 heartbeats, P<0.001). During handgrip and 239 

PEI at 40% MVC, the percent change in MSNA total activity was also augmented in T2D 240 

patients; whereas, the change in MSNA burst frequency did not reach statistical significance, 241 

although there was a tendency for a greater response in T2D patients (Fig. 3B, top panel). The 242 

latter may be due to maintaining MSNA recordings in only 8 T2D patients during 40% MVC 243 

handgrip. This was primarily due to muscle tension and loss of the MSNA signal with this higher 244 

intensity of handgrip. In contrast, quality MSNA recordings were maintained during 30% MVC 245 

handgrip and PEI in 12 T2D patients. Nevertheless, MSNA burst incidence was greater in the 246 

T2D patients during 40% MVC handgrip and PEI (HG 120: T2D, Δ27.4 ± 6.1 vs. Control, Δ13.0 247 

± 5.6 burst/100 heartbeats; PEI: T2D, Δ31.7 ± 4.9 vs. Control, Δ16.7 ± 3.6 burst/100 heartbeats, 248 

P=0.04).  249 

Among the T2D patients, BP and MSNA responses to isometric handgrip at 30% MVC 250 

were similar between those with and without hypertension. Likewise, BP responses to 40% 251 

MVC handgrip were not different between normotensive and hypertensive T2D patients, 252 

whereas the MSNA response to 40% MVC handgrip was greater in hypertensive T2D patients. 253 

Nevertheless, BP and MSNA responses during PEI following both 30% and 40% MVC were not 254 

different between normotensive and hypertensive T2D patients (Fig 4). We also tested for 255 
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potential sex differences in cardiovascular responses to handgrip and PEI, since our groups were 256 

composed of both men and women. We found no effect of sex on any of the variables of interest 257 

both during handgrip and PEI. For example, in the control group (N=5 men and 5 women), the 258 

increase in MSNA during PEI following 30% MVC handgrip was Δ5.2 ± 1.5 bursts/min in the 259 

men and Δ6.4 ± 2.6 bursts/min in the women (P=0.702) and in the T2D patients (N=6 men and 6 260 

women), the increase in MSNA during PEI was Δ17 ± 5.4 bursts/min in the men and Δ14.5 ± 3.1 261 

burst/min in the women (P=0.615).  262 

The increases in MSNA total activity during PEI following both 30% MVC and 40% 263 

MVC handgrip were significantly correlated with fasting glucose, HbA1c, and HOMA-IR 264 

(Figure 5). In contrast, weaker relationships between fasting insulin and MSNA responses during 265 

PEI were found (30% MVC PEI: R=0.2, P=0.417; 40% MVC PEI: R=0.4, P=0.153).   266 

Spontaneous baroreflex control of MSNA at rest was not different between T2D patients 267 

and controls for either burst incidence or total MSNA (burst incidence: T2D, -4.7 ± 0.4 vs. 268 

Control, -4.3 ± 0.5 bursts·100hb-1·mmHg-1, P=0.534; total MSNA: T2D, -2.5 ± 0.2 vs. Control, -269 

2.5 ± 0.3 AU·beat-1·mmHg-1, P=0.936). Likewise, the increase in total MSNA gain during PEI 270 

was not different between groups (30% MVC PEI: T2D, -3.4 ± 0.6 vs. Control, -4.4 ± 0.3 271 

AU·beat-1·mmHg-1, P=0.323).   272 

 273 

Cold pressor test. Although the increase in MAP during the cold pressor test appeared to be 274 

greater in T2D patients (n=9) compared to control subjects (n=9), this did not reach statistical 275 

significance (Fig. 6). However, the change in MSNA burst frequency (Fig 6B) and MSNA total 276 

activity (CPT min 2: T2D, 151 ± 20 vs. Control, 55 ± 21 %AU/min, P=0.005) were significantly 277 

greater in T2D patients (n=7) compared to control subjects (n=9). HR responses to the cold 278 
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pressor test were not different between groups (CPT min 2: T2D, Δ6 ± 3 vs. Control, Δ3 ± 2 279 

bpm, P=0.330). 280 

For the CPT, significant correlations were noted between increases in MSNA and fasting 281 

glucose (R=0.55, P=0.027) and HOMA-IR (R=0.79, P=0.001), but not HbA1c (R=0.39, 282 

P=0.134) or fasting insulin (R=0.35, P=0.218). Interestingly, no significant correlations were 283 

observed between the increases in MSNA during the CPT and during PEI following 30% MVC 284 

(R=0.368, P=0.161) or 40% MVC (R=0.472, P=0.103).  285 

 286 

Discussion 287 

The major and novel finding of the present study is that T2D patients exhibit a 288 

heightened activation of the metabolic component of the EPR. Indeed, augmented pressor and 289 

MSNA responses during handgrip were maintained during isolation of the muscle metaboreflex 290 

with PEI. Thus, greater MSNA and BP responses remained in T2D patients when input from 291 

central command and the muscle mechanoreflex were removed. Notably, MSNA responses were 292 

also greater in T2D patients compared to controls during the CPT. Collectively, these findings 293 

indicate, for the first time, that the metabolic component of the EPR is augmented with T2D and 294 

this contributes, in part, to augmented pressor and sympathetic responses to exercise in T2D 295 

patients. Greater MSNA responses to a generalized non-exercise sympatho-excitatory stimulus 296 

such as the CPT suggest that a heightened central sympathetic reactivity may be involved.  297 

Given the fairly well-documented augmentation in exercise BP in T2D patients (23, 25, 298 

38, 39, 43, 44), it was surprising that few studies have attempted to examine potential alterations 299 

in the underlying neural cardiovascular mechanisms in this patient group. Furthermore, to our 300 

knowledge, no studies have measured MSNA responses during exercise in T2D patients. Given 301 
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the significance of the muscle metaboreflex to the pressor response to exercise, we chose to 302 

begin with the muscle metaboreflex. To this end, graded PEI was used to trap local metabolites 303 

produced by active skeletal muscle and preserve activation of metabosensitive afferent nerve 304 

endings, and therefore isolate the metabolic component of the EPR (2, 30). We now demonstrate 305 

that PEI following 30 and 40% MVC handgrip resulted in augmented pressor responses, and that 306 

these augmented pressor responses were accompanied by enhanced increases in MSNA. 307 

Interestingly, the increase in MSNA during PEI was significantly correlated with glucose control 308 

and insulin resistance markers (i.e., fasting glucose, HbA1c, and HOMA-IR), implying that the 309 

effectiveness of T2D control may play a role (see Figure 5). Indeed, the higher the fasting 310 

glucose and HbA1c and the greater level of insulin resistance, the greater augmentation in 311 

muscle metaboreflex activation. Taken together, our results suggest that the effects of T2D on 312 

the regulatory mechanisms underlying the neural cardiovascular responses to exercise involve at 313 

least a heightened metabolic component of the EPR that appears to be related to the severity of 314 

T2D. 315 

T2D is commonly associated with hypertension (1, 3, 49, 50), and indeed, a significant 316 

number of T2D patients recruited for the present study had hypertension. Given that both human 317 

and animal studies have suggested an exaggerated activation of the muscle metaboreflex in 318 

hypertension (9, 34, 40, 41), we compared responses between normotensive and hypertensive 319 

T2D patients to test if the co-existence of hypertension and T2D would further augment the 320 

pressor and MSNA responses to PEI. However, we found that the heightened metaboreflex 321 

activation observed in the T2D patients was unaffected by hypertensive status (see figure 4). 322 

Both the BP and MSNA responses to handgrip and PEI were similar between normotensive and 323 

hypertensive T2D patients. Nonetheless, it is important to note that our data are only reflective of 324 
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hypertensive T2D patients that have well controlled BP and it is possible that uncontrolled 325 

hypertensive T2D patients or never treated hypertensive T2D patients might have different 326 

responses. Additional studies are warranted in this regard to further understand the influence of 327 

uncontrolled hypertension among T2D patients on muscle metaboreflex activation.  328 

The mechanisms responsible for the exaggerated muscle metaboreflex activation in T2D 329 

are not entirely clear. Although elevations in BP and MSNA during muscle metaboreflex 330 

activation are primarily driven by the muscle metaboreflex, there is an interaction between the 331 

metaboreflex and the arterial baroreflex that can modify such responses. Indeed, studies have 332 

shown exaggerated neural cardiovascular responses when input from the arterial baroreflex is 333 

removed (48, 56). Likewise, in healthy humans, an increase in the baroreflex control of MSNA 334 

has been observed during isolation of the muscle metaboreflex with PEI (8, 20, 22). Since 335 

previous work suggests that the sensitivity of the arterial baroreflex may be impaired in 336 

conditions associated with T2D such as obesity (6, 16) and hypertension (17, 31), we examined 337 

the interaction between the muscle metaboreflex and the arterial baroreflex. Our findings suggest 338 

that an impaired baroreflex control of MSNA does not appear to contribute to the augmented 339 

MSNA and BP responses observed during PEI since both groups exhibited an increase in MSNA 340 

baroreflex sensitivity with PEI, similar to previous studies (8, 20, 22). However, since only 341 

spontaneous baroreflex measures were used, additional studies are needed to more fully 342 

characterize arterial baroreflex function. It also remains possible that the group IV afferent fibers 343 

in the skeletal muscle interstitium that are responsive to changes in metabolic concentrations 344 

have greater sensitivity in T2D. Alternatively, although handgrip strength and perceived exertion 345 

were not different between T2D patients and control subjects, it remains possible that T2D 346 

patients experience greater metabolite build-up within the muscle interstitium during handgrip. 347 
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In this regard, previous work suggests altered skeletal muscle metabolism in T2D patients (4, 348 

42), which may lead to greater production of substances during muscle contraction that stimulate 349 

skeletal muscle afferents and contribute to greater metaboreflex activation in T2D patients. 350 

Identification of the particular substances responsible for stimulating muscle afferent remains an 351 

ongoing area of research (24), and future studies would be needed to characterize the 352 

responsiveness of skeletal muscle afferents to various substances in T2D, likely including animal 353 

investigations.  354 

In the present study, a CPT was used as a generalized sympathoexcitatory stimulus to 355 

assess whether a heightened central sympathetic activation may be augmented in T2D patients. 356 

Interestingly, the MSNA responses to the CPT were greater in T2D patients, and there was also a 357 

trend for a greater pressor response but this did not reach statistical significance. These results 358 

suggest that heightened sympathetic responsiveness in T2D may be global and not specific to 359 

metaboreflex activation. However, when MSNA responses to the CPT were compared to MSNA 360 

responses to isolated metaboreflex activation, no significant correlations were found. Also, 361 

correlations between metabolic measures (fasting glucose, HbA1c, and HOMA-IR) and the 362 

MSNA responses to the cold pressor test were noticeably weaker than was seen with isolated 363 

metaboreflex activation. Although not determining causality or lack thereof, these data suggest 364 

that greater central sympathetic activation may not completely account for the augmented 365 

metaboreflex activation of MSNA observed in T2D patients. Nevertheless, further studies are 366 

warranted to investigate the mechanism(s) responsible for the heightened BP and MSNA 367 

mediated metaboreflex responses in T2D as well as hypertension and will likely require animal 368 

investigations to tease apart the afferent, central and efferent pathways.   369 

 370 
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Perspectives 371 

Exaggerated increases in exercise BP are related to adverse cardiovascular and cerebrovascular 372 

events both during and following exercise (19, 27, 33). Although it is known that T2D patients 373 

exhibit augmented BP responses to exercise, limited studies have focused on the sympathetic and 374 

cardiovascular responses to isometric exercise in this patient group. This is important because 375 

isometric contractions are a component of many daily activities, and are capable of inducing 376 

marked increases in BP and afterload on the heart even when performed with a small muscle 377 

mass (32). This highlights the significance of the augmented increases in BP and MSNA that 378 

were observed in T2D patients and attributable in part to a heightened muscle metaboreflex 379 

activation.  These findings are of vital importance given the incidence of myocardial infarction 380 

and stroke among T2D patients (5, 26, 28, 57), and the number of common daily activities that 381 

involve an isometric muscle contraction component. Given our findings of a significant 382 

contribution of the muscle metaboreflex to greater pressor and sympathetic responses to 383 

isometric contractions in patients with T2D, future studies to identify the mechanism(s) 384 

responsible to target and reduce such hyper-responses are needed. In the meantime, if prescribed 385 

to a T2D patient for better health and fitness, resistance exercise training should be prescribed at 386 

a low intensity and duration for this patient population.  387 

In summary, we report for the first time that greater pressor responses in T2D during 388 

isometric handgrip are attributable, in part, to heightened muscle metaboreflex activation. 389 

Augmented pressor responses to handgrip and PEI in T2D patients are paralleled by exaggerated 390 

increases in MSNA. These findings demonstrate that the metabolic component of the EPR is 391 

augmented in T2D, and provide important insight to the neural mechanisms that contribute to the 392 

exaggerated increases in exercise BP in T2D.  393 
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Figure 1. Original recordings of muscle sympathetic nerve activity (MSNA) and mean arterial 572 
pressure (MAP) in 3 type 2 diabetic patients (T2D; Panels A-C) and 3 control subjects (Panels 573 
D-F) at baseline, during 30% MVC isometric handgrip, and during post-exercise ischemia (PEI). 574 

Figure 2. Mean and individual data showing the change in mean arterial pressure (MAP) and 575 
heart rate (HR) at 60 and 120 s of 30% MVC (Panel A) and 40% MVC (Panel B) handgrip 576 
followed by subsequent periods of post-exercise ischemia (PEI) in type 2 diabetic patients (T2D) 577 
and control subjects.*P<0.05 vs. Control. 578 

Figure 3. Mean and individual data showing the change in muscle sympathetic nerve activity 579 
(MSNA) at 60 and 120 s of 30% MVC (Panel A) and 40% MVC (Panel B) handgrip followed by 580 
subsequent periods of post-exercise ischemia (PEI) in type 2 diabetic patients (T2D) and control 581 
subjects.*P<0.05 vs. Control.  582 

Figure 4. Mean summary data showing the changes in mean arterial pressure (MAP) and muscle 583 
sympathetic nerve activity (MSNA) during isolation of the muscle metaboreflex with post-584 
exercise ischemia (PEI) following 30% maximal voluntary contraction (MVC) handgrip (Panel 585 
A) and 40% MVC handgrip (Panel B) in normotensive (T2D+NTN) and hypertensive type 2 586 
diabetic patients (T2D+HTN). 587 

Figure 5. Correlations between the change in muscle sympathetic nerve activity (MSNA) during 588 
post-exercise ischemia (PEI) following 30% maximal voluntary contraction (MVC) handgrip 589 
(Panel A) and 40% MVC handgrip (Panel B) and fasting glucose, glycated hemoglobin (HbA1c), 590 
and homeostatic model assessment of insulin resistance (HOMA-IR) in all subjects. 591 

Figure 6. Mean summary data showing the change in mean arterial pressure (MAP; Panel A) and 592 
muscle sympathetic nerve activity (MSNA; Panel B) at 60 and 120 s of a cold pressor test in type 593 
2 diabetic patients (T2D) and control subjects.*P<0.05 vs. Control.  594 

 595 
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Table 1. Main subject characteristics       
    Control T2D  P value 
Sex, men/women 5/5 9/7   

Age, years      46 ± 3 50 ± 2   0.334 

BMI, kg/m2      29 ± 2 31 ± 4   0.312 

Glucose, mg/dL      95 ± 2   198 ± 22*   0.001 

HbA1c, %     5.3 ± 0.1     8.6 ± 0.5*   <0.001 

Insulin (μIU/mL)     7.6 ± 0.7    11 ± 2.3   0.293 

HOMA-IR     1.8 ± 0.2     4.6 ± 0.7*   0.013 

Triglycerides, mg/dL    114 ± 20 184 ± 38   0.172 

  

Cardiovascular variables   

   Heart rate (bpm)       63 ± 4 69 ± 3   0.212 

   Systolic BP (mmHg)     122 ± 4 128 ± 4   0.313 

   Diastolic BP (mmHg)       78 ± 2 81 ± 3   0.394 

   Mean BP (mmHg)       91 ± 3 97 ± 3   0.258 

    

MSNA        N=10 N=12  

   Burst frequency (burst/min)       25 ± 4  31 ± 2   0.230 

   Burst incidence (burst/100hb)       39 ± 6 46 ± 4   0.361 

   Total activity (AU/min)   1241 ± 219 1411 ± 139   0.520 
*P<0.05 vs. Control    

  



Table 2. Subject medications      
Control T2D+NTN T2D+HTN 

Hypoglycemic medications    

  Biguanide N=0 N=5 N=7 

  Sulfonylurea N=0 N=1 N=0 

DPP-4 inhibitor N=0 N=0 N=3 

  Insulin N=0 N=2 N=4 

Cardiovascular medications    

  ACE inhibitor N=0 N=0 N=5 

  Ang II receptor blocker N=0 N=0 N=1 

  Diuretic N=0 N=0 N=4 

β-blocker N=0 N=0 N=1 

  Statin N=0 N=2 N=5 
 



 
Table 3. T2D subject characteristics       
    T2D+NTN T2D+HTN  P value 
Sex, men/women         4/4          5/3   

Age, years      48 ± 4       51 ± 2 0.576 
BMI, kg/m2      29 ± 2       34 ± 1† 0.032 
Glucose, mg/dL    209 ± 34     187 ± 29 0.637 
HbA1c, %     8.8 ± 0.8      8.5 ± 0.7 0.797 
Insulin (μIU/mL)   11.4 ± 4.9    10.8 ± 1.5 0.904 
HOMA-IR     4.5 ± 1.3      4.8 ± 0.8 0.860 
Triglycerides, mg/dL    175 ± 44       92 ± 64 0.833 

  
Cardiovascular variables   
   Heart rate (bpm)       69 ± 3       68 ± 4 0.890 
   Systolic BP (mmHg)     126 ± 6     130 ± 5 0.551 
   Diastolic BP (mmHg)       80 ± 4       83 ± 5 0.604 
   Mean BP (mmHg)       95 ± 4       99 ± 5 0.568 
    
MSNA         N=6         N=6  
   Burst frequency (burst/min)       31 ± 3        31 ± 3  0.980 
   Burst incidence (burst/100hb)       46 ± 5       45 ± 7 0.955 
   Total activity (AU/min)   1382 ± 209   1439 ± 201 0.846 
†P<0.05 vs. T2D+NTN    
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