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Summary 

Apoptosis-induced proliferation (AiP) is a compensatory mechanism to maintain tissue size and 

morphology following unexpected cell loss during normal development, and may also be a 

contributing factor to cancer and drug resistance. In apoptotic cells, caspase-initiated signaling 

cascades lead to the downstream production of mitogenic factors and the proliferation of 

neighbouring surviving cells. In epithelial cells of Drosophila imaginal discs, the Caspase-9 

ortholog Dronc drives AiP via activation of Jun N-terminal kinase (JNK); however, the specific 

mechanisms of JNK activation remain unknown. Here, we show that caspase-induced activation 

of JNK during AiP depends on an inflammatory response. This is mediated by extracellular 

reactive oxygen species (ROS) generated by the NADPH oxidase Duox in epithelial disc cells. 

Extracellular ROS activate Drosophila macrophages (hemocytes), which in turn trigger JNK 

activity in epithelial cells by signaling through the TNF ortholog Eiger. We propose that in an 

immortalized (‘undead’) model of AiP, signaling back and forth between epithelial disc cells and 

hemocytes by extracellular ROS and TNF/Eiger drives overgrowth of the disc epithelium. These 

data illustrate a bidirectional cell/cell communication pathway with implication for tissue repair, 

regeneration and cancer. 
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Introduction 

Following significant apoptotic cell death, apoptosis-induced proliferation (AiP) is a form 

of compensatory proliferation that can regenerate lost tissue via additional or accelerated cell 

divisions and is defined as the process by which apoptotic cells actively stimulate surviving cells 

to divide [1]. In Drosophila, there is mounting evidence that AiP is driven by mitogenic signals 

produced by apoptotic caspases in the dying cell [2-8].  Likewise, numerous studies in several 

regenerative model organisms including Hydra, planarians, newt, zebrafish, Xenopus and 

mammals have validated the concept of caspase-driven AiP (reviewed in [9, 10]). Furthermore, 

AiP may also be a contributing factor for the development of cancer and drug resistance [11-14]. 

Caspases are highly specific cell death proteases. In apoptotic cells, activated initiator 

caspases such as Caspase-9 and its Drosophila ortholog Dronc cleave and activate effector 

caspases such as Caspase-3 and its orthologs DrICE and Dcp-1 which trigger apoptosis 

(reviewed in [9, 10]). In addition to activating effector caspases, Dronc can also promote AiP 

through activation of Jun N-terminal kinase (JNK) signaling [4, 5, 15-18]. However, the specific 

mechanisms by which Dronc activates JNK are not known. Therefore, to facilitate screening for 

genes and mechanisms involved in AiP, we have developed the ey>hid-p35 model in Drosophila 

[5]. In this AiP model, the pro-apoptotic gene hid and the caspase inhibitor p35 are co-expressed 

under control of the eyeless-Gal4 (ey-Gal4) driver in the anterior eye imaginal disc. Because P35 

very specifically inhibits the effector caspases DrICE and Dcp-1 in Drosophila [19], hid/p35-

expressing cells initiate the apoptotic process by activating Dronc, but cannot execute apoptosis 

due to effector caspase inhibition by P35, thus producing “undead” cells [2-5, 15]. Furthermore, 

because undead cells do not die, continued Dronc signaling initiates a feedback amplification 

loop that involves Dronc, JNK and Hid which further amplifies the signals for AiP [16, 20]. 
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Thus, Dronc chronically signals for AiP and triggers overgrown imaginal discs which in the case 

of ey>hid-p35 produces overgrowth of adult heads with pattern duplications compared to control 

(ey>p35) animals (Figure 1A,B) [5]. In ey>hid-p35 eye imaginal discs, the anterior part of the 

eye disc where ey-Gal4 is expressed is overgrown at the expense of the posterior eye field [5]. 

This reduction of the posterior eye field can be visualized using the photoreceptor marker ELAV 

(Figure S1A,B). We are using the normalization of the ELAV pattern in the posterior eye field in 

various genetic backgrounds as indicator of the suppression of ey>hid-p35–induced overgrowth 

at the disc level (Figure S1C). 

Here, using the ey>hid-p35 model of AiP to investigate the mechanisms by which Dronc 

activates JNK signaling, we show that Dronc activity in epithelial disc cells promotes activation 

of the NADPH oxidase Duox which generates extracellular reactive oxygen species (ROS). 

Extracellular ROS activate hemocytes, Drosophila macrophages, at undead tissue. Activated 

hemocytes in turn release the TNF ligand Eiger which promotes JNK activation in epithelial cells 

and promotes AiP. These data illustrate a bidirectional cell/cell communication pathway with 

implication for tissue repair, regeneration and cancer. 

 

Results  

Ectopic production of ROS in apoptosis-induced proliferation 

When reactive oxygen species (ROS) accumulate indiscriminately within cells, they can 

be toxic leading to oxidative stress and possible cell death. However, at lower, controlled levels, 

ROS can have specific roles in growth control, proliferation and differentiation [21]. Recent 

studies have demonstrated critical requirements for ROS during wound healing and regeneration, 

and in certain contexts via activation of JNK [22-24]. In order to examine the role of ROS in 
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AiP, we assessed in vivo ROS levels in Drosophila imaginal discs using the ROS-reactive dyes 

dihydroethidium (DHE) and the fluorescein based H2-DCF-DA [25].  In undead eye imaginal 

discs, ROS are dramatically increased compared to control discs (Figure 1D,E,H,I). This 

increased ROS production in undead tissue is dependent on Dronc activity (Figure 1F,J) 

consistent with the suppression of the adult head overgrowth phenotype (Figure 1C) and the 

normalization of the ELAV pattern by dronc mutations (Figure S1C). We also detected increased 

ROS in undead wing imaginal discs (nub>hid-p35) (Figure 1L,M) suggesting that the production 

of ROS in response to caspase activation is not tissue-specific. These data imply that ROS can be 

generated in developing epithelial tissues following initiator caspase activation, independently of 

cell death execution. 

We also examined if ROS are produced in a p35-independent AiP model in which 

apoptosis is temporally induced and cells are allowed to die [5, 17, 18, 26]. In this AiP model, 

hid expression is induced for 12h in the dorsal half of the eye disc using dorsal eye-(DE-)Gal4 

(DE
ts
>hid) during 2

nd
 or 3

rd
 larval instar [5]. ROS are observed immediately after apoptosis 

induction (Figure 1N,O; Figure S2A,D) suggesting that its production is an early event in the 

death and regeneration process. In this AiP model, ROS levels can be detected for up to 24 hours 

after apoptosis induction (Figure S2B,C). These data are consistent with a recent report about 

ROS production in a p35-independent model in wing imaginal discs [27]. 

 

Extracellular ROS are required for apoptosis-induced proliferation upstream of JNK 

To determine if there is a functional requirement for ROS in AiP, we mis-expressed 

ROS-reducing enzymes in the undead AiP model. However, mis-expression of cytosolic SOD 

and cytosolic catalase transgenes did not significantly suppress ey>hid-p35-induced overgrowth 
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(Figure 2A,E). In contrast, mis-expression of two extracellular catalases, immune-regulated 

catalase (IRC) and a secreted human catalase (hCatS), does suppress ey>hid-p35-induced 

overgrowth (Figure 2B,E; see detailed statistical analysis in Figure S3F). Consistently, mis-

expression of hCatS results in a strong reduction of ROS in undead eye discs (Figure S3A-C). 

These observations suggest that extracellular ROS are required for AiP following induction of 

apoptosis. 

Two enzymes known to generate extracellular ROS are the transmembrane NADPH 

oxidases Nox and Duox [28]. To examine if either of these enzymes are involved in ROS 

production during AiP, we knocked down their expression by RNAi. Targeting Nox did not 

significantly suppress the AiP overgrowth phenotype in ey>hid-p35 animals (Figure 2C,E; see 

summary in Figure S3E). In contrast, RNAi against Duox produced a suppression of the AiP 

overgrowth phenotype (Figure 2D,E; Figure S3D,E). Three independent RNAi transgenes for 

both of these genes gave consistent results (Figure S3D,E).  

Because ey>hid-p35 imaginal discs cause overgrowth due to increased cell proliferation 

(Figure 2F) [5], we examined if the suppression of overgrowth by Duox RNAi and hCatS 

expression is due to reduction of mitotic activity in ey>hid-p35 discs by PH3 labeling. This was 

indeed found to be the case (Figure 2G”,H”,I”; quantified in Figure 2F). Concomitantly, a 

normalization of the ELAV pattern was observed in ey>hid-p35 discs after reduction of ROS by 

Duox RNAi and hCatS expression (Figure 2G-I).   

As Duox was disc-autonomously inhibited in undead cells (using ey-Gal4), these data 

indicate that extracellular ROS originate from the same cells that have activated Dronc, 

consistent with the observation that ROS production requires Dronc (Figure 1F,G,J,K). 
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Combined, Duox activity in undead cells produces extracellular ROS, which is required for AiP-

induced overgrowth. 

Next, we examined the position of ROS function relative to JNK, which is a critical 

mediator of AiP [4, 5, 17, 18]. Using MMP1 as a marker of JNK activity [29], we observed that 

JNK activity is strongly reduced in undead eye discs that overexpress hCatS or Duox RNAi 

(Figure 2G’-I’). Furthermore, activation of JNK by overexpression of a constitutively active 

JNKK (hep
CA

) in a dronc
-/-

 background does not result in the generation of ROS (Figure S4). 

These data are consistent with a model in which extracellular ROS are produced and acting 

upstream of JNK. Because JNK markers and cleaved Caspase 3 labelings overlap in undead cells 

[4, 5, 18], we propose that extracellular ROS signal back to undead cells – directly or indirectly - 

to turn on JNK, and thus activate downstream mitogen production for AiP. 

 

ROS activate hemocytes for apoptosis-induced proliferation 

To identify the function of extracellular ROS, we considered that they may activate 

hemocytes, Drosophila innate immune cells, as has been observed in Drosophila embryos [30]. 

Indeed, the pan-hemocyte anti-Hemese (H2) antibody [31] revealed that hemocytes are attached 

to both control and undead eye imaginal discs (Figure 3A,B). In wing imaginal discs, where no 

hemocytes are attached to control discs, there is a strong increase in the number of hemocytes 

attached to undead tissue (Figure S5A,B). There are three different types of hemocytes in the 

Drosophila larva: plamatocytes, lamellocytes and crystal cells [32]. Cell type-specific markers 

identify the hemocytes attached to undead tissue as macrophage-like plasmatocytes (Figure S5C-

E).  
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Most strikingly, although hemocytes are present at control eye imaginal discs, they 

change morphology and location when they are attached to undead tissue. At control eye discs, 

they tend to form large cell clusters (Figure 3A,C) which are located around the border between 

anterior proliferating tissue and the posterior differentiating photoreceptors. In contrast, 

hemocytes on undead discs are enlarged and often present as single cells, are less spherical and 

extent cellular protrusions (Figure 3B,D) which may assist in signaling between hemocytes and 

undead epithelial cells [33]. Furthermore, they also attach to undead tissue that displaces part of 

the posterior eye tissue as visualized by disrupted ELAV labeling (compare Figure 3B,B’ with 

3A,A’). A similar morphology of activated hemocytes was observed in undead wing imaginal 

discs (Figure S5B). Upon loss of ROS by expression of the extracellular catalase hCatS or Duox 

RNAi, hemocyte recruitment is strongly impaired and ELAV labeling is normalized (Figure 

3E,F). These results suggest that extracellular ROS activate hemocytes at undead tissue.  

Interestingly, we also noted that the labeling of ey>hid-p35 discs with cleaved caspase-3 

antibody (CC3) is reduced, but not completely absent, when ROS are removed by Duox RNAi 

and hCatS expression (compare Figure 3E”,F” with 3B”). Because CC3 is a marker of active 

Dronc [34] which is activated by ey-driven hid, and because CC3 labeling is not completely 

absent, the reduction of CC3 labeling after removal of extracellular ROS suggest that ROS 

participate in the feedback amplification loop between Dronc, JNK and Hid that has previously 

been described during stress-induced apoptosis [16, 20]. 

 

Hemocytes are required for apoptosis-induced proliferation 

Next, we investigated whether hemocytes promote or restrict the overgrowth of undead 

tissue. To address this question, we analyzed ey>hid-p35 animals that are mutant for serpent 
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(srp), a GATA-type Zn-finger transcription factor that is required for hemocyte differentiation 

[35]. Of particular importance is the srp
neo45

 allele that specifically affects srp’s requirement for 

hemocyte differentiation, but leaves other functions of srp intact [36]. The adult overgrowth 

phenotype of ey>hid-p35 animals is dramatically suppressed when heterozygous mutant for 

srp
neo45

 (Figure 4A,B,E; see detailed statistics in Figure S3G). Similar results were obtained for a 

different srp allele, srp
01549

 (Figure 4C,E; Figure S3G). In contrast, inactivation of srp 

specifically in the eye imaginal disc epithelium using three independent RNAi lines does not 

result in suppression of the overgrowth phenotype (Figure 4D,E; Figure S3G) indicating that srp 

is required non-disc autonomously for AiP. Given that srp
neo45

 specifically affects hemocyte 

function, we conclude that hemocytes are required for AiP in the ey>hid-p35 model.  

Concomitantly, loss of srp function reduces JNK activity in undead tissue (Figure 

4F,G,H). To exclude the possibility that JNK activity is responsible for hemocyte recruitment to 

undead disc tissue, we activated JNK by expression of hep
CA

. This experiment was done in a 

dronc
-/-

 background to block the feedback amplification loop which may otherwise activate 

hemocytes. However, under these conditions, hemocytes are not activated (Figure S6) further 

substantiating that hemocytes are acting upstream of JNK. These results suggest that undead 

tissue produces extracellular ROS through activation of Duox, which triggers an inflammatory 

response by activating hemocytes. Hemocytes in turn are required for JNK activation and the 

overgrowth of the undead epithelial disc tissue. 

Interestingly, ey>hid-35 eye discs mutant for srp also show a reduction, but not complete 

absence, of caspase activity as detected by CC3 (Figure 4I,J,K). This observation suggests that 

hemocytes participate in the feedback amplification loop in apoptotic cells described previously 

[16, 20].  
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Hemocytes activate JNK through the TNF system Eiger/Grindelwald 

We frequently observed that hemocytes and epithelial cells expressing the JNK marker 

puc-lacZ are in direct contact (Figure 5A), further confirming the notion that hemocytes promote 

JNK activation in epithelial disc cells. This observation suggests that hemocytes release one or 

more signals that induce JNK activation in disc cells and promote AiP.  

One signal known to induce the JNK cascade in epithelial cells is Eiger, a TNF-like 

ligand in Drosophila [37-39]. To test a requirement of Eiger for AiP, we generated ey>hid-p35 

flies in homozygous eiger mutant background. Under these conditions, the overgrowth of the 

adult head is strongly suppressed (Figure 5B,C,E; see detailed statistical analysis in Figure S3H). 

Loss of eiger also results in loss of JNK activity in ey>hid-p35 discs (Figure 5F,G,G’,H,H’) 

consistent with a role of Eiger signaling for JNK activation [37-39].  

In contrast, RNAi targeting eiger specifically in the eye disc (using ey-Gal4), does not 

suppress the overgrowth phenotype [5] (Figure 5E; Figure S3H) suggesting a non-disc 

autonomous function of Eiger. A putative role of Eiger in hemocytes is supported by 

immunofluorescent analysis using anti-Eiger antibody. In contrast to ey>p35 controls, we 

observed Eiger protein in hemocytes attached to undead epithelial tissue (Figure 6; arrows in D 

and D’). There is also increased diffused Eiger labeling immediately outside of hemocytes at 

undead disc tissue (arrowhead in Figure 6D’,D”). These data suggest that Eiger is upregulated in 

and secreted by hemocytes attached to undead tissue consistent with work by another group 

which showed increased Eiger protein in hemocytes in a different context [40].  
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There are two putative Eiger/TNF receptors encoded in the Drosophila genome, wengen 

and grindelwald (grnd) [39, 41, 42]. We have previously shown that wengen is not required disc-

autonomously for overgrowth of undead tissue [5] (see also Figure 5E; Figure S3H). In contrast, 

RNAi targeting grnd in the disc strongly suppressed the overgrowth of ey>hid-p35 animals 

(Figure 5D,E; Figure S3H) suggesting a disc-autonomous requirement of grnd. Consistently, 

Grnd uses the same regulatory factors for JNK activation, Traf2 and Tak1 [42], that are also 

required for JNK activation in AiP [5]. Additionally, upon grnd knockdown, the ectopic JNK 

activity in the undead tissue is lost (Figure 5I). These results provide evidence that Eiger/Grnd-

dependent activation of JNK serves as intermediary of hemocyte/disc crosstalk, which is 

required for AiP and overgrowth of undead epithelial tissue. 

 

Discussion 

The role of ROS as a regulated form of redox signaling in damage detection and damage 

response is becoming increasingly clear [21]. Here, we have shown that in Drosophila 

extracellular ROS generated by the NADPH oxidase Duox drive compensatory proliferation and 

overgrowth following hid-induced activation of the initiator caspase Dronc in developing 

epithelial tissues (Figure 7). We find that at least one consequence of ROS production is the 

activation of hemocytes at undead epithelial disc tissue. Furthermore, our work implies that 

extracellular ROS and hemocytes are part of the feedback amplification loop between Hid, 

Dronc and JNK (Figure 7) that occurs during stress-induced apoptosis [16, 20]. Finally, 

hemocytes release the TNF ligand Eiger which promotes JNK activation in epithelial disc cells 

(Figure 7).  
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This work helps to understand why JNK activation occurs mostly in apoptotic/undead 

cells, but occasionally also in neighbouring surviving cells [4, 5, 17, 18]. Because our data 

indicate that hemocytes trigger JNK activation in epithelial cells, the location of hemocytes on 

the imaginal discs determines which epithelial cells receive the signal for JNK activation (Figure 

7). Nevertheless, we do not exclude the possibility that there is also an autonomous manner of 

Dronc-induced JNK activation in undead/apoptotic cells as indicated in Figure 7. 

In the context of apoptosis, hemocytes engulf and degrade dying cells [43]. However, 

there is no evidence that hemocytes have this role in the undead AiP model. We do not observe 

CC3 material in hemocytes attached to undead tissue. Therefore, the role of hemocytes in driving 

proliferation is less clear and likely context-dependent. In Drosophila embryos, hemocytes are 

required for epidermal wound healing, but this is a non-proliferative process [24]. With respect 

to tumor models in Drosophila, much of the research to date has focused on the tumor 

suppressing role of hemocytes and the innate immune response [44-46]. However, a few reports 

have implicated hemocytes as tumor-promoters in a neoplastic tumor model [40, 47]. 

Consistently, in our undead model of AiP, we find that hemocytes have an overgrowth- and 

tumor-promoting role. Therefore, the state of the damaged tissue and the signals produced by the 

epithelium may have differential effects on hemocyte response.  

In a recent study, ROS were found to be required for tissue repair of wing imaginal discs 

in a regenerative (p35-independent) model of AiP [27], consistent with our work. While a role of 

hemocytes was not investigated in this study [27], it should be noted that p35-independent AiP 

models do not cause overgrowth, while undead ones like the ey>hid-p35 AiP model do. It is 

therefore possible that ROS in p35-independent AiP models are necessary for tissue repair 

independently of hemocytes, while ROS in conjunction with ROS-activated hemocytes in 
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undead models mediate the overgrowth of the affected tissue. Future work will clarify the 

overgrowth-promoting function of hemocytes. These considerations are reminiscent of 

mammalian systems, where many solid tumors are known to host alternatively activated (M2) 

tumor-associated macrophages, which promote tumor growth and are associated with a poor 

prognosis (reviewed in [48]).  

As tumors are considered “wounds that do not heal” [49], we see the undead model of 

AiP as a tool to probe the dynamic interactions and intercellular signaling events that occur in the 

chronic wound microenvironment. Future studies will investigate the specific mechanisms of 

hemocyte-induced growth and the tumor promoting role of inflammation in Drosophila as well 

as roles of additional tissue types, such as the fat body, on modulating tumorous growth. 

 

Experimental Procedures 

See Supplemental Information for experimental procedures. 
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Figure 1: Ectopic Production of Reactive Oxygen Species (ROS) in Apoptosis-induced 

Proliferation (AiP). (See also Figures S1 and S2). 

(A,B) Representative examples of adult heads of control (ey>p35) and experimental (undead: 

ey>hid-p35) animals. The latter are characterized by overgrowth with duplications of bristles 

(arrows) and ocelli (arrowhead), often at the expense of eye size. Scale bars: 200 μm. 

(C) Heterozygosity of dronc suppresses overgrowth of adult heads of ey>hid-p35 animals. 

(D-F;H-J) Shown are 3
rd

 instar larval eye imaginal discs labeled for ROS with dihydroethidium 

(DHE) (D-F) and fluorescein based H2-DCF-DA (H-J). Disc outline is marked by white dashed 

lines. The yellow dotted lines mark the portion of the eye discs in which ey-Gal4 is expressed. In 

(E,I), the anterior portion of the eye disc is composed of undead tissue (ey>hid-p35) which is 

overgrown at the expense of the posterior parts of the disc (see also Figure S1). ROS levels are 

significantly higher in these overgrown, undead areas compared to control (ey>p35) discs (D,H). 

ROS levels are strongly suppressed in a dronc
I29

 heterozygous background (F,J). Arrows in (E) 

and (I) indicate ROS in anterior undead tissue. Scale bars 50 μm. 

(G,K) Quantification reveals that ROS levels are significantly higher in overgrown, undead discs 

(ey>hid-p35) than control (ey>p35) eye imaginal discs, while ROS levels are strongly 

suppressed in a dronc
I29

 heterozygous background. Quantification over the entire eye disc 

excluding the antennal disc is signal intensity per μm
2
 ±SEM analyzed by one-way ANOVA, 

with Holm-Sidak test for multiple comparisons. * p= 0.031 (G) and * p=0.010 (K). n.s.= no 

statistically significant difference between control and suppressed states. Between 15 and 25 

discs of each genotype were analyzed. 
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(L-O) ROS are detected in an undead wing (nub>hid-p35) AiP model (L,M) and a p35-

independent (regenerative) eye model (DE
ts
-hid) of AiP (N,O). (L) and (N) are the controls for 

(M) and (O), respectively. The yellow dotted lines indicate the Gal4 expressing areas which 

express the indicated transgenes and are marked by GFP (green). ROS are generated within the 

domains of specific cell death induction (arrows in M’ and O’). Genotypes are indicated above 

the panels. Scale bars 50 μm. 

 

Figure 2: Extracellular ROS are required for AiP upstream of JNK. (See also Figures S3 

and S4). 

(A-D) Reduction of extracellular ROS suppresses overgrowth. Representative examples of adult 

heads obtained from ey>hid-p35 animals overexpressing the indicated reducing enzymes or 

RNAi against the ROS producing enzymes Nox or Duox . Expression of IRC (B) and Duox
RNAi

 

(D) suppresses overgrowth of adult heads of ey>hid-p35 animals. Scale bars = 200μm. 

(E) Summary of the results regarding overexpression of catalases and SOD as well as RNAi-

mediated knockdown of the NADPH oxidases Nox and Duox. Based on qualitative screening 

criteria (presence of ectopic ocelli and bristles; expansion of mid-head capsule width; see Figure 

1B), progeny are scored as wild type (black bars) or having an overgrowth phenotype (red bars). 

Suppression is determined based on a shift in the percentage to wild-type from overgrown 

animals that is significantly different based on a Pearson’s chi-squared test for degrees of 

freedom=1, χ
2
 = 10.83 at p=0.001. Strong suppressors may also increase the overall survival as 

the ey>hid-p35 genotype is associated with ~50% lethality, whereas enhancers may decrease 

survival to adulthood (increased lethality). See also detailed statistical analysis in Figure S3F. 
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(F) Quantification of the PH3 labelings in (G-I). The number of mitotic cells in undead tissue 

(ey>hid-p35) is significantly reduced after ROS removal through Duox
RNAi

 and hCatS expression 

and equals control levels (ey>p35). Quantification over the entire eye disc excluding the antennal 

disc is number of PH3-positive cells analyzed by one-way ANOVA, with Holm-Sidak test for 

multiple comparisons. *** p<0.001 and ** p<0.01. Seven discs per genotype were analyzed.  

(G-I) In larval eye imaginal ey>hid-p35 discs, RNAi against the ROS-producing Duox (H) and 

transgenic expression of the human catalase hCatS (I) results in suppression of JNK activity 

(measured by MMP1; red in G-I; grey in G’-I’; see arrows) in the anterior undead eye tissue 

(between the yellow dotted lines). PH3 labeling (G”-I”) revealed a significant decrease of cell 

proliferation after reduction of extracellular ROS by Duox
RNAi

 and hCatS overexpression. 

Quantified in (F). Scale bars 50 μm. 

 

Figure 3: ROS activate Hemocytes for Apoptosis-induced Proliferation. (See also Figure 

S5). 

In (A,B,E,F), the ey-Gal4 expressing areas in the anterior portion of the larval eye imaginal discs 

which corresponds to undead tissue in (B,E,F), lies between the yellow dotted lines. Hemocytes 

are detected by the pan-hemocyte specific antibody anti-Hemese (red in A,B,E,F; grey in 

(A’,B’,C’,D’). In (C,D), hemocytes are labeled using the plasmatocyte-specific anti-NimC 

antibody. Cleaved Caspase 3 (CC3) antibody labeling is shown in green (A,B,E,F) and grey 

(A”,B”,C”,D”). Scale bars: 50 μm. 

(A) In ey>p35 control discs, hemocytes (red in A; grey in A’) are found in a clumped aggregate 

pattern along the boundary between anterior proliferating and posterior differentiating eye tissue 
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(visualized by ELAV labeling in blue (A); separated by the right yellow dotted line). They are 

also present as a cell aggregate in the antennal portion of the imaginal disc (left). CC3 labeling is 

not detectable in these control discs (A”) 

(B) Hemocytes adhere as single cells or small cell clusters on undead ey>hid-p35 eye tissue with 

reduced spherical morphology (B’). They are present in overgrown areas which in this case 

extend into the posterior portion of the disc as visualized by the disrupted ELAV pattern (blue). 

There is strong CC3 labeling in this portion of the eye discs (B”). 

(C) Hemocytes (NimC) are attached to control discs as large cell aggregates.  

(D) Hemocytes (NimC) attached to undead tissue extent protrusions (arrows), making extensive 

contacts with the epithelial layer of the imaginal disc. 

(E,F) Hemocyte association with ey>hid-p35 eye disc is abolished or reduced to control levels 

upon loss of ROS by transgenic expression of Duox
RNAi

 (E) and hCatS (F). The ELAV pattern is 

normalized in these discs (blue in E, F) indicating suppression of abnormal growth. CC3 labeling 

is reduced, but not absent, in (E”,F”) compared to ey>hid-p35 discs alone (B”). 

 

Figure 4: Hemocytes are required for AiP-induced overgrowth. (See also Figures S3 and 

S6). 

(A-D) Representative examples of adult heads of ey>hid-p35 animals that are either wild-type 

(A), heterozygous for two serpent (srp) alleles (B,C) or express UAS-srp
RNAi

 transgenes (D). The 

srp alleles used are indicated above the panels. The srp
RNAi

 line used in (D) is BL34080 from 



22 
 

Bloomington Stock center. Similar data were obtained for two additional srp
RNAi

 stocks (see E). 

Scale bars: 200 μm. 

(E) Schematic representation of the effects of srp alleles and srp RNAi on the ey>hid-p35 

overgrowth phenotype. Based on qualitative screening criteria (presence of ectopic ocelli and 

bristles; expansion of mid-head capsule width; see Figure 1B), progeny are scored as wild type 

(black bars) or having an overgrowth phenotype (red bars). Suppression is determined based on a 

shift in the percentage to wild-type from overgrown animals that is significantly different based 

on a Pearson’s chi-squared test for degrees of freedom=1, χ
2
 = 10.83 at p=.001. See Figure S3G 

for detailed statistical analysis. 

(F,G,H) srp alleles strongly suppress JNK activity in larval eye imaginal discs. Yellow dotted 

lines mark the undead tissue (arrows). MMP1 labeling (red in F,G,H; grey in F’,G’,H’) was used 

as a JNK activity marker. ELAV labeling (blue) indicates normalization of eye disc patterning by 

heterozygous srp alleles. Scale bars 50 μm. 

(I,J,K) CC3 is reduced, but not absent, by srp alleles (green in I-K; grey in I’-K’) suggesting that 

hemocytes participate in the feedback amplification loop in apoptotic cells. As shown in (F-H), 

the ELAV (blue) pattern is normalized. Yellow dotted lines mark the undead tissue (arrows). 

Scale bars 50 μm. 

 

Figure 5: Hemocytes activate JNK through the TNF system Eiger/Grindelwald. (See also 

Figure S3). 
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(A) Shown is a mildly overgrown ey>hid-p35 larval eye-antennal imaginal disc. Dashed white 

lines outline the disc, while the undead tissue is located between the yellow dotted lines. 

Hemocytes are labeled with nuclear hmlΔRFP marker (red) [50] and JNK activity is shown by 

puc-lacZ staining (white). Activated hemocytes are present as single cells (white arrow), while 

inactive hemocytes form cell clusters in the antennal portion of the disc and in the posterior eye 

disc (red arrows). Only activated hemocytes are found directly adjacent to puc-lacZ-positive 

epithelial cells in undead tissue. The white arrow in (A) indicates the location where the 

orthogonal (YZ) section was applied, shown enlarged in (A’). Yellow arrows in (A’) highlight 

examples where hemocytes are adjacent to puc-lacZ-positive epithelial cells. Scale bar 50 μm. 

(B-D) eiger (egr) mutants (C) and eye-specific (ey-Gal4) knockdown of grindelwald (grnd) (D) 

strongly suppress the overgrowth of the adult head cuticle of ey>hid-p35 animals (B). Genotype 

in (C): UAS-hid; egr
3
/egr

3
; ey-Gal4 UAS-p35. Scale bars 200 μm. 

(E) Quantification of the suppression of overgrowth of ey>hid-p35 animals by egr
3
 mutants, egr 

RNAi, wengen (wgn) RNAi and grindelwald (grnd) RNAi. Based on qualitative screening 

criteria (presence of ectopic ocelli and bristles; expansion of mid-head capsule width; see Figure 

1B), progeny are scored as wild type (black bars) or having an overgrowth phenotype (red bars). 

Suppression is determined based on a shift in the percentage to wild-type from overgrown 

animals that is significantly different based on a Pearson’s chi-squared test for degrees of 

freedom=1, χ
2
 = 10.83 at p=.001. For detailed statistical analysis see Figure S3H. 

(F,G,H) eiger mutants suppress JNK activity in ey>hid-p35 discs. Dashed white lines outline the 

disc, while the undead tissue is located between the yellow dotted lines.  The suppression of 

adult head overgrowth of ey>hid-p35 animals by egr mutants (C) correlates with loss of JNK 
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activity (MMP1; red in F-H; grey in F’-H’; see arrows) and normalization of the ELAV pattern 

(blue) in ey>hid-p35 discs (compare G and H). Scale bars 50 μm. 

(I) grnd RNAi suppresses JNK activity (puc-lacZ) in undead tissue (between yellow dotted lines, 

see arrow in I’) suggesting that Grnd is required for JNK activation. The suppression of adult 

head overgrowth by Grnd RNAi correlates with normalization of the ELAV pattern (magenta) in 

ey>hid-p35 tissue. CC3 (green) labeling is present, but reduced, in ey>hid-p35; Grnd RNAi 

discs. Scale bar 50 μm. 

 

Figure 6: Hemocytes are a source of the TNF ligand Eiger.  

Shown are eye-antennal imaginal discs from third instar larvae labeled with anti-Eiger antibody 

(red) and NimC antibody (green) to identify hemocytes (plasmatocytes). Scale bars 50 μm. 

(A,B) Anti-Eiger labeling (red) of control (ey>p35) eye discs with attached hemocytes (green). 

Inset from (A) is magnified in (B). Yellow line in (B) marks the orthogonal (YZ) section shown 

in (B’). Diffuse Eiger staining is seen in disc epithelium, but not in hemocytes (B”). 

(C,D) Anti-Eiger labeling of undead (ey>hid-p35) eye discs with attached hemocytes (green). 

Inset from (C) is magnified in (D). Yellow line in (D) marks the orthogonal (YZ) section shown 

in (D’). At higher magnification, increased Eiger labeling can be seen in hemocytes in the 

overgrown region of an undead disc (arrows in D,D’,D”) as well as at epithelial cells close to 

hemocytes (arrowhead in D and D”).   

 

Figure 7. Schematic summary of the AiP events presented in this work.  
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ey-Gal4 driven Hid in undead cells triggers a feedback amplification loop that involves Duox, 

ROS, hemocytes and Eiger signaling, ultimately resulting in AiP. JNK feeds back on endogenous 

Hid [20, 37] which maintains the amplification loop. Depending on the location of hemocytes on 

the imaginal disc, either undead or neighboring normal epithelial cells receive the Eiger signal 

for JNK activation. All proteins highlighted in yellow are required for AiP. The red arrows 

indicate participation in the feedback amplification loop.  Dotted lines and question marks 

indicate uncertainty. Not drawn to scale. In fact, hemocytes are much larger than epithelial disc 

cells. 
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Supplemental Figures 

 

 

Figure S1. Undead cells in the eye imaginal disc overgrow the posterior eye field which can be suppressed (normalized) by 
heterozygous dronc mutations. (Related to Figure 1) 

Shown are 3rd instar larval eye-antennal imaginal discs, outlined by DAPI labeling (blue). The antennal disc (Ant) is to the left. The 
ey-Gal4 expressing domain is in the anterior portion of the eye disc (marked by the yellow dotted lines; see white arrows) and 
corresponds to undead tissue in (B). The posterior portion of the eye disc which does not express ey>Gal4, is marked by expression of 
the photoreceptor marker ELAV (red) and gives rise to the eye field of the disc. 

(A) A ey>p35 control disc. Ant (antennal), ey-Gal4 (white arrow) and ELAV mark the different parts of the eye-antennal imaginal 
disc, separated by yellow dotted lines.  

(B) In ey>hid-p35 discs, ey-Gal4 drives hid and p35 expression in the anterior portion of the eye disc which overgrows and displaces 
the posterior eye field as visualized by ELAV (red). The white arrow highlights the undead ey-Gal4 domain which is overgrown at the 
expense of the posterior eye field as visualized by ELAV. The contour of the discs (blue) is deformed and multi-layered which causes 
folding. 

(C) droncI29 heterozygosity in ey>hid-p35 background normalizes disc morphology (blue) and ELAV pattern (red). 

 

 



 
 

 

 

Figure S2. ROS production in a p35-independent model of AiP. (Related to Figure 1) 

In this model, hid expression is restricted to a 12 hour interval in the dorsal half of the eye imaginal disc by Gal80ts-controlled dorsal 
eye-Gal4 (DEts-hid) activity as described [S1]. ROS are induced within the domains of specific cell death induction, marked by GFP. 
The yellow dotted lines separate the expression of hid in the GFP domain from the internal control at the ventral side. Scale bars 50 
μm. 

(A-C) ROS are detected by dihydroethidium (DHE; arrows in A’-C’) in the death domain of DEts>hid eye imaginal discs immediately 
after a 12 hour pulse of hid induction and persist throughout the death phase up to 24 hours after hid induction. The death domain is 
labeled by GFP (green). 

(D) The ROS production is independent of the timing of hid induction (2nd (A) vs 3rd (D)) instar of larval development. 

 

 

  



 
 

 

 
Figure S3: Reduction of ROS levels suppresses overgrowth. (Related to Figures 2, 4 and 5) 

 (A,B,C) ROS levels in ey>hid-p35 discs are strongly reduced by transgenic expression of human secreted catalase (hCatS) (A,B). 
Dashed white lines outline the disc, while the undead tissue is located between the yellow dashed lines (white arrows). Scale bars 50 
μm. (C) Quantifications of the ROS signal intensity per μm2 ±SD analyzed by one-way ANOVA, with Dunnett’s test for multiple 
comparisons, *p<0.05. (Related to Figure 2A-E) 

(D) Three independent transgenes for each of Nox and Duox gave consistent results. The numbers refer to the stock numbers of the 
Bloomington Drosophila Stock Center (BDSC). Lines #4 and #44 were provided by Won Jae Lee. (Related to Figure 2E) 

(E-H) Summary of statistical analysis of the suppression assay of ey>hid-p35 animals by various mutants and RNAi lines.  
Suppression is determined based on a shift in the percentages of the observed phenotypes, from overgrowth to wild-type (wt), that is 
significantly different based on a Pearson’s chi-squared test (degrees of freedom=1, χ2 = 10.83 at p=0.001, expected values for 
phenotypes derived from replicate controls). Shown is the percentage of ey>hid-p35 animals with wt adult head phenotype. A p-value 
of <0.001 is marked by ***. Significant suppressors are highlighted in bold. NS – not significant.  n indicates the total number of 
animals scored for each genotype. Shown is also the percentage of surviving animals as the ey>hid-p35 genotype is associated with 
~30-50% lethality. Strong suppressors may also increase the overall survival (% of expected animals that reached eclosion, % 
viability). (Related to Figures 2E, 4E, 5E) 



 
 

 

 

Figure S4. Activation of JNK signaling in dronc mutant background is not sufficient to generate ROS. (Related to Figure 2) 

(A, B) MARCM clones in the eye disc marked by GFP for control (A) and for droncI29 mutants (B). ROS are not produced in absence 
of dronc as marked by lack of DHE staining (B”).  

(C-C”) Expression of hepCA in dronc mutant clones using MARCM clones (marked by GFP) does not lead to ROS production. 

  



 
 

 

 

Figure S5: Hemocytes are recruited to undead wing imaginal discs and are plasmatocytes. (Related to Figure 3) 

 (A) Shown is a ptc>p35 control wing imaginal disc, labeled with the pan-hemocyte marker Hemese (red in (A) and grey in (A’)). 
Only a few hemocytes are detectable. GFP (green) labels the ptc expression domain (yellow dotted lines). Scale bars 50 μm. 

(B) Hemocytes (red in (B) and grey in (B’)) are recruited in large number to undead wing imaginal discs of genotype ptc>hid-p35. 
They also show similar alterations in morphology as observed in undead eye imaginal discs (Figure 3B,D). Cleaved Caspase 3 (CC3) 
labeling (green in B; yellow dotted line) is used to mark the undead tissue. Hemocytes attach to the undead portion of the wing tissue. 
Scale bars 50 μm. 

(C-E) Undead (ey>hid-p35) eye discs were labeled with plasmatocyte (NimC), lamellocyte (Atilla) and Crystal cell (C4) specific 
markers. Only NimC antibodies label the discs suggesting that plasmatocytes adhere to undead tissue. Scale bars 50 μm. 

 

  



 
 

 

 
Figure S6. JNK activation in dronc mutant background is not sufficient to change hemocyte morphology. (Related to Figure 4) 

Hemocytes (marked by NimC, red) on eye discs of control (A-A”) and droncI24 mutant clones (B-B”) appear unaltered for morphology 
and recruitment.  Activation of JNK signaling using activated hep (hepCA) in mutant background of dronc (C-C”) does not affect the 
morphology and/or the recruitment pattern of the hemocytes.  

 

   



 
 

 

Supplemental Experimental Procedures 

Fly stocks 

The following mutants and transgenic stocks were used: droncI29; srpneo45; srp01549; egr3; ey-Gal4; ptc-Gal4; nub-Gal4; DE-Gal4; tub-
Gal80ts; UAS-p35; UAS-hid; UAS-hepCA; puc-lacZ. UAS-based overexpression and RNAi stocks of the following genes were obtained 
from the stock centers (VDRC, Bloomington and NIG): SOD1, catalase, Nox, Duox, grnd.  UAS-IRC, UAS-hCatS, UAS-DuoxRNAi #44, 
and UAS-NoxRNAi #4 were kind gifts from Won Jae Lee. Except where noted, all crosses were maintained at 22°C and controls are 
crossed to w1118. Screening results are presented as the percentage of animals with either wild-type or overgrown phenotype. However, 
many animals with severe overgrowth do not eclose, therefore the percent survival is also reported as the number eclosed out of a total 
number expected based on Mendelian ratios (see Figure S3E-H for details). 

 

ROS in vivo staining 

Imaginal discs and adjacent structures were dissected from 3rd instar larvae (2nd instar for DEts>hid) in fresh Schneider’s medium for 
DHE staining and in fresh PBS for H2-DCF-DA staining, according to the protocol by Owusu-Ansah et al. [S2]. Care was taken to 
avoid severing the eye imaginal discs from the brain lobes prior to staining, else traumatic injury of the developing photoreceptor 
axons resulted in excessive signal. Samples were incubated in their respective dyes for 5 minutes, washed, dissected from remaining 
structures in PBS, mounted in Vectashield mounting media, and imaged immediately on a Zeiss LSM700 confocal microscope. Unless 
noted all image scale bars represent 50μm. Quantifications of ROS, specifically in the eye region of the eye-antennal disc, are reported 
as signal per area, determined using ImageJ. Statistical analysis was performed using one-way ANOVA with Dunnett’s test for 
multiple comparisons, α=0.05.  

 

Immunohistochemistry 

Imaginal discs were dissected from late 3rd instar larvae, fixed, and stained using standard protocols [S3]. Antibodies to the following 
primary antigens were used: anti-cleaved Caspase- 3 (Cell Signaling), β-GAL (Promega), PH3 (Millipore), ELAV and MMP1 
(DHSB). Anti-Hemese (H2), Nimrod (P1a,P1b), Atilla (L1), and C1 were a kind gift from István Andó [S4]. Anti-Eiger antibody was 
kindly provided by Masayuki Miura [S5]. Secondary antibodies were donkey Fab fragments from Jackson ImmunoResearch. Images 
were taken with a Zeiss LSM700 confocal microscope and processed using ImageJ. Unless noted all image scale bars represent 50μm. 
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