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Response to comments to CHEM39301 

Editor comments: 

Both reviewers are in favor of a publication and I concurred that a minor revision 

from your part is necessary before a final decision. In particular, please provide more 

information on analytical methods and QC and explore the suggestion to present 

ratios of concentrations in different rooms. 

Response: 

Dear Editor, 

Thank you very much for your comments on our manuscript entitled “Concentrations 

of "Legacy" and Novel Brominated Flame Retardants in matched samples of UK 

kitchen and living room/bedroom dust”. We have made corresponding changes to it 

according to the comments from reviewers which we found to be very constructive. 

More information on analytical methods and QC are provided in the response, and 

concentration ratios in different rooms are presented in the revised version. 

 

Comments of Reviewer #1 

General Remark 

The Manuscript "Concentrations of "Legacy" and Novel Brominated Flame 

Retardants in matched samples of UK kitchen and living room/bedroom dust" was 

well written and I would recommend for publication. 

Response:  

Thank you very much for your recommendation. We have carefully considered your 

comments and have revised the manuscript accordingly. 

Specific Comments 

(1) Some details should be given about the vacuumed area (m
2
) and the sampling time   

Response: Vacuuming area and time is added in the manuscript, with the reader 

referred to further details about sampling in our previously published paper (Harrad et 

al., 2008). 

(2) a. Was any EPA standard method followed regarding analytical condition on 

GCMS?  
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b. Were all the measured areas within the range of calibration curve? 

c. The results have been corrected for recoveries? 

d. Was the calibration level based on average RF, linear curve, other? 

e. Was there more than one level in calibration curve? 

Response: Thanks for this comment. Our responses to each of the sub-points follow: 

a. We have not used a EPA standard method for the determination of PBDEs and 

NBFRs, and instead have used an in-house method.  

b. In our method, the calibration range (20-1000 pg/μL) corresponds to a 

concentration range of 40-2000 ng/g in dust. This covers most data points, except 

for some extremely high concentrations of BDE-209, and some very low 

concentrations. As these outliers are very rare, we believe our method is 

fit-for-purpose. 

c. As we use internal standards to calculate the concentration, the results are 

inherently corrected for recovery.  

d. We prepared a 5-point calibration curve ranging from 20 pg/μL to 1000 pg/μL of 

native standards (together with 200 pg/µL of all internal and recovery 

determination standards in each) at the beginning of analysis to calculate the 

relative response factor (RRF). On a day-to-day basis, we conduct continuing 

calibration using a single calibration point (500 pg/μL native standards) run at the 

start and end of each sample batch. Quantification of samples in that batch is 

made using the average of the RRFs obtained for the two continuing calibration 

standards. As a QA/QC check, the RRFs obtained from each continuing 

calibration must fall within  25% of the RRFs obtained in the initial 5-point 

calibration. If this criterion is not met, then a new full 5-point calibration must be 

run.  

e. See our response to point d above. 

(3)Please change chapter 3.2 format between right-aligned and left-aligned 

Response: Thanks very much. We have revised this. 

Reference 

Harrad, S., Ibarra, C., Abdallah, M.A.-E., Boon, R., Neels, H., Covaci, A., 2008. Concentrations of 

brominated flame retardants in dust from United Kingdom cars, homes, and offices: Causes 

of variability and implications for human exposure. Environment International 34, 



1170-1175. 

 

Comments of Reviewer #2 

General Remark 

This manuscript reported the concentrations of "legacy" and novel brominated flame 

retardants (BFRs) in matched samples of UK kitchen and living room/bedroom dust. 

The temporal trend of BFRs and the difference between different microenvironment 

in house was investigated. This is a first study the contamination of BFRs in kitchen 

and the data of the present study is also valuable for us to further understand the 

indoor pollution and human exposure. This is a well-written paper containing 

interesting results which merit publication. A few minor revision are list below. 

Response: 

Thank you very much for your recommendation. We have carefully considered your 

comments and have revised the manuscript accordingly. 

Specific Comments 

(1) A comparison between the present study and previous studies was conducted twice, 

respectively in first section (Line 221-Line227) and the second section (3.2). What's 

the different between these two comparisons?  

Response: Thanks very much for this comment. The comparison in the first section is 

intended to place our data in a general global context, as it compares median 

concentrations of kitchen and living room/bed room in this study with median 

concentrations reported in 25 previous studies. In these 25 previous studies, dust was 

not only collected from living rooms, but also from offices, classrooms, cars, 

airplanes, gyms etc. Also, these studies were not limited to the UK.  

In contrast, the comparison in section 3.2 is specifically focused on testing the 

hypothesis that recent restrictions on PBDE manufacture and use have led to a 

decrease in PBDE concentrations and an increase in potential replacement NBFRs. To 

do so, it compares concentrations of target BFRs in living room/bedroom in this study 

with those reported in a previous study which investigated the same BFRs in living 

room dust from the same area of the UK taken a number of years previously.  

(2) Line 16: "BDE-99 (2.6-1440 ng/g)" change to "BDE-99 (2.6-1,440 ng/g)" to 

consistent with others. 



Response: Thanks. The text is revised accordingly.  

(3) Line 18-20: "The concentrations in living rooms/bedrooms are at the lower end of 

those reported in previous UK studies." This conclusion is inaccuracy. In fact, only 

some of target exhibited lower levels than those in previous studies. As shown in 

figure 2 (Line 236-238), median levels of 9 out of 16 target BFRs in dust from living 

rooms/bedrooms in this study are comparable or to higher than those reported in 

previous UK studies. Moreover, this statement is inconsistent with the conclusion in 

Line 345-346 "Concentrations of 16 BFRs in dust from living rooms/bedrooms and 

kitchens from 30 UK homes are moderate compared with previous studies." 

Response: Thank you very much to point this out. We revised the text in line 18-20 to 

“The concentrations in kitchens and living rooms/bedrooms are moderate compared 

with previous studies” so now it is consistent with experimental results and context. 
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"especially for BDEs-47, -154 and -153" (line 223). 
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(5) Line 45: Please unify the writing of "hexabromocyclododecane (HBCDD)". 

Response: Thanks for this comment. The writing of HBCDD has been unified. 

(6) Line 229-232 (Table 1): I would advise the authors included the ratios of 
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Abstract 10 

Concentrations of polybrominated diphenyl ethers (PBDEs), 11 

hexabromocyclododecanes (HBCDDs) and 5 novel brominated flame retardants 12 

(NBFRs) were measured in paired samples of kitchen and living room/bedroom dust 13 

sampled in 2015 from 30 UK homes. BDE-209 was most abundant (22–170,000 ng/g), 14 

followed by γ-HBCDD (1.7–21,000 ng/g), α-HBCDD (5.2–4,900 ng/g), β-HBCDD 15 

(2.3–1,600 ng/g), BDE-99 (2.6-1,440 ng/g), BDE-47 (0.4–940 ng/g), 16 

decabromodiphenyl ethane (DBDPE) (nd-680 ng/g) and 17 

bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) (2.7-630 ng/g). The 18 

concentrations in kitchens and living rooms/bedrooms are moderate compared with 19 

previous studies. at the lower end of those reported in previous UK studies. 20 

Concentrations of BDE-209 in living room/bedroom dust were significantly lower and 21 

those of DBDPE significantly higher (p<0.05) compared to concentrations recorded in 22 

UK house dust in 2006 and 2007. This may reflect changes in UK usage of these 23 

BFRs. All target BFRs were present at higher concentrations in living 24 

rooms/bedrooms than kitchens. With the exception of BDE-28, 25 

pentabromoethylbenzene (PBEB) and DBDPE, these differences were significant 26 

(p<0.05). No specific source was found that could account for the higher 27 

concentrations in living rooms/bedrooms.  28 
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1. Introduction 41 

In order to comply with flame retardancy regulations in many jurisdictions, flame 42 

retardants (FRs) are widely added to textiles, plastics and building materials. At the 43 

current time, brominated flame retardants (BFRs) remain the most widely used class 44 

of FRs across the world, including: polybrominated diphenyl ethers (PBDEs), 45 

hexabromocyclododecanes (HBCDDs), tetrabromobisphenol A (TBBPA), 46 

decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane 47 

(BTBPE) (Alaee et al., 2003; Covaci et al., 2011). To date, a number of studies have 48 

reported potential adverse human health impacts for some BFRs, including thyroid 49 

toxicity (Meerts et al., 2000), neurotoxicity (Dingemans et al., 2011), reproductive 50 

toxicity (Meeker et al., 2009) and carcinogenicity (Darnerud, 2003). In addition, 51 

BFRs like PBDEs and HBCDDs are persistent, bioaccumulative and capable of 52 

undergoing long range environmental transport (Dickhut et al., 2012; Marvin et al., 53 

2011; Wu et al., 2011; Zhang et al., 2009; Zhu et al., 2013). Owing to emissions from 54 

the myriad range of goods within which they have been incorporated, BFRs are 55 

ubiquitous in the environment and have been detected in nearly all abiotic 56 

environmental compartments (including water, air, soil, sediments, sewage sludge and 57 

dust) (Besis and Samara, 2012; Cristale et al., 2013; Gorga et al., 2013; Luo et al., 58 

2013; Zhu et al., 2008). Such contamination has led to the widespread presence of 59 
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BFRs in biota such as insects, birds and mammals (Gaylor et al., 2012; Guo et al., 60 

2012; Jorundsdottir et al., 2013), as well as human tissues like hair, breast milk and 61 

blood serum (Aleksa et al., 2012; Kim and Oh, 2014; Lee et al., 2013; Sjödin et al., 62 

2013; Tang et al., 2013).  63 

 64 

Current understanding is that human exposure to PBDEs and HBCDDs occurs via a 65 

combination of diet, indoor dust ingestion, dermal exposure, and inhalation of (largely 66 

indoor) air (Abdallah et al., 2008; Besis and Samara, 2012; Daso et al., 2010; 67 

Johnson-Restrepo and Kannan, 2009; Trudel et al., 2011). The suspected ecological 68 

and human health risks of BFRs have driven international regulation of production 69 

and use of some. Specifically, the commercial Penta- and Octa-BDE formulations 70 

have been banned worldwide and listed under the UNEP Stockholm Convention on 71 

persistent organic pollutants (POPs) since 2009 (Ashton et al., 2009). Moreover, the 72 

commercial Deca-BDE formulation has also been restricted severely in Europe since 73 

July 2008 (European Court of Justice, 2008), and is currently under active 74 

consideration for listing under the Stockholm Convention. In addition, HBCDDs was 75 

listed under Annex A of the Stockholm Convention in 2013 (Report of COP6, 76 

Stockholm Convention, 2013). Such restrictions and bans on PBDEs and HBCDDs, 77 

when coupled with the fixed or even increasing market demand for flame retardants is 78 

inevitably leading to increased production of alternatives. While organophosphate 79 

flame retardants (PFRs) are one alternative, others include the so-called “novel” BFRs 80 
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(NBFRs) such as: DBDPE, BTBPE, pentabromoethylbenzene (PBEB), 81 

bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) and 82 

2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB). However, despite their 83 

perceived low cost and high performance, there exist substantial concerns about the 84 

environmental impacts of these and other NBFRs. Combined with the substantial 85 

remaining inventory of goods containing banned (or “legacy”) BFRs and their 86 

persistence in the environment, this increased use of NBFRs means that 87 

environmental concerns about BFRs will remain an important issue for a considerable 88 

time. 89 

 90 

With respect to the contamination of indoor dust with BFRs, most attention has been 91 

paid to house dust, with offices, cars and schools also featuring in some studies 92 

(Harrad et al., 2010). Within homes, the majority of studies have examined living 93 

room dust, with a smaller proportion studying bedrooms. To our knowledge however, 94 

no data exist about concentrations of BFRs in dust from domestic kitchens. This is a 95 

surprising omission, given that people may spend a substantial proportion of time in 96 

this microenvironment, and that kitchens contain a substantial number of goods such 97 

as microwave ovens, dishwashers, food processors, fridges, and freezers etc. that 98 

because their plastic components represent a fuel source in the event of fire, are likely 99 

to be flame-retarded.    100 

 101 
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Given this background, the objectives of this study are: 1. to report for the first time 102 

the concentrations of selected BFRs in kitchen dust; 2. to test the hypothesis that 103 

concentrations of BFRs in domestic kitchen dust exceed those in dust sampled 104 

simultaneously from other areas (living rooms/bedrooms) in the same houses, and 3. 105 

to test the hypothesis that restrictions on PBDEs in the EU, have led to reductions in 106 

concentrations of PBDEs in dust from UK living rooms, accompanied by concomitant 107 

increases in concentrations of NBFRs.  108 

 109 

To achieve these objectives, we determined concentrations of 8 PBDEs (BDEs-28, 47, 110 

99, 100, 153, 154, 183 and 209), 5 NBFRs (PBEB, EH-TBB, BTBPE, BEH-TEBP 111 

and DBDPE) and HBCDDs (α-, β-, γ-) in paired UK kitchen and living room (or 112 

bedroom) dust samples taken from 30 homes in the UK West Midlands conurbation in 113 

2015. Data from kitchens are compared with those from living rooms and bedrooms; 114 

with those from living rooms/bedrooms in this study compared with those recorded in 115 

an earlier study conducted by our research group of dust from living rooms sampled 116 

in the UK West Midlands conurbation in 2006-07.  117 

2. Material and methods 118 

2.1 Sampling 119 

In total, 30 homes from the West Midlands conurbation in the UK (of which 120 
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Birmingham is the main city) were sampled in 2015. For each home, a dust sample 121 

from the kitchen floor was collected with a floor dust sample collected from the living 122 

room in the same house for comparison. For the 11 homes in which the living room 123 

and kitchen were in the same room, dust in the bedroom was collected instead. For 124 

carpeted floor, dust was collected by vacuuming on a 1 m
2
 area for 2 min;, whileand 125 

for bare floors, the vacuuming area and time were 4 m
2
 and 4 min, respectively. An 126 

aliquot of 2-3 g pre-baked sodium sulfate was collected as field blank. More details 127 

about The dust collection and storage protocols have been described in our previous 128 

studies (Harrad et al., 2008). An aliquot of 2-3 g pre-baked sodium sulfate vacuumed 129 

from a clean Al foil surface servedwas collected as a field blank. 130 

2.2 Chemicals 131 

Native BDEs 77 and 128, 
13

C-BTBPE, 
13

C-BEH-TEBP, 
13

C-BDE-209 and 
13

C- α-, β-, 132 

γ-HBCDDs were used as internal standards. All standards above were purchased from 133 

Wellington Laboratories Inc. All solvents used (acetone, hexane, iso-octane and 134 

methanol) were HPLC grade.  135 

2.3 Clean-up 136 

First, 50-100 mg dust was accurately weighed and spiked with 25 ng internal 137 

(surrogate) standards. Hexane : acetone (3:1) (2 mL) was added to the sample, which 138 

was vortexed for 60 seconds, sonicated for 5 min and centrifuged at 2000 g for 2 min. 139 

Formatted: Superscript

Formatted: Superscript
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After collecting the supernatant, the residues were subjected to the same extraction 140 

process twice more. The combined supernatants were reduced in volume to ~ 2 mL 141 

under a gentle stream of nitrogen gas, before mixing with 3-4 mL 98% sulfuric acid. 142 

The mixture was then vortexed for 20 s followed by centrifugation at 2000 g for 5 min. 143 

The supernatant was then collected. To ensure complete transfer, the residue was 144 

rinsed with hexane (2 mL) three times. The combined supernatant was then reduced to 145 

incipient dryness under a gentle stream of nitrogen gas. The final concentrate was 146 

re-dissolved in 200 μL iso-octane prior to analysis of PBDEs and NBFRs by GC-MS. 147 

Following GC-MS analysis, solvent exchange from iso-octane to methanol was 148 

conducted to facilitate determination of HBCDDs on LC-MS-MS. 149 

2.4 Analytical methods 150 

2.4.1 GC-MS  151 

A Thermo Trace 1310 gas chromatography interfaced with an ISQ single quadrupole 152 

MS equipped with a programmable-temperature vaporiser (PTV) was employed to 153 

conduct the analysis under electron capture negative ionisation (ECNI) mode. Two µL 154 

of purified sample extract were injected on a Thermo TG-SQC column (15 m×0.25 155 

mm×0.25 µm). The injection temperature was set at 92 °C, held 0.04 min, ramp 156 

700 °C/min to 295 °C. The GC temperature programme was initially 50 °C, held 0.50 157 

min, ramp 20 °C/min to 240 °C, held 5 min, ramp 5 °C/min to 270 °C and then ramp 158 

20 °C/min to 305 °C, held 16 min. Helium was used as a carrier gas with a flow rate 159 
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of 1.5 mL/min for the first 22.00 min, then ramp 1.0 mL/min
2
 to 2.5 mL/min, hold 160 

13.00 min. The mass spectrometer was employed in selected ion monitoring (SIM) 161 

mode and the measured ions for each compound are listed in Table S1. Dwell times 162 

for each ion were 30 ms. The ion source and transfer line temperatures were set at 300 163 

and 320 °C, respectively and the electron multiplier voltage was at 1400 V. Methane 164 

was used as reagent gas. 165 

 166 

2.4.2 LC-MS-MS 167 

A high-performance liquid chromatography (HPLC, LC-20AB, SHIMADZU) 168 

followed by electrospray ionisation and tandem mass spectrometry (ESI-MS-MS, API 169 

2000, AB Sciex) was employed to measure the concentration of HBCDDs in this 170 

study. A Varian Pursuit XRS3 C18 analytical column (150 mm × 2 mm, 3 μm particle 171 

size) was used as stationary phase, and the mobile phase was a mixture of 1:1 water 172 

and methanol (phase A) and methanol (phase B). Elution started at 50 % phase B and 173 

then increased linearly to 100 % over 4 min, held isocratically for 5 min and then 174 

decreased to 65 % over 3 min, then returned to initial condition in 0.01 min and 175 

maintained for column regeneration for another 4 min, resulting in a total run time of 176 

16 min. The flow rate and injection volume were 0.15 mL/min and 20 μL, 177 

respectively. The mass spectra were obtained in ESI (-) mode and data collected in 178 

MRM mode, with the parent and daughter ions for each compound listed in Table S2.  179 
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2.5 QA/QC 180 

As a QA/QC check, one aliquot of SRM2585 (organics in house dust, NIST) was 181 

analysed for every 20 samples. Data obtained for these SRM analyses were very 182 

reproducible and in good agreement with the certified values (Table S3). One field 183 

blank was analysed every 10 samples. Most target compounds were not detected in 184 

blanks, or were detected at levels equivalent to a concentration in dust of below 1 ng/g, 185 

except BDE-209, which was detected in blanks at around 20 ng/g. Even for BDE-209, 186 

concentrations in blanks were always less than 5% of the concentrations detected in 187 

samples. Concentrations of each compound found in blanks are listed in Table S4 and 188 

are subtracted from the results of samples before further analysis of the data. The 189 

limits of detection for each target compound are listed in Table S5.  190 

2.6 Statistical analysis 191 

Statistical analysis of the data was conducted using Microsoft Excel 2013 to generate 192 

descriptive statistics, with all other statistical procedures conducted using IBM SPSS 193 

Statistics 19.0. As a first step, the distribution of concentrations of each compound 194 

within the dataset for each microenvironment category was evaluated using a 195 

Kolmogorov-Smirnov test. The results of this test and visual inspection of frequency 196 

diagrams together revealed both concentration and dust loading data in kitchen and 197 

living room to be log-normally distributed. Hence, concentrations and dust loadings 198 
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were log-transformed before performing t test comparisons. In all instances, where 199 

concentrations were below the detection limit, the concentration was assumed to equal 200 

half of the detection limit. 201 

3. Results and discussion 202 

3.1 Concentrations of BFRs 203 

Table 1 lists minimum, maximum, and median concentrations of target BFRs in both 204 

kitchen and living room/bedroom dust in this study, while a boxplot (Figure 1) 205 

illustrates the concentration range and profile of target BFRs in our samples. Based on 206 

concentration range, the 16 BFRs targeted in this study may be categorised into three 207 

groups. BDE-28, PBEB, BDE-100, EH-TBB, BDE-154, BDE-153, BDE-183 and 208 

BTBPE belong to the first group, ranging from not detected to several tens ng/g with 209 

median concentrations lower than 10 ng/g. The second group contains BDE-47, 210 

BDE-99, BEH-TEBP, DBDPE and α-, β-, γ-HBCDDs, for which median 211 

concentrations range from 10 ng/g to hundreds ng/g and concentrations range from 212 

several ng/g to in excess of 1,000 ng/g. Finally, group 3 consists of BDE-209 only, for 213 

which concentrations range from several tens ng/g to more than 100,000 ng/g with a 214 

median value of nearly 1,000 ng/g. The concentration ranges and profiles obtained in 215 

this study are broadly consistent with previous studies as shown in Figure 2. This 216 

Figure plots median concentration values for exemplar previous studies (Abdallah et 217 
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al., 2008; Ali et al., 2013; Ali et al., 2012a; Ali et al., 2011; Ali et al., 2012b; Allen et 218 

al., 2013; Bjorklund et al., 2012; Brown et al., 2014; Carignan et al., 2013; Coakley et 219 

al., 2013; Dirtu et al., 2012; Dodson et al., 2012; Harrad and Abdallah, 2011; Harrad 220 

et al., 2008; Kalachova et al., 2012; Kang et al., 2011; Kefeni and Okonkwo, 2012; 221 

Nguyen Minh et al., 2013; Ni and Zeng, 2013; Shoeib et al., 2012; Stasinska et al., 222 

2013; Tang et al., 2013; Thuresson et al., 2012; Vorkamp et al., 2011; Whitehead et al., 223 

2013; Yu et al., 2012), alongside those detected in kitchen and living room/bedroom 224 

dust in this study (represented as red and black dots respectively). It can be seen that 225 

for most compounds, concentrations in this study are lower than previously reported, 226 

especially for BDEs-47, -154 and -153. This finding is not inconsistent with a 227 

reduction in the use of the Penta-BDE formulation since the early-mid-2000s. In 228 

contrast, concentrations of NBFRs, HBCDDs and BDE-209 recorded in this study are 229 

similar or even slightly higher than previously reported, which is consistent with the 230 

later introduction (or absence to date) of restrictions on use of these BFRs. 231 

 232 

Table 1 Maximum, minimum and median concentrations of target BFRs in dust from 233 

kitchens (K) and living rooms/bedrooms (L), ng/g 234 

 235 

 
MaximumMinimumMedian 

K L K L K L 

BDE-28 150 55 <0.2 <0.2 1.2 1.0 
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BDE-47 940 590 0.4 2.4 7.6 13 

BDE-99 1400 930 2.6 4.0 17 33 

BDE-100 320 140 <0.2 0.7 1.7 3.2 

BDE-153 410 170 0.1 <0.4 1.7 1.9 

BDE-154 180 60 <0.4 <0.4 0.4 0.7 

BDE-183 29 120 <1.0 0.6 1.9 4.2 

BDE-209 32000 170000 22 170 590 1500 

PBEB 25 15 <0.2 <0.2 0.3 0.4 

EH-TBB 290 450 <0.2 <0.2 4.1 12 

BTBPE 10 97 <1.0 <1.0 1.2 4.5 

BEH-TEBP 420 630 2.7 7.8 36 75 

DBDPE 450 680 <9.2 21 74 120 

α-HBCDD 3800 4900 5.2 75 110 280 

β-HBCDD 1100 1600 2.3 6.4 29 67 

γ-HBCDD 13000 21000 1.7 14 35 110 

 236 



15 

 

 237 

 238 

Figure 1 Concentration range of BFRs in this study 239 
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 240 

Figure 2 Median concentrations of target BFRs in this study (K, kitchen; L, living room/bedroom) compared to the range of medians reported in 241 

selected previous studies 242 
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3.2 Is there evidence of temporal changes in BFR concentrations in 243 

living room/bedroom dust following restrictions on PBDE use? 244 

To investigate the impact of recent restrictions on manufacture and use of PBDEs on 245 

concentrations of PBDEs and potential replacement NBFRs in UK indoor dust, we 246 

compared concentrations of individual PBDEs, BTBPE, and DBDPE in living room 247 

and bedroom dust in our study, with those reported for 30 UK living room dust 248 

samples collected between 2006 and 2007 (Harrad et al., 2008). Before doing so, we 249 

first conducted a t-test comparison of log-transformed concentrations of our target 250 

BFRs in our living room and bedroom dust samples to verify the validity of 251 

aggregating these data in this context. This revealed no significant differences (p>0.05) 252 

between concentrations in living room and bedroom dust for any of our target BFRs. 253 

Consequently, we compared BFR concentrations in living room dust from 2006-07 254 

with our combined data for living room and bedroom dust via a t test comparison of 255 

log-transformed concentrations in the two temporally-distinct sample groups. This 256 

revealed concentrations of most target BFRs to be statistically indistinguishable 257 

(p>0.05) between the two time periods. However, concentrations of BDE-209 and 258 

BDE-154 are significantly lower (p<0.05) and those of DBDPE and BDE-28 259 

significantly higher (p<0.05) in this (later) study. While it is hard to rationalise the 260 

opposite trends in BDEs-28 and -154, and acknowledging the small sample numbers 261 

involved; the apparent decrease in concentrations of BDE-209, coupled with the 262 

Formatted: Justified
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corresponding increase of DBDPE, is not inconsistent with the 2008 introduction of 263 

restrictions on use of Deca-BDE in the EU (European Court of Justice, 2008), and 264 

reports that DBDPE is the main alternative to Deca-BDE (Covaci et al., 2011).  265 

3.3 Are concentrations of BFRs higher in kitchen than living 266 

room/bedroom dust? 267 

To test our hypothesis that concentrations of BFRs in kitchen dust will exceed 268 

significantly those in living area and bedroom dust from the same homes, we 269 

conducted a paired t test comparison between concentrations of individual BFRs in 270 

kitchen dust and those in living room and bedroom dust. This revealed concentrations 271 

for all but BDE-28, PBEB, and DBDPE to be significantly higher (p<0.05) in living 272 

room and bedroom dust compared to that from kitchens. Moreover, although not 273 

significant (p>0.05), a higher concentration was still observed for BDE-28, PBEB and 274 

DBDPE in living room/bedroom dust compared to kitchen dust. The higher 275 

concentrations observed in living rooms and bedrooms compared to the corresponding 276 

kitchens are not attributable simply to the respective number of putative sources in the 277 

two microenvironments. Kitchens in this study contained more potential sources, such 278 

as: fridges, microwave oven, washing machines, ovens, toasters, and curtains etc. than 279 

living rooms/bedrooms (which contained mainly carpets, TVs, computers, sofas, and 280 

curtains). Instead, it is plausible that the goods present in kitchens are treated with 281 

FRs other than the BFRs targeted in this study, in contrast to the goods found in living 282 
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rooms/bedrooms. As carpet was absent from all the kitchens in this study, while being 283 

the most frequently reported putative source in living rooms/bedrooms (present in 284 

21/30 of these microenvironments), we examined further whether the 285 

presence/absence of carpets in this study could explain the differences between 286 

kitchens and living rooms/bedrooms. To do so, we classified the 60 dust samples into 287 

3 groups: i.e. kitchen samples (K), bare floor living room/bedroom samples (BL) and 288 

carpeted living room/bedroom samples (CL) and subjected data on BFR 289 

concentrations (in this instance not log-transformed) in samples in each of these 290 

groups to a Kruskal-Wallis test. However, the mean ranks of BL and CL are very close 291 

(Table 2) and both are much higher than those of kitchen samples for most 292 

compounds. This result indicates that the presence of carpet does not significantly 293 

influence the concentrations of our target BFRs in living room/bedroom dust. Hence, 294 

the absence of carpet from kitchens does not account for the lower concentrations 295 

compared to living rooms/bedrooms.  296 

 297 

Table 2 Mean ranks of BFR concentration in carpeted living room/bedroom (CL), 298 

bare floor living room/bedroom (BL) and kitchen (K) of Kruskal-Wallis test 299 

 CL BL K 

BDE-28 29.93 27.75 29.68 

PBEB 30.45 33.38 27.83 
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BDE-100 35.83 34.88 23.85 

EH-TBB 35.58 33.25 24.45 

BDE-154 34.65 31.31 25.58 

BDE-153 34.03 31.06 26.07 

BDE-183 35.33 25.38 24.05 

BTBPE 35.70 35.75 23.70 

BDE-47 35.88 33.63 24.15 

BDE-99 34.38 35.19 24.73 

BEH-TEBP 37.67 33.25 23.05 

DBDPE 34.20 28.75 26.57 

α-HBCDD 36.80 34.94 23.18 

β-HBCDD 36.33 37.44 22.83 

γ-HBCDD 33.67 31.31 26.23 

BDE-209 34.95 34.31 24.58 

 300 

In summary, this study reveals no evidence that the presence of carpet can explain the 301 

significantly elevated BFR concentrations in living room/bedroom dust compared to 302 

kitchen dust. We therefore investigated the reasons driving this difference further, by 303 

comparing the BFR profile in these two microenvironment categories. Figure 3 is 304 

drawn based on the median value of each compound from which it can be found that 305 

the composition profiles of kitchen and living room/bedroom dust are similar. To 306 
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further confirm this, we carried out a Wilcoxon test to compare the mass percentage of 307 

each compound in living room/bedroom and kitchen dust. To minimise the 308 

overwhelming impact of dominant components such as BDE-209, all target 309 

compounds were classified into three groups according to their concentration level as 310 

described in section 2.1. At the group level, the relative abundance of groups 1, 2, and 311 

BDE-209 were not significantly different between kitchen and living room/bedroom 312 

dust. Next, the percentage of each compound was calculated based on the total 313 

concentration of the group to which it was assigned. This approach revealed a 314 

significantly higher proportion (p=0.001) of BDE-28 in kitchens but higher 315 

proportions of BTBPE (p=0.022) and α-HBCDD (p=0.035) in living rooms/bedrooms. 316 

The proportion of β-HBCDD was also lower in kitchens, but at a significance level of 317 

p= 0.056. However, no significant difference was observed for γ-HBCDD (p=0.600). 318 

Notwithstanding these differences in the relative abundances of a small number of our 319 

target BFRs, there appears no clear evidence of major differences between the BFR 320 

profiles in kitchens and living rooms/bedrooms, which suggests that there are no 321 

major differences in source types between these two microenvironment categories.  322 

 323 

 324 
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 325 

(a) 326 

 327 

 328 

(b) 329 

 330 

Figure 3 Median BFR compositions in dust from kitchens (a) and living 331 

rooms/bedrooms (b) 332 
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 333 

As no specific source was identified as responsible for the higher BFR concentrations 334 

in dust from living rooms/bedrooms compared to those in kitchen dust, we propose 335 

instead that the cause is a generally higher BFR emission rate in living 336 

rooms/bedrooms. Although kitchens contain more putative sources, the rate at which 337 

BFRs may be emitted from these are influenced by factors such as material, volume 338 

and BFR content of sources, which can combine to obscure clear relationships 339 

between BFR contamination of dust and putative source counts. Moreover, our study 340 

only monitors a selection of BFRs, so it is possible that some FRs not targeted in our 341 

study are used in kitchen appliances. Further studies will be carried out to test this 342 

hypothesis. Another potential contributory factor may be that given the greater use of 343 

water for cleaning and cooking in kitchens, it is reasonable to assume that kitchens are 344 

more humid than living rooms/bedrooms. This may lead to greater water content on 345 

the surface of kitchen dust that may impede the sorption of BFRs from air.  346 

 347 

4. Conclusions 348 

Concentrations of 16 BFRs in dust from living rooms/bedrooms and kitchens from 30 349 

UK homes are moderate compared with previous studies. Comparison of data for 350 

living rooms/bedrooms in this study with previous data for living room dust from the 351 
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same region of the UK in 2006-07, reveals concentrations of BDE-209 to have fallen 352 

significantly, while concentrations of DBDPE have risen. Concentrations of 13 out of 353 

our 16 target BFRs in kitchen dust are exceeded significantly by those in living 354 

room/bedroom dust. Comparison of BFR patterns in both microenvironment 355 

categories suggests that the sources of our target BFRs are similar in both. The higher 356 

concentrations in living rooms/bedrooms may be due to a combination of factors such 357 

as: an overall higher emission intensity of our target BFRs in living rooms and 358 

bedrooms, lower uptake of BFRs by dust in kitchens due to the higher humidity, and 359 

that kitchen appliances contain FRs different to those in living rooms/bedrooms and 360 

that are targeted in this study. 361 
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Abstract 9 

Concentrations of polybrominated diphenyl ethers (PBDEs), 10 

hexabromocyclododecanes (HBCDDs) and 5 novel brominated flame retardants 11 

(NBFRs) were measured in paired samples of kitchen and living room/bedroom dust 12 

sampled in 2015 from 30 UK homes. BDE-209 was most abundant (22–170,000 ng/g), 13 

followed by γ-HBCDD (1.7–21,000 ng/g), α-HBCDD (5.2–4,900 ng/g), β-HBCDD 14 

(2.3–1,600 ng/g), BDE-99 (2.6-1,440 ng/g), BDE-47 (0.4–940 ng/g), 15 

decabromodiphenyl ethane (DBDPE) (nd-680 ng/g) and 16 

bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) (2.7-630 ng/g). The 17 

concentrations in kitchens and living rooms/bedrooms are moderate compared with 18 

previous studies. Concentrations of BDE-209 in living room/bedroom dust were 19 

significantly lower and those of DBDPE significantly higher (p<0.05) compared to 20 

concentrations recorded in UK house dust in 2006 and 2007. This may reflect changes 21 

in UK usage of these BFRs. All target BFRs were present at higher concentrations in 22 

living rooms/bedrooms than kitchens. With the exception of BDE-28, 23 

pentabromoethylbenzene (PBEB) and DBDPE, these differences were significant 24 

(p<0.05). No specific source was found that could account for the higher 25 

concentrations in living rooms/bedrooms.  26 

 27 
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1. Introduction 39 

In order to comply with flame retardancy regulations in many jurisdictions, flame 40 

retardants (FRs) are widely added to textiles, plastics and building materials. At the 41 

current time, brominated flame retardants (BFRs) remain the most widely used class 42 

of FRs across the world, including: polybrominated diphenyl ethers (PBDEs), 43 

hexabromocyclododecanes (HBCDDs), tetrabromobisphenol A (TBBPA), 44 

decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane 45 

(BTBPE) (Alaee et al., 2003; Covaci et al., 2011). To date, a number of studies have 46 

reported potential adverse human health impacts for some BFRs, including thyroid 47 

toxicity (Meerts et al., 2000), neurotoxicity (Dingemans et al., 2011), reproductive 48 

toxicity (Meeker et al., 2009) and carcinogenicity (Darnerud, 2003). In addition, 49 

BFRs like PBDEs and HBCDDs are persistent, bioaccumulative and capable of 50 

undergoing long range environmental transport (Dickhut et al., 2012; Marvin et al., 51 

2011; Wu et al., 2011; Zhang et al., 2009; Zhu et al., 2013). Owing to emissions from 52 

the myriad range of goods within which they have been incorporated, BFRs are 53 

ubiquitous in the environment and have been detected in nearly all abiotic 54 

environmental compartments (including water, air, soil, sediments, sewage sludge and 55 

dust) (Besis and Samara, 2012; Cristale et al., 2013; Gorga et al., 2013; Luo et al., 56 

2013; Zhu et al., 2008). Such contamination has led to the widespread presence of 57 



5 

 

BFRs in biota such as insects, birds and mammals (Gaylor et al., 2012; Guo et al., 58 

2012; Jorundsdottir et al., 2013), as well as human tissues like hair, breast milk and 59 

blood serum (Aleksa et al., 2012; Kim and Oh, 2014; Lee et al., 2013; Sjödin et al., 60 

2013; Tang et al., 2013).  61 

 62 

Current understanding is that human exposure to PBDEs and HBCDDs occurs via a 63 

combination of diet, indoor dust ingestion, dermal exposure, and inhalation of (largely 64 

indoor) air (Abdallah et al., 2008; Besis and Samara, 2012; Daso et al., 2010; 65 

Johnson-Restrepo and Kannan, 2009; Trudel et al., 2011). The suspected ecological 66 

and human health risks of BFRs have driven international regulation of production 67 

and use of some. Specifically, the commercial Penta- and Octa-BDE formulations 68 

have been banned worldwide and listed under the UNEP Stockholm Convention on 69 

persistent organic pollutants (POPs) since 2009 (Ashton et al., 2009). Moreover, the 70 

commercial Deca-BDE formulation has also been restricted severely in Europe since 71 

July 2008 (European Court of Justice, 2008), and is currently under active 72 

consideration for listing under the Stockholm Convention. In addition, HBCDDs was 73 

listed under Annex A of the Stockholm Convention in 2013 (Report of COP6, 74 

Stockholm Convention, 2013). Such restrictions and bans on PBDEs and HBCDDs, 75 

when coupled with the fixed or even increasing market demand for flame retardants is 76 

inevitably leading to increased production of alternatives. While organophosphate 77 

flame retardants (PFRs) are one alternative, others include the so-called “novel” BFRs 78 
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(NBFRs) such as: DBDPE, BTBPE, pentabromoethylbenzene (PBEB), 79 

bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) and 80 

2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB). However, despite their perceived 81 

low cost and high performance, there exist substantial concerns about the 82 

environmental impacts of these and other NBFRs. Combined with the substantial 83 

remaining inventory of goods containing banned (or “legacy”) BFRs and their 84 

persistence in the environment, this increased use of NBFRs means that 85 

environmental concerns about BFRs will remain an important issue for a considerable 86 

time. 87 

 88 

With respect to the contamination of indoor dust with BFRs, most attention has been 89 

paid to house dust, with offices, cars and schools also featuring in some studies 90 

(Harrad et al., 2010). Within homes, the majority of studies have examined living 91 

room dust, with a smaller proportion studying bedrooms. To our knowledge however, 92 

no data exist about concentrations of BFRs in dust from domestic kitchens. This is a 93 

surprising omission, given that people may spend a substantial proportion of time in 94 

this microenvironment, and that kitchens contain a substantial number of goods such 95 

as microwave ovens, dishwashers, food processors, fridges, and freezers etc. that 96 

because their plastic components represent a fuel source in the event of fire, are likely 97 

to be flame-retarded.    98 

 99 
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Given this background, the objectives of this study are: 1. to report for the first time 100 

the concentrations of selected BFRs in kitchen dust; 2. to test the hypothesis that 101 

concentrations of BFRs in domestic kitchen dust exceed those in dust sampled 102 

simultaneously from other areas (living rooms/bedrooms) in the same houses, and 3. 103 

to test the hypothesis that restrictions on PBDEs in the EU, have led to reductions in 104 

concentrations of PBDEs in dust from UK living rooms, accompanied by concomitant 105 

increases in concentrations of NBFRs.  106 

 107 

To achieve these objectives, we determined concentrations of 8 PBDEs (BDEs-28, 47, 108 

99, 100, 153, 154, 183 and 209), 5 NBFRs (PBEB, EH-TBB, BTBPE, BEH-TEBP 109 

and DBDPE) and HBCDDs (α-, β-, γ-) in paired UK kitchen and living room (or 110 

bedroom) dust samples taken from 30 homes in the UK West Midlands conurbation in 111 

2015. Data from kitchens are compared with those from living rooms and bedrooms; 112 

with those from living rooms/bedrooms in this study compared with those recorded in 113 

an earlier study conducted by our research group of dust from living rooms sampled 114 

in the UK West Midlands conurbation in 2006-07.  115 

2. Material and methods 116 

2.1 Sampling 117 

In total, 30 homes from the West Midlands conurbation in the UK (of which 118 
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Birmingham is the main city) were sampled in 2015. For each home, a dust sample 119 

from the kitchen floor was collected with a floor dust sample collected from the living 120 

room in the same house for comparison. For the 11 homes in which the living room 121 

and kitchen were in the same room, dust in the bedroom was collected instead. For 122 

carpeted floor, dust was collected by vacuuming a 1 m
2
 area for 2 min; while for bare 123 

floors, the vacuuming area and time were 4 m
2
 and 4 min, respectively. More details 124 

about dust collection and storage protocols have been described in our previous 125 

studies (Harrad et al., 2008). An aliquot of 2-3 g pre-baked sodium sulfate vacuumed 126 

from a clean Al foil surface served as a field blank. 127 

2.2 Chemicals 128 

Native BDEs 77 and 128, 
13

C-BTBPE, 
13

C-BEH-TEBP, 
13

C-BDE-209 and 
13

C- α-, β-, 129 

γ-HBCDDs were used as internal standards. All standards above were purchased from 130 

Wellington Laboratories Inc. All solvents used (acetone, hexane, iso-octane and 131 

methanol) were HPLC grade.  132 

2.3 Clean-up 133 

First, 50-100 mg dust was accurately weighed and spiked with 25 ng internal 134 

(surrogate) standards. Hexane : acetone (3:1) (2 mL) was added to the sample, which 135 

was vortexed for 60 seconds, sonicated for 5 min and centrifuged at 2000 g for 2 min. 136 

After collecting the supernatant, the residues were subjected to the same extraction 137 
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process twice more. The combined supernatants were reduced in volume to ~ 2 mL 138 

under a gentle stream of nitrogen gas, before mixing with 3-4 mL 98% sulfuric acid. 139 

The mixture was then vortexed for 20 s followed by centrifugation at 2000 g for 5 min. 140 

The supernatant was then collected. To ensure complete transfer, the residue was 141 

rinsed with hexane (2 mL) three times. The combined supernatant was then reduced to 142 

incipient dryness under a gentle stream of nitrogen gas. The final concentrate was 143 

re-dissolved in 200 μL iso-octane prior to analysis of PBDEs and NBFRs by GC-MS. 144 

Following GC-MS analysis, solvent exchange from iso-octane to methanol was 145 

conducted to facilitate determination of HBCDDs on LC-MS-MS. 146 

2.4 Analytical methods 147 

2.4.1 GC-MS  148 

A Thermo Trace 1310 gas chromatography interfaced with an ISQ single quadrupole 149 

MS equipped with a programmable-temperature vaporiser (PTV) was employed to 150 

conduct the analysis under electron capture negative ionisation (ECNI) mode. Two µL 151 

of purified sample extract were injected on a Thermo TG-SQC column (15 m×0.25 152 

mm×0.25 µm). The injection temperature was set at 92 °C, held 0.04 min, ramp 153 

700 °C/min to 295 °C. The GC temperature programme was initially 50 °C, held 0.50 154 

min, ramp 20 °C/min to 240 °C, held 5 min, ramp 5 °C/min to 270 °C and then ramp 155 

20 °C/min to 305 °C, held 16 min. Helium was used as a carrier gas with a flow rate 156 

of 1.5 mL/min for the first 22.00 min, then ramp 1.0 mL/min
2
 to 2.5 mL/min, hold 157 
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13.00 min. The mass spectrometer was employed in selected ion monitoring (SIM) 158 

mode and the measured ions for each compound are listed in Table S1. Dwell times 159 

for each ion were 30 ms. The ion source and transfer line temperatures were set at 300 160 

and 320 °C, respectively and the electron multiplier voltage was at 1400 V. Methane 161 

was used as reagent gas. 162 

 163 

2.4.2 LC-MS-MS 164 

A high-performance liquid chromatography (HPLC, LC-20AB, SHIMADZU) 165 

followed by electrospray ionisation and tandem mass spectrometry (ESI-MS-MS, API 166 

2000, AB Sciex) was employed to measure the concentration of HBCDDs in this 167 

study. A Varian Pursuit XRS3 C18 analytical column (150 mm × 2 mm, 3 μm particle 168 

size) was used as stationary phase, and the mobile phase was a mixture of 1:1 water 169 

and methanol (phase A) and methanol (phase B). Elution started at 50 % phase B and 170 

then increased linearly to 100 % over 4 min, held isocratically for 5 min and then 171 

decreased to 65 % over 3 min, then returned to initial condition in 0.01 min and 172 

maintained for column regeneration for another 4 min, resulting in a total run time of 173 

16 min. The flow rate and injection volume were 0.15 mL/min and 20 μL, 174 

respectively. The mass spectra were obtained in ESI (-) mode and data collected in 175 

MRM mode, with the parent and daughter ions for each compound listed in Table S2.  176 
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2.5 QA/QC 177 

As a QA/QC check, one aliquot of SRM2585 (organics in house dust, NIST) was 178 

analysed for every 20 samples. Data obtained for these SRM analyses were very 179 

reproducible and in good agreement with the certified values (Table S3). One field 180 

blank was analysed every 10 samples. Most target compounds were not detected in 181 

blanks, or were detected at levels equivalent to a concentration in dust of below 1 ng/g, 182 

except BDE-209, which was detected in blanks at around 20 ng/g. Even for BDE-209, 183 

concentrations in blanks were always less than 5% of the concentrations detected in 184 

samples. Concentrations of each compound found in blanks are listed in Table S4 and 185 

are subtracted from the results of samples before further analysis of the data. The 186 

limits of detection for each target compound are listed in Table S5.  187 

2.6 Statistical analysis 188 

Statistical analysis of the data was conducted using Microsoft Excel 2013 to generate 189 

descriptive statistics, with all other statistical procedures conducted using IBM SPSS 190 

Statistics 19.0. As a first step, the distribution of concentrations of each compound 191 

within the dataset for each microenvironment category was evaluated using a 192 

Kolmogorov-Smirnov test. The results of this test and visual inspection of frequency 193 

diagrams together revealed both concentration and dust loading data in kitchen and 194 

living room to be log-normally distributed. Hence, concentrations and dust loadings 195 
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were log-transformed before performing t test comparisons. In all instances, where 196 

concentrations were below the detection limit, the concentration was assumed to equal 197 

half of the detection limit. 198 

3. Results and discussion 199 

3.1 Concentrations of BFRs 200 

Table 1 lists minimum, maximum, and median concentrations of target BFRs in both 201 

kitchen and living room/bedroom dust in this study, while a boxplot (Figure 1) 202 

illustrates the concentration range and profile of target BFRs in our samples. Based on 203 

concentration range, the 16 BFRs targeted in this study may be categorised into three 204 

groups. BDE-28, PBEB, BDE-100, EH-TBB, BDE-154, BDE-153, BDE-183 and 205 

BTBPE belong to the first group, ranging from not detected to several tens ng/g with 206 

median concentrations lower than 10 ng/g. The second group contains BDE-47, 207 

BDE-99, BEH-TEBP, DBDPE and α-, β-, γ-HBCDDs, for which median 208 

concentrations range from 10 ng/g to hundreds ng/g and concentrations range from 209 

several ng/g to in excess of 1,000 ng/g. Finally, group 3 consists of BDE-209 only, for 210 

which concentrations range from several tens ng/g to more than 100,000 ng/g with a 211 

median value of nearly 1,000 ng/g. The concentration ranges and profiles obtained in 212 

this study are broadly consistent with previous studies as shown in Figure 2. This 213 

Figure plots median concentration values for exemplar previous studies (Abdallah et 214 
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al., 2008; Ali et al., 2013; Ali et al., 2012a; Ali et al., 2011; Ali et al., 2012b; Allen et 215 

al., 2013; Bjorklund et al., 2012; Brown et al., 2014; Carignan et al., 2013; Coakley et 216 

al., 2013; Dirtu et al., 2012; Dodson et al., 2012; Harrad and Abdallah, 2011; Harrad 217 

et al., 2008; Kalachova et al., 2012; Kang et al., 2011; Kefeni and Okonkwo, 2012; 218 

Nguyen Minh et al., 2013; Ni and Zeng, 2013; Shoeib et al., 2012; Stasinska et al., 219 

2013; Tang et al., 2013; Thuresson et al., 2012; Vorkamp et al., 2011; Whitehead et al., 220 

2013; Yu et al., 2012), alongside those detected in kitchen and living room/bedroom 221 

dust in this study (represented as red and black dots respectively). It can be seen that 222 

for most compounds, concentrations in this study are lower than previously reported, 223 

especially for BDEs-47, -154 and -153. This finding is not inconsistent with a 224 

reduction in the use of the Penta-BDE formulation since the early-mid-2000s. In 225 

contrast, concentrations of NBFRs, HBCDDs and BDE-209 recorded in this study are 226 

similar or even slightly higher than previously reported, which is consistent with the 227 

later introduction (or absence to date) of restrictions on use of these BFRs. 228 

 229 

3.2 Is there evidence of temporal changes in BFR concentrations in 230 

living room/bedroom dust following restrictions on PBDE use? 231 

To investigate the impact of recent restrictions on manufacture and use of PBDEs on 232 

concentrations of PBDEs and potential replacement NBFRs in UK indoor dust, we 233 

compared concentrations of individual PBDEs, BTBPE, and DBDPE in living room 234 
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and bedroom dust in our study, with those reported for 30 UK living room dust 235 

samples collected between 2006 and 2007 (Harrad et al., 2008). Before doing so, we 236 

first conducted a t-test comparison of log-transformed concentrations of our target 237 

BFRs in our living room and bedroom dust samples to verify the validity of 238 

aggregating these data in this context. This revealed no significant differences (p>0.05) 239 

between concentrations in living room and bedroom dust for any of our target BFRs. 240 

Consequently, we compared BFR concentrations in living room dust from 2006-07 241 

with our combined data for living room and bedroom dust via a t test comparison of 242 

log-transformed concentrations in the two temporally-distinct sample groups. This 243 

revealed concentrations of most target BFRs to be statistically indistinguishable 244 

(p>0.05) between the two time periods. However, concentrations of BDE-209 and 245 

BDE-154 are significantly lower (p<0.05) and those of DBDPE and BDE-28 246 

significantly higher (p<0.05) in this (later) study. While it is hard to rationalise the 247 

opposite trends in BDEs-28 and -154, and acknowledging the small sample numbers 248 

involved; the apparent decrease in concentrations of BDE-209, coupled with the 249 

corresponding increase of DBDPE, is not inconsistent with the 2008 introduction of 250 

restrictions on use of Deca-BDE in the EU (European Court of Justice, 2008), and 251 

reports that DBDPE is the main alternative to Deca-BDE (Covaci et al., 2011).  252 
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3.3 Are concentrations of BFRs higher in kitchen than living 253 

room/bedroom dust? 254 

To test our hypothesis that concentrations of BFRs in kitchen dust will exceed 255 

significantly those in living area and bedroom dust from the same homes, we 256 

conducted a paired t test comparison between concentrations of individual BFRs in 257 

kitchen dust and those in living room and bedroom dust. This revealed concentrations 258 

for all but BDE-28, PBEB, and DBDPE to be significantly higher (p<0.05) in living 259 

room and bedroom dust compared to that from kitchens. Moreover, although not 260 

significant (p>0.05), a higher concentration was still observed for BDE-28, PBEB and 261 

DBDPE in living room/bedroom dust compared to kitchen dust. The higher 262 

concentrations observed in living rooms and bedrooms compared to the corresponding 263 

kitchens are not attributable simply to the respective number of putative sources in the 264 

two microenvironments. Kitchens in this study contained more potential sources, such 265 

as: fridges, microwave oven, washing machines, ovens, toasters, and curtains etc. than 266 

living rooms/bedrooms (which contained mainly carpets, TVs, computers, sofas, and 267 

curtains). Instead, it is plausible that the goods present in kitchens are treated with 268 

FRs other than the BFRs targeted in this study, in contrast to the goods found in living 269 

rooms/bedrooms. As carpet was absent from all the kitchens in this study, while being 270 

the most frequently reported putative source in living rooms/bedrooms (present in 271 

21/30 of these microenvironments), we examined further whether the 272 
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presence/absence of carpets in this study could explain the differences between 273 

kitchens and living rooms/bedrooms. To do so, we classified the 60 dust samples into 274 

3 groups: i.e. kitchen samples (K), bare floor living room/bedroom samples (BL) and 275 

carpeted living room/bedroom samples (CL) and subjected data on BFR 276 

concentrations (in this instance not log-transformed) in samples in each of these 277 

groups to a Kruskal-Wallis test. However, the mean ranks of BL and CL are very close 278 

(Table 2) and both are much higher than those of kitchen samples for most 279 

compounds. This result indicates that the presence of carpet does not significantly 280 

influence the concentrations of our target BFRs in living room/bedroom dust. Hence, 281 

the absence of carpet from kitchens does not account for the lower concentrations 282 

compared to living rooms/bedrooms.  283 

 284 

In summary, this study reveals no evidence that the presence of carpet can explain the 285 

significantly elevated BFR concentrations in living room/bedroom dust compared to 286 

kitchen dust. We therefore investigated the reasons driving this difference further, by 287 

comparing the BFR profile in these two microenvironment categories. Figure 3 is 288 

drawn based on the median value of each compound from which it can be found that 289 

the composition profiles of kitchen and living room/bedroom dust are similar. To 290 

further confirm this, we carried out a Wilcoxon test to compare the mass percentage of 291 

each compound in living room/bedroom and kitchen dust. To minimise the 292 

overwhelming impact of dominant components such as BDE-209, all target 293 
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compounds were classified into three groups according to their concentration level as 294 

described in section 2.1. At the group level, the relative abundance of groups 1, 2, and 295 

BDE-209 were not significantly different between kitchen and living room/bedroom 296 

dust. Next, the percentage of each compound was calculated based on the total 297 

concentration of the group to which it was assigned. This approach revealed a 298 

significantly higher proportion (p=0.001) of BDE-28 in kitchens but higher 299 

proportions of BTBPE (p=0.022) and α-HBCDD (p=0.035) in living rooms/bedrooms. 300 

The proportion of β-HBCDD was also lower in kitchens, but at a significance level of 301 

p= 0.056. However, no significant difference was observed for γ-HBCDD (p=0.600). 302 

Notwithstanding these differences in the relative abundances of a small number of our 303 

target BFRs, there appears no clear evidence of major differences between the BFR 304 

profiles in kitchens and living rooms/bedrooms, which suggests that there are no 305 

major differences in source types between these two microenvironment categories.  306 

 307 

As no specific source was identified as responsible for the higher BFR concentrations 308 

in dust from living rooms/bedrooms compared to those in kitchen dust, we propose 309 

instead that the cause is a generally higher BFR emission rate in living 310 

rooms/bedrooms. Although kitchens contain more putative sources, the rate at which 311 

BFRs may be emitted from these are influenced by factors such as material, volume 312 

and BFR content of sources, which can combine to obscure clear relationships 313 

between BFR contamination of dust and putative source counts. Moreover, our study 314 
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only monitors a selection of BFRs, so it is possible that some FRs not targeted in our 315 

study are used in kitchen appliances. Further studies will be carried out to test this 316 

hypothesis. Another potential contributory factor may be that given the greater use of 317 

water for cleaning and cooking in kitchens, it is reasonable to assume that kitchens are 318 

more humid than living rooms/bedrooms. This may lead to greater water content on 319 

the surface of kitchen dust that may impede the sorption of BFRs from air.  320 

 321 

4. Conclusions 322 

Concentrations of 16 BFRs in dust from living rooms/bedrooms and kitchens from 30 323 

UK homes are moderate compared with previous studies. Comparison of data for 324 

living rooms/bedrooms in this study with previous data for living room dust from the 325 

same region of the UK in 2006-07, reveals concentrations of BDE-209 to have fallen 326 

significantly, while concentrations of DBDPE have risen. Concentrations of 13 out of 327 

our 16 target BFRs in kitchen dust are exceeded significantly by those in living 328 

room/bedroom dust. Comparison of BFR patterns in both microenvironment 329 

categories suggests that the sources of our target BFRs are similar in both. The higher 330 

concentrations in living rooms/bedrooms may be due to a combination of factors such 331 

as: an overall higher emission intensity of our target BFRs in living rooms and 332 

bedrooms, lower uptake of BFRs by dust in kitchens due to the higher humidity, and 333 
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that kitchen appliances contain FRs different to those in living rooms/bedrooms and 334 

that are targeted in this study. 335 
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Table 1 Maximum (max), minimum (min) and median values of kitchen dust BFR 

concentration (K, ng/g), living room/bedroom dust BFR concentration (L, ng/g) and 

matched kitchen-living room/bedroom dust BFR concentration ratio (K/L) 

 K L K/L 

max min median max min median max min median 

BDE-28 150 <0.2 1.2 55 <0.2 1.0 9.55 0.10 1.00 

BDE-47 940 0.4 7.6 590 2.4 13 10.30 0.05 0.54 

BDE-99 1400 2.6 17 930 4.0 33 15.37 0.06 0.46 

BDE-100 320 <0.2 1.7 140 0.7 3.2 7.23 0.03 0.40 

BDE-153 410 0.1 1.7 170 <0.4 1.9 10.02 0.01 0.58 

BDE-154 180 <0.4 0.4 60 <0.4 0.7 8.64 0.03 0.52 

BDE-183 29 <1.0 1.9 120 0.6 4.2 4.57 0.02 0.46 

BDE-209 32000 22 590 170000 170 1500 3.92 0.03 0.33 

PBEB 25 <0.2 0.3 15 <0.2 0.4 4.45 0.06 0.84 

EH-TBB 290 <0.2 4.1 450 <0.2 12 2.85 0.01 0.37 

BTBPE 10 <1.0 1.2 97 <1.0 4.5 5.29 0.02 0.44 

BEH-TEBP 420 2.7 36 630 7.8 75 2.35 0.05 0.36 

DBDPE 450 <9.2 74 680 21 120 12.09 0.03 0.72 

α-HBCDD 3800 5.2 110 4900 75 280 2.88 0.05 0.37 

β-HBCDD 1100 2.3 29 1600 6.4 67 1.86 0.08 0.41 

γ-HBCDD 13000 1.7 35 21000 14 110 34.85 0.003 0.37 

 

Tables with changes marked
Click here to download Table: Tables with changes marked.docx

http://ees.elsevier.com/chem/download.aspx?id=1386362&guid=c50b9c3a-5289-4fb8-9191-d3004fee0ebf&scheme=1


Table 2 Mean ranks of BFR concentration in carpeted living room/bedroom (CL), 

bare floor living room/bedroom (BL) and kitchen (K) of Kruskal-Wallis test 

 CL BL K 

BDE-28 29.93 27.75 29.68 

PBEB 30.45 33.38 27.83 

BDE-100 35.83 34.88 23.85 

EH-TBB 35.58 33.25 24.45 

BDE-154 34.65 31.31 25.58 

BDE-153 34.03 31.06 26.07 

BDE-183 35.33 25.38 24.05 

BTBPE 35.70 35.75 23.70 

BDE-47 35.88 33.63 24.15 

BDE-99 34.38 35.19 24.73 

BEH-TEBP 37.67 33.25 23.05 

DBDPE 34.20 28.75 26.57 

α-HBCDD 36.80 34.94 23.18 

β-HBCDD 36.33 37.44 22.83 

γ-HBCDD 33.67 31.31 26.23 

BDE-209 34.95 34.31 24.58 
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Figure 1 Concentration range of BFRs in this study 

 

Figure 2 Median concentrations of target BFRs in this study (K, kitchen; L, living 

room/bedroom) compared to the range of medians reported in selected previous 

studies 

 

Figure 3 Median BFR compositions in dust from kitchens (a) and living 

rooms/bedrooms (b) 
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