UNIVERSITY OF BIRMINGHAM

Research at Birmingham

Advances in -Near-Zero metamaterial devices

Pacheco-Pena, Victor; Torres, Victor; Orazbayev, Bakhtiyar; Beruete, Miguel; Navarro-Cia, Miguel; Engheta, Nader

License: None: All rights reserved

Document Version Publisher's PDF, also known as Version of record

Citation for published version (Harvard): Pacheco-Pena, V, Torres, V, Orazbayev, B, Beruete, M, Navarro-Cia, M & Engheta, N 2015, 'Advances in -Near-Zero metamaterial devices', Optics & Photonics News, pp. 35.

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.

• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private

study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) Users may not further distribute the material nor use it for the purposes of commercial gain.

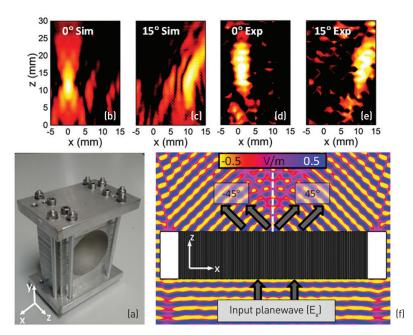
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.


METAMATERIALS

Advances in ε-Near-Zero Metamaterial Devices

• he arbitrary control of electromagnetic parameters allowed with human-made metamaterials provides opportunities to create exciting responses not found in nature. Materials with permittivity (ε) near-zero (ENZ) are becoming a very important subfield of research, because of their intriguing features such as near-infinite values of phase velocity ($v_p > c$) and wavelength (λ_{ENZ} $> \lambda_0$) that enable light supercoupling, tunneling and squeezing.¹ These features have been recently studied at near-infrared and visible frequencies using metal-dielectric-metal multilayers.²

Our research is centered on the use of these exciting metamaterials and on the development of different devices such as lenses, beam-steerers and power splitters.³⁻⁵ The intrinsic dispersive response of a waveguide allows the emulation of an ENZ medium with the electromagnetic responses described above. We have used this property to synthesize ENZ media using narrow hollow rectangular waveguides, working near the cutoff frequency of the dominant mode.

We have studied and realized these devices analytically, numerically and experimentally. First, we demonstrated Fourier optics using an all-metallic planoconcave ENZ lens working at 0.144 THz (λ_0 ~2.08 mm), designed using an array of waveguides with the same transverse (x and y) dimensions, but with different length (z dimension) to produce a concave profiled face. We evaluated the focusing properties of the lens by illuminating

(a) Fabricated planoconcave ENZ lens. (b-c) Simulation and (d-e) experimental results of the normalized transmission under normal (b, d) and oblique (c, e) incidence. (f) Simulation results for the E_x -field on the xz-plane for an ENZ-GRIN power splitter designed to deflect an incoming plane wave to \pm 45° at its output.

its planar face with a plane wave, demonstrating a transmission enhancement at the focus of 15.9 dB at the working frequency. The radiation performance showed a low transmission of the cross-polar component of -34 dB and a high directivity of 17.6 dBi.⁵ Placing the transmitter at different positions of the focal plane and measuring the far-field radiation pattern allowed us to mechanically steer the main lobe up to ±15°, demonstrating a wide angular response.⁴

Also, we were able to use the same artificial-medium principle to design beam-steerers (single angle) and power splitters (double angle), applying the graded-index (GRIN) technique. For these devices, the optical dimension was fixed for all the waveguides, while their aperture dimensions were engineered to change the direction of an incoming plane wave to different output angles. **OPN**

RESEARCHERS

V. Pacheco-Peña, V. Torres, B. Orazbayev and M. Beruete (miguel.beruete@unavarra.es), Universidad Pública de Navarra, Pamplona, Spain

M. Navarro-Cía (m.navarroſdimperial.ac.uk), Imperial College London, London, U.K.

N. Engheta (engheta@ee.upenn.edu), University of Pennsylvania, Philadelphia, Pa., USA

REFERENCES

- 1. M. Silveirinha and N. Engheta. Phys. Rev. Lett. **97**, 157403 (2006).
- 2. R. Maas et al. Nat. Photon. 7, 907 (2013).
- 3. V. Pacheco-Peña et al. J. Opt. 16, 094009 (2014).
- V. Pacheco-Peña et al. Appl. Phys. Lett. 105, 243503 (2014).
- V. Torres et al. IEEE Trans. Antennas and Propagation 63, 1 (2015).