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AN IMPROVED 3-LOCAL CHARACTERISATION OF McL

AND ITS AUTOMORPHISM GROUP

CHRIS PARKER AND GERNOT STROTH

Abstract. This article presents a 3-local characterisation of the spo-
radic simple group McL and its automorphism group. The proof of the
theorem is underpinned by two further identification theorems, one due
to Camina and Collins and the other proved in this paper. Both these
supporting results are proved by using character theoretic methods. The
main theorem is applied in our investigation of groups with a large 3-
subgroup [11].

1. Introduction

This article extends earlier work of Parker and Rowley [9] in which the
McLaughlin sporadic simple group McL and its automorphism group are
characterised by certain 3-local information. Suppose that p is a prime and
G is a finite group. Then the normalizer of a non-trivial p-subgroup of G is
called a p-local subgroup of G. A subgroup M of G is said to be of character-
istic p provided F ∗(M) = Op(M) where F ∗(M) is the generalized Fitting
subgroup of M . See [1] for the fundamental properties of the generalized
Fitting subgroup. The group G is of local characteristic p if every p-local
subgroup of G has characteristic p and G is of parabolic characteristic p
if every p-local subgroup of G which contains a Sylow p-subgroup of G has
characteristic p. The difference between these two group theoretic properties
is the difference between the characterisation theorem presented in [9] and
the theorem presented in this article. The main theorem of the former article
essentially assumes that the group under investigation is of local character-
istic 3. The theorem we prove here in essence only assumes that the group
G has parabolic characteristic 3 though it is not necessary to articulate this
explicitly in the statement of the theorem.

Theorem 1.1. Suppose that G is a finite group, S ∈ Syl3(G), Z = Z(S)
and J is an elementary abelian subgroup of S of order 34. Further assume
that

(i) O3′(NG(Z)) ≈ 31+4
+ .2.Alt(5);

(ii) O3′(NG(J)) ≈ 34.Alt(6); and
(iii) CG(O3(CG(Z))) ≤ O3(CG(Z)).

Then G ∼= McL or Aut(McL).
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The main theorem of [9] carries the additional hypothesis

CG(O3(CG(x))) ≤ O3(CG(x))

for all x ∈ J#. Hence to prove Theorem 1.1, we just need to show that this
inequality is a consequence of the assumptions in Theorem 1.1.

Theorem 1.1 is applied in our investigation of exceptional cases which arise
in the determination of groups with a large p-subgroup [11]. A p-subgroup
Q of a group G is large if and only if

(L1) F ∗(NG(Q)) = Q; and
(L2) for all non-trivial subgroups U of Z(Q), we have NG(U) ≤ NG(Q).

It is an elementary observation that most of the groups of Lie type in charac-
teristic p have a large p-subgroup. The only Lie type groups in characteristic
p and rank at least 2 which do not contain such a subgroup are PSp2n(2a),
F4(2

a) and G2(3
a). It is not difficult to show that groups G which contain

a large p-subgroup are of parabolic characteristic p (see [11, Lemma 2.1]).
The work in [8] begins the determination of the structure of the p-local over-
groups of S which are not contained in NG(Q). The idea is to collect data
about the p-local subgroups of G which contain a fixed Sylow p-subgroup
and then using this information show that the subgroup generated by them
is a group of Lie type. However sometimes one is confronted with the fol-
lowing situation: some (but perhaps not all) of the p-local subgroups of G
containing a given Sylow p-subgroup S of G generate a subgroup H and
F ∗(H) is known to be isomorphic to a Lie type group in characteristic p.
Usually G = H. To show this, we assume that H is a proper subgroup of G,
and first establish that H contains all the p-local subgroups of G which con-
tain S. The next step then demonstrates that H is strongly p-embedded in G
at which stage [10] is applicable and delivers G = H. The last two steps are
reasonably well understood, at least for groups with mild extra assumptions
imposed. However it might be that the first step cannot be made. Typically
this occurs only when NG(Q) is not contained in H. The main theorem of
this article is applied in just this type of situation. Specifically, it is applied
in the case that p = 3 and F ∗(H) is the group PSU4(3). In this case in
F ∗(H) the large 3-subgroup Q is extraspecial of order 35 and is the largest
normal 3-subgroup in the normalizer of a root group in F ∗(H). In this con-
figuration we are not able to show that NG(Q) ≤ H, as is demonstrated by
noting that PSU4(3) is a subgroup of McL. In fact in [11] we show that, if
F ∗(H) ∼= PSU4(3) and NG(Q) 6≤ H, then F ∗(G) ∼= McL,Co2, or PSU6(2).
It is precisely for the identification of McL that we need the result of this
paper.

The route to prove Theorem 1.1 is paved by two preliminary results. These
theorems state that under certain hypotheses a subgroup H of a group G is
actually equal to G.

We denote by K the subgroup of Alt(9) which normalizes

J = 〈(1, 2, 3), (4, 5, 6), (7, 8, 9)〉.
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Thus

K = 〈(1, 2, 3), (1, 4, 7)(2, 5, 8)(3, 6, 9), (1, 2)(4, 5), (1, 4)(2, 5)(3, 6)(7, 8)〉.
The first of the preliminary theorems is as follows:

Theorem 1.2. Suppose G is a finite group, H ≤ G with H ∼= K and
J = O3(H). If CG(j) ≤ H for all j ∈ J# and J is strongly closed in H with
respect to G, then G = H.

The second theorem that we require is due to Camina and Collins [3,
Proposition 5] and we record it here.

Theorem 1.3 (Camina and Collins [3]). Suppose G is a finite group and
H is a subgroup of G with

H ∼= 〈(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 2)(4, 5), (1, 2)(7, 8)〉 ≈ 33 : 22.

Let T ∈ Syl3(H) and assume NG(T ) = H and CG(t) ≤ H for all t ∈ T#.
Then G = H.

The hypothesis about the embedding of H in G in Theorem 1.3 is equiv-
alent to saying that H is strongly 3-embedded in G. The proofs of both of
the above theorems exploit the methods introduced by Suzuki which permit
parts of the character table of G to be constructed. Details of the theory
behind the Suzuki method are very well presented in [5]. The embedding
properties in both Theorems 1.2 and 1.3 which assert that centralizers of
certain elements of H are contained in H are precisely the requirements
needed to make the Suzuki theory of special classes work. The result of the
Suzuki method are fragments of possible character tables for G. These frag-
mentary tables provide all the character values on certain elements of order
3 in H.

For the proof of Theorem 1.2, as we start to build up the required char-
acter decompositions there is an overwhelming number of possibilities and
so we have performed this calculation using Magma [2]. The result of this
computation is four fragments of possible character tables for G. However
this statement is rather disingenuous as in fact each fragment represents
many possible character tables as the entries of the partial tables are only
known up to sign choices.

Recall that for x, y, z ∈ G the G-structure constant

axyz = |{(a, b) ∈ xG × yG | ab = z}|
is determined by the character table of G by the following equation

axyz =
|G|

|CG(x)||CG(y)|
∑

χ∈Irr(G)

χ(x)χ(y)χ(z−1)

χ(1)
.

If we select x, y ∈ H such that CG(x) and CG(y) are contained in H, then
we know |CG(x)| = |CH(x)| and |CG(y)| = |CH(y)|. Furthermore, for certain
choices of x, y and z, we know all the character values of x, y and z. Thus
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the only unknown quantity on the left hand side of the structure constant
equation is |G|. The proof of Theorem 1.2 pivots on the following fundamen-
tal fact [6] about groups generated by two elements of order 3 which have
product of order 3:

Suppose that X = 〈x, y | x3 = y3 = (xy)3 = 1〉. Then X
has an abelian normal subgroup of index 3.

This fact allows us to show that for certain z ∈ H, and for certain pairs x, y
of elements of order 3 in G, if xy = z then x, y ∈ H. This means that we
can calculate axyz in H and so we know the left hand side of the structure
constant formula. Hence in principle we can determine |G|. What in fact
happens is that we can discover enough information about |G| to decide
that the possible partial character tables are invalid or to show that G = H.

Once Theorem 1.2 is proved, in Section 3 we prove Theorem 1.1. Now
suppose G and J are as in Theorem 1.1 and set Q = O3(NG(Z)) and
M = NG(J). The initial part of the proof recalls some pertinent facts
from [9]. In particular, we recall that M/J ∼= Mat(10) or 2 ×Mat(10). For
y ∈ Q\Z, we also show that O3(CM (y))/〈y〉 is isomorphic to the group H in
Theorem 1.3 if NG(J)/J ∼= Mat(10) and to the group H in Theorem 1.2 if
NG(J)/J ∼= 2×Mat(10). The main technical result in this section proves, for
x ∈ O3(CM (y)/〈y〉), CCG(y)/〈y〉(x) ≤ CM (y)/〈y〉 and exploits the theorem
of Smith and Tyrer [12]. Once this is proved we quickly finish the proof of
Theorem 1.1 with the help of Theorems 1.2 and 1.3.

Our notation follows that of [1] and [7]. We use Atlas [4] notation for
group extensions. For odd primes p, the extraspecial groups of exponent p
and order p2n+1 are denoted by p1+2n

+ . The quaternion group of order 8 is Q8

and Mat(10) is the Mathieu group of degree 10. A central product of groups
H and K will be denoted H◦K. For a subset X of a group G, XG is the set of
G-conjugates of X. From time to time we shall give suggestive descriptions of
groups which indicate the isomorphism type of certain composition factors.
We refer to such descriptions as the shape of a group. Groups of the same
shape have normal series with isomorphic sections. We use the symbol ≈ to
indicate the shape of a group. All the groups in this paper are finite groups.

Acknowledgement. The first author is grateful to the DFG for their sup-
port and thanks the mathematics department in Halle for their hospitality.
Both authors would like to thank Michael Collins for drawing their attention
to his paper with Alan Camina in which Theorem 1.3 is proved.

2. Proof of Theorem 1.2

In this section we use the Suzuki method which exploits virtual characters
to prove Theorem 1.2. We recall the following definition from [5, Definition
14.5].

Definition 2.1 (Suzuki Special Classes). Let G be a group and H be a
subgroup of G. Suppose that C =

⋃n
i=1 Ci is a union of conjugacy classes of
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Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14
Size 1 27 54 6 8 12 72 54 54 108 72 72 54 54

Order 1 2 2 3 3 3 3 4 6 6 9 9 12 12
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1
χ3 2 2 0 2 2 2 -1 0 2 0 -1 -1 0 0
χ4 3 -1 -1 3 3 3 0 1 -1 -1 0 0 1 1
χ5 3 -1 1 3 3 3 0 -1 -1 1 0 0 -1 -1
χ6 6 2 0 3 -3 0 0 2 -1 0 0 0 -1 -1
χ7 6 2 0 3 -3 0 0 -2 -1 0 0 0 1 1
χ8 6 -2 0 3 -3 0 0 0 1 0 0 0 ζ -ζ
χ9 6 -2 0 3 -3 0 0 0 1 0 0 0 -ζ ζ
χ10 8 0 0 -4 -1 2 2 0 0 0 -1 -1 0 0
χ11 8 0 0 -4 -1 2 -1 0 0 0 2 -1 0 0
χ12 8 0 0 -4 -1 2 -1 0 0 0 -1 2 0 0
χ13 12 0 -2 0 3 -3 0 0 0 1 0 0 0 0
χ14 12 0 2 0 3 -3 0 0 0 -1 0 0 0 0

Table 1. The character table of H. Here ζ =
√

3.

H. Then C is called a set of special classes in H provided the following three
conditions hold.

(i) CG(h) ≤ H for all h ∈ C;
(ii) CGi ∩ C = Ci for 1 ≤ i ≤ n; and

(iii) if h ∈ C and 〈h〉 = 〈f〉, then f ∈ C.

As mentioned in the introduction, the Suzuki method and the theory
behind it are well explained in [5] and we refer the reader explicitly to
Section 14B in [5].

Let K be the subgroup of Alt(9) which normalizes

J = 〈(1, 2, 3), (4, 5, 6), (7, 8, 9)〉.

Thus

K = 〈(1, 2, 3), (1, 4, 7)(2, 5, 8)(3, 6, 9), (1, 2)(4, 5), (1, 4)(2, 5)(3, 6)(7, 8)〉.

We remark that K has shape 33:Sym(4) but is not the unique group of this
shape which has characteristic 3. We assume that G, H and J are as in
the statement of Theorem 1.2. Hence we may identify H with K and for all
j ∈ J# we have CG(j) ≤ H. Furthermore, J is strongly closed in H with
respect to G. We recall that this means that Jg ∩H ≤ J for all g ∈ G.

We have used [2] to produce the character table of H and have pre-
sented the result in Table 1. The conjugacy classes of H will be repre-
sented by C1, . . . , C14 as labeled in Table 1. We let x = (1, 2, 3) ∈ C4, y =
(1, 2, 3)(4, 5, 6) ∈ C6, z = (1, 2, 3)(4, 5, 6)(7, 8, 9) ∈ C5 and J = xH ∪yH ∪zH .
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So

J = C4 ∪ C6 ∪ C5 = J#.

Notice that z is 3-central and so we may suppose that T is chosen so that
Z(T ) = 〈z〉.

Lemma 2.2. The following hold:

(i) T ∈ Syl3(G);
(ii) H controls G-fusion of elements of order 3 in T ;

(iii) C = J ∪
⋃14
i=9 Ci is a set of special classes in H; and

(iv) if t ∈ J and a, b ∈ J G satisfy ab = t, then either 〈a〉, 〈b〉 and 〈t〉
are all G-conjugate or a, b ∈ J#.

Proof. We calculate Z(T ) ≤ J and Z(T ) = 〈z〉. Hence CG(Z(T )) ≤ H by
hypothesis and so T ∈ Syl3(G) which is (i).

Using Table 1 and the fact that x, y, z ∈ J , we have |CH(x)| = |CG(x)| =
108, |CH(y)| = |CG(y)| = 54 and |CH(z)| = |CG(z)| = 81. Hence x, y
and z are not conjugate in G. Let w ∈ T ∩ C7. Then w has order 3. As, by
assumption, J is strongly closed in H, w is not G-conjugate to some element
in J . This completes the proof of (ii).

For s ∈
⋃14
i=9 Ci, some power of s is contained in J . Hence parts (i) and

(ii) and the hypothesis that CG(t) ≤ H for t ∈ J imply that (i) and (iii)
of Definition 2.1 hold. Furthermore, as CG(s) ≤ H for all s ∈ C, the only
possibility for Definition 2.1 (ii) to fail is if classes C11 and C12 fuse in G
or if C13 and C14 fuse in G. In the first case there are a ∈ C12 and b ∈ C13
such that 〈a〉 = 〈b〉 and a3 = b3 ∈ C5 is 3-central. Hence if these classes fuse,
they do so in the centralizer of a3 and thus in H which is a contradiction.
A similar argument shows classes C13 and C14 also cannot fuse. Hence C is a
set of special classes in H.

Before we start with the proof of (iv) we make some remarks. Let w ∈ C7.
Then we may suppose that T = J〈w〉. From the structure of H (or Ta-
ble 1), we know CH(w) is 3-closed with Sylow 3-subgroup 〈z, w〉. In partic-
ular, 〈z, w〉 contains exactly two conjugates of z and therefore NG(〈z, w〉) ≤
CG(z) ≤ H which implies

(2.2.1) For w ∈ C7 ∩ T , 〈z, w〉 ∈ Syl3(CG(w)) and 〈z, w〉 contains two G-
conjugates of z and six G-conjugates of w.

Suppose that t ∈ J and a, b ∈ J G satisfy ab = t. To prove (iv) we may
suppose that 〈a〉, 〈b〉 and 〈t〉 are not all G-conjugate. Furthermore, setting
X = 〈a, b〉 we may suppose that X = A〈a〉 where A is a normal abelian
subgroup of X. Let A3 be the Sylow 3-subgroup of A. As 〈a〉, 〈b〉 and 〈t〉
are not all G-conjugate, A3 6= 1.

Assume that X 6≤ H. We first suppose that t ∈ A3. Then A3 ≤ A ≤
CG(t) ≤ H and hence a 6∈ H. Let B = CA3(a). If B ∩ J 6= 1, then a ∈
CG(B ∩ J) ≤ H, which is a contradiction. Thus B has order 3 and the
non-trivial elements of B are in class C7. Since A3 is abelian and t ∈ A3,
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we now have 〈B, t〉 ≤ A3 ≤ CH(B). As |CH(B)|3 = 9 by (2.2.1), 〈B, t〉 =
A3 and 〈t〉 = A3 ∩ J is the unique G-conjugate of 〈t〉 contained in A3.
But then a ∈ CG(t) ≤ H a contradiction. Hence t 6∈ A3 and X = 〈t〉A.
If CA3(t) ∩ J 6= 1, then we have that X = 〈t〉A ≤ CG(CA3(t) ∩ J) ≤
H, a contradiction. So we have that CA3(t) is of order three and the non-
trivial elements are all in C7. By (2.2.1) we have that CA3(t)〈t〉 is a Sylow
3-subgroup of CG(CA3(t)) and so Ut = CA3(t)〈t〉 is a Sylow 3-subgroup of
X. As a and b are not in CG7 by (ii), we have that also a and b are not in A
and so Ua = 〈CA3(t), a〉, Ub = 〈CA3(t), b〉 are Sylow 3-subgroups of X too.
Now we have that J G ∩ 〈t, CA3(t)〉 = {t, t−1} by (ii). As Ut, Ub and Ua are
conjugate in X, we have that also |Ua ∩J G| = 2 = |Ub ∩J G|. However this
means that 〈t〉, 〈a〉 and 〈b〉 are all X-conjugate, which is a contradiction.
Therefore (iv) holds. �

For g, h, k ∈ G we let aghk be the corresponding G-structure constant.
Recall x = (1, 2, 3), y = (1, 2, 3)(4, 5, 6) and z = (1, 2, 3)(4, 5, 6)(7, 8, 9).

Lemma 2.3. We have the following G-structure constants values: axyz = 3,
axxy = 2, axxz = 0, ayyx = 4, ayyz = 6, azzx = 4, azzy = 2.

Proof. Because of Lemma 2.2 (iv) we can calculate these G-structure con-
stants in H. To do this we may either calculate by hand in K or use the
character table of H presented in Table 1. �

Lemma 2.4. |G : H| ≡ 1 (mod 27).

Proof. Suppose that x ∈ G and consider J ∩ Hx. As J is strongly closed
in H with respect to G, J ∩ Hx ≤ Jx. Hence, if J ∩ Hx > 1, then by the
assumption on the centralizers of elements in J#, J ≤ Hx and consequently
Jx = J and x ∈ NG(J). Thus the conjugation action of J on {Jx | x ∈ G}
fixes J and otherwise has orbits of length |J | = 27. Since

NG(J) = CNG(J)(z)H = CH(z)H = H

by Lemma 2.2 (ii), we conclude that |G : H| = |{Jx | x ∈ G}| ≡ 1 (mod 27)
as claimed.

�

We use the notation for characters of H introduced in Table 1.

Lemma 2.5. Suppose that θ is a virtual character of G. Then θ(1) ≡ θ(z)
(mod 9).

Proof. Set ψ =
∑14

i=6 χi. We have ψ(1) = 72, ψ(z) = −9 and ψ(w) = 0 if w
is not conjugate to either 1 or z. Hence, as there are eight conjugates of z
in H,

(ψ, θH) =
1

|H|
(72θ(1)− 72θ(z)) =

1

9
(θ(1)− θ(z))

is an integer. This proves the claim. �
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Lemma 2.6. Suppose that θ is a virtual character of G. Then

θ(1) ≡ 4θ(z)− 3θ(x) (mod 27).

Proof. Set ψ =
∑9

i=6 χi. We have ψ(1) = 24, ψ(x) = 12, ψ(z) = −12 and
ψ(w) = 0 if w is not conjugate to either 1 or z. Hence

(ψ, θH)H =
1

|H|
(24θ(1) + 6 · 12θ(x)− 8 · 12θ(z)) =

1

27
(θ(1) + 3θ(x)− 4θ(z))

is an integer which proves the claim. �

We now follow the Suzuki method. We find the following basis for the
class functions which vanish off the special classes C:

λ1 = 2χ1 + χ13 − χ6 − χ10,

λ2 = χ1 − χ5 − χ6 + χ12,

λ3 = χ1 + χ2 + χ8 − χ10,

λ4 = χ1 + χ5 + χ12 − χ14,

λ5 = χ2 − χ4 − χ7 + χ12,

λ6 = χ12 − χ3 − χ8,

λ7 = χ8 − χ9,

λ8 = χ11 − χ12 and

λ9 = χ4 + χ5 − χ8.

For 1 ≤ i ≤ 9, define

γi =
15∑
j=1

χj(ti)χj

where ti ∈ Ci+3 for 1 ≤ i ≤ 3 and ti ∈ Ci+5 for 4 ≤ i ≤ 9. By the second
orthogonality relations, for 1 ≤ i ≤ 9,

γi ∈ 〈λj | 1 ≤ j ≤ 9〉.
In the matrix D below, row i describes the decomposition of γi in terms of
the λj , 1 ≤ j ≤ 9.

D =



0 −3 4 0 −3 −2 −3 −4 0
3 0 −2 −3 3 −2 3 −1 6
−3 3 1 3 0 −2 0 2 3

0 1 0 0 1 −2 −1 0 0
1 −1 −1 1 0 0 0 0 −1
0 0 1 0 0 1 0 2 0
0 0 1 0 0 1 0 −1 0
0 1 0 0 −1 0 ζ 0 0
0 1 0 0 −1 0 −ζ 0 0


.

We now determine the possibilities for the matrices B which have columns
indexed by the irreducible characters Irr(G) = {θ1, . . . , θs} of G, rows in-
dexed by the induced virtual characters µi = λGi and (i, j)th entry indicating
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the multiplicity of the character θj in the virtual character µi. To determine
the entries in the candidates for B, we use that, for 1 ≤ i ≤ k ≤ 9,

(µi, µk) = (λi, λk)

and that the multiplicity of the principal character of H in λi is the same
as the multiplicity of the principal character of G in µi (see [5, Lemma
14.9, Theorem 14.11]). The calculation to determine the candidates for B
was performed using Magma [2]. From the candidate matrices B, we can
calculate fragments of the character table of G by calculating C = (DB)t.
The columns of the fragments are indexed by the G-conjugacy classes rep-
resented in the special classes C and the rows are indexed by the irreducible
characters of G. For the computation we use the fact that aside from the
first row, no character of G appears with multiplicity other than ±1 or 0.
The Magma programme is stored on the ArXiV.

When calculating B, we note that negating a column results in a fur-
ther solution to the inner product equations. Similarly a permutation of the
columns results in a different candidate for the matrix B. These operations
correspond to renaming the characters in C or to negating a character in C
and so we may consider the solutions to be equivalent. We always arrange
that the first row corresponds to the principal character. The calculation
reveals four solutions, whose rows are inequivalent under the manipulations
just described. The columns of the fragments corresponding to the elements
x, y and z are presented in Table 2. In fragments one and two, the rows
consisting of zeros have non-zero entries on other members of the special
classes and so we have left the rows in our partial tables. Remember that
these fragments now have rows that may be the negative of character values.

For the candidates for the partial character table of G given in Table 2,
we show that the first three cases are not associated with a character table
of a group which satisfies Lemmas 2.4, 2.5 or 2.6 whereas in the fourth case
we demonstrate that G = H. All the calculations make use of the structure
constants presented in Lemma 2.3. We denote the virtual characters of G
represented in the fragments in Table 2 by θ1, . . . , θs where s is the number
of rows in the corresponding fragment and θ1 is the principal character of
G. For 1 ≤ i ≤ s, define

di = θi(1).

Thus di is an integer and is positive if and only if θi is a character. We set

g =
|G|
542

=
2

9
|G : H|.

Lemma 2.7. Fragment one of Table 2 is not possible.
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x z y
1 1 1
4 1 -2
-3 3 0
0 -3 3
3 3 3
4 1 -2
-4 2 -1
0 0 0
0 3 -3
0 0 0
-5 1 -2
-4 -1 2
0 -6 -3
...

...
...

x z y
1 1 1
4 1 -2
-3 3 0
0 -3 3
-4 2 -1
-3 -6 0
4 -2 1
0 0 0
0 -3 -6
4 -2 1
-5 -2 1
0 0 0
...

...
...

x z y
1 1 1
3 0 -3
1 4 -2
3 -3 0
-3 -3 -3
-4 -1 2
4 -2 1
3 -3 0
0 3 -3
3 3 3
2 2 2
-3 3 0
-4 -1 2
...

...
...

x z y
1 1 1
4 1 -2
0 3 -3
3 -3 0
-4 -1 2
-3 -3 -3
-1 -1 -1
-3 3 0
0 3 -3
-3 -3 -3
-3 3 0
2 2 2
-3 3 0
-4 -1 2
...

...
...

Table 2. The candidates for inequivalent fragments of the
character table of G.

Proof. The values of the structure constants axyz = 3, axxy = 2 and ayyx = 4
given in Lemma 2.3 yield, respectively, the following equalities:

6

g
= 1− 8

d2
+

27

d5
− 8

d6
+

8

d7
+

10

d11
+

8

d12
8

g
= 1− 32

d2
+

27

d5
− 32

d6
− 16

d7
− 50

d11
+

32

d12
4

g
= 1 +

16

d2
+

27

d5
+

16

d6
− 4

d7
− 20

d11
− 16

d12
.

To simplify our notation we set w1 = − 8
d2
− 8

d6
+ 8

d12
, w2 = − 4

d7
, w3 = 10

d11

and w4 = 1 + 27
d5

.

6

g
− w4 = w1 − 2w2 + w3(1)

8

g
− w4 = 4w1 + 4w2 − 5w3(2)

4

g
− w4 = −2w1 + w2 − 2w3.(3)

Subtracting four times Eqn. 1 from Eqn. 2 and adding two times Eqn. 1 to
Eqn. 3 we get

−16

g
+ 3w4 = 12w2 − 9w3

16

g
− 3w4 = −3w2



11

which means that w2 = w3. Thus −4d11 = 10d7. Now, by Lemma 2.5,
d11 ≡ 1 (mod 9) and d7 ≡ 2 (mod 9). This implies −4d11 ≡ −4 (mod 9)
and 10d7 ≡ 20 (mod 9) = 2 (mod 9), which is a contradiction. �

Lemma 2.8. Fragment two of Table 2 is not possible.

Proof. We consider the structure constants axyz = 3 and ayyx = 4. These
provide the equations

6

g
= 1− 8

d2
+

8

d5
− 8

d7
− 8

d10
+

10

d11
(4)

4

g
= 1 +

16

d2
− 4

d5
+

4

d7
+

4

d10
− 5

d11
.(5)

Adding two times Eqn.5 to Eqn. 4 gives the conclusion

14

g
= 3 +

24

d2
.

This means that 7 · 9d2 − 3d2|G : H| = 24|G : H| and yields

7 · 3d2 − d2|G : H| = 8|G : H|.
By Lemma 2.5 we have d2 ≡ 1 (mod 9) and by Lemma 2.4 |G : H| ≡ 1
(mod 9). Therefore

2 ≡ 7 · 3d2 − d2|G : H| = 8|G : H| ≡ −1 (mod 9),

which is absurd. Thus Fragment two does not lead to a group satisfying the
current assumptions. �

Lemma 2.9. Fragment three of Table 2 is not possible.

Proof. In this case we use all the structure constants other than axyz to
reach our conclusion. The structure constants axxy = 2, ayyx = 4, axxz = 0,
azzx = 4, ayyz = 6, and azzy = 2 lead, respectively, to the following six
equations:

8

g
= 1− 27

d2
− 2

d3
− 27

d5
+

32

d6
+

16

d7
+

27

d10
+

8

d11
+

32

d13
4

g
= 1 +

27

d2
+

4

d3
− 27

d5
− 16

d6
+

4

d7
+

27

d10
+

8

d11
− 16

d13

0 = 1 +
4

d3
− 27

d4
− 27

d5
− 16

d6
− 32

d7
− 27

d8
+

27

d10
+

8

d11
+

27

d12
− 16

d13
9

g
= 1 +

16

d3
+

27

d4
− 27

d5
− 4

d6
+

16

d7
+

27

d8
+

27

d10
+

8

d11
− 27

d12
− 4

d13
6

g
= 1 +

16

d3
− 27

d5
− 4

d6
− 2

d7
+

27

d9
+

27

d10
+

8

d11
− 4

d13
9

2g
= 1− 32

d3
− 27

d5
+

2

d6
+

4

d7
− 27

d9
+

27

d10
+

8

d11
+

2

d13
.

We set w1 = 27
d2

, w2 = 2
d3

, w3 = −27
d4
− 27

d8
+ 27

d12
, w4 = 1− 27

d5
+ 27

d10
+ 8

d11
,

w5 = 2
d6

+ 2
d13

, w6 = 2
d7

and w7 = 27
d9

.
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8

g
− w4 = −w1 − w2 + 16w5 + 8w6(6)

4

g
− w4 = w1 + 2w2 − 8w5 + 2w6(7)

−w4 = 2w2 + w3 − 8w5 − 16w6(8)

9

g
− w4 = 8w2 − w3 − 2w5 + 8w6(9)

6

g
− w4 = 8w2 − 2w5 − w6 + w7(10)

9

2g
− w4 = −16w2 + w5 + 2w6 − w7.(11)

If we add the first four equations and subtract twice the sum of the last two
equations, we obtain

0 = 27w2.

Therefore 0 = w2 = 2
d3

, which is ridiculous. �

Lemma 2.10. Fragment four of Table 2 leads to the conclusion G = H.

Proof. This time we focus on the structure constants axyz = 3, axxy = 2 and
ayyz = 6. These, respectively, provide the following equations:

6

g
= 1− 8

d2
+

8

d5
− 27

d6
− 1

d7
− 27

d10
+

8

d12
+

8

d14
8

g
= 1− 32

d2
+

32

d5
− 27

d6
− 1

d7
− 27

d10
+

8

d12
+

32

d14
6

g
= 1 +

4

d2
+

27

d3
− 4

d5
− 27

d6
− 1

d7
+

27

d9
− 27

d10
+

8

d12
− 4

d14
.

Thus setting w1 = 1 − 27
d6
− 1

d7
− 27

d10
+ 8

d12
, w2 = − 4

d2
+ 4

d5
+ 4

d14
and

w3 = 27
d3

+ 27
d9

, we see that

6

g
− w1 = 2w2

8

g
− w1 = 8w2

6

g
− w1 = −w2 + w3.

Therefore w3 = 1/g and so

27

d3
+

27

d9
=

9

2
|G : H|−1.

Hence

d3d9 = 6|G : H|(d3 + d9).(12)
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In particular d3 + d9 6= 0. As d23 and d29 are both less than |G|, |G| > |d3d9|
and consequently Eqn. 12 also implies |G| > 6|G : H||d3 + d9|. This means
that

|d3 + d9| < |H|/6 = 108.

On the other hand,

0 < (d3 + d9)
2 = d23 + d29 + 2d3d9

= d23 + d29 + 12|G : H|(d3 + d9) < |G|+ 12|G : H|(d3 + d9)

and so

|H|+ 12(d3 + d9) > 0.

We conclude d3+d9 > −54. Furthermore, if d3+d9 is positive, then, by Eqn.
12, d3 and d9 are both positive and, as (d3+d9)

2 = d23+d
2
9+12|G : H|(d3+d9),

we see

12|G : H| ≤ d3 + d9 ≤ 108

which gives |G : H| ≤ 9. Since Lemma 2.4 states |G : H| ≡ 1 (mod 27), this
means that G = H as desired. Therefore we may assume that d3 + d9 < 0.

By Lemma 2.6, d3 ≡ d9 ≡ 12 (mod 27). Hence a = d3/3 and b = d9/3 are
integers with a ≡ b ≡ 4 (mod 9). As d3+d9 > −54, we have −18 < a+b < 0.
Additionally Eqn. 12 becomes

ab = 2|G : H|(a+ b).(13)

We now determine the possibilities for a and b modulo 27. From Lemma 2.4
we have |G : H| ≡ 1 (mod 27) and therefore Eqn. 13 yields ab ≡ 2(a + b)
(mod 27). Since a ≡ b ≡ 4 (mod 9), we have that a and b are equivalent to
one of 4, 13 or 22 modulo 27. As ab ≡ 2(a+b) (mod 27), we infer that either
a ≡ b ≡ 4 (mod 27), or up to change of notation, a ≡ 13 (mod 27) and
b ≡ 22 (mod 9). In particular a + b ≡ 8 (mod 27). Since −18 < a + b < 0,
this is impossible. �

The proof of Theorem1.2. Since fragments 1, 2 and 3 of Table 2 are not
associated to a possible character table of G and since fragment 4 leads to
the conclusion that G = H, we must have G = H. �

3. The proof of Theorem 1.1

In this section we assume the hypothesis of the Theorem 1.1 which we
recall reads as follows.

Hypothesis 3.1. G is a finite group, S ∈ Syl3(G), Z = Z(S) and J is an
elementary abelian subgroup of S of order 34. Furthermore

(i) O3′(NG(Z)) ≈ 31+4
+ .2.Alt(5);

(ii) O3′(NG(J)) ≈ 34.Alt(6); and
(iii) CG(O3(CG(Z))) ≤ O3(CG(Z)).
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We use the same notation as established in [9, Section 5]. Thus

Q = O3(NG(Z)) = O3(CG(Z))

is extraspecial of order 35 and exponent 3,

L = NG(Z), L∗ = O3′(L), M = NG(J) and M∗ = O3′(M).

Notice that

J = O3(M) = O3(M
∗).

With this notation Hypothesis 3.1 (i) and (ii) are expressed as

L∗/Q ∼= 2.Alt(5) ∼= SL2(5) and M∗/J ∼= Alt(6) ∼= Ω−4 (3).

Lemma 3.2. The following hold:

(i) CG(Q) = Z(Q) = Z has order 3;
(ii) CG(J) = J ;
(iii) J = J(S) is the Thompson subgroup of S; and
(iv) S = JQ and NG(S) = L ∩M .

Proof. As CG(Q) ≤ Q by Hypothesis 3.1 (iii) and Q is extraspecial, part (i)
holds. Since S ≤ L, |S : Q| = 3 and Q is extraspecial of order 35, J is a
maximal abelian subgroup of S and Z ≤ J . It follows from the described
structure of L and M that CG(J) ≤ J and, as J is abelian, (ii) holds.

For (iii) suppose there is Ĵ ≤ S with Ĵ abelian and |Ĵ | ≥ |J |. Then,

as S/J ∈ Syl3(M∗/J) and M∗/J ∼= Alt(6), |J ∩ Ĵ | ≥ 32. If S = JĴ , then

Z(S) ≥ J ∩ Ĵ which contradicts (i). Thus JĴ 6= S and so |J ∩ Ĵ | ≥ 33. If Ĵ 6=
J , then, by Hypothesis 3.1 (ii), JĴ is not normal in NNG(J)(S). Hence there

is x ∈ NG(S) such that S = JĴĴx. Further we have |J ∩ Ĵ | = |J ∩ Ĵx| = 33,

in particular |J ∩ Ĵ ∩ Ĵx| ≥ 32. Since this group is contained in Z(S), we

again have a contradiction to (i). Hence J = Ĵ and J = J(S). This is (iii).
Since J 6≤ Q and |S/Q| = 3, we have S = JQ. Also NG(S) ≤ NG(Z(S)) =

L and NG(S) ≤ NG(J(S)) = NG(J) = M . Hence NG(S) ≤ L ∩M . Finally
we have L ∩M ≤ NG(S) as S = JQ. Thus (iv) holds. �

Lemma 3.3. Let X = M∗/J ∼= Alt(6). Then, as a GF(3)X-module, J
can be identified with the irreducible 4-dimensional section of the natural
6-point GF(3)X-permutation module for Alt(6). In particular, J supports a
non-degenerate orthogonal form which is invariant under the action of M .

Proof. See [9, Lemma 5.4 and the discussion at the bottom of page 1769]. �

Lemma 3.4. Let X = Alt(6) and V be the irreducible 4-dimensional section
of the natural 6-point GF(3)X-permutation module. Then

(i) X has three orbits on the 1-dimensional subspaces of V . One orbit
has length 10 and the other two orbits both have length 15.

(ii) If 〈ν〉 ≤ V is in an X-orbit of length 15, then CX(ν) ∼= Alt(4).
(iii) Every hyperplane of V contains an element from the orbit of length

10.
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(iv) If x ∈ X is of order 4, then CV (x) = 0 and |CV (x2)| = 32.

Proof. These statements are the results of easy calculations. �

Set
L0 = L∗NM∗(S) and M0 = M∗NL∗(S).

Since, by Lemma 3.2 (iv), NG(S) = M ∩L, L0 and M0 are subgroups of G.
In the next lemma 2−Sym(5) denotes the double cover of Sym(5) which

contains 2.Alt(5) and in which the transpositions of Sym(5) lift to elements
of order 4. The Sylow 2-subgroups of 2−Sym(5) are quaternion groups of
order 16.

Lemma 3.5. The following hold.

(i) M0/J ∼= Mat(10), L0/Q ∼= 2−Sym(5) and NL∗(S)NM∗(S) has Sy-
low 2-subgroups which are isomorphic to Q8.

(ii) |L : L0| = |M : M0| ≤ 2.
(iii) If |L : L0| = 2, then M/J ∼= 2×Mat(10) and L/Q ∼= (4 ◦SL2(5)).2.

Furthermore, NG(S) has Sylow 2-subgroups which are isomorphic
to 2×Q8.

Proof. See [9, Lemma 5.11]. �

Lemma 3.6. All involutions contained in M act with determinant 1 on J
and project to elements in F ∗(M/J).

Proof. By Lemma 3.5 either M/J ∼= Mat(10) or M/J ∼= Mat(10)× 2. As all
involutions of Mat(10) are contained in Alt(6), all the involutions of M/J
are contained in F ∗(M/J). If F ∗(M/J) ∼= Alt(6), then, as Alt(6) is perfect,
the result holds. If F ∗(M/J) ∼= Alt(6) × 2, then the central involution in
M/J inverts J and so also has determinant 1. This completes the proof. �

Lemma 3.7. Suppose that A ≤ M has order 4 and |CJ(A)| ≥ 9. Then
CJ(A) contains a conjugate of Z.

Proof. As any involution of Mat(10) is contained in Alt(6) and, by Lemma 3.5,
|M : M0| ≤ 2 and M0/J ∼= Mat(10), A contains an involution a ∈ M∗. By
conjugating A by elements of M , we may assume that a normalizes S. Be-
cause NM∗(S)/S is cyclic of order 4, a is a square in NM∗(S). Hence a
centralizes Z(S) = Z. As a has determinant 1 in its action on J , we have
that |CJ(a)| = 9 and so CJ(a) = CJ(A) contains Z. �

Since, by Lemma 3.2 (iii), J is the Thompson subgroup of S and because
J is abelian, [1, 37.6] implies M controls G-fusion of elements in J . There-
fore Lemma 3.4 (i) implies that there are at most three and at least two
conjugacy classes of subgroups of order 3 in J . We know that the 3-central
class is represented by Z and that the non-trivial elements of Z correspond
to singular vectors in J . As Alt(6) is not isomorphic to a subgroup of Ω+

4 (3)
(which is soluble), the quadratic form on J which is preserved up to similar-
ity by M is of −-type. Thus there are no subgroups of J of order 9 in which
all the subgroups of order 3 are conjugate to Z.
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Lemma 3.8. (i) M controls G-fusion in J ;
(ii) M has exactly two orbits when acting on the subgroups of order 3

in J ; and
(iii) Z is weakly closed in Q with respect to G.

Proof. We have already discussed (i).
As M0/J ∼= Mat(10) by Lemma 3.5 and Mat(10) has no subgroups of

index 15, we deduce that 〈y〉M0 has size 30 and therefore CM0(y) = CM∗(y)
and CM∗(y)/J ∼= Alt(4) by Lemma 3.4(ii). In particular, there are at most
two orbits of M0 on subgroups of J of order three. Since there are at least
two orbits, (ii) holds.

Suppose that Y ≤ Q ∩ J has order 3 with Y 6= Z and that Y is G-
conjugate to Z. Then W = Y Z is a subgroup of J of order 9 in which every
proper subgroup is conjugate to Z. Since J has no such subgroups of order
9, we infer that no such Y exists. Thus, if y ∈ (J ∩ Q) \ Z, then y is not
3-central in G. Suppose now that Y ∈ ZG \{Z} and Y ≤ Q. Then CQ(Y ) ∼=
3× 31+2

+ and so, as Lg/Qg has cyclic Sylow 3-subgroups, Z = CQ(Y )′ ≤ Qg.
Now CQg(Z) normalizes Q and by conjugating in L, we may assume that
CQg(Z) ≤ S. But then CQg(Z) normalizes J and consequently, as S/J is
abelian, Y = CQg(Z)′ ≤ J ∩Q, which is a contradiction. �

Lemma 3.9. The only 3′-subgroup of G which is normalized by J is the
trivial subgroup.

Proof. Assume that J normalizes a non-trivial 3′-subgroup X of G. Then,
as every subgroup of J of order 27 contains a conjugate of Z by Lemma 3.4
(iii), as J acts coprimely on X, and, as X = 〈CX(J1) | |J : J1| = 3〉, we may
assume that Y = CX(Z) 6= 1. But then Y is a non-trivial 3′-subgroup of L.
As Y is normalized by A = J∩Q and Y normalizesQ, [A, Y ] ≤ Q∩Y = 1 and
hence, as Y 6= 1 and A is a maximal abelian subgroup of Q, Y ≤ CL(A) = J .
But then Y = 1, which is a contradiction. �

We now select and fix y ∈ (Q ∩ J) \ Z. By Lemma 3.8 (iii), y is not a
3-central element of G. Define

K = CM (y) and H = CG(y).

The aim of the remainder of this section is to prove that

CG(O3(H)) ≤ O3(H).

Lemma 3.10. We have CL(y) ≤ K.

Proof. We consider the subgroup U = 〈y, Z〉 and calculate CL∗(U) = CL∗(y).
As U ≤ J and J is abelian, J ≤ CL∗(U) and, as Q is extraspecial, CQ(U)
has index 3 in Q and CQ(U)J is a Sylow 3-subgroup of CL(U). Since the
elements of order 5 in L∗ act fixed-point-freely on Q/Z and since the involu-
tions in L∗ invert Q/Z, we infer that CL∗(U) = CQ(U)J . Hence CL∗(y) and
CL(y) are 3-closed. It follows that CL(y) ≤ NG(CQ(U)J) ≤ NG(J) = M as
J = J(S) by Lemma 3.2 (iii). �
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Define

Ka = 〈(1, 2, 3), (1, 4, 7)(2, 5, 8)(3, 6, 9), (1, 2)(4, 5)〉

and

Kb = NAlt(9)(〈(1, 2, 3), (4, 5, 6), (7, 8, 9)〉)
= 〈(1, 2, 3), (1, 4, 7)(2, 5, 8)(3, 6, 9), (1, 2)(4, 5), (1, 4)(2, 5)(3, 6)(7, 8)〉.

We have that Ka is isomorphic to a semidirect product of an elementary
abelian group of order 27 by Alt(4) and Kb is isomorphic to a semidirect
product of an elementary abelian group of order 27 by Sym(4). Moreover
|Kb : Ka| = 2. Note that any elementary abelian subgroup of Sym(9) of
order 27 is conjugate in Sym(9) to 〈(1, 2, 3), (4, 5, 6), (7, 8, 9)〉.

Lemma 3.11. One of the following holds:

(i) M/J ∼= Mat(10) and K/〈y〉 ∼= Ka; or
(ii) M/J ∼= Mat(10)× 2 and K/〈y〉 ∼= Kb.

Moreover, CK(O3(K)) ≤ O3(K).

Proof. We saw in the proof of Lemma 3.8 that CM0(y) = CM∗(y) and
CM∗(y)/J ∼= Alt(4). Let A ∈ Syl2(CM∗(y)) and a ∈ A#. Then the action of
CM∗(y) on the cosets of [J, a]A〈y〉 gives an embedding of CM∗(y)/〈y〉 into
Sym(9). Since CM∗(y)/〈y〉 is generated by elements of order 3 and normalizes
J/〈y〉, we have CM∗(y)/〈y〉 ∼= Ka. Thus, if M = M0, then (i) holds.

Suppose that M > M0. Then M/J ∼= Mat(10) × 2. Let b ∈ M be
an involution such that bJ ∈ Z(M/J). Then b inverts y and also y is
inverted in NM∗(CM∗(y)) ≈ 34:Sym(4). Thus the diagonal subgroup of
〈b〉NM∗(CM∗(y))/J ∼= 2 × Sym(4) which is isomorphic to Sym(4) central-
izes y. Now every element of M∗〈b〉 acts on J with determinant 1. It fol-
lows that every element of CM∗〈b〉(y) acts on J/〈y〉 with determinant 1.
Let B ∈ Syl2(CM∗〈b〉(y)) and t ∈ Z(B). Then CM∗〈b〉(y) acts on the nine
cosets of [J, t]B〈y〉 in CM∗〈b〉(y). Thus again we have CM∗〈b〉(y)/〈y〉 is iso-
morphic to a subgroup of Sym(9) which normalizes a subgroup of order
33. Since every element of CM∗〈b〉(y) acts on J/〈y〉 with determinant 1,

we deduce that they have commutator of order 32 in J/〈y〉; in particu-
lar CM∗〈b〉(y) does not contain elements conjugate in Sym(9) to (1, 2) or
(1, 2)(3, 4)(5, 6). Hence CM∗〈b〉(y)/〈y〉 is isomorphic to a subgroup of Alt(9).
Therefore CM (y)/〈y〉 ∼= Kb.

Finally, as O3′(K) = 1 by Lemma 3.9 and K is soluble, CK(O3(K)) ≤
O3(K). �

The proof of Lemma 3.13 uses the following theorem of Smith and Tyrer.

Theorem 3.12 (Smith and Tyrer [12]). Let D be a finite group and let P
be a Sylow p-subgroup of D for some odd prime p. Suppose P is abelian but
not cyclic. If |ND(P ) : CD(P )| = 2, then Op(D) < D or D is p-soluble of
p-length 1. �
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The next lemma is required when we apply Theorems 1.2 and 1.3.

Lemma 3.13. Let x ∈ J \ 〈y〉. Then CH/〈y〉(x〈y〉) ≤ K/〈y〉.

Proof. Set U = 〈x, y〉 and let W be the preimage in H of CH/〈y〉(x〈y〉). Then

|U | = 9, W normalizes U and O3(W ) centralizes U .
Assume first that U contains a G-conjugate of Z. If this is a K-conjugate

of Z, we may assume that U = 〈Z, y〉. Thus CG(U) = CL(y) ≤ K by
Lemmas 3.8 (iii) and 3.10.

Assume that U contains a conjugate Zg of Z, which is not conjugate to Z
inK. Then, as J supports anM -invariant quadratic form, U contains exactly
two conjugates of Z and W = CG(U). Moreover (Zg)K is of length three
or six, depending on whether K/〈y〉 ∼= Ka or Kb respectively. In particular
J is a Sylow 3-subgroup of W . Now W ≤ Lg. As J is a Sylow 3-subgroup
of W , we have that U 6≤ Qg and so QgU = Qg〈y〉 is a Sylow 3-subgroup of
Kg. We now have that CKg(y) ≤ NKg(QgU). Since J ≤ QgU , we have that
J = J(QgU) and so

W ≤ NG(J(QgU)) ≤ NG(J) = M.

But then W ≤ K and we are done.
So we finally consider the case when U# just consists of G-conjugates of

y. As the centre of CS(y) = JCQ(y) is equal to 〈y, Z〉, we again see that
J is a Sylow 3-subgroup of CG(U). In particular, by the Frattini Argument
W = (W ∩M)CG(U). Thus it suffices to show that CG(U) ≤M . By Lemma
3.7, a Sylow 2-subgroup of CM (U) has order at most 2.

So we have

(3.13.1)

(i) J/U is a Sylow 3-subgroup of CG(U)/U ; and
(ii) |NCG(U)/U (J/U) : J/U | ≤ 2.

Assume that CG(U) is not 3-soluble. Then Burnside’s normal p-complement
Theorem [7, Theorem 7.4.3] and (3.13.1) (i) and (ii) imply |NCG(U)/U (J/U) :

J/U | = 2. Therefore Theorem 3.12 shows O3(CG(U)/U) < CG(U)/U . How-
ever, there is an involution a from CM (U) acting on J/U and, by Lemma
3.6, it acts on J with determinant 1. Thus a inverts J/U . In particular J/U
is contained in O3(CG(U)/U), which is a contradiction.

So we have shown that CG(U)/U is 3-soluble. Using Lemma 3.9 yields
O3′(CG(U)/U) = 1 and so J/U is normal in CG(U)/U . But then CG(U) ≤
M and this proves the lemma. �

Lemma 3.14. Let ρ ∈ K be an element of order three. Then ρ is H-
conjugate to an element of J if and only if ρ ∈ J . In particular, J is strongly
closed in CS(y) with respect to H.

Proof. Assume that ρ ∈ CS(y) \ J . As CS(y)/〈y〉 ∼= 3 o 3 by Lemma 3.11, all
elements of order three in the coset Jρ are conjugate into 〈y〉ρ. As CQ(y) 6≤
J , we may assume that ρ ∈ Q. So, again using Lemma 3.11, we have CK(ρ) =
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〈y, Z, ρ〉 ≤ Q. As Z is weakly closed in Q by Lemma 3.8 (iii), we deduce
NH(CK(ρ)) ≤ NG(Z) = L. As H∩L ≤ K by Lemma 3.10, CK(ρ) is a Sylow
3-subgroup of CH(ρ). In particular ρ is not conjugate to any element of J .
This proves the lemma. �

Let

Kc = K ′a = 〈(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 2)(4, 5), (1, 2)(7, 8)〉.

Lemma 3.15. Assume that M/J ∼= Mat(10). Then H has a normal sub-
group F of index 3 and (F ∩K)/〈y〉 ∼= Kc.

Proof. By Lemma 3.11 (i), K/J ∼= Alt(4). Notice that as Z(CS(y)) =
〈y, Z〉, CS(y) ∈ Syl3(H) and NH(CS(y)) ≤ K by Lemma 3.10. In particular
(NH(CS(y)))′ ≤ J . Furthermore, for any Sylow 3-subgroup P of H, P ′ is
contained in an H-conjugate of J . Hence by Lemma 3.14, the focal subgroup

〈(NH(CS(y)))′, CS(y) ∩ P ′ | P ∈ Syl3(H)〉 ≤ J.

Thus Grün’s Theorem [7, Theorem 7.4.2] implies O3(H/〈y〉) < H/〈y〉. The
action of Ka on J shows that J ≤ O3(H)〈y〉. Hence there is a subgroup F
containing J , which is of index 3 in H and (F ∩K)/〈y〉 ∼= Kc. �

The next theorem is the final step before we achieve our goal.

Theorem 3.16. Suppose that G satisfies Hypothesis 3.1. Then, for all j ∈
J#,

CG(O3(CG(j))) ≤ O3(CG(j)).

Proof. By Lemma 3.8 (ii), j is either conjugate to an element of Z or to an
element of 〈y〉. In the former case we have CG(O3(CG(j))) ≤ O3(CG(j)) by
Hypothesis 3.1 (iii). Thus we may suppose j ∈ 〈y〉. We distinguish between
the two possibilities in Lemma 3.5.

Suppose first that M/J ∼= Mat(10). By Lemma 3.15 we have that H
possesses a normal subgroup F of index 3. By Lemmas 3.15 and 3.13, F/〈y〉
satisfies the assumption of Theorem 1.3 (with G = F/〈y〉 and H = (F ∩
K)/〈y〉). Hence F/〈y〉 = (F ∩K)/〈y〉 and so H = K. Thus the result follows
from Lemma 3.11.

Now suppose that M/J ∼= 2×Mat(10). Then Lemmas 3.11 (ii), 3.13 and
3.14 imply that H/〈y〉 satisfies the assumptions of Theorem 1.2. Hence again
we get H = K and the result follows from Lemma 3.11. �

Proof of Theorem 1.1. Hypothesis 3.1 and Theorem 3.16 provide the hy-
pothesis for [9, Theorem 1.1]. Thus application of [9, Theorem 1.1] yields
G ∼= McL or G ∼= Aut(McL) and proves the theorem. �
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