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5�-Reductase Type 2 Regulates Glucocorticoid Action
and Metabolic Phenotype in Human Hepatocytes

Maryam Nasiri, Nikolaos Nikolaou, Silvia Parajes, Nils P. Krone,
George Valsamakis, George Mastorakos, Beverly Hughes, Angela Taylor,
Iwona J. Bujalska, Laura L. Gathercole, and Jeremy W. Tomlinson

Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of
Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham,
Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology &
Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford,
Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second
Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University
Hospital, Athens Medical School, Athens, 11528, Greece

Glucocorticoids and androgens have both been implicated in the pathogenesis of nonalcoholic
fatty liver disease (NAFLD); androgen deficiency in males, androgen excess in females, and glu-
cocorticoid excess in both sexes are associated with NAFLD. Glucocorticoid and androgen action are
regulated at a prereceptor level by the enzyme 5�-reductase type 2 (SRD5A2), which inactivates
glucocorticoids to their dihydrometabolites and converts T to DHT. We have therefore explored the
role of androgens and glucocorticoids and their metabolism by SRD5A2 upon lipid homeostasis in
human hepatocytes. In both primary human hepatocytes and human hepatoma cell lines, gluco-
corticoids decreased de novo lipogenesis in a dose-dependent manner. Whereas androgen treat-
ment (T and DHT) increased lipogenesis in cell lines and in primary cultures of human hepatocytes
from female donors, it was without effect in primary hepatocyte cultures from men. SRD5A2
overexpression reduced the effects of cortisol to suppress lipogenesis and this effect was lost
following transfection with an inactive mutant construct. Conversely, pharmacological inhibition
using the 5�-reductase inhibitors finasteride and dutasteride augmented cortisol action. We have
demonstrated that manipulation of SRD5A2 activity can regulate lipogenesis in human hepato-
cytes in vitro. This may have significant clinical implications for those patients prescribed 5�-
reductase inhibitors, in particular augmenting the actions of glucocorticoids to modulate hepatic
lipid flux. (Endocrinology 156: 2863–2871, 2015)

The global epidemic of obesity and type 2 diabetes is
tightly linked to the increasing prevalence of nonalco-

holic fatty liver disease (NAFLD), which contributes sig-
nificantly to increased morbidity and mortality (1). The
potent role of glucocorticoids (GC) to modulate metabolic
phenotype is exemplified in patients with GC excess,
Cushing’s syndrome, and many of these patients develop
NAFLD (2). However, in most patients with metabolic

disease and NAFLD, circulating GC levels are not elevated
(3). At a tissue-specific level, notably within the liver, GCs
are cleared by a series of enzymes including the A-ring
reductases (5�-reductase type 1 [SRD5A1] and 2
[SRD5A2] and 5�-reductase). 5�-reductase exists as 2 iso-
forms (SRD5A1 and SRD5A2), both have five exons and
four introns, but share less than 50% homology and both
isoforms are expressed in human liver (4); SRD5A1 alone
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is expressed in mouse liver. SRD5A2 is believed to be the
major isoform in clearing cortisol in human studies (5);
however, there is an emerging role for SRD5A1 in the
pathogenesis of metabolic disease. We and others (6, 7)
have shown that in a rodent model, genetic ablation of
SRD5A1 increase lipid accumulation in the liver and the
severity of NAFLD.

The role of androgens in the pathogenesis of metabolic
disease remains controversial. There is evidence docu-
menting an association between hypogonadism and
NAFLD (8, 9) with some evidence for improvement fol-
lowing androgen treatment (10, 11). SRD5A2 has an es-
tablished role in the conversion of T to DHT and genetic
mutations lead to 46XY disorder of sex development. Al-
though DHT is a more potent activator of the androgen
receptor (AR), T binds and activates the AR. We have
shown that increased global 5�-reductase activity is asso-
ciated with impaired glucose tolerance and may be a future
predictor of metabolic disease (12, 13). The lack of
SRD5A2 expression in the mouse liver (contrasting with
human liver) has limited the interpretation of data from
SRD5A2 knockout mice (7) and has highlighted the im-
portance of the use of human models. The translational
importance of this not only relates to enhancing our un-
derstanding of the pathogenesis of NAFLD, but also to the
widespread use of SRD5A2 inhibitors including the selec-
tive, SRD5A2 inhibitor, finasteride, and the nonselective
(SRD5A1 and 2) inhibitor, dutasteride.

Lipid accumulation within hepatocytes is the first
step in the development of NAFLD, and in some indi-
viduals can progress through inflammation to fibrosis
and eventual cirrhosis. There are multiple mechanisms
that contribute to lipid accumulation in vivo including
re-esterification of free fatty acids delivered principally
from intra-abdominal tissue depots, de novo synthesis
of triacylglycerol from acetyl Coenzyme A (CoA) (de
novo lipogenesis [DNL]) as well as limitation of �-ox-
idation and lipid export and secretion. Although free
fatty acid delivery is believed to be the most important
process in the development of NAFLD, the contribution
of DNL increases significantly in patients with NAFLD
(14). The rate-limiting step in DNL is the carboxylation
of acetyl CoA to malonyl-CoA by acetyl CoA carbox-
ylase (ACC), which is subsequently converted by a mul-
tistep reaction to palmitate by fatty acid synthase (FAS).
There are two isoforms of ACC (ACC1 and ACC2); in
lipogenic tissues ACC1 predominates and is the key reg-
ulatory step of fatty acid synthesis. ACC2 is localized to
the mitochondrial membrane and its role is to limit
�-oxidation through malonyl-CoA-mediated inhibition
of carnitine palmitoyl transferase I.

Although it is not possible to replicate all the processes
that contribute to the development of NAFLD using in
vitro systems, using established cellular models, we have
tested the hypothesis that SRD5A2 represents an impor-
tant regulator of the metabolic actions of androgens and
GCs to modulate lipid homeostasis within human
hepatocytes.

Materials and Methods

C3A and primary human hepatocyte culture
The C3A human hepatocyte cell line was purchased from

LGC Standards (ATCC-CRL-10741), and cultured in Eagle’s
Minimum Essential Medium containing 10% fetal calf serum
and glutamine/penicillin/streptococcus. Cells were seeded in 24-
well plates and at 70–80% confluence were incubated with con-
trol media with or without hormonal treatments. The precise
conditions for individual experiments is detailed in the results
section. All reagents were supplied by Sigma-Aldrich unless oth-
erwise stated.

Primary human hepatocytes were purchased from Celsis In
Vitro Technologies. All donors were healthy, nondiabetic, none
consumed alcohol above recommended limits (females, � 14
U/wk; males, � 21 U/wk), none were taking regular medications,
and all had negative viral hepatitis serology (males, n � 4; age 54
� 14 y; body mass index, 28.4 � 3.3 kg/m2; females: n � 4; age
56 � 4.7 y; body mass index, 23.98 � 3.1 kg/m2). Cells were
cultured overnight in Williams’ Medium E without any supple-
ments before being treated with GCs or androgens. For insulin-
signaling studies, media was spiked with insulin 15 minutes prior
to cell harvest as described above. Lipogenesis was measured by
the uptake of 1-[14C]-acetate into the lipid component (see De
novo lipogenesis).

RNA extraction and reverse transcription
Total RNA was extracted from tissue and cells using the Tri-

Reagent system. RNA integrity was assessed by electrophoresis
on 1% agarose gel. Concentration was determined spectropho-
tometrically at OD260. In a 50-�L volume, 500 ng of total RNA
was incubated with 250uM random hexamers, 500uM dNTPs,
20 U RNase inhibitor, 63 U Multiscribe reverse transcriptase,
5.5mM MgCl, and 1� reaction buffer. The reverse transcription
reaction was carried out at 25°C for 10 minutes, 48°C for 30
minutes, and then the reaction was terminated by heating to
95°C for 5 minutes.

Real-Time PCR
mRNA levels were determined using an ABI 7500 sequence

detection system (Perkin-Elmer Applied Biosystems). Reactions
were performed in 10-�L volumes on 96-well plates in reaction
buffer containing 2� TaqMan Universal PCR Master mix (Ap-
plied Biosystems). All primers and probes were supplied by ap-
plied biosystems assay on demand (Applied Biosystems) and re-
actions normalized against the housekeeping gene 18S rRNA,
provided as a preoptimized control probe. All target genes were
labeled with FAM and the housekeeping gene with VIC. The
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reaction conditions were as follows: 95°C for 10 minutes, then
40 cycles of 95°C for 15 seconds and 60°C for 1 minute.

Data were obtained as ct values (ct, cycle number at which
logarithmic PCR plots cross a calculated threshold line) and used
to determine �ct values (�ct � ct of the target gene � ct of the
housekeeping gene). Data were expressed as arbitrary units using
the following transformation (expression � 1000 � [2��ct] ar-
bitrary units).

Protein extraction and immunoblotting
Total protein was extracted from cells using RIPA buffer

(50mM Tris pH, 7.4; 1% NP40; 0.25% sodium deoxycholate;
150mM NaCl; 1mM EDTA; 1mM PMSF and protease inhibitor
cocktail [Roche] dissolved in 10 mL of distilled water) and freeze
thawing. Protein concentrations were measured using a com-
mercially available assay (Bio-Rad Laboratories Inc). Fifteen mi-
crograms of protein was resolved on a 12.5% SDS-PAGE gel and
transferred onto nitrocellulose membrane, Hybond ECL (GE
Healthcare). Primary (PKB/akt, Biosource and anti phospho-
PKB/akt [serine 473], R&D Systems) and secondary antibodies
(Dako) used at a dilution of 1/1000. Membranes were reprobed
for �-actin. Primary and secondary antibodies were used at a
dilution of 1/5000 (Abcam). For antibody characteristics see
Supplemental Table 1. Bands were quantified with Genesnap by
Syngene and expressed relative to �-actin to normalize for gel
loading.

De novo lipogenesis
De novo lipogenesis (DNL) was measured by the uptake of

1-[14C] -acetate into the lipid component of hepatocytes as de-
scribed previously (15). Cells were cultured in a 24-well plate,
washed three times with serum-free media and then incubated
with 500 �L of serum-free media with 4.44 kBq/L 1-[14C]-acetic
acid with cold sodium acetate to a final concentration of 10�M
acetate and treated with or without insulin (0.5 ng/mL). The cells
were incubated at 37°C for 6 hours. After incubation activity was
terminated by washing the cells three times with cold PBS and
scraping into 250 �L of PBS. The lipid fraction was recovered in
Folch solvent, the solvent was evaporated, and the radioactivity
retained in the cellular lipid was determined by scintillation
counting and expressed as disintegrations per minute/well. To
account for variability between experimental replicates, data are
presented as percentage change from control.

�-oxidation
Rates of �-oxidation were measured by the conversion of

[3H]-palmitate to 3H2O. Cells were cultured in a 24-well plates
and were washed three times with serum-free media. Cells were
then incubated with 300 �L of low glucose serum-free media
with 4.44 kBq/L [3H]-palmitic acid with cold palmitate to a final
concentration of 10�M. The cells were incubated at 37°C for 24
hours. After incubation medium was recovered and precipitated
with an equal volume of 10% tricholoroacetic acid. The aqueous
component of the supernatants was extracted with 2:1 cholo-
form methanol solution. Radioactivity was determined by scin-
tillation counting, expressed as disintegrations per minute/well
and finally calculated as percentage change from control.

Transfection studies
The Androgen receptor (AR) and SRD5A2 cDNAs were

cloned into the pcDNA3.1 vector (Invitrogen) and transiently
transfected into C3A cells. Prior to transfection, cells were seeded
into a 24-well plate. Cells were �60–70% confluent to obtain
the most efficient transfection results. Transfection mixture
comprised 1.5 �g of DNA diluted in 50 �L of OptiMEM serum-
free media (Invitrogen) and 2 �L of Lipofectamine 2000 (Invit-
rogen) diluted in 50 �L of Optimem serum-free media. One
hundred microliters transfection mixture was added dropwise to
each well. The plates were rocked gently and left for incubation
at 37°C. Transfection duration was 48 hours and its efficiency
was determined by applying a plasmid containing the Green Flu-
orescent Protein (GFP) gene. Changes in AR and SRD5A2
mRNA expression level were confirmed by real-time PCR.

Site-directed mutagenesis
The R246Q mutant was inserted by site-directed mutagenesis

into the SDR5A2 cDNA using the Quikchange II site-directed
mutagenesis kit (Agilent Technologies) as per the manufacture’s
guidance. In a 50-�L reaction the following components were
added: 5 �l of 10� reaction buffer, forward and reverse primers
(125 ng), 10 ng of double-strand DNA template, 1 �L of dNTP
mix, 3 �L of QuikSolution, and ddH2O to a final volume of 50
�L. Using a thermal cycler (Biometra) samples were incubated at
95°C for 1 minute and then cycled 18 times at 95°C for 50
seconds, 53.4–60°C for 50 seconds, and 68°C for 60 seconds.
Samples were then incubated for 68°C for 7 minutes. One mi-
croliter DpnI was added to PCR reaction, vortexed, and incu-
bated for 1 hour at 37°C. One mililiter of ethanol (100%) was
then added to each tube and incubated for 1 hour at �80°C. The
mixture was centrifuged at 16 000 � g for 20 minutes at 4°C and
the supernatant aspirated. The DNA pellet was washed with
75% ethanol, centrifuged, aspirated, air dried for 10 minutes,
resuspended in 10 �L of RNase-free water. Finally, the DNA
vector containing the R246Q mutation was transformed to
XL10-Gold ultracompetent cells.

Gas and liquid chromatography/mass spectrometry
Cortisol was extracted from cell media after addition of the

internal standard cortisol-d4. Briefly, transfected cells were in-
cubated with 200nM of cortisol for 24 hours. One milliliter of
media was collected, extracted by SPE and the samples were
derivatized overnight to form methyloxime trimethylsilylethers.
The final derivative was dissolved in 55 �L cyclohexane, which
was transferred to an autosampler vial for gas chromatography/
mass spectrometry (GC/MS) analysis. An Agilent 5973 instru-
ment (www.agilent.com) was used in a selected ion monitoring
mode.

5�-reductase activity was measured using liquid chromatog-
raphy/mass spectrometry (LC/MS). Briefly, cells were incubated
with 100nM T for 30 minutes. Media was removed and trans-
ferred into glass tubes. Five milliliters dichloromethane was
added to each tube, vortexed for 30 seconds, and then centri-
fuged for 10 minutes at 1600 rpm. The aqueous phase was re-
moved and the steroid-containing organic solvent phase evapo-
rated in air to dryness. The steroid extract was analyzed using
LC-MS/MS (Xevo TQ mass spectrometer combined with an ac-
quity uPLC system) with an electro-spray ionisation source in
positive ion mode. Steroid hormones were eluted from a BEH
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C18 2.1 � 50 mm 1.7 �m column using a methanol/water gra-
dient system, solvent A was water 0.1% formic acid, and B was
methanol 0.1% formic acid. The flow rate was 0.6 mL/min and
starting conditionswere45%Bincreasing linearly to75%Bover
5 minutes. Steroid hormones were positively identified by com-
parison of retention times and mass transitions to steroid
standards.

Statistical analysis
Data are presented as mean � SE. Where data were normally

distributed, t tests (paired or unpaired where appropriate) were
used to compare single treatments to control. If normality tests
failed, nonparametric tests were used. ANOVA was used to com-
pare multiple doses and/or treatments. Statistical analysis on
real-time PCR data was performed on mean �ct values and not
fold changes. All analysis was performed using the GraphPad
Prism 6.0 software package (GraphPad Software, Inc).

Results

Regulation of lipogenesis human hepatocytes by
androgens

Fatty acid synthase (FASN), ACC1, ACC2, and carnitine
palmitoyl transferase 1 (CPT1) mRNA expression increased af-
ter treatment with T in a dose-dependent manner (Figure 1, A–D)
in C3A human hepatoma cells. Observations were similar fol-
lowing DHT treatment (Figure 1, A–D). Absolute changes in
mRNA expression levels are presented in Supplemental Table 2.
Lipogenic gene expression changes were mirrored by functional
assays of 1-[14C]-acetate incorporation into lipid; both T and
DHT increased lipogenesis. Lipogenic gene expression changes
were mirrored by functional assays of 1-[14C]-acetate incorpo-
ration into lipid; both T and DHT increased lipogenesis (ctrl,
100% vs T, [50nM, 24 h] 124.9 � 6.2%; DHT [10nM, 24 h]
128.1 � 4.7%). AR overexpression was confirmed by real-time
PCR(ctrl, 0.02�0.003vsAR, 30.04�0.018AU;P� .05).Even
in the absence of T or DHT, AR overexpression alone caused a
significant increases in 1-[14C]-acetate incorporation into lipid
(ctrl vector only, 100% vs AR, 202.7 � 10.8%; P � .05). Treat-
ment with both T and DHT did not further enhance lipid accu-
mulation (ctrl, 202.7 � 10.8% vs T, [50nM, 24 h] 209.6 �
16.5%; DHT [10nM, 24h] 224.6 � 8.6%; Figure 1E). In addi-
tion, AR overexpression increased lipid metabolism gene expres-
sion compared with cells transfected with vector alone (FASN:
ctrl, 13.9 � 2.0 vs AR, 66.8 � 6.2; ACC1: ctrl, 1.0 � 0.3 vs AR,
3.5 � 0.3; ACC2: ctrl, 0.5 � 0.1 vs AR, 1.0 � 0.1; CPT1: ctrl,
1.8 � 0.3 vs AR, 4.3 � 0.2; P � .05).

Studies were also performed in primary cultures of human
hepatocytes from both male and female donors. Both T and DHT
were without effect in cultures from male patients; however, in
samples from female donors, T increased lipogenesis (139.6 �
17.6% [T, 5nM, 24 h] vs 100% [control]; P � .05). Interestingly,
DHT decreased lipogenesis in hepatocytes from female donors
only (Figure 1F).

Regulation of lipid flux in human hepatocytes by
glucocorticoids and insulin

GC receptor, IRS1/2, insulin receptor, and AKT1/2 GC re-
ceptor, IRS1/2, insulin receptor, and AKT1/2 were all expressed

in primary cultures of human hepatocytes from male donors.
Incubation with cortisol alone or in combination with insulin did
not alter gene expression levels (Supplemental Table 3). Cortisol
decreased 1-[14C]-acetate incorporation into lipid in a dose-de-
pendent manner (Figure 2A). Insulin increased lipogenesis in
primary cultures of human hepatocytes (123.6�10.7% [insulin,
5nM, 24 h] vs 100% [control]; P � .05) (Figure 2B). Interest-
ingly, coincubation with increasing doses of cortisol increased
the ability of insulin to simulate lipogenesis, suggesting that in-
sulin and glucocorticoids may work synergistically to promote
lipid storage in human hepatocytes (43.9 � 12.7% [250 nM];
66.13 � 9.8% [1000 nM] vs control, (23.61 � 10.7%); P � .05)
(Figure 2C).

Cortisol treatment did not alter total PKB/akt levels. How-
ever, insulin-stimulated phosphorylation of PKB/akt at serine
473 increased following cortisol pretreatment in a dose-depen-
dant manner (1.23-fold [100nM]; 1.68-fold [250nM]; 2.44-fold
[1000nM] vs control, n � 4; P � .05) (Figure 2, D and E).

Cortisol treatment did not alter rates of �-oxidation of free
fatty acid uptake in C3A cells (data not shown).

SRD5A2 regulates lipogenesis in human
hepatocytes

The effects of T were similar to that of DHT upon lipogenesis
in our hepatocyte models and we therefore postulated that
SRD5A2 may have a more important role to regulate GC expo-
sure in this context.

SRD5A2 overexpression was confirmed using real-time PCR
(Figure 3A). Functional activity was assessed through increased
DHT generation following incubation with T (Figure 3B)
and clearance of cortisol (Figure 3C) as measured by LC/MSMS
and GC/MS, respectively. The mutant SRD5A2 construct,
R246Q, was without activity. Conversion of T to DHT was
similar to that observed in the vector only transfection control
(Figure 3B).

As observed previously, cortisol decreased lipogenesis in a
dose-dependent manner in C3A cells transfected with vector con-
struct alone and in the absence of cortisol, SRD5A2 overexpres-
sion had no effect. However, in the presence of cortisol, SRD5A2
restored lipogenesis to levels observed in untreated controls (eg,
61.9 � 7.6%[cortisol] vs 103.8 � 8.8% [SRD5A2 	 cortisol];
P � .05; control � 100%) (Figure 4A). Complementary exper-
iments using the R246Q SRD5A2 construct that is devoid of
functional activity did not alter cortisol-mediated suppression of
DNL (Figure 4B). To further endorse these findings, experiments
were undertaken using pharmacological inhibitors of 5�-reduc-
tase isoforms in primary cultures of human hepatocytes. Con-
sistent with our transfection studies, both finasteride (selective
SRD5A2 inhibitor) and dutasteride (nonselective SRD5A1 and
2 SRD5A2 inhibitor) augmented the action of cortisol to sup-
press DNL (eg, 88.3 � 5.3 vs 76.9 � 5.2%, cortisol vs cortisol
	 finasteride; P � .05) (Figure 4C).

Discussion

In this study, we have shown that androgens are able to
increase lipid accumulation within human hepatocytes.
Cross-sectional clinical studies have shown that low T

2866 Nasiri et al �-Reductase and Hepatocyte Lipogenesis Endocrinology, August 2015, 156(8):2863–2871

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 04 February 2016. at 07:14 For personal use only. No other uses without permission. . All rights reserved.



concentrations are associated with increased hepatic ste-
atosis in men (8, 9) and are consistent with findings in
rodent models, suggesting that DHT treatment can de-
crease hepatic lipid accumulation (16). In contrast,
women with polycystic ovary syndrome, a condition char-
acterized by androgen excess as well as insulin resistance,
are at an increased risk of developing NAFLD although

the precise contribution of each of these processes (insulin
resistance and androgen excess) to the development of
NAFLD remains unclear (17, 18).

Although in vitro cell models are not able to replicate all
the processes that contribute to the development of NAFLD
in vivo, in C3A cells T and DHT increased lipid accumula-
tion, but interestingly, in primary cultures, we observed sex-

Figure 1. T and DHT cause a dose-dependent increase in lipogenic genes as well as increasing carnitine palmitoyl trasferase 1 (CPT1), the rate-
limiting step in mitochondrial �-oxidation, in human C3A cells (A–D). Changes in lipogenic gene expression are paralleled by function increases in
1-[14C]-acetate incorporation into lipid (E). AR overexpression alone and in the presence of T or DHT increases functional lipogenesis (E). In primary
cultures of human hepatocytes, T but not DHT increases 1-[14C]-acetate incorporation into lipid in female patients (black bars), but have no effect
in samples from male patients (white bars) (F). Data presented are mean � SE; n � 3–5 experiments performed in triplicate; *, P � .05.
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ually dimorphic effects. In cells derived from male donors,
androgen treatment failed to have a significant effect upon
lipogenesis; however, in female samples, 5nM T increased
DNL. It is interesting to note that DHT did not alter lipo-
genesis in hepatocytes from male donors, but decreased
lipogenesis in female hepatocytes. The mechanisms under-
pinning this observation and the physiological relevance (the
concentrations of DHT used far exceed those seen in the
female circulation) are not clear. The discrepancy between
the effects of androgens on C3A cells and in primary cultures

may reflect origin of C3A cells from human hepatoma [and
the well described effect of androgens upon their pathogen-
esis (19)] and serves to emphasize the importantof endorsing
in vitro observations in additional models including human
primary cultures.

Enhancing androgen action through androgen receptor
overexpression increased DNL providing further evidence
as to the potent ability of this pathway to regulate lipid
accumulation. Interestingly, we observed no additional
effects of providing additional AR ligand, perhaps sug-

Figure 2. A, Cortisol decreases 1-[14C]-acetate incorporation into lipid in primary human hepatocytes from male donors. B, Whereas cortisol
(black bars) decreases lipogenesis under hyperinsulinemic conditions (white bars), cortisol increases acetate incorporation into lipid. C, Cortisol
treatment increases the ability of insulin to stimulate lipogenesis in a dose-dependent manner. D, Pretreatment of primary human hepatocytes
from male donors with cortisol increases insulin-stimulated phosphorylation of AKT at residue ser473. The formal quantification of Western blot
densitometry relative to �-actin (n � 4 experiments) is presented (total AKT [black bars] and pAKT ser473 [white bars]). E, Representative Western
blot. Data presented are mean � SE; *, P � .05.
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gesting maximal stimulation with receptor overexpression
alone. Furthermore, AR overexpression alone in the ab-
sence of ligand was able to increase lipogenesis. Although
it is possible that this may reflect existing intracellular
androgen availability, ligand-independent activation of
the AR remains plausible. This has been identified as a
potential mechanism that might be crucial in regulating
cell growth in the context of malignancy (20) notably in
prostate cancer (21), although the precise mechanisms
that underpin ligand-independent AR activation remain

Figure 3. Increased SRD5A2 expression following transfection into
C3A cells. A, Transfection of wild-type SRD5A2 (in contrast with the
mutant R246Q construct) is associated with increased DHT generation
from T (B) as well as clearance of cortisol (C). Data presented are mean
� SE of n � 3 experiments performed in triplicate; *, P � .05.

Figure 4. In C3A cells, the decrease in lipogenesis associated with
increasing doses of cortisol (black bars; vector-only transfection) was
abolished in cells transfected with wild-type SRD5A2 (white bars) (A).
Transfection of mutant R246Q SRD5A2 was without effect (vector
only, black bars; R246Q, white bars) (B). In primary cultures of human
hepatocytes, pharmacological inhibition of SRD5A2 with either the
selective (finasteride) or nonselective inhibitor (dutasteride), augments
the action of cortisol to suppress lipogenesis. Data presented are mean
� SE of n � 3–5 experiments performed in triplicate; *, P � .05;
**, P � .01 vs control; and §, P � .05; §§, P � .01 vs cortisol).
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unclear. Importantly, not all actions of androgens upon
the liver may be mediated by classical AR signaling. AR-
independent regulation of lipogenesis in the liver has been
observed in testicular feminized mice that lack a functional
androgen receptor, with a reduction in lipogenesis follow-
ing T treatment (22).

The effect of GCs to regulate carbohydrate metabolism
in particular gluconeogenesis in the fasting state is well
described. However, their effect on lipid metabolism re-
mains relatively poorly understood in human models. We
have previously shown in adipose and skeletal muscle that
GCs decrease lipogenesis in the absence of insulin consis-
tent with their role to mobilize fuel in the fasting state (23,
24). In the fed state, however, GCs and insulin act syner-
gistically to drive lipid accumulation. Studies performed in
rodent hepatocytes have demonstrated this relationship
(25) and we have now shown this in primary cultures of
human hepatocytes. In our in vitro model, the ability of
GCs to enhance the ability of insulin to drive lipogenesis
was associated with increased activation of the insulin-
signaling cascade as demonstrated by increased phosphor-
ylation of PKB/akt, similar to our published observations
in human adipose tissue (26, 27). Although augmentation
of insulin action by GCs has been observed in rodent hepa-
tocytes (25), these in vitro data may not be reflective of
more complex in vivo physiology. Clinical studies that
have administered GCs have shown evidence of increased
hepatic insulin resistance in most cases (28).

There is now an emerging role for the 5�-reductase
isoforms in the regulation of metabolic phenotype. The
ability of T to regulate lipid metabolism does not seem to
be dependent upon the presence of SRD5A2. The C3A cell
line does not express SRD5A2, and yet both T and DHT
were able to stimulate lipogenesis to a similar extent. Our
experiments therefore focused on the role of SRD5A2 to
regulate the effects of GCs upon liver metabolism. Al-
though genetic ablation of SRD5A1 in rodent models in-
creases lipid accumulation and fibrosis, the precise mech-
anisms that underpin this are not clear (6, 7). In a recently
published clinical study, nonselective 5�-reductase inhi-
bition with dutasteride was associated with peripheral in-
sulin resistance and it has been suggested that this may
reflect a specific role for SRD5A1 in skeletal muscle (29).
The precise effect upon liver fat accumulation could not be
determined as pre and postintervention assessment of he-
patic lipid content was not performed.

The role of SRD5A2 in clearing cortisol is well estab-
lished through the examination of urinary steroid metab-
olite profiles in patients with proven SRD5A2 mutations
(5). Detailed metabolic studies in patients with mutations
SRD5A2 have not been performed. Increasing 5�-reduc-
tase activity is associated with an adverse metabolic phe-

notype (12, 30). This may reflect a compensatory mech-
anism to clear active GCs, in particular from the liver, in
an attempt to protect it from lipid accumulation. With
more severe disease activity decreases and this may in-
crease GC exposure and may serve and a local anti-in-
flammatory measure to try to limit the progression of non-
alcoholic steatohepatitis, fibrosis, and scarring (31).

In conclusion, we have demonstrated the potent actions
of androgens and GCs to regulate lipid metabolism in hu-
man hepatocytes in vitro and shown that prereceptor reg-
ulation through that expression and activity of SRD5A2 is
able to modify their action. This has important implica-
tions not only in terms of predisposing individuals to the
development of hepatic steatosis, but also to the large
numbers of patients prescribed 5�-reductase inhibitors.
Although the role of these compounds in the treatment of
prostate-related disease is established, the long-term met-
abolic consequences of these medications have not been
assessed.
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