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Abstract 

 

Polymer blend system, F81xSYx, based on mixture of poly (9,9-dioctylfluorene) (F8) and a 

poly (para-phenylenevinylene) (PPV) copolymer, superyellow (SY), has been proven to be  a 

high performance blend material in polymer light  emitting diode (PLED). This blend system 

exhibits luminance (L) > 10
4
 cd-m

2
, luminous efficiency (η) > 21 cd-A

-1
 and low operating 

voltage (V) ~ 3-10 V. The performance can be credited to the large difference (~ 0.6 eV) 

between the highest occupied molecular orbital (HOMO) levels of F8 (~ 5.8 eV) and 

SY (~ 5.2 eV), where, SY molecules serve as hole-traps in the F8 host polymer and reduce 

their mobility. This dictates a balanced charge injection into the emissive layer and results in 

overall increase in the device performance.  
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Organic semiconductors have been attracting immense attention for last two decades because 

of their unique features including easy tunability, viable processing, flexibility and excellent 

optoelectronic properties.
[1-10] 

Device applications, such as polymer light-emitting diodes 

(PLEDs), photovoltaic cells and organic thin-film field-effect transistor (OTFTs) have 

already found their way towards commercialization.
[11-15]

 With this immense success, further 

improvement in their performance is naturally a consistent goal. To achieve this, a range of 

strategies have been adopted. For example, in the field of PLEDs, making layered structures 

and using thick emissive layers have been proven very useful in increasing the device 

performance.
[16-20]

  Using polymer blends as emissive layer is another powerful tool in order 

to enhance the efficiency as well tune the emission wavelength.
[21, 22]

 Various electrode 

schemes have also been exploited which allow efficient and balance charge injection in the 

emissive layer, an effective technique that has achieved the same goal.
[23]

 

Multiple emissive layers in polymer heterostructure devices are fabricated in layer-by-layer 

fashion, such that each layer uses a cross-linker as bonder which reduces the miscibility 

between the adjacent layers.
[8, 24]

 However, partial dissolution of the pre-deposited layer 

usually occurs with the deposition of the subsequent layer resulting roughness and film 

retention issues at the interface. Thermal layer stabilization and using orthogonal solvents 

have also been used to fabricate layered structure giving off blue emission.
[25]

  Thick  PLEDs 

(with emissive layer thickness of ~ 1 m) are attractive as they are easy to fabricate and show 

high luminous efficiency.
[19, 20]

 However, they require very large operating voltage, limiting 

their use in many on-chip circuit applications. Such devices also consume more material. 

Using polymer-blends in PLEDs offers its own advantages because, a) fabrication of the 

emissive layer involves only one deposition step of the emissive layer and mixing of adjacent 

emissive layers is not applicable in contrast to heterostructure light emitting devices, b) these 
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devices require low operating voltage, and c) very high efficiency can be achieved in blend 

based PLEDs (as reported here).  

In the past, primary focus for blend based PLEDs remained on systems such as poly-fluorene 

(PF) blends, e.g. poly(9,9-dioctylfluorene) (F8) + poly(9,9-dioctylfluorene-alt-

benzothiadiazole) (F8BT) 
[26-29]

, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)-

diphenylamine) (TFB) + F8BT,
[30, 31]

 and PFs + PPVs blends, e.g. poly[2-methoxy-5-(2′-

ethyl-hexyloxy)-p-phenylenevinylene] (MEH-PPV) doped in F8.
[32, 33]

 In this report, we 

purpose a polymer-polymer blend-system, F81-xSYx (where x signifies the weight fraction of 

SY in F8), a mixture of F8 and a PPV-copolymer known as superyellow (SY). F8 is an 

attractive polymer due to its efficient blue photoluminescence (PL) and electroluminescence 

(EL).
[29, 34, 35]

 It also serves as a backbone host in many white light-emitting copolymers 

because its emission can be tuned easily by copolymerization with different complimentary 

comonomers.
[29]

 SY offers efficient and stable performance and long operational lifetime 

(100,000 hrs). 
[36-39]

  It also offers much higher PL quantum efficiency than other PPV 

derivatives,
[37]

 making it a favorable material for light emitting devices. We chose to make 

this system firstly, because of strong spectral overlap between emission spectra of F8 and 

absorption spectra of SY – there is a potential of strong energy transfer between these 

molecules via Fӧrster resonance energy transfer. Secondly, different charge transport 

properties of both polymers offer us an opportunity to see whether a balanced charge 

transport can be achieved within the emissive layer that could eventually lead to efficient 

devices. 

We present our experimental findings for F81-xSYx based PLEDs as a function of increasing 

SY weight concentration, x. This blend system exhibits remarkable properties: luminance 

(L) > 10
4
 cd-m

2
, luminous efficiency (η) > 21 cd-A

-1
 and, low operating voltage (V) ~ 3-
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10 V. We believe that the working principle lies in the large difference (~ 0.6 eV) between 

the highest occupied molecular orbital (HOMO) levels of F8 (~ 5.8 eV) and SY (~ 5.2 eV). 

[40-42]
 SY molecules serve as hole-traps in the F8 host polymer and reduce their mobility. This 

dictates the charge balance / injection into the blend emissive layer and results in overall 

increase in the device performance. In order to understand the charge transport in F81-xSYx 

system, hole-only and electron-only devices for different values of x were also made. We use 

Mott-Gurney space-charge-limited current (SCLC) equation combined with field-dependent 

mobility
[43, 44]

 in order to estimate the hole mobility. Our findings support the hypothesis we 

made before this study that modified hole transport (due to SY traps) is responsible for very 

high efficiency of F81-xSYx based PLEDs. We anticipate that the system can pave the way for 

different device applications because of its superior electrical and optical properties as 

compared with the other well-known polymer blend systems. To the best of our knowledge, 

this is the first report for utilizing F8 and SY in a blend form for light emitting applications. 

Two types of devices (bipolar and unipolar) were fabricated for different weight 

concentrations of SY, x = 0, 0.05, 0.1, 0.25, 0.5, 0.95 and 1, respectively. Electro-emissive 

properties were studied in a layered configuration of bipolar PLEDs 

(glass/ITO/PEDOT:PSS/F81-xSYx/Ca/Al). Schematic representation of the bipolar device 

along with the chemical structure and respective energy band diagram (emissive layer 

highlighted) are shown in Figure 1. Charge transport properties were studied in unipolar 

devices, subcategorized as hole-only (glass/ITO/PEDOT:PSS/F81-xSYx/MoO3/Au) and 

electron-only device (Glass/ITO/ZnO/Cs2CO3/F81-xSYx/Ca/Al) in order to gain a deeper 

insight for understanding the charge transport within the emissive layer. 

Figure 2a describes the J-V characteristics of bipolar devices for different values of x. Device 

with x = 0 (pure F8) exhibits its maximum current density (Jmax)  1.7×10
4
 mA-cm

2
 at a safe 

operating voltage of ~ 5 V. This is the highest value of the current density at this operating 
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voltage across the whole range of concentrations. Subsequently, there wasis a dramatic fall in 

current density with mixing of merely a small amount of SY (x = 0.05) in F8, which indicates 

the severe charge-trapping nature of SY molecules in F8 matrix.
[45]

 However, for the 

following concentrations we observe an increasing trend in current density (under identical 

operating voltages) which persisted throughout the entire voltage sweep for all subsequently 

increasing values of x. It was noticed that J-V curves follow a systematic trend with 

increasing value of x. F8 loses its trend only at x = 0.05 – the composition roughly exhibits a 

mixed trend of F8 and SY, however, with a value of current density that is three orders of 

magnitude smaller than pure SY. Whereas all higher concentrations made within 0.05 < x < 1 

exhibit a trend resembling more like that for x = 1 (pure SY). This indicates that the charge 

transport is mainly dominated by SY molecules in the F81-x:SYx system. We observed that the 

turn-on voltage (Von) behavior was also systematic with changing SY concentration: there 

was little difference in Von ( ≈ 2.4 V) between x = 0 and x = 0.05. However, a gradual 

decrease is noticed with increasing SY across the entire range of 0.05 < x  1, with a 

minimum of value of Von ≈ 2 V obtained for x = 1, see Table 1 for details. 

The luminance vs. voltage (L-V) curves for the range 0.05  x  1 almost follow J-V trends, 

Figure 2b. The maximum values of luminance for x = 0, 0.05 and 1 are ~ 2.510
2
 (at 5 V), 

2.5×10
4
 (at 10 V) and 4.6×10

4
 cd-m

2
 (at 10 V), respectively. We again noticed that the 

inclusion of merely a small amount of SY in F8 causes significant changes: Lmax improves by 

nearly 2 orders of magnitude and devices withstand much larger voltages compared with pure 

F8 devices. All PLEDs within 0.05  x  1 can be operated safely up to 10 V. The luminous-

efficiency vs. voltage (η-V) curves for increasing value of x exhibit an interesting picture, 

Figure 2c. Pure F8 and SY devices exhibit their respective highest efficiencies η ≈ 0.9 (at 

~ 3.4 V) and ~ 14.2 cd-A
1

 (at ~ 5.4 V), respectively. PLED with x = 0.05 shows the highest 

efficiency, η ≈ 21.2 (at ~ 4.4 V) – about 23 (1.5) times higher than pure F8(SY) PLED. The 



 

7 

 

second highest value is 20.6 cd-A
1

 (at ~ 4.4 V) for 0.1 (see Supporting Information S1 for 

power efficiency and external quantum efficiency for x = 0.05 and 0.1 concentrations). This 

is a significant improvement as compared with the devices which are based only on the single 

constituting polymer, F8 and SY. 
[37, 40, 46, 47]

 

We believe that the improved performance of F81-xSYx PLEDs is because of the efficient 

charge balance mediated by SY hole-traps. Hole mobility in F8 is orders of magnitude larger 

than the electron mobility.
[46]

 Therefore, most of the emission is expected to occur near to the 

cathode surface, resulting in low luminance efficiency for pure F8 devices. HOMO level of 

SY is at ~ 5.2 eV, which when mixed in F8, resulted in hole traps because of the large 

difference between HOMO levels of both molecules (~ 0.6 eV).
[41]

 These traps strongly 

suppress the hole mobility. Since LUMOs of F8 and SY are at the same level,
[36, 41]

  

presumably resulting in a lesser change in electron transport (compared with pure F8), at least 

for small SY concentration such as x = 0.05 and 0.1. Consequently, a charge balance is 

achieved – emission zone is pushed away from the cathode surface and device efficiency is 

improved. In order to understand the charge transport in F81-xSYx blend system, we also 

studied single charge carrier devices (discussed later). 

Comparative study of the PL and EL spectra of PLEDs help understanding their 

luminescence properties. Both spectra normalized to their respective highest peaks for F81-

xSYx within 0 ≤ x ≤ 1 are given in Figure 3a,b, respectively. In general, there is a consistency  

between the PL and the EL spectra of blend and pure SY PLEDs. However, we observed that 

the PL spectrum of pure F8 exhibits less green emission at ~ 530 nm compared to its EL 

spectrum. The underlying reason is that the PL involves the optical excitation of the thin film 

followed by the recombination from the excited states, whereas, EL results from the 

recombination of injected charges during their transport across the biased film. Therefore, a 

smaller electron injection barrier can be the reason for this higher EL efficiency. The origin 
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of green emission can be the on-chain defects incorporated during synthesis. 
[48]

 Their 

oxidation leads to the presence of ketone defects, resulting in so-called fluorenone moieties 

incorporated in the polymer backbone. 
[49]

 In addition, this green emission may also be 

caused by interchain interaction. 
[50]

 It is important to note that, regardless of the mechanism 

responsible for this green emission such as interchain excited states or ketone defects, the 

functionalization of the polymer supramolecular organization can be exploited for the control 

of the solid-state photophysics. 
[50, 51]

  

Both EL and PL spectra for pure F8 based PLED have a common peak at ~ 441 nm, which is 

related to the β phase embedded in F8 amorphous phase matrix. 
[52, 53]

 For F80.95SY0.05 based 

PLED, most of the emission is attributed to the SY (both in PL and EL). This devices exhibits 

its pure electronic transition peak (0-0 peak) at ~ 524 nm that undergoes a red-shift with 

increasing x. Pure SY PLED shows the 0-0 peak at ~551 nm (shifted ~ 27 nm relative to that  

of  x = 0.05) and first vibronic peak (0-1 peak) at 601 nm.
[54]

 The red-shift can be regarded as 

an evidence of SY aggregate formation and longer conjugation lengths with its increasing 

concentration. 
[55, 56]

 These aggreates possess low excicton energy because of the 

delocalisation of the electronic wavefunction among two or more chains. Consequently there 

is a red-shift interchain luminescence as compared with single chain exciton recombination. 

[57]
 Similar profiles of EL and PL spectra of pure SY PLED suggested that the emission sites 

are similar in origin. It is important to highlight that there is almost no F8 emission even for 

PLEDs with the lowest SY concentration (x = 0.05) in F8 matrix. We believe that there are 

two avenues by which F8 emission is quenched in as-made devices, namely a) trap assisted 

transport which is dominated by SY molecules, and b) Forster resonance energy transfer 

(FRET) which is favorable because of the strong overlap between photo-emission and photo-

absorption spectra of F8 (host) and SY (guest) molecules, see Supporting Information S2. 

This paper deals only with the prior mechanism and later is the subject of another report.  
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The CIE (Commission Internationale de l’Eclairage) color coordinates relative to the EL 

spectra shows clear transition of the emission color from blue to yellowish green (/yellow) 

bypassing the white region when SY is added to F8. This shift of color is visible in the 

photographs of different devices, see Figure 4 for CIE color coordinates and PLEDs in 

operation.  

In order to understand the charge dynamics in as-made devices, single charge carrier devices 

provide vital information. Ca/Al cathode in PLEDs was  replaced by MoO3/Au anode to form 

the hole only devices (HODs). The device configuration (respective work-functions) for 

different layers are shown in Figure 5. MoO3 is known to offer excellent Ohmic contact and 

efficient hole injecting layer for polymers having deep HOMO levels, such as F8 and F8BT. 

[19, 20, 41, 58, 59]
 Thermally deposited Au on MoO3 works as electrical contact to subsequent 

MoO3 layer.  

Mott-Gurney space-charge-limited current (SCLC) equation combined with field dependent 

mobility can be used to calculate the hole mobility and helps in assessing the behavior of the 

bulk hole-conduction.
[44]

 The charge transport is studied by fitting a simplified form of SCLC 

equation, enhanced by the Frenkel effect, namely  

JSCLC = 1.125[ε0εrμ0(VVbi)
2
/d

3
]exp[βF[(VVbi)/d)]

1/2
] 

on the J-V curves of HODs when positively biased from MoO3, where ε0εr is the dielectric 

constant of the polymer, μ0 is the zero field mobility of holes, V is the applied voltage, 

Vbi  0.5 V is the built-in potential, d is the thickness of the polymer layer, and βF is the field-

effect mobility coefficient related to the depths of the traps in the polymer.
[19, 34, 43]

  Notice 

that hole-current density (Jh) reduces by 3 orders of magnitude upon mixing a very small 

amount of SY in F8 (see Jh-V curves for x = 0, and 0.05 at V ≈ 4.0 V). Curve fitting for Jh-V 

data of Figure 5a also gives the lowest value of μ0 ≈ 1.35×10
9

 cm
2
V
1

s
1

 for x = 0.05, which 

is 3 orders of magnitude smaller than the highest value of μ0 ≈ 2.25×10
6

 cm
2
V
1

s
1

 for x = 0. 
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A gradual increase in μ0 is observed within 0.05 ≤ x ≤1 for increasing value of x, which 

eventually approaches to ~ 4.26×10
7

 cm
2
V
1

s
1

 for x = 1, Table 2. In agreement to the 

behavior of μ0, βF shows the highest value of ~ 8.05×10
3

 cm
1/2

V
1/2

 for x = 0.05, which 

unsurprisingly decreases for the increasing value of x. We deduced that the reduced µ0 is 

caused by introduction of SY traps in F8 which severely suppress the hole-current, especially 

in the case of x = 0.05. Severity of traps subsides when SY concentration iswas increased as 

holes begin to migrate by hopping mechanism between the SY traps due to their shrinking 

distance in F8 matrix. This explains the Jh-V trend and corresponding µ0 (βF) increasing 

(decreasing) behavior in F81-xSYx devices with increasing x. 

Replacing the PEDOT:PSS layer in PLEDs with ZnO/Cs2CO3 layers gives an electron-only 

device (EOD). ZnO is generally used as electron injecting layer in LEDs.
[19, 59]

 Cs2CO3 is also 

well-known for its electron injection properties.
[20, 33, 41]

 The Je-V curves for F81-xSYx based 

HODs with different values of x are shown in Figure 5b. The electron only devices do not fit 

well with SCLC and Pool-Frankel model, consistent with Kabra et al.
[19]

 However, 

comparable current densities for hole only and electron only devices for x = 0.05 and 0.1  can 

be indicative of the fact that current density is bulk limited under this low charge density 

space-charge limited condition.
[19]

 Pure F8 exhibits the highest electron current density 

Je ≈ 13.3 mA-cm
2

 at V ≈ 4.0 V, and it drops to ~ 4.2 mA-cm
2

 for x = 0.05. Notice that this 

change in Je becomes comparable to that observed in Jh for x = 0.05, an indicative for high 

performance at this composition. The decreasing trend of Je persists throughout the 

concentration range 0 ≤ x ≤ 1. This is because of the electron traps introduced by SY 

molecule, an intrinsic feature of PPVs.
[60]

 The turn-on voltage (Von) generally rises with 

further increase in x. Above turn-on we noticed a slower initial increase of Je below a critical 

voltage, V < Vc for 0.1 ≤ x ≤ 1. We believe that the electrons transport is hindered because of 

increase in trap-density offered by the SY molecules for all x >0.05. With increase in x, more 
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traps are introduced, pushing Vc further towards larger values. The applied potential above Vc 

starts liberating the trapped electrons from the trap sites, and they undergo a transition to 

SCLC behavior.
[60]

 

A device with different electron and hole mobility causes the majority of the recombination 

to occur near the electrode surface.
[19, 40, 46, 59]

 In such condition, the whole thickness of the 

emissive layer does not contribute in radiative recombination and cathode quenching comes 

into play leading to the poor device performance. If we can avoid this situation, a perfect 

charge balance between electron and hole transport exploits the whole thickness for emission 

and improves the efficiency. We believe that the blend PLEDs with x = 0.05, and 0.1 hold the 

benefit of fairly unmodified electron transport and these small SY concentration offer fewer 

traps compared with x > 0.1. However, hole-mobility is strongly suppressed for low SY 

concentrations because of the large difference between HOMO levels of both blended 

molecules: hole-traps offered by SY molecules reduce the current density by 3 orders of 

magnitude for x = 0.05 as compared with x = 0. Therefore, we conclude that it is the efficient 

charge balance in the F81-xSYx based PLEDs that causes the majority of exitonic 

recombinations within the bulk of the emissive layer, leading to a higher efficiency for such 

devices. 

Note that SY is well-known for its high efficiency, ~ 14 cd-A
-1

. An increase up to ~ 21 cd-A
-1

 

in this report is a significant development. Kabara et al. have also achieved almost the same 

luminous efficiency for thick PLEDS, which is impressive as they have achieved these values 

in a non-blend PLED.
[19]

 However, their devices require very large operating voltage. In 

contrast F81-xSYx based PLEDs are operated at low voltage and exhibit high power efficiency. 

We suggest that engineering of electrode-emissive layer interface would also increase the 

performance of these devices. Another optimization parameter is the thickness of the 

emissive layer. Since efficiency of F81-xSYx based devices is very high, the system would be 
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an interesting candidate for further exploration for injection lasing. Since, light emitting 

electrochemical cells are competing PLEDs and offer combatively low cost and easy 

processing, 
[36, 37, 39]

 incorporating F81-xSYx system into an electrochemical cell structure and 

tuning the device for high performance and stability will be an interesting study. 

Summary 

In summary, we propose a polymer blend, F81xSYx, that is based on mixture of poly (9,9-

dioctylfluorene) (F8) and a poly (para-phenylenevinylene) (PPV) copolymer, superyellow 

(SY) as an efficient electro-limnescent system. The PLEDs based on this show excellent 

properties: luminance (L) > 10
4
 cd-m

2
, luminous efficiency (η) > 21 cd-A

-1
 and, low 

operating voltage (V) ~ 3-10 V. The performance is because of the large difference (~ 0.6 eV) 

that exists between the highest occupied molecular orbital (HOMO) levels of F8 (~ 5.8 eV) 

and SY (~ 5.2 eV). In the mixture SY molecules slows down the hole and provide trap sites, 

pushing the excitonic recombination within the bulk of the material, away from the cathode. 

Thus a balanced charge injection into the emissive layer is responsible for overall increase in 

the device performance.  

Experimental  

Fabrication: (Note: Conditions for a particular layer were kept identical in all kinds of 

devices). Indium-tin-oxide (ITO) substrates were cleaned in acetone and isopropanol 

(10 minutes each) in an ultrasonic bath. Then, these substrates were treated with oxygen 

plasma. PEDOT:PSS was spin-coated and annealed at 230 
o
C for 30 minutes under nitrogen 

environment. Blend of F8 (294 kg-mol
-1

,
 
Cambridge Display Technology,) and SY (Merk, 

616 kg-mol
-1

) in chlorobenzene was spin-coated to obtain F81-xSYx films, and thickness of 

these films was controlled to around 100 ± 10 nm, confirmed by Dektak profilometer. These 

films were also coated on quartz substrates for optical measurements. After this deposition, 

the devices were annealed at 70 
o
C for 30 minutes in nitrogen. Ca/Al (3 nm/300 nm) electron 
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injection layer was thermally deposited in a vacuum chamber incorporated in a nitrogen 

glovebox. After completing the fabrication of active part and making the electrical 

conenections, devices were encapsulated for stable air operation. For hole only devices, 

MoO3/Au (10 nm/70 nm) electrodes were made using thermal evaporation. For electron only 

devices, ZnO (50 nm) layer was deposited by spray pyrolysis on heated ITO substrate at 

370 
o
C. Organic precursor zinc acetate  dihydrate (Fluka) dissolved in anhydrous methanol 

(80 g-L
-1

) was used for this deposition. Cs2CO3 (Sigma Alrich) was dissolved in 2-

methoxyethanol (5 g-L
-1

, Fluka) and spin-coated on ZnO layer. A spin speed of 6000 rpm 

resulted 2 nm thick Cs2CO3 layers. 

Characterization: Current density-voltage-luminance (J-V-L) measurments of PLEDs were 

performed in air using computer contolled sourcemeter (Keithley 2400) and chromameter 

(Minolta CS-200). Electroluminescence (EL) spectra was measured with a Ocean Optics 

spectrometer (USB2000).  For photolumenscence, the polymer films were optically excited 

with 3-5 ns (10 Hz) laser pulses obtained from a compact housing of the nanosceond optical 

parameteric oscillator (OPO) system and Nd:YAG Q-switched laser (NT342B, EDSPLA). 

The spectra was taken using 500 mm spectrograph, (SpectraPro2500i, Princeton Instruments) 

with incorporated CCD camera (Pix 100-F, Princeton Instruments).  
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Figure 1. a) Construction of F81-xSYx based polymer light emitting diode (PLED) pixels and 

different layers comprising the pixel, namely Glass/ITO/PEDOT:PSS/F81-xSYx/Ca/Al. b) 

Chemical structures of F8 and SY molecules. 
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Figure 2. a) J-V curves of F81-xSYx based PLEDs with increasing SY weight concentration x:  

The blend system exhibits a drastic decrease in current density for x = 0.05 and 0.1 because 

of hole traps offered by SY molecules – holes move via a trap-detrap mechanism.  

Subsequently, a hopping mechanism begins to dominate the hole transport as SY come closer 

with increasing x.  b) L-V curves: luminance almost shows similar trend as J-V.  However, as 

compared with J-V light turns on at a larger voltages for all values of x. Maximum L is 

exhibited by pure SY LED, whereas that with x = 0.05 initially shows a late start but 

approaches the value of pure LED as V → 10 V.  c) η-V curves for F81-xSYx based PLEDs: 

First (second) highest luminous efficiency of ~ 21.2 (20) cd-A
–1

 is achieved for x = 0.05 (0.1) 

which is significantly larger than the pure SY PLEDs (η ≈ 14 cd-A
–1

), see Table 1 for more 

details. d) Energy band diagram of each layer in F81-xSYx based PLED. The blue dash line in 

the F8 shows its β-phase LUMO level which is slightly lower than the amorphous phase.  The 
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large difference between the HOMOs of both molecules causes hole traps severely reducing 

the hole mobility.   
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Figure 3. a)  Normalized EL spectra of the F81-xSYx based PLEDs with increasing SY 

concentrations taken at 5 V. Notice the strong suppression of F8 spectra for only a very small 

of SY x = 0.05, indicating that most of the recombination is occurring on SY sites. The range 

0.1 < x < 0.95 shows a wavelength broadening.  b)  Normalized PL spectra of F81-xSYx blend 

system also shows a strong suppression of F8 spectra upon small mixing of SY.  This is 

because of efficient Fӧrster resonance energy transfer between F8 and SY molecules.   
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Figure 4. The CIE color coordinates relative to the EL spectra (left) and photograph of three 

corresponding devices with pure F8, F80.95SY0.05 and pure SY emissive layers (right). F8 

devices emit in blue region which changes to yellowish green upon small mixing with SY. 

All devices with some SY concentration emit near to this green/yellow region.  
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Figure 5. a) J-V curves for F81-xSYx based hole only devices with different value of x. The 

devices are positively biased from the MoO3 side. The fitting results are shown with solid 

lines for each curve (see Table 2). The current is severely reduced for x = 0.05 and 0.1 

indicating hole traps offered by SY molecules. This is because of the large difference present 

between the HOMOs of F8 and SY. Inset shows the energy band diagram of each layer in the 

hole only device (Glass/ITO/PEDOT:PSS/F81-xSYx/MoO3/Au). The blue dash line in the F8 

depicts its β-phase LUMO level.  b) J-V curves for F81-xSYx based electron only devices with 

increasing SY concentration: The devices are negatively biased from the Ca/Al electrode. 

There is reduction in electron current for x = 0.05 as compared with pure F8 devices, 

however at much smaller scale as compared with reduction observed in hole current in hole 

only devices. Inset shows the energy band diagram of each layer in the electron only device 

(with schematic Glass/ITO/ZnO/Cs2CO3/F81-xSYx/Ca/Al). 
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Tables.  

SY wt. x in  

F81-xSYx 

L 

(cd/m
2
) 

 ηmax 

(cd/A) 

Von 

(V) 

PEmax 

(lm/W) 

EQEmax 

(%) 

0 (pure F8) 
634 @ 5.0 V 

(max.value) 
0.9 @ 3.4 V 

2.4 0.07
[40]

 0.2 
[46]

 

0.69
[47]

  

0.05 1000 @ 6.7 V 21.2 @ 4.4 V 2.3 8 6.9 

0.1 1000 @ 7.4 V 20.6 @ 5.0 V 2.3 8.2 7.3 

0.25 1000 @ 7.7 V 15.4 @ 2.9 V 2.1   

0.5 1000 @ 6.2 V 15.0 @ 4.0 V 1.8   

0.95 1000 @ 5.3 V 13.4 @ 4.9 V 1.7   

1 (pure SY) 1000 @ 4.6 V 14.2 @ 5.0 V 1.6 6
[37]

 3.36
[47]

 

Table 1. Summary of some performance parameters of F81-xSYx based PLEDs. 

 

SY wt. x in 

F81-xSYx 

μ0 

(cm
2
V

-1
s

-1
) 

β 

(cm
1/2

V
-1/2

) 

0 (pure F8) 2.25×10
-6

 6.70×10
-3

 

5 1.35×10
-9

 8.05×10
-3

 

10 4.22×10
-9

 4.70×10
-3

 

25 7.94×10
-9

 4.17×10
-3

 

50 2.06×10
-8

 3.41×10
-3

 

95 1.96×10
-7

 1.97×10
-3

 

100 (pure SY) 4.26×10
-7

 1.87×10
-3

 

Table 2. Hole transport parameters extracted by fitting hole only current injected from 

MoO3/Au electrodes.  
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