
 
 

Robust visual tracking using template anchors
ehovin, Luka; Leonardis, Ales; Kristan, Matej

DOI:
10.1109/WACV.2016.7477570

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
ehovin, L, Leonardis, A & Kristan, M 2016, Robust visual tracking using template anchors. in WACV 2016: IEEE
Winter Conference on Applications of Computer Vision. IEEE Computer Society Press, 2016 IEEE Winter
Conference on Applications of Computer Vision (WACV), Lake Placid, NY, United States, 7/03/16.
https://doi.org/10.1109/WACV.2016.7477570

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works

Checked for eligibility: 04/05/2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185491401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/WACV.2016.7477570
https://research.birmingham.ac.uk/portal/en/publications/robust-visual-tracking-using-template-anchors(2fb277c2-272d-4fed-b9f9-13f94a5c0e6e).html


Visual Tracking Using Anchor Templates
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Abstract

Deformable part models exhibit excellent performance
in tracking non-rigidly deforming targets, but are usually
outperformed by holistic models when the target does not
deform or in the presence of uncertain visual data. The
reason is that part-based models require estimation of a
larger number of parameters compared to holistic models
and since the updating process is self-supervised, the er-
rors in parameter estimation are amplified with time, lead-
ing to a faster accuracy reduction than in holistic models.
On the other hand, the robustness of part-based trackers is
generally greater than in holistic trackers. We address the
problem of self-supervised estimation of a large number of
parameters by introducing controlled graduation in estima-
tion of the free parameters. We propose decomposing the
visual model into several sub-models, each describing the
target at a different level of detail. The sub-models interact
during target localization and, depending on the visual un-
certainty, serve for cross-sub-model supervised updating. A
new tracker is proposed based on this model which exhibits
the qualities of part-based as well as holistic models. The
tracker is tested on the highly-challenging VOT2013 and
VOT2014 benchmarks, outperforming the state-of-the-art.

1. Introduction
Visual object tracking is a research topic with appli-

cations in various fields including surveillance, activity
recognition, sport analysis and human-computer interac-
tion. The application diversity has resulted in numerous
tracking approaches, many of which have been recently
compared in papers like [29, 24], and most notably, within
the VOT challenges [16, 17]. The results of these com-
parisons show excellent performance of the holistic mod-
els [1, 11, 34, 12, 7], which model the target appearance
as a single monolithic representation. These models tend
to address well the appearance changes due to illumination
or blur, but poorly handle structural appearance changes
caused by non-rigid deformations or partial self-occlusions.

In the presence of these types of appearance changes, the
holistic models start adapting to the background, which
results in drifting and eventual failure. The geometrical
changes are conceptually better addressed by part-based
models [32, 19, 6, 25, 31, 33]. In fact, the recent bench-
marks [16, 17], indicate significant robustness of part-based
visual models, especially when tracking non-rigid objects.

Figure 1. Illustration of our tracking concept that combines holistic
visual model and a part-based visual model by switching between
them.

Since part-based models are a generalization of holis-
tic models, one might expect equal or better overall perfor-
mance compared to holistic models regardless whether the
target is deforming or not. However, as shown in [16, 17],
part-based visual models tend to achieve lower accuracy,
especially with rigid targets. We believe that the main rea-
son for this performance drop in the part-based models can
be explained by the number of parameters estimated and the
uncertainty/noise in the visual data. In the presence of noisy
visual data, a holistic visual model that estimates only trans-
lation and size, will typically better estimate the position
of a rigid object due to the constrained parameterization.
The part-based models, on the other hand, deform freely to
match the visual data and account for outdated or occluded
parts. The uncertainty of the visual data thus introduces
potentially small errors in the large number of parameters
to be estimated, leading to poor position estimate. Even if



the target is deforming non-rigidly, a low-parameter holistic
model might lead to a smaller position error in a short run
than the part-based models that would over-fit the uncertain
visual data. Still, in the presence of low visual uncertainty,
the deformable part models typically outperform the holis-
tic models.

Our main contribution in this paper is introduction of
graduated flexibility in parameter estimation of deformable
parts trackers. A new visual model composed of several in-
teracting types of visual sub-models that primarily differ in
the level of detail by which they describe the target is pro-
posed. The level of detail varies in the type of features used,
the number of parameters estimated by each model and the
aggressiveness of the adaptation. The sub-models mutually
interact in localization and cross-sub-model updates by ac-
counting for the potential uncertainty of the visual infor-
mation. This makes the visual model shift between purely
holistic and part-based behavior, depending on the visual
uncertainty (Figure 1). To the best of our knowledge this
kind of self-constrained graduated estimation of free param-
eters has not been proposed before. We have implemented a
new visual tracker according to the proposed that achieves
a state-of-the-art performance on two recent, highly chal-
lenging, visual object tracking benchmarks VOT2013 [16]
and VOT2014 [17].

The reminder of the paper is organized as follows: Sec-
tion 2 positions our contributions against the related work,
Section 3 describes the new visual model and its integration
into the proposed tracker. Experimental evaluation and re-
sults are presented and discussed in Section 4, followed by
a conclusion in Section 5.

2. Relation to related work
Several works have attempted information fusion for ro-

bust visual tracking. Santner et al. [23] proposed running an
online discriminative tracker in parallel with motion predic-
tion from a dense optical flow and NCC detection. Trackers
that do not address scale change are connected into a cas-
cade and only the model in the discriminative tracker is up-
dated. Badrinarayanan et al. [2] proposed running in paral-
lel two particle filters with different visual models. The two
trackers interact by influencing resampling in each tracker.
This approach was generalized by Kwon and Lee [18] who
proposed a unified framework for a Monte-Carlo-based in-
tegration of several holistic visual models in a recursive
Bayes filter. In contrast, our work combines holistic vi-
sual models with part-based model and therefore addresses
scale and aspect changes as well as non-rigid deformations.
The visual sub-models are selectively updated depending on
the visual certainty of individual models and do not require
computationally-intensive sampling. A step towards part-
based representation was made by [4, 35] where a SIFT key-
point constellation is combined with a holistic color visual

model to better address partial occlusions, however, these
methods use rigid constellations of keypoints that are un-
suitable for non-rigid objects.

Various part-set models have been increasingly used
over the last decade to accommodate geometric defor-
mations of the targets. These models range from rigid-
constrained constellations proposed by Vojir et al. [27] to
very weakly center-constrained constellations, proposed by
Kwon et al. [19]. The rigid constraints in [27] increase
robustness during partial occlusions, but suffer from the
same deficiencies in tracking deformable targets as the
holistic models. Relaxing the constellation constraints in-
creases robustness during object deformations, but also re-
sults in high-dimensional optimization problems with many
local minima, which are difficult to solve, even for man-
ually initialized set of parts [6]. To reduce this complex-
ity, the topology is usually simplified to a star-based con-
stellation [10, 32, 19]. On the other hand, Čehovin et
al. [25] have shown that improved robustness is achieved
by densely-connected topology and efficient stochastic op-
timization. Many part-based models include aggressive up-
dates by removing outdated parts and replacing them with
new ones. Kwon and Lee [19] allocate parts from color pos-
terior computed from foreground/background histograms
and Čehovin et al. [25] proposed using several features like
color and motion. Godec et al. [10] and Duffner and Gar-
cia [8] sample parts from a segmentation mask. The perfor-
mance of these approaches degrades severely whenever the
histogram backprojection or segmentation fail. Our work
differs from these approaches in the extension of the update
process in which holistic models directly influence part al-
location by region proposal, depending on their certainty.
Whenever the holistic models are uncertain, the parts are
allocated by self-supervision by the part-based model. Our
part-based model also uses a densely-connected constella-
tion, but does not require computationally intense stochastic
optimization.

The problem of drifting due to continuous visual model
updates has been explored in long-term visual tracking by
Kalal et al. [13] and Pernici et al. [21]. The common strat-
egy is to model the appearance by a large set of object in-
stances and introduce the instances into the model very con-
servatively. These trackers cannot allocate the target during
significant deformations, but can re-detect it whenever the
target assumes a stored appearance state. This is an im-
portant quality for long-term tracking, however, it cannot
directly be applied to short-term tracking. Our approach
draws on the long-term paradigm of conservative updates
and uses it for conservative supervision of the part-based
sub-model.



3. The proposed visual model

The proposed visual model is formalized as a hierarchi-
cally dependent set of the following sub-models: the holis-
tic object templates (Section 3.1) representing the holistic
detailed description, the global color model (Section 3.3)
as holistic coarse representation and a deformable part-set
(Section 3.2) as a local representation of the appearance.
The proposed architecture is motivated by the observation
that some segments of tracking session can be performed
better using less free parameters, e.g. only position of the
target, while other segments may require a more detailed
description of the state – our visual model presents a mech-
anism to gracefully shift between these two modes.
Localization. A tracking iteration starts by initializing the
tracker at a location predicted by a motion model estimated
by a Kalman filter. The object templates are matched to the
image, depending on the strength of the match of the best
template, it can either provide a detection of the object (Fig-
ure 1, holistic), constrain the update process of the rest of
the model (Figure 1, guided), or remain inactive (Figure 1,
part-based). The part-based model is deformed to account
for geometrical deformations and the color model generates
the object segmentation mask. The resulting object location
for the frame can be given either by the best template match
(detection) or by the part-set model (otherwise).
Update. In the update step the part-based model is updated
by removing and adding patches using a object segmenta-
tion mask generated by the color model and the estimated
region of the object. In case of the consensus of the color
and part-based models, a new template is considered for ad-
dition to the object template set. The color model is updated
as well using the generated output region. The output region
from the model is also used to update the motion model.
Since it is clear that the holistic templates strongly influence
the part-based and color-based representations, we refer to
the our model model as an anchored visual model based on
the fact that the templates are only used if they are deemed
very reliable and in this case act as anchors to the rest of the
model.

3.1. The object templates

The memory-system like representation contains a set
of holistic templates of objects appearance acquired at dif-
ferent points in time Tt = {T1, T2, . . .}. In our imple-
mentation, the kernelized correlation filters with HOG fea-
tures [12] are used as a representation, however, in contrast
to [12], templates are not updated during tracking. At each
frame, all templates are matched within a search region and
a candidate with the maximal response is taken as the can-
didate detection, i.e.

T̂t = arg max
T∈Tt−1

d(T,Yt), (1)

where T̂t denotes the candidate template anchor, d(·, ·) the
matching function that returns the best response and Yt the
current frame. The response of the anchor template is used
to determine how the template will be used. If the template
response exceeds λD, the tracker detects the object in a pose
that is represented by the template. The region provided by
the template is considered as the target output region and
is used for updating the rest of the model. If the response
exceeds threshold λG, where λG < λD, the tracker is not
very confident about the detection and the part-set is used
as the output region of the tracker instead. On the other
hand, the template is still used to guide the remaining visual
model in adding new parts by providing a region of interest.
Finally, if the response is below λG, the template is not used
at all and the part-set model estimates the output bounding
box, which is also used for updating the rest of the visual
model.

This design allows the tracker not to rely on the tem-
plates for shorter periods of time and therefore supports a
very conservative updating mechanism to maintain a reli-
able template set. A new template is constructed from a
region proposed by an agreement of the part-set region and
the color segmentation. This template is added to the list of
potential templates and is only promoted into the set of ac-
tive templates after the overlap with the output region of the
tracker exceeds a predefined threshold λT for ΩT frames.
The only template that is directly introduced into the tem-
plate set is the one provided by the initialization bounding
box.

3.2. The part-based representation

The purpose of the part-based model is to account for
geometrical deformations of the target. The constellation
of parts is defined by Xt = {x(i)

t }i=1:Nt and Ht =

{h(i)}i=1:Nt
, where x

(i)
t is the position of the i-th part and

h(i) is its visual model, a static grayscale histogram.
Localization. At time-step t, the localization of the target is
performed by a three-step matching algorithm. Firstly, the
displacement of each part v(i)

t is estimated by the Lucas-
Kanade optical flow. Based on forward-backward valida-
tion [27] we partition parts into subset for which the optical
flow can be estimated reliably, Pt, and the the rest, Kt. The
state Xt is estimated by maximizing the probability of part
positions Xt conditioned on the measurements Yt and es-
timation from the previous time-step X̂t, i.e.,

p(Xt|Yt, X̂t−1, Pt,Kt) ∝ (2)∏
i∈Kt

p(Yt|x(i)
t )p(x

(i)
t |ε

(i)
t )

∏
i∈Pt

δ(x
(i)
t |v

(i)
t ),

where ε(i)t are the parts in the neighborhood of x(i)
t , ob-

tained in the same manner as in [25], and δ(x(i)
t |v

(i)
t ) is a



Dirac-delta positioned at the flow displacement. This de-
composition is obtained by assuming that a part is con-
ditionally independent from other parts except immediate
neighbors and that visual likelihood of a part is condition-
ally independent from the other parts. The part visual like-
lihood is defined as

p(Yt|x(i)
t ) = e−ρi(x

(i)
t )/σc , (3)

where ρi(x
(i)
t ) is the Hellinger distance between the part

reference histogram and the histogram extracted at x(i)
t and

σc is a constant. The geometric constraint is defined as

p(x
(i)
t |ε

(i)
t ) = e−||x

(i)
t −x̃

(i)
t ||

2/σg , (4)

where x̃
(i)
t is the position predicted by the neighbors and

σg is a constant. This prediction is obtained by comput-
ing a similarity transform between the neighbors ε(i)t from
X̂t−1 and the current positions of the neighbors. Secondly,
the optimization of (2) is initialized with a global displace-
ment estimated using a generalized Hough voting algo-
rithm. Thirdly, the probability (2) is maximized by the Iter-
ated Conditional Modes (ICM) algorithm [3], which iterates
over the parts and for each part computes a new position as
the expected position under the conditional from (2). Note
that the iterations are only required for parts in Kt. The
optimization typically converges in less than ten iterations.
This makes the MAP optimization of (2) gracefully shift-
ing between flock-of-features approach and constellation-
constrained optimization depending on the situation. After
the matching is complete, the region of the object is esti-
mated as the smallest axis-aligned rectangle containing all
parts.
Update. To account for appearance changes, redundant
parts are removed from the set and new ones are added.
Redundant parts are recognized by looking for a region of
high part density – parts outside the region are assumed to
be drifting and are removed. The region is estimated by
applying a mean-shift mode detection on a kernel density
estimate [14] with a uniform kernel on the part locations.
To account for size changes, the size of the kernel is based
on the estimated object size.

New parts are added to the set by using the target seg-
mentation mask (see Section 3.3) as well as image proper-
ties that maximize the chance of good optical flow estima-
tion. To balance good object coverage and position quality
the following score function is used for part sampling:

q(x) = H(x) + αUU(x), (5)

whereH(x) is the Harris corner score at position x, U(x) is
a periodic function1 that enforces uniform coverage of sam-
pling points in homogeneous regions and αU is a mixing

1We use a two-dimensional cosine signal that produces a grid-like pat-
tern.

constant. Only local maxima of q(x) that are not already
covered by existing parts and are inside the segmentation
mask are kept and are ordered according to the color sim-
ilarity likelihood and at most NU new parts are added at
every time-step to ensure a gradual adaptation. The part-
set is initialized at the beginning of sequence in a similar
manner, but without a limit on a number of parts.

3.3. The color model

The visual model also maintains a global color model
of the target and the immediate neighborhood described by
a foreground and background RGB histograms, i.e., Ft and
Bt. The color model is used to bridge a gap between the de-
tailed holistic and part-based representations by generating
segmentation mask used for sampling parts as well as serv-
ing as a constraint for conservative updates of the holistic
template set.

Given an estimate of the target bounding box, the seg-
mentation mask is estimated as follows. The estimated re-
gion is expanded by αS to account for the scale uncertainty.
Foreground and background histograms are backprojected
into the expanded region resulting in two backprojection
maps, which are further smoothed by a Gaussian kernel
to enforce spatial coherence, resulting in foreground and
background probability maps, p(x|Ft) and p(x|Bt), respec-
tively. The foreground posterior is calculated at each pixel
using the Bayes rule

p(Ft|x) =
p(F)p(x|Ft)

p(F)p(x|Ft) + (1− p(F))p(x|Bt)
, (6)

where p(F) denotes the object prior. A likelihood threshold
is estimated such that the ratio between the number of pix-
els exceeding this threshold within the estimated region and
the expanded region is greater than λS , as illustrated in Fig-
ure 2. If such a threshold cannot be set, the discrimination
between foreground and background cannot be determined
reliably and the segmentation mask is empty. The mask is
further post-processed to remove outlier components.

4. Evaluation
In the following, the proposed tracker will be referred

to as anchored tracking (ANT). The ANT was evalu-
ated on the recent VOT benchmarks, VOT2013 [16] and
VOT2014 [17], which provide a fully annotated dataset,
evaluation protocol and an evaluation toolkit along with the
results of a large number of state-of-the-art trackers. The
large number of trackers tested makes these benchmarks ar-
guably the largest short-term tracking benchmarks to date.
Dataset and the evaluation protocol. The datasets consist
of 16 (VOT2013) and 25 (VOT2014) manually annotated
sequences that contain various challenging visual tracking
scenarios such as severe illumination changes, object de-
formations, abrupt motion changes scale variation, camera



Figure 2. Segmentation mask St(x) construction. Object likeli-
hood at each pixel is estimated by histogram backprojection, fol-
lowed by an automatic threshold selection using cumulative like-
lihood histograms and morphological post-processing.

motion and occlusion. The sequences were selected from a
larger pool from various sources using a clustering method-
ology that provided a diverse dataset of reasonable size.

In the evaluation we follow the official protocol of VOT
challenges, the trackers are initialized at the first frame us-
ing ground-truth annotations and reinitialized every time
they drift away from the target. The results are summarized
in terms of accuracy (average region overlap) and robust-
ness (number of re-initializations). The experiments were
performed using VOT toolkit which also provides ranking
analysis that takes into account statistical and practical dif-
ference on accuracy and robustness performance measures
to ensure a fair comparison. The details of the methodology
are available in [16, 17, 15].
Implementation and runtime performance. The pro-
posed tracker is implemented in a combination of Matlab
and C++2. Despite the fact that some calculations are per-
formed several times for implementation clarity the imple-
mentation performs at about five frames per second on a
computer with AMD Opteron 6238 processor; an optimized
native implementation would run in real-time on an average
modern computer.
Parameter configuration. As required by the VOT eval-
uation protocol, the parameters of the tracker were fixed
for all the experiments. The parts were modeled using 16-
bin grayscale histograms, matching parameters were set to
σc = 3 and σg = 3, update parameters to αU = 10−4,
NU = 2. The color model used 32-bin RGB histograms for
the color model. The segmentation parameters were set to
λS = 0.9, p(F) = 0.4. The template set was configured to
use HOG-based correlation templates with 4× 4 pixels and
9 orientations per cell and Gausssian kernel with σ = 0.6.
The learning rate was controlled by ΩT = 7 and λT = 0.8.
The operation mode thresholds were set to λD = 0.85 and
λG = 0.5. We have experimentally analyzed model param-

2The source code of the tracker as well as raw results of the evaluation
are available at http://go.vicos.si/ant.

eters and determined that they do not significantly impact
tracking performance for small changes. The parameters
that have the largest impact on model behavior are λD and
λG, which is expected as they directly influence the selec-
tion of the tracking mode. Lowering λD decreases tracker
robustness as it allows entering detection mode with less
reliable template matching scores. Raising λG decreases
the effects of guide mode which lowers the accuracy of the
tracker.

4.1. VOT2013 benchmark results

Benefits of the proposed guiding mechanism. Several
variations of the ANT have been evaluated to test the con-
tributions of each sub-model and the proposed cross-sub-
model interaction: The ANT-D tracker is a tracker that only
uses a single anchor template, ANT-P uses only parts and
segmentation, and ANT-DP uses part-set together with the
memory system, but the system only acts as a detection
mechanism, i.e., it does not guide the update of the part set.
The results are shown in Table 1.

Table 1. Average overlap and average number of failures on
VOT2013 benchmark for ANT tracker derivations.

ANT-D ANT-P ANT-DP ANT
Overlap ↑ 0.64 0.39 0.46 0.64
Failures ↓ 2.39 0.88 0.39 0.00

As seen in Table 1, the ANT-D tracker achieves good
accuracy, mainly at the expense of robustness since a sin-
gle static template cannot properly address the appearance
changes. On the other hand ANT-P achieves good robust-
ness, but the accuracy is low since the part-based model ap-
plies self-supervised updating without external supervision
and recovery capability from the template memory system.
The ANT-DP combines the traits of ANT-D and ANT-P
trackers, and benefits from switching between the detec-
tion and part-based tracking. The complete ANT tracker
improves performance in terms of accuracy and robustness
by using anchor templates not only to detect the object, but
also to guide the update process of the part-set even if the
template detection is not reliable enough for a full detec-
tion. In particular, ANT improves over the variations ANT-
D, ANT-P and ANT-DP in accuracy as well as robustness.
The results thus clearly support our hypothesis that the pro-
posed combination of part-based visual model and holistic
visual model improves the overall tracking performance.
Comparison to the state-of-the-art. The ANT was further
compared to several top-performing state-of-the-art track-
ers [27, 25, 10, 20, 9] and baseline trackers [22, 1, 11, 34,
13, 30] on the VOT2013. The results of the evaluation
are presented in Figure 3 as raw A-R plot [26], sequence-
normalized and attribute-normalized ranking plots. The re-
sults are summarized in Table 2, per-sequence scores are
available in the supplementary material.



Figure 3. The VOT2013 A-R plots (a), sequence-normalized rank plots (b) and attribute-normalized rank plots (c). Trackers closer to the
top-right corner are better performing.

Figure 4. Visual comparison of trackers CCMS (red), LGT (green), PLT (blue), and ANT (white) on sequences car iceskater, singer from
VOT2013 dataset.

Figure 5. The VOT2014 A-R plots (a), sequence-normalized rank plots (b) and attribute-normalized rank plots (c). Trackers closer to the
top-right corner are better performing.

Results in Figure 3 show that the proposed tracker out-
performs all reference trackers by achieving the best accu-
racy and robustness. It is important to note that some track-
ers, like FoT [27] and LT-FLO [20], achieve a higher ac-
curacy due to many re-initializations, which is not the case
with ANT. The proposed tracker shares the first place with
the winner of VOT2013 challenge, PLT, in robustness. Both
trackers do not fail on any sequence, but PLT achieves a
lower accuracy in case of deformations and scale changes
due to its holistic visual model. As seen in Table 2, most

of the other holistic trackers, like IVT, Struck, and EDFT
are less robust in tracking non-rigid objects, but achieve
a higher accuracy in comparison to the part-based LGT
and LGT++, which are related to ANT. On the other hand,
the ANT achieves an accuracy comparable to the holistic
models and simultaneously outperforms related part-based
trackers in robustness. This can be also observed on quali-
tative examples in Figure 4, e.g. in sequence singer where
ANT better estimates the size of the object despite illumi-
nation and scale changes that are challenging for both part-



based LGT as well as holistic PLT and CCMS. This further
confirms our hypothesis about retaining the best properties
from holistic and part-based trackers.

4.2. VOT2014 benchmark results

The ANT was further evaluated on the most recent
VOT2014 benchmark and compared to the state-of-the-art
top performing [12, 7, 5, 25, 31, 28] and several base-
line trackers [22, 1, 11, 34]. The results of the evaluation
are presented in Figure 5 as raw A-R plot [26], sequence-
normalized and attribute-normalized ranking plots, in Ta-
ble 2 as well as in the supplementary material.

According to the results, ANT is the second most robust
tracker. It is outperformed only by the PLT tracker. As
we can see in Figure 6 most of this gain comes from the
decreased robustness of ANT in case of occlusions. On the
other hand the ANT tracker outperforms PLT in accuracy
in case of size and illumination change as well as frames
without degradation.

In terms of accuracy, the proposed tracker performs com-
parably to most reference trackers. The relative decrease in
comparison to VOT2013 can be attributed to a more com-
petitive set of trackers and to some degree to different an-
notation format, that uses rotated bounding boxes, which
reduces region overlap with axis-aligned bounding boxes,
reported by ANT. Trackers like DGT achieve better accu-
racy by utilizing computationally expensive segmentation.
Holistic trackers, like DSST, KCF and SAMF perform bet-
ter in accuracy, at a relative difference of about 10%, but fail
approximately four times more often. This means that they
are also more often reinitialized which consequently cor-
rects the region estimate, resulting in increased final over-
lap.

Figure 6. The attribute ordering plots for the VOT2014 benchmark.
In both cases values that are closer to the outer border of the figure
are better.

As seen in Figure 5, the ANT is ranked similarly in ro-
bustness as the part-based DGT. The raw results available
in the supplementary material reveal that the DGT in fact

fails approximately four times more often, but only on se-
quences with certain visual degradations. The DGT fail-
ures occur in sequences where the assumptions required for
efficient color segmentation are violated. The hybrid na-
ture of the proposed visual model in ANT is robust to a
wide array of visual degradations as seen in Figure 6, hence
the lower failure count. The ANT also outperforms the re-
lated LGT tracker in accuracy at relative increase of approx-
imately 10% and significantly outperforms it in robustness.
This means that improved accuracy can in fact be attributed
to increased robustness and not a trade-off between the two
tracking aspects.

5. Conclusion

In this paper we have proposed a new model for visual
tracking. The model is composed of several interacting
types of visual sub-models that differ in the level of de-
tail by which they describe the target. We propose to use
holistic detailed, holistic coarse and part-based sub-models
that mutually interact in localization and cross-sub-model
updates by accounting for the potential uncertainty of the
visual information. This makes the visual model shift be-
tween purely holistic and part-based behavior, depending
on the visual uncertainty. A tracker that uses the proposed
visual model was evaluated on challenging VOT2013 [16]
and VOT2014 [17] benchmarks where we have shown that
the mutual interaction between the sub-models significantly
improves the performance of the tracker. We have compared
the tracker to the state-of-the-art reference trackers, the re-
sults confirm the hypothesis that the proposed tracker out-
performs related part-based trackers as well as many other
trackers both in accuracy and robustness.

Furthermore, the template anchors concept in our tracker
is very general and can easily be replaced by object-class-
specific detectors like face detectors to aid tracking in spe-
cific applications like face tracking. Our ongoing work is
directed towards exploring various possibilities of introduc-
ing application-specific priors into the tracker as well as de-
tecting partial occlusions by observing changes in the part-
based model.
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