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Fast Recoloring of Sparse Graphs

Nicolas Bousquet∗ Guillem Perarnau†

June 29, 2015

Abstract

In this paper, we show that for every graph of maximum average degree bounded away from
d and any two (d + 1)-colorings of it, one can transform one coloring into the other one within
a polynomial number of vertex recolorings so that, at each step, the current coloring is proper.
In particular, it implies that we can transform any 8-coloring of a planar graph into any other
8-coloring with a polynomial number of recolorings. These results give some evidence on a con-
jecture of Cereceda et al [8] which asserts that any (d+ 2) coloring of a d-degenerate graph can be
transformed into any other one using a polynomial number of recolorings.

We also show that any (2d + 2)-coloring of a d-degenerate graph can be transformed into any
other one with a linear number of recolorings.

1 Introduction

Reconfiguration problems consist in finding step-by-step transformations between two feasible so-
lutions such that all intermediate states are also feasible. Such problems model dynamic situations
where a given solution is in place and has to be modified, but no property disruption can be afforded.
Recently, reconfigurations problems have raised a lot of interest in the context of constraint satisfac-
tion problems [6, 12] and of graph invariants like independent sets [13], dominating sets [3, 15] or
vertex colorings [4, 5].

In this paper G = (V,E) is a graph where n denotes the size of V and k is an integer. For standard
definitions and notations on graphs, we refer the reader to [10]. A “proper” k-coloring ofG is a function
f : V (G) → {1, . . . , k} such that, for every xy ∈ E, f(x) 6= f(y). Throughout the paper we will
only consider proper colorings. In the following, we will omit the proper for brevity. The chromatic
number χ(G) of a graph G is the smallest k such that G admits a k-coloring. Two k-colorings are
adjacent if they differ on exactly one vertex. The k-recoloring graph ofG, denoted by Ck(G) and defined
for any k ≥ χ(G), is the graph whose vertices are k-colorings of G, with the adjacency condition
defined above. Note that two colorings equivalent up to color permutation are distinct vertices in
the recoloring graph. The graph G is k-mixing if Ck(G) is connected. Cereceda, van den Heuvel
and Johnson provided an algorithm to decide whether, given two 3-colorings of a graph, one can
transform the one into the other in polynomial time [8, 9]. In particular, their result characterizes
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3-mixing graphs. The easiest way to prove that a graph G is not k-mixing is to exhibit a frozen k-
coloring of G, i.e. a coloring in which every vertex is adjacent to vertices of all other colors. Such a
coloring is an isolated vertex in Ck(G).

Given any two colorings of a graph, to decide whether one can be transformed into the other, is
PSPACE-complete for k ≥ 4 [5]. The k-recoloring diameter of a k-mixing graph is the diameter of
Ck(G). In other words, it is the minimum D for which any k-coloring can be transformed into any
other one through a sequence of at most D adjacent k-colorings. Bonsma and Cereceda [5] proved
that there exists a family of graphs and an integer k such that, for every graph G in the family there
exist two k-colorings whose distance in the k-recoloring graph is finite and super-polynomial in n.
However, the diameter of the k-recoloring may be polynomial when we restrict to a well-structured
class of graphs and k is large enough. Graphs with bounded degeneracy are natural candidates.

The diameter of the k-recoloring graphs has been already studied in terms of the degeneracy of
a graph. It was shown independently by Dyer et al [11] and by Cereceda et al. [8] that for any
(d− 1)-degenerate graph G and every k ≥ d+ 1, Ck(G) is connected (diam(Ck(G)) <∞). Moreover,
Cereceda [7] also showed that for any (d − 1)-degenerate graph G and every k ≥ 2d − 1, we have
diam(Ck(G)) = O(n2).

Cereceda et al. conjectured in [8] that, for any (d − 1)-degenerate graph G and every k ≥ d + 1,
we have diam(Ck(G)) = O(n2). No general result is known so far on this conjecture, but several
particular cases have been treated in the last few years. Bonamy et al. [4] showed that for every
(d − 1)-degenerate chordal graph and every k ≥ d + 1, diam(Ck(G)) = O(n2), improving the results
of [8, 11]. This result was then extended to graphs of bounded treewidth by Bonamy and Bousquet
in [1]. Unfortunately, all these results are based on the existence of an underlying tree structure. This
leads to nice proofs but new ideas are required to extend these results to other classes of graphs.

Our results. In Section 2, we show that Cereceda’s quadratic bound on the recoloring diameter can
be improved into a linear bound if one more color is available. More precisely we show that for every
(d− 1)-degenerate graph G and every k ≥ 2d, the recoloring diameter of G is at most dn.

In Section 3, we study the k-recoloring diameter from another invariant of graphs related to degen-
eracy: the maximum average degree. The maximum average degree of G, denoted by mad(G), is the
maximum average degree of a (non-empty) induced subgraph H of G. We prove that for every in-
teger d ≥ 1 and for every ε > 0, there exists c = c(d, ε) ≥ 1 such that for every graph G satisfying
mad(G) ≤ d − ε and for every k ≥ d + 1, diam(Ck(G)) = O(nc). The proof goes as follows. We
first show that the vertex set can be partitioned into a logarithmic number of sparse sets. Using this
partition, we show that one color can be eliminated after a polynomial number of recolorings and
then we finally conclude by an iterative argument.

Since every planar graph G satisfies mad(G) ≤ 6, our result implies that for every k ≥ 8 the diameter
of the k-recoloring graph of G is polynomial in n. Bousquet and Bonamy observed in [2] that k ≥ 7
is needed to obtain such a conclusion and conjectured that k = 7 is enough (this is the planar graph
version of the conjecture raised by Cereceda et al. [8] for degenerated graphs). We also discuss the
limitations of our approach by showing that it cannot provide a polynomial bound on the diameter
of the 7-recoloring graph of a planar graph. Finally, we also mention other consequences of our result
to triangle-free planar graphs.

The degeneracy is closely related to the maximum average degree: a graph G satisfying mad(G) ≤ d
is d-degenerate and every d-degenerate graph has maximum average degree at most 2d (see e.g.
Proposition 3.1 of [14]). Using the latter inequality, one can deduce from our result that if G has
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degeneracy d − 1, the diameter of the 2d-recoloring graph of G is polynomial in n. However, as the
first part of our paper shows, better results can be attained in such case.

2 Linear diameter with 2d colors

Let us first set some basic notations. Let X be a subset of V . The size |X| of X is its number of
elements. Let G = (V,E) be a graph. For any coloring α of G, we denote by α(H) the set of colors
used by α on the subgraph H of G. The neighborhood of a vertex x in G, denoted by NG(x), is the
subset of vertices y ∈ V (G) such that xy ∈ E(G). If the graph G is clear from the context, we will
denote NG(x) by N(x). The length of a path P is its number of edges and its size, denoted by |P |, is
its number of vertices. The distance between two vertices x and y, denoted by d(x, y), is the minimum
length of a path between these two vertices. When there is no such path, d(x, y) is set to infinite.
The distance between two k-colorings of G is implicitly the distance between them in the k-recoloring
graph Ck(G). The diameter ofG is the maximum over all the pairs u, v ∈ V (G) of the distance between
u and v.

Theorem 1. For every (d− 1)-degenerate graph G on n vertices and every k ≥ 2d, diam(Ck(G)) ≤ dn. Even
more, for any two k-colorings there exists a recoloring procedure that transforms one into the other and where
every vertex is recolored at most d times.

Proof. Let α and β be two k-colorings. We will show by induction on the number of vertices that there
exists a recoloring procedure that transforms α into β and where every vertex is recolored at most d
times. If n = 1 the result is obviously true. Let G be a (d − 1)-degenerate graph on (n + 1) vertices
and let u be a vertex of degree at most d− 1. Consider G̃ to be the graph induced by V \ {u}. Let us
denote by α̃ and β̃ the restrictions of α and β to G̃. By induction, the coloring α′ can be transformed
into β̃ so that every vertex is recolored at most d times and at every step, the k-coloring is proper in
G̃.

Since u has at most d − 1 neighbors and since each vertex in G̃ is recolored at most d times, the
neighbors of u are recolored ` ≤ d(d− 1) times in this recoloring sequence. Let t1, . . . , t` be the times
in the recoloring sequence when a neighbor of u changes its color. For any time t in the sequence, let
ct be the new color assigned at this time.

Consider again the initial graph G. Now, let us try to add some recolorings of the vertex u in the
sequence of recolorings obtained for G̃ to guarantee that the k-colorings are proper in G. We claim
that the vertex u can be inserted in the recoloring sequence of G̃ with the addition of at most d new
recoloring steps that change the color of u. Consider the following recoloring algorithm: at each step
of the recoloring process, some vertex v is recolored from color a to color b. If v is not a neighbor of u
or if the current color of u is not b, the obtained coloring is still proper in G and we do not perform
any recoloring of u. Assume now that v ∈ N(u) and that the color of u is b. This happens at some time
ti, with i ≤ `. In this case, we add a new recoloring step in our sequence right before the recoloring
of v at time ti, in which we change the color of u. In order to maintain the proper coloring, we want
to assign to u a color distinct from the colors in N(u) (there are at most d − 1 different colors there).
So there remain at least k − (d− 1) ≥ d+ 1 choices of colors for u that do not create monochromatic
edges. Thus, we assign to u a color distinct from cti , . . . , cti+d−1

. By choosing this color, we make sure
that u will require no recoloring before time ti+d in the sequence.

Let s be the number of recolorings of u and let ti1 , . . . , tis the corresponding recoloring times in the
original sequence. By the construction of the new sequence, observe that ij+1− ij ≥ d for every j < s.
Since ` ≤ d(d − 1) and is ≤ `, we have that s ≤ d − 1. At the end of the procedure we may have
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to change the color of u to β(u) if it is not its current color. Hence, the recoloring of V \ {u} can be
extended to V by recoloring the vertex u at most d times, which concludes the proof.

3 Recoloring sparse graphs

The maximum average degree of a graph G is defined as

mad(G) = max
∅6=H⊆G

2|E(H)|
|V (H)|

.

We will prove the following theorem that relates the maximum average of the graph with the diam-
eter of its recoloring graph.

Theorem 2. For every integer d ≥ 0 and for every ε > 0, there exists c = c(d, ε) ≥ 1 such that for every
graph G on n vertices satisfying mad(G) ≤ d− ε and for every k ≥ d+ 1, we have diam(Ck(G)) = O(nc).

For every graph G, every t-partition {V1, . . . , Vt} of the vertex set of G and every i ≤ t, we consider
the following induced subgraph,

Gi = G [∪j≥iVj ] .

The level function of a t-partition, denoted by L : V (G) −→ {1, . . . , t}, labels each vertex with its
corresponding part of the partition, that is L(v) = i for every v ∈ Vi. A t-partition of degree ` of G is
a t-partition {V1, . . . , Vt} of the vertex set of G such that every vertex v ∈ Vi has degree at most ` in
V (Gi).

The existence of a t-partition of degree (d − 1) is crucial in the proof of Theorem 2. Let us briefly
explain why. If k ≥ d + 1, then for any k-coloring α of G and for every vertex v ∈ V there exists at
least one color, say a, such that a 6= α(v) and it does not appear in NGL(v)

(v). Indeed the vertex v has
at most (d − 1) neighbors in GL(v) and there are k ≥ d + 1 colors. Thus, we can always change the
color α(v) by a without creating any monochromatic edge in Gi. Nevertheless, this recoloring step
may create monochromatic edges in G. In order to prove Theorem 2, we will provide a recursive
recoloring algorithm that, given a coloring α and a vertex v, obtains a new coloring α′ with α′(v) = a
by only performing a polynomial number of valid recolorings.

Consider a total order ≺ on the set of vertices such that if u ≺ w then L(u) ≤ L(w). We proceed to
describe Procedure 1 which has as an input a tuple (γ, P ), where γ is a coloring of G and P is a list of
vertices that forms a path in G. The recoloring algorithm will consist in the call of Procedure 1 with
input (α, {v}).

A procedure call C generates (or calls) a call D if D is started during the call of C. In this case we
also say that D is a recursive call of C. Similarly, a procedure call D is generated by C if there exists a
sequence of calls C = C1, C2, . . . , Ct = D such that Ci generates Ci+1 for every i < t. The vertex u in
the last position of the list P in a particular call of Procedure 1, will be called the current vertex of the
call. Recursive calls made in a call where u is the current vertex are called recursive calls of u. We say
that a procedure call C is generated by u if a call of a procedure with current vertex u generates C.

Let us first state a few immediate remarks concerning this procedure. Observe that in each recursive
call, we add one vertex in the list P . By construction, the vertex added in P in the recursive call
is a neighbor of the current vertex u and has level strictly smaller than u. Since in any call C of
the procedure the unique recolored vertex is the current vertex u, an immediate induction argument
ensures that any recolored vertex in calls generated by C has level strictly smaller than L(u). So we
have the following:
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Procedure 1 Recoloring Algorithm

Input: A coloring γ of G, a list P of vertices.
Output: A coloring γ′ of G which agrees with γ on V (GL(u)) \ {u} where u is the last element of
P . Moreover γ(u) 6= γ′(u).

Let u be the last element of P . u is the current vertex of the procedure.

Let a be a color not in γ
(
{u} ∪NGL(u)

(u)
)

. Such a color exists and is the target color for u.

Let γ′ = γ. γ′ is the current coloring.

Let X = {v1 � . . . � vs} be the set of neighbors of u in ∪j<L(u)Vj .
for vi ∈ X with i increasing do

if vi is colored with a then
Add vi at the end of P .
γ′ ← Procedure 1 with input (γ′, P ). The color of vi is now different from a.

Delete vi from the end of P .
end if

end for
Change the color of u to a in γ′.
Output γ′

Observation 1. If the procedure call C with input (γ, P ) makes some recursive calls, then the size of P
increases in these calls. Moreover, the level of the vertex vi added at the end of P during C, is strictly smaller
than the level of the current vertex u and both vertices are adjacent.
This implies that for every vertex w recolored in a call generated by C we have L(w) < L(u), i.e. the coloring
output by a call with current vertex u agrees with γ on V (GL(u)) \ {u}.

Recall that the vertices of G are equipped with a total order ≺. A path P1 is lexicographically smaller
than P2, denoted by P1 ≺l P2 if:

• P2 is empty and P1 is not.

• The first vertex of P1 is smaller than the first vertex of P2.

• The first vertices of both paths are the same and the path P1 without its first vertex is lexico-
graphically smaller than the path P2 without its first vertex.

Informally, we compare the first vertex of each path (which in our case will be the largest) and if they
are not equal, the largest path is the one with the largest vertex; otherwise we compare the remaining
paths. Notice that if P2 is contained in the first positions of a path P1, then P1 ≺l P2. In particular,
with this definition, the empty path is the largest one.

The path of the procedure call C, denoted by PC , is the path P given as an input of C. We will show that
the sequence of paths used as an input of successive calls of Procedure 1, is lexicographically strictly
decreasing (in particular two calls cannot have the same path P ).

Claim A. If a procedure call D is initiated after a call C, then PD ≺l PC .

Proof. First note that if D is called by C then PD ≺l PC . Indeed, the path PC is contained in the first
positions of PD. Consider now two calls C and D of Procedure 1 such that D is generated by C. An
immediate induction argument using the previous observation ensures that PD ≺l PC .
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So we may assume that D is not generated by C. Let us denote by I the initial call of Procedure 1.
Recall that all the calls are generated by I and that they are organized in a tree structure. So there
exists a unique sequence S1 : I = C1, C2, . . . , Ct1 = C such that Cj calls Cj+1 for every j < t1 and a
unique sequence S2 : I = D1, D2, . . . , Dt2 = D such that Dj calls Dj+1 for every j < t2. Let us denote
by B the last common procedure call in S1 and S2. Since D is not generated by C, S1 is not included
in S2 and then B is not the last element of S1 or S2. Let us denote by BC the procedure called by B in
S1 and by BD the procedure called by B in S2. We have:

• BC and BD are called by B in this order (otherwise D would have been initiated before C),

• either BC = C or BC generates C, and

• either BD = D or BD generates D.

The previous observations ensure that PD �l PBD
. Thus, it suffices to show that PBD

≺l PC . Since
BC and BD are called by B, the corresponding paths PBC

and PBD
are both PB plus a last additional

vertex, denoted respectively by vBC
and vBD

. Since BC is called before BD, by construction of Proce-
dure 1 we have vBD

≺ vBC
. Notice that C is generated by BC , which implies that PBC

is contained in
the first |PBC

| positions of PC . So the path PC is lexicographically larger than PBD
: they coincide in

the first |PB| positions and at the first position where they differ we have vBD
≺ vBC

.

A path P = (u1, . . . , us) is level-decreasing if L(ui) > L(ui+1) for every i < s. Observation 1 ensures
that PC is a level-decreasing path for any call C. In the follow claim we will show that if the t-
partition used in Procedure 1 has small degree, then the number of paths passing through any vertex
is bounded.

Claim B. Given that the t-partition {V1, . . . , Vt} of G has degree at most `, the number of level-decreasing
paths between two vertices u and w in different levels is at most `i−1 where i = |L(u)− L(w)|.

Proof. Without loss of generality, we may assume L(w) < L(u). Let us prove the claim by induction
on i. If i = 1, then there is at most one level-decreasing path between u and w which is the edge uw
if it exists. Assume now that L(u)−L(w) = i. By the definition of a t-partition of degree `, the vertex
w has at most ` neighbors in GL(w), and, in particular, s ≤ ` neighbors in ∪L(u)−1j=L(w)+1Vj . Let us denote
by w1, . . . , ws these neighbors of w. Notice that 1 ≤ L(u) − L(wj) ≤ i − 1 for every wj . Notice that
for any level-decreasing path P from u to w, the before last element of P should be in {w1, . . . , ws}.
By induction, for every wj , there are at most `i−2 level-decreasing paths from u to wj . Therefore, the
number of level-decreasing paths from u to w is at most

s∑
j=1

`i−2 ≤ `i−1 ,

which concludes the proof of the claim.

We say that two colorings α and β agree on some subset X if α(x) = β(x) for every x ∈ X .

Lemma 3. Suppose that G admits a t-partition of degree `. For every v ∈ V and every (` + 2)-coloring α,
there exists an (` + 2)-coloring α′ with α(v) 6= α′(v), such that α′ can be obtained from α by recoloring each
vertex at most `L(v) times. Moreover, α′ agrees with α in V (GL(v)) \ {v} at any recoloring step.

Proof. Let us now prove that the recoloring algorithm ends, that it makes the right amount of recol-
orings and that it is correct.
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Termination and number of recolorings in the recoloring algorithm. Each call of Procedure 1 cre-
ates at most n recursive calls (we have a priori no good upper bound on the number of neighbors of
u in ∪j<L(u)Vj). Since the level of the current vertex u decreases at every recursive call, the depth of
the recursion is at most L(u) ≤ t. This implies that the recoloring algorithm will terminate in at most
nt iterations. We need an additional argument to show that the number of recolorings is at most `t as
stated in the lemma.

Notice that the number of recolorings is exactly the number of calls of Procedure 1; every procedure
call C only recolors one vertex once, the current one in C. Thus, if we can bound the number of calls
where v is the current vertex, then we can bound the number of times we recolored v.

Let I be the initial call of Procedure 1. Recall that PI = {v}. Since each call C is generated by I , the
first vertex in the path PC is v. By Claim A, the sequence of paths used as an input of successive calls
of Procedure 1 is lexicographically strictly decreasing. By Claim B, the number of level-decreasing
paths from the vertex v to any given w is at most `i−1, where i = L(v) − L(w) ≤ L(v). Since the
unique recolored vertex in each procedure is the current vertex u, we obtain that for every v ∈ V and
every (`+ 2)-coloring α we can change the color of v by recoloring each vertex at most `L(v) times.

Correctness of the recoloring algorithm. Let us now prove that if the initial coloring is proper, then
at any step of the algorithm, the current coloring is also proper. We have already seen that in each
call of Procedure 1 the unique recolored vertex is the current vertex u (the last vertex in P ) and in any
recursive call of u, the current vertex w satisfies L(w) < L(u).

It suffices to show that when u is recolored in a procedure call C with color a, no neighbor of u has
color a. Color a is chosen in Procedure 1 such that no neighbor of u in V (GL(u)) is colored with a.
Since, by Observation 1 the vertices of V (GL(u)) are not recolored by any of the calls generated by C,
recoloring u with a does not create monochromatic edges in V (GL(u)).

Let v1, . . . , vs be the neighbors of u in ∪j<L(u)Vj in decreasing order with respect to ≺. Let γ′0 = γ be
the coloring used as an input of the call C and, for every i ≤ s, let γ′i be the coloring γ′ output by the
procedure called by C whose current vertex is vi. Recall that when the recoloring of u is performed,
the current coloring is γ′s. We will show that γ′s(vi) 6= a for every i ≤ s.

If γ′i−1(vi) 6= a, then we do not call any procedure to change the color of vi and γ′i = γ′i−1. If γ′i−1(vi) =
a, then γ′i is the output of Procedure 1 with input parameters γ = γ′i−1 and P = (PC , vi). Since vi is
now the last vertex of P , by construction of the procedure, the coloring γ′i satisfies that γ′i(vi) 6= a.

It remains to show that the color of vi is not modified between γ′i and the final coloring γ′s. For the
sake of contradiction assume that j∗ ∈ {i+1, . . . , s} is the smallest integer j such that γ′j(vi) 6= γ′i(vi).
This implies that vi is the current vertex of a call D generated by the procedure call corresponding
to vj∗ . Hence, the vertex vj∗ appears before than vi in PD. On the one hand, since i ≤ j∗, by the
order given on the neighbors of u, we have L(vi) ≥ L(vj∗). On the other hand, since the path PD is
level-decreasing, L(vj∗) > L(vi), leading a contradiction. So the recoloring algorithm is correct.

Let us finally prove Lemma 3. The recoloring algorithm calls Procedure 1 with the initial coloring α
and the list P = {v} and outputs an (` + 2)-coloring α′ with α′(v) 6= α(v). Moreover, it provides a
sequence of proper colorings where, apart from v, no other vertex with level at least L(v) has been
recolored. This concludes the proof of Lemma 3.

The next lemma is a natural consequence of Lemma 3.

Lemma 4. Suppose that a graphG on n vertices admits a t-partition of degree `. Then, for any (`+2)-coloring
α there exists a (`+ 1)-coloring β (that is, β(v) 6= `+ 2 for every v ∈ V (G)) such that d(α, β) ≤ `tn2.
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Proof. Let us fix a t-partition of degree ` of G and denote by V1, . . . , Vt its parts. By Lemma 3, we
can change the color of every vertex in v ∈ Vi colored with color ` + 2 by performing at most `i

recolorings for each vertex in ∪j<iVj . Thus, first remove color `+2 from Vt by recoloring each vertex
in G at most `t|Vt| times, then remove it from Vt−1 by recoloring each vertex at most `t−1|Vt−1|, and
so on. By Claim 3, while removing color ` + 2 from Vi, we do not recolor any of the vertices in Gi
(apart from the ones with color `+ 2). Therefore, while recoloring Vi we never create new vertices in
color `+ 2 in Gi. After removing color `+ 2 from V1 we have a proper coloring β of G that does not
use the color `+ 2. Moreover, we have recolored each vertex at most

`|V1|+ `2|V2|+ · · ·+ `t|Vt| ≤ `tn ,

times. Thus the total number of recolorings is at most `tn2 concluding the first part of the lemma.

The following lemma shows that we can select a canonical stable set S of G, such that G \ S has a
partition with smaller degree.

Lemma 5. Let G be a graph that admits a t-partition of degree `. Then there exists a stable set S such that
G \ S admits a t-partition of degree `− 1.

Proof. Fix a t-partition of degree ` of G and denote by V1, . . . , Vt its parts. Let St be a maximal (by
inclusion) stable set in Gt. Define recursively Si to be a maximal (by inclusion) stable set in Gi \ Ti,
where Ti =

⋃
j≥i (Sj ∪NGi(Sj)) (recall that NG(X) is the set of vertices in V (G) \X at distance one

from some vertex in X) and let S = S1 ∪ · · · ∪ St. By construction of Ti, any vertex in Si is not in the
neighborhood of Sj for any j > i, thus S is a stable set.

We claim that {V1 \ S1, . . . , Vt \ St} is a t-partition of degree ` − 1 of G \ S. We just need to show
that every v ∈ Vi \ Si has degree at most ` − 1 in G′i = Gi \ S. By the maximality condition of
the selected stable sets, any such v has at least one neighbor in S. In particular, by the order of the
construction (from Vt to V1), it has at least one neighbor in ∪j≥iSj (otherwise v could be included in
Si, contradicting the maximality of it). Since {V1, . . . , Vt} is a t-partition of degree `, any v ∈ Vi has at
most ` neighbors in Gi. Therefore the degree of v in G′i is at most `− 1 and G \ S admits a t-partition
of degree `− 1.

The following result shows that a bounded average degree implies the existence of a good partition.

Proposition 6. For every d ≥ 1 and every ε > 0, there exists a C = C(d, ε) > 0 such that for every graph G
on n vertices that satisfies mad(G) ≤ d− ε, G admits a (C logd n)-partition of degree d− 1.

Proof. Set C = (logd(d/(d− ε)))
−1. By the definition of the maximum average degree of a graph,

every nonempty subgraph of G has density at most d − ε. Partition the set V = U<d ∪ U≥d in two
parts where v ∈ U<d if the degree of v is at most d− 1 and v ∈ U≥d otherwise. We have,

(d− ε) · n ≥ 2|E(G)| =
∑
v∈V

deg(v) ≥
∑
v∈U≥d

deg(v) ≥ d|U≥d| .

This directly implies that |U≥d| ≤ d−ε
d · n. Set the first part of the t-partition as V1 = U<d. Notice

that |V1| ≥ ε
d · n. Since the graph G(2) = G \ V1 is a subgraph of G, its maximum average degree

is at most d − ε and thus we can repeat the same procedure on it. Moreover, |V (G(2))| ≤ d−ε
d · n.

After m iterations of this procedure, we have |V (G(m))| ≤
(
d−ε
d

)m
n, and thus, we have to repeat this

procedure at most t = log d
d−ε

n = logd n
logd(d/(d−ε))

= C logd n times before we finish the construction of
the partition of degree d− 1.
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Set
c(d, ε) =

1

logd(d/(d− ε))
+ 2 .

Recall that G admits a ((c(d, ε)− 2) · logd n)-partition of degree at most d− 1.

Now we show that the recoloring graph of a graph with a low degree partition has small diameter.

Proposition 7. Let G be a graph on n vertices that admits a t-partition of degree `. Then for every k ≥ `+ 2
we have

diam(Ck(G)) ≤ 4`t+1n2 .

Proof. We will show that any k-coloring α can be reduced to a canonical k-coloring γ∗ using at most
2`t+1n2 recoloring steps. This canonical coloring γ∗ only depends on structural properties of G and
not on the coloring α (the precise definition of γ∗ will be detailed below). The previous claim implies
the statement of the theorem: between any pair of colorings α1 and α2 there exists a path in the
k-recoloring graph of length at most 4`t+1n2 (which in particular goes through γ∗).

Let us show how to transform α into the canonical coloring γ∗. Let G` = G and α` = α. For every j
from ` to 1, we do the following recoloring procedure:

1. Use Lemma 4 onGj in order to transform the (k−`+j)-coloring αj into a (k−`+j−1)-coloring
β using at most jt|V (Gj)|2 many recoloring steps.

2. Let Sj be the stable set of Gj provided by Lemma 5. Observe that Sj does not depend on the
coloring αj . Construct the (k − ` + j)-coloring β′ from β by recoloring the vertices in Sj with
color (k − `+ j).

3. Consider the graph Gj−1 = Gj \ Sj and let αj−1 be the (k − ` + j − 1)-coloring obtained by
restricting β′ into Gj−1. Notice that, by Lemma 5, there exists Gj−1 admits a t-partition of
degree j − 1.

By Lemma 4, at Step 1 of every iteration we perform at most jt · |V (Gj)|2 ≤ `tn2 many recolorings.
At Step 2 of each iteration we perform at most |Sj | ≤ n many recolorings. Recall that the number of
iterations is `. Thus, the number of recolorings during the recoloring procedure is at most `(`tn2 +
n) ≤ 2`t+1n2.

Let α0 be the k-coloring obtained at the end of the procedure. Since the set Sj obtained at Step 2
only depends on the graph Gj and the selected t-partition of degree ` of the graph G but not on the
coloring αj , the coloring α0 restricted to G \G0, does not depend on α. Indeed, all the vertices of Sj
are colored with color (k− `+ j) for every j between 1 and `. Moreover G0 = G \ (S1 ∪ · · · ∪ S`), has
a t-partition {V1, . . . , Vt} of degree 0, or, in other words, G0 is the edgeless subgraph. Hence, α0 can
be transformed into γ∗ by recoloring all the vertices in G0 with color 1 (in fact, only ` + 1 colors are
used in γ∗). This can be done in at most n recoloring steps.

Thus, we can transform any k-coloring α into a canonical k-coloring γ∗ (i.e. a coloring that does not
depend on α) using at most 2`t+1n2 many recolorings. This implies that for any two k-colorings α1

and α2, we have d(α1, α2) ≤ 2`t+1n2. Indeed, α1 can be transformed into γ∗ with at most 2`t+1n2

recolorings and α2 can be transformed into γ∗ with at most 2`t+1n2 recolorings. Therefore,

diam(Ck(G)) ≤ 4`t+1n2 ,

concluding the proof of the proposition.
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The proof of the main theorem of this section, follows as a corollary of the two previous propositions.

Proof of Theorem 2. Recall that G satisfies mad(G) ≤ d − ε. Thus, by Proposition 6, there exists a
C > 0 such that G admits a C · logd n partition of degree d − 1. Finally, by Proposition 7, for every
k ≥ `+ 2 = d+ 1, G satisfies

diam(Ck(G)) ≤ 4(d− 1)c logd n+1n2 = O(nc) ,

for some c > 0.

We did not make any attempt to improve the constant c obtained in Theorem 2. However, this
constant can be decreased if we are more careful. For instance, the n2 factor obtained in Lemma 4
can be replaced by n, since Claim B actually bounds the number of decreasing paths between w and
vertices at the same level as u (if we assume that L(w) < L(u)).

Note that the proof also provides an algorithm which runs in polynomial time. Indeed Procedure 1
runs in polynomial time. Moreover the partition of Proposition 6 can be found in polynomial time as
well as the stable set provided by Lemma 5. So the proof provides an algorithm such that given any
two k-colorings transforms one into the other in polynomial time, provided that mad(G) ≤ d− ε for
some ε > 0, and that k ≥ d+ 1.

4 Recoloring planar graphs and related classes

As observed in [2], there is a planar graph G (the graph of the icosahedron, see Figure 1) such that
C6(G) is not even connected (diam(C6(G)) =∞) . There also exists a planar graph G such that C5(G)
is not connected (diam(C5(G)) = ∞) (for instance consider the graph of Figure 1 where vertices
colored with 6 were deleted). In both cases the reason is the same: the colorings are frozen and then
no vertex can be recolored, or, otherwise stated, the coloring is an isolated vertex in the recoloring
graph.

Figure 1: A 6-coloring corresponding to an isolated vertex in C6(G).

Recall that any planar graph G is 5-degenerate. The result of Cereceda [7] on the degeneracy of
implies that for any planar graph G, diam(C11(G)) = O(n2) . The result of Dyer et al [11] show that
Ck(G) is connected for every k ≥ 7 . The best known upper bound for the diameter in the cases
k = 7, 8, 9, 10 is the trivial one due to Dyer et al. [11], i.e. diam(Ck(G)) ≤ kn .

As a corollary of Theorem 2, we obtain that C8(G) has polynomial diameter.
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Figure 2: The structure of a planar graph with no
√
n
2 -partition of degree 5.

Corollary 8. For any planar graph G on n vertices and any k ≥ 8,

diam(Ck(G)) = Poly(n) .

Proof. Euler formula ensures that for every planar graph H , |E(H)| ≤ 3|V (H)| − 6. Since every
subgraph of a planar graph is also planar, we have mad(G) < 6. So we just have to apply Theorem 2
with d = 7 and ε = 1 to conclude.

It would be interesting to determine whether the diameter of C7(G) is polynomial or not. Observe
that while Theorem 2 is able to prove such statement for a graph G with mad(G) = 5.99, it is not
enough to prove it for a planar graphs because their maximum average degree is not bounded away
from 6. Unfortunately, the same partition argument that we used for the proof of Theorem 2 will
not be able to show that the diameter of the 7-recoloring graph is small. Here we briefly sketch the
argument

Proposition 9. There exists a planar graph G on n vertices that does not admit a
√
n
2 -partition of degree 5.

Proof. Suppose that n = 4m2 and let G be the graph with vertex set V (G) = {(i, j) : 1 ≤ i, j ≤ 2m}
and edge setE(G) = {(i1, j1)(i2, j2) : |i1−i2|+ |j1−j2| = 1}∪{(i1, j1)(i2, j2) : i1 = i2+1, j1 = j2+1}.
This can be seen as a triangulated grid where every inner vertex (i.e. a vertex with both coordinates in
{2, . . . , 2m− 1}) has degree 6 (see Figure 2).

We claim that the vertex v = (m,m) does not belong to Vi, for every partition of degree 5 and for
every i < m. We show it by induction on m. If m = 1 there is nothing to prove. Since any inner
vertex has degree 6, for any partition of degree 5 the set V1 does not contain inner vertices. We can
assume that V1 is composed by all the vertices of degree at most 5 in G, that is the ones lying on
the boundary of the grid. Now, G(2) = G \ V1 is a 2(m − 1) × 2(m − 1) triangulated grid. Thus, by
induction hypothesis, the vertex v = (m−1,m−1) does not belong to Vi for every partition of degree
5 of G(2) and for every i < m− 1. This proves the claim.

Closing the gap between 7 and 8 on planar graphs is an interesting open problem which may give
new methods for tackling Cereceda et al.’s degeneracy conjecture. Moreover note that since the graph
presented in Proposition 9 is 3-colorable, the method introduced for Theorem 2 is not useful to prove
that the diameter of C7(G) is polynomial even if G is a 3-colorable planar graph.

However, an interesting result can be obtained for triangle-free planar graphs (recall that triangle-free
planar graphs are 3-colorable by Grötzsch’s theorem).

Corollary 10. For any triangle-free planar graph G on n vertices and any k ≥ 6 we have

diam(Ck(G)) = Poly(n) .

Besides, there exists a triangle-free planar graphG on n vertices that does not admit a
√
n
2 -partition of degree 3.
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Proof. Again, a slight variant of the Euler formula ensures that for every triangle-free planar graph
H , |E(H)| ≤ 2|V (H)| − 4. Since every subgraph of a triangle-free planar graph is also triangle-free
and planar, we have mad(G) < 4. So we just have to apply Theorem 2 with d = 5 and ε = 1 to
conclude.

For the second part of the statement, suppose that n = 4m2 and let G be the graph with vertex set
V (G) = {(i, j) : 1 ≤ i, j ≤ 2m} and edge set E(G) = {(i1, j1)(i2, j2) : |i1 − i2|+ |j1 − j2| = 1}, that is
G is a 2m × 2m grid. We claim that v = (m,m) /∈ Vi, for any partition of degree 3 and i < m, which
can be proved as in Proposition 9. So the argument cannot be extended to 5-colorings of triangle-free
planar graphs.
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