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Abstract

We establish square function estimates for integral operators on uniformly rectifiable
sets by proving a local T (b) theorem and applying it to show that such estimates are
stable under the so-called big pieces functor. More generally, we consider integral operators
associated with Ahlfors-David regular sets of arbitrary codimension in ambient quasi-metric
spaces. The local T (b) theorem is then used to establish an inductive scheme in which square
function estimates on so-called big pieces of an Ahlfors-David regular set are proved to be
sufficient for square function estimates to hold on the entire set. Extrapolation results
for Lp and Hardy space versions of these estimates are also established. Moreover, we
prove square function estimates for integral operators associated with variable coefficient
kernels, including the Schwartz kernels of pseudodifferential operators acting between vector
bundles on subdomains with uniformly rectifiable boundaries on manifolds.
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1 Introduction

The purpose of this work is three-fold: first, to develop the so-called “local T (b) theory”
for square functions in a very general context, in which we allow the ambient space to be of
homogeneous type, and in which the “boundary” of the domain is of arbitrary (positive integer)
co-dimension; second, to use a special case of this local T (b) theory to establish boundedness,
for a rather general class of square functions, on uniformly rectifiable sets of codimension one
in Euclidean space; and third, to establish an extrapolation principle whereby an Lp (or even
weak-type Lp) estimate for a square function, for one fixed p, yields a full range of Lp bounds.
We shall describe these results in more detail below, but let us first recall some of the history
of the development of the theory of square functions.

Referring to the role square functions play in mathematics, E. Stein wrote in 1982 (cf. [71])
that “[square] functions are of fundamental importance in analysis, standing as they do at the
crossing of three important roads many of us have traveled by: complex function theory, the
Fourier transform (or orthogonality in its various guises), and real-variable methods.” In the
standard setting of the unit disc D in the complex plane, the classical square function Sf of
some f : T → C (with T := ∂D) is defined in terms of the Poisson integral uf (r, ω) of f in D
(written in polar coordinates) by the formula

(Sf)(z) :=
(�

(r,ω)∈Γ(x)
|(∇uf )(r, ω)|2 r dr dω

)1/2
, z ∈ T, (1.1)

where Γ(z) stands for the Stolz domain {(r, ω) : |arg(z)− ω| < 1− r < 1
2} in D. Let v denote

the (normalized) complex conjugate of uf in D. Then, if the analytic function F := uf + iv
is one-to-one, the quantity (Sf)(z)2 may be naturally interpreted as the area of the region
F (Γ(z)) ⊆ C (recall that det(DF ) = |∇uf |2). The operator (1.1) was first considered by Lusin
and the observation just made justifies the original name for (1.1) as Lusin’s area function (or
Lusin’s area integral). A fundamental property of S, originally proved by complex methods
(cf. [13, Theorem 3, pp. 1092-1093], and [31] for real-variable methods) is that

‖Sf‖Lp(T) ≈ ‖f‖Hp(T) for p ∈ (0,∞), (1.2)

which already contains the Hp-boundedness of the Hilbert transform. Indeed, if F = u+ iv is
analytic then the Cauchy-Riemann equations entail |∇u| = |∇v| and, hence, S(u|T) = S(v|T).
In spite of the technical, seemingly intricate nature of (1.1) and its generalizations to higher
dimensions, such as

(Sf)(x) :=
(�
|x−y|<t

|(∇uf )(y, t)|2 t1−ndydt
)1/2

, x ∈ Rn := ∂Rn+1
+ , (1.3)

a great deal was known by the 1960’s about the information encoded into the size of Sf , mea-
sured in Lp, thanks to the pioneering work of D.L. Burkholder, A.P. Calderón, C. Fefferman,
R.F. Gundy, N. Lusin, J. Marcinkiewicz, C. Segovia, M. Silverstein, E.M. Stein, A. Zygmund,
and others. See, e.g., [11], [12], [13], [31], [68], [70], [71], [72], and the references therein.

Subsequent work by B. Dahlberg, E. Fabes, D. Jerison, C. Kenig and others, starting
in the late 1970’s (cf. [21], [22], [29], [56], [66]), has brought to prominence the relevance of
square function estimates in the context of partial differential equations in non-smooth settings,
whereas work by D. Jerison and C. Kenig [54] in the 1980’s as well as G. David and S. Semmes
in the 1990’s (cf. [26], [27]) has lead to the realization that square function estimates are
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also intimately connected with the geometry of sets (especially geometric measure theoretic
aspects). More recently, square function estimates have played an important role in the solution
of the Kato problem in [46], [42], [4].

The operator S defined in (1.1) is obviously non-linear but the estimate

‖Sf‖Lp ≤ C‖f‖Hp (1.4)

may be linearized by introducing a suitable (linear) vector-valued operator. Specifically, set
Γ := {(z, t) ∈ Rn+1

+ : |z| < t} and consider the Hilbert space

H :=
{
h : Γ→ Cn : h is measurable and ‖h‖H :=

(�
Γ
|h(z, t)|2t1−ndtdz

) 1
2
<∞

}
. (1.5)

Also, let S̃f : Rn →H be defined by the formula(
(S̃f)(x)

)
(z, t) := (∇uf )(x− z, t), ∀x ∈ Rn, ∀ (z, t) ∈ Γ, (1.6)

i.e., S̃ is the integral operator (mapping scalar-valued functions defined on Rn into H -valued
functions defined on Rn), whose kernel k : Rn × Rn \ diagonal → H , which is of convolution
type, is given by (k(x, y))(z, t) := (∇Pt)(x − y − z), for all x, y ∈ Rn, x 6= y, and (z, t) ∈ Γ,
where Pt(x) is the Poisson kernel in Rn+1

+ . Then, if Lp(Rn,H ) stands for the Bôchner space
of H -valued, p-th power integrable functions on Rn, it follows that

‖Sf‖Lp(Rn) ≤ C‖f‖Hp(Rn) ⇐⇒ ‖S̃f‖Lp(Rn,H ) ≤ C‖f‖Hp(Rn). (1.7)

The relevance of the linearization procedure described in (1.5)-(1.7) is that it highlights the
basic role of the case p = 2 in (1.4). This is because the operator S̃ falls within the scope
of theory of Hilbert space-valued singular integral operators of Calderón-Zygmund type for
which boundedness on L2 automatically extrapolates to the entire scale Lp, for 1 < p < ∞
(the extension to the case when p ≤ 1 makes use of other specific features of S̃).

From the point of view of geometry, what makes the above reduction to the case p = 2 work
is the fact that the upper-half space has the property that x+ Γ ⊆ Rn+1

+ for every x ∈ ∂Rn+1
+ .

Such a cone property actually characterizes Lipschitz domains (cf. [48]), in which scenario this
is the point of view adopted in [65, Theorem 4.11, p. 73].

Hence, S may be eminently regarded as a singular integral operator with a Hilbert space-
valued Calderón-Zygmund kernel and, as such, establishing the L2 bound

‖S̃f‖L2(Rn,H ) ≤ C‖f‖L2(Rn) (1.8)

is of basic importance to jump-start the study of the operator S. Now, as is well-known (and
easy to check; see, e.g., [72, pp. 27-28]), (1.8) follows from Fubini’s and Plancherel’s theorems.

For the goals we have in mind in the present work, it is worth recalling a quote from
C. Fefferman’s 1974 ICM address [30] where he writes that “When neither the Plancherel
theorem nor Cotlar’s lemma applies, L2-boundedness of singular operators presents very hard
problems, each of which must (so far) be dealt with on its own terms.” For scalar singular
integral operators, this situation began to be remedied in 1984 with the advent of the T (1)-
Theorem, proved by G. David and J.-L. Journé in [24]. This was initially done in the Euclidean
setting, using Fourier analysis methods. It was subsequently generalized and refined in a
number of directions, including the extension to spaces of homogeneous type by R. Coifman
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(unpublished, see the discussion in [14]), and the T (b) Theorems proved by A. McIntosh and
Y. Meyer in [59], and by G. David, J.L. Journé and S. Semmes in [25]. The latter reference also
contains an extension to the class of singular-integral operators with matrix-valued kernels.
The more general case of operator-valued kernels has been treated by Figiel [32] and by T.
Hytönen and L. Weis [53], who prove T (1) Theorems in the spirit of the original work in [24] for
singular integrals associated with kernels taking values in Banach spaces satisfying the UMD
property. Analogous T (b) theorems were obtained by Hÿtonen [50] (in Euclidean space) and
by Hÿtonen and Martikainen [51] (in a metric measure space). Yet in a different direction,
initially motivated by applications to the theory of analytic capacity, L2-boundedness criteria
which are local in nature appeared in the work of M. Christ [15]. Subsequently, Christ’s local
T (b) theorem has been extended to the setting of non-doubling spaces by F. Nazarov, S. Treil
and A. Volberg in [67]. Further extensions of the local T (b) theory for singular integrals appear
in [6], [8], [7] and [52].

Much of the theory mentioned in the preceding paragraph has also been developed in
the context of square functions, as opposed to singular integrals. In the convolution setting
discussed above, (1.8) follows immediately from Plancherel’s theorem, but the latter tool fails
in the case when Rn+1

+ is replaced by a domain whose geometry is rough (so that, e.g., the cone
property is violated), and/or one considers a square-function operator whose integral kernel
θ(x, y) is no longer of convolution type (as was the case for S̃). A case in point is offered by
the square-function estimate of the type

� ∞
0
‖Θtf‖2L2(Rn)

dt

t
≤ C‖f‖2L2(Rn), (1.9)

where (
Θtf

)
(x) :=

�
Rn
θt(x, y)f(y) dy, x ∈ Rn, t > 0, (1.10)

with {θt(·, ·)}t>0 a standard Littlewood-Paley family, i.e., satisfying for some exponent α > 0,

|θt(x, y)| ≤ C tα

(t+ |x− y|)n+α
, (1.11)

|θt(x, y)− θt(x, y′)| ≤ C
|y − y′|α

(t+ |x− y|)n+α
, if |y − y′| < t/2. (1.12)

Then, in general, linearizing estimate (1.9) in a manner similar to (1.7) yields an integral
operator which is no longer of convolution type. As such, Plancherel’s theorem is not directly
effective in dealing with (1.9) given that the task at hand is establishing the L2-boundedness
of a variable kernel (Hilbert-valued) singular integral operator. However, M. Christ and J.-L.
Journé have shown in [16] (under the same size/regularity conditions in (1.11)-(1.12)) that the
square function estimate (1.9) is valid if the following Carleson measure condition holds:

sup
Q⊆Rn

(� `(Q)

0

 
Q
|(Θt1)(x)|2 dxdt

t

)
<∞, (1.13)

where the supremum is taken over all cubes Q in Rn. The latter result is also implicit in the
work of Coifman and Meyer [18]. Moreover, S. Semmes’ has shown in [69] that (1.9) holds if
there exists a para-accretive function b such that (1.13) holds with “1” replaced by “b”.
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Refinements of Semmes’ global T (b) theorem for square functions, in the spirit of M. Christ’s
local T (b) theorem for singular integrals [15], have subsequently been established in [3], [40],
[41]. The local T (b) theorem for square functions which constitutes the main result in [41]
reads as follows. Suppose Θt is as in (1.10) with kernel satisfying (1.11)-(1.12) as well as

|θt(x, y)− θt(x′, y)| ≤ C |x− x′|α

(t+ |x− y|)n+α
if |x− x′| < t/2. (1.14)

In addition, assume that there exist a constant Co ∈ (0,∞), an exponent q ∈ (1,∞) and a
collection {bQ}Q of functions indexed by all dyadic cubes Q in Rn with the following properties:

(i)

�
Rn
|bQ(x)|q dx ≤ Co|Q|, (ii)

∣∣∣�
Rn
bQ(x) dx

∣∣∣ ≥ 1

Co
|Q|,

(iii)

�
Q

(� `(Q)

0
|(ΘtbQ)(x)|2 dt

t

)q/2
dx ≤ Co|Q|.

Then the square function estimate (1.9) holds. The case q = 2 of this theorem does not require
(1.14) (just regularity in the second variable, as in (1.12))1, and was already implicit in the
solution of the Kato problem in [46], [42], [4]. It was formulated explicitly in [3], [40]. An
extension of the result of [41] to the case that the half-space is replaced by Rn+1 \ E, where
E is a closed Ahlfors-David regular set (cf. Definition 2.8 below) of Hausdorff dimension n,
appears in [34]. The latter extension has been used to prove a result of free boundary type, in
which higher integrability of the Poisson kernel, in the presence of certain natural background
hypotheses, is shown to be equivalent to uniform rectifiability (cf. Definition 5.4 below) of the
boundary [44], [45]. Further extensions of the result of [41], to the case in which the kernel θt
and pseudo-accretive system bQ may be matrix-valued (as in the setting of the Kato problem),
and in which θt need no longer satisfy the pointwise size and regularity conditions (1.11)-(1.12),
will appear in the forthcoming Ph.D. thesis of A. Grau de la Herran [33].

A primary motivation for us in the present work is the connection between square function
bounds (or their localized versions in the form of “Carleson measure estimates”), and a quan-
titative, scale invariant notion of rectifiability. This subject has been developed extensively by
David and Semmes [26], [27] (but with some key ideas already present in the work of P. Jones
[55]). Following [26], [27], we shall give in the sequel (cf. Definition 5.4), a precise definition
of the property that a closed set E is “Uniformly Rectifiable” (UR), but for now let us merely
mention that UR sets are the ones on which “nice” singular integral operators are bounded
on L2. David and Semmes have shown that these sets may also be characterized via certain
square function estimates, or equivalently, via Carleson measure estimates. For example, let
E ⊂ Rn+1 be a closed set of codimension one, which is (n-dimensional) Ahlfors-David regular
(ADR) (cf. Definition 2.8). Then E is UR if and only if we have the Carleson measure estimate

sup
B
r−n

�
B

∣∣(∇2S1
)
(x)
∣∣2 dist(x,E) dx <∞, (1.15)

where the supremum runs over all Euclidean balls B := B(z, r) ⊆ Rn+1, with r ≤ diam(E),
and center z ∈ E, and where Sf is the harmonic single layer potential of the function f , i.e.,

Sf(x) := cn

�
E
|x− y|1−nf(y) dHn(y), x ∈ Rn+1 \ E. (1.16)

1In fact, even the case q 6= 2 does not require (1.14), if the vertical square function is replaced by a conical
one; see [33] for details.

6



Here Hn denotes n-dimensional Hausdorff measure. For an appropriate normalizing constant
cn|x|1−n is the usual fundamental solution for the Laplacian in Rn+1. We refer the reader to
[27] for details, but see also Section 4 where we present some related results. We note that by
“T1” reasoning (cf. Section 3 below), (1.15) is equivalent to the square function bound

�
Rn+1\E

∣∣(∇2Sf
)
(x)|2 dist(x,E) dx ≤ C

�
E
|f(x)|2 dHn(x) . (1.17)

Using an idea of P. Jones [55], one may derive, for UR sets, a quantitative version of the
fact that rectifiability may be characterized in terms of existence a.e. of approximate tangent
planes. Again, a Carleson measure expresses matters quantitatively. For x ∈ E and t > 0, set

β2(x, t) := inf
P

(
1

tn

�
B(x,t)∩E

(
dist(y, P )

t

)2

dHn(y)

)1/2

, (1.18)

where the infimum runs over all n-planes P . Then a closed, ADR set E of codimension one is
UR if and only if the following Carleson measure estimate holds on E × R+:

sup
x0∈E, r > 0

r−n
� r

0

�
B(x0,t)∩E

β2(x, t)2 dHn(x)
dt

t
< ∞. (1.19)

See [26] for details, and for a formulation in the case of higher codimension. A related result,
also obtained in [26], is that a set E as above is UR if and only if, for every odd ψ ∈ C∞0 (Rn+1),
the following discrete square function bound holds:

∞∑
k=−∞

�
E

∣∣∣∣�
E

2−knψ
(
2−k(x− y)

)
f(y) dHn(y)

∣∣∣∣2 dHn(x) ≤ Cψ
�
E
|f(x)|2 dHn(x) . (1.20)

Again, there is a Carleson measure analogue, and a version for sets E of higher codimension.
The following theorem collects some of the main results in our present work. It generalizes

results described earlier in the introduction, which were valid in the codimension one case,
and in which the ambient space X was Euclidean. To state it, recall that (in a context to be
made precise below) a measurable function b : E → C is called para-accretive if it is essentially
bounded and there exist constants c, C ∈ (0,∞) such that the following conditions are satisfied:

∀Q ∈ D(E) ∃ Q̃ ∈ D(E) such that Q̃ ⊆ Q, `(Q̃) ≥ c`(Q),

∣∣∣∣ 
Q̃
b dσ

∣∣∣∣ ≥ C. (1.21)

Other relevant definitions will be given in the sequel.

Theorem 1.1. Let 0 < d < m <∞. Assume that (X , ρ, µ) is an m-dimensional ADR space.
Let θ : (X ×X )\{(x, x) : x ∈X } → R denote a Borel measurable function, with respect to the
product topology τρ × τρ, for which there exist Cθ, α, υ ∈ (0,∞) such that for all x, y, ỹ ∈ X
with x 6= y, x 6= ỹ and ρ(y, ỹ) ≤ 1

2ρ(x, y), the following properties hold:

|θ(x, y)| ≤ Cθ
ρ(x, y)d+υ

, (1.22)

|θ(x, y)− θ(x, ỹ)| ≤ Cθ
ρ(y, ỹ)α

ρ(x, y)d+υ+α
. (1.23)
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Assume that E is a closed subset of (X , τρ) and that σ is a Borel semiregular measure on
(E, τρ|E ) such that

(
E, ρ

∣∣
E
, σ
)

is a d-dimensional ADR space, and define the integral operator
Θ = ΘE for all functions f ∈ Lp(E, σ), 1 ≤ p ≤ ∞, by

(Θf)(x) :=

�
E
θ(x, y)f(y) dσ(y), ∀x ∈X \ E. (1.24)

Let D(E) denote a dyadic cube structure on E and, for each Q ∈ D(E), let TE(Q) denote the
dyadic Carleson tent over Q. Also, let ρ# denote the regularized version of the quasi-distance
ρ, as in Theorem 2.1, and for each x ∈X , set δE(x) := inf{ρ#(x, y) : y ∈ E}.

Then the following properties are equivalent:

(1) There exists C ∈ (0,∞) such that for each f ∈ L2(E, σ) it holds that�
X \E

|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C
�
E
|f(x)|2 dσ(x). (1.25)

(2) It holds that

sup
Q∈D(E)

(
1

σ(Q)

�
TE(Q)

∣∣(Θ1
)
(x)
∣∣2 δE(x)2υ−(m−d) dµ(x)

)
<∞. (1.26)

(3) There exists C ∈ (0,∞) such that for each f ∈ L∞(E, σ) it holds that

sup
Q∈D(E)

(
1

σ(Q)

�
TE(Q)

|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x)

)1/2

≤ C‖f‖L∞(E,σ). (1.27)

(4) It holds that

sup
x∈E, r>0

(
1

σ
(
E ∩Bρ#(x, r)

) �
Bρ# (x,r)\E

|Θ1|2δ2υ−(m−d)
E dµ

)
<∞. (1.28)

(5) There exists a para-accretive function b : E → C such that

sup
Q∈D(E)

(
1

σ(Q)

�
TE(Q)

|(Θb)(x)|2δE(x)2υ−(m−d) dµ(x)

)
<∞. (1.29)

(6) There exists C ∈ (0,∞) such that for each f ∈ L∞(E, σ) it holds that

sup
x∈E, r>0

(
1

σ
(
E ∩Bρ#(x, r)

) �
Bρ# (x,r)\E

|Θf |2δ2υ−(m−d)
E dµ

)1/2

≤ C‖f‖L∞(E,σ). (1.30)

(7) There exist C0 ∈ [1,∞), c0 ∈ (0, 1] and a collection {bQ}Q∈D(E) of σ-measurable functions
bQ : E → C such that for each Q ∈ D(E) the following properties hold:
�
E
|bQ|2 dσ ≤ C0σ(Q),

∣∣∣∣�
Q̃
bQ dσ

∣∣∣∣ ≥ 1

C0
σ(Q̃) for some Q̃ ⊆ Q with `(Q̃) ≥ c0`(Q),

�
TE(Q)

|(Θ bQ)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C0σ(Q). (1.31)
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(8) There exists C0 ∈ [1,∞) and, for each surface ball ∆ = ∆(xo, r) := Bρ#(xo, r)∩E, where
xo ∈ E and r ∈ (0, diamρ(E)] ∩ (0,∞), there exists a σ-measurable function b∆ : E → C
supported in ∆, such that the following properties hold:

�
E
|b∆|2 dσ ≤ C0σ(∆),

∣∣∣∣�
∆
b∆ dσ

∣∣∣∣ ≥ 1

C0
σ(∆),

�
Bρ# (xo,2Cρr)\E

|(Θ b∆)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C0σ(∆). (1.32)

(9) The set E has BPSFE relative to θ (see Definition 4.1).

(10) The set E has (BP)kSFE relative to θ for some, or any, k ∈ N (see Definition 4.1).

(11) There exist p ∈ (0,∞) and C, κ ∈ (0,∞) such that for each f ∈ Lp(E, σ) it holds that

sup
λ>0

[
λ · σ

({
x ∈ E :

�
Γκ(x)

|(Θf)(y)|2 dµ(y)

δE(y)m−2υ
> λ2

})1/p
]
≤ C‖f‖Lp(E,σ), (1.33)

where Γκ(x) denotes the nontangential approach region defined in (6.1).

(12) Set γ := min{α, ind(E, ρ|E)}, where the index is defined in (2.6). If p ∈ ( d
d+γ ,∞) and

κ ∈ (0,∞), then Θ extends to the Hardy space Hp(E, ρ|E , σ) defined in Section 6.4, and
there exists C ∈ (0,∞) such that for each f ∈ Hp(E, ρ|E , σ) it holds that[�

E

( �
Γκ(x)

|(Θf)(y)|2 dµ(y)

δE(y)m−2υ

)p/2
dσ(x)

]1/p

≤ C‖f‖Hp(E,ρ|E ,σ). (1.34)

(13) Set γ := min{α, ind(E, ρ|E)}. If p ∈ ( d
d+γ ,∞) and q ∈ (1,∞), then the operator

δ
υ−m/q
E Θ : Hp(E, ρ|E , σ) −→ L(p,q)(X , E) (1.35)

is well-defined, linear and bounded on the mixed norm space L(p,q)(X , E) defined in (6.6).

A few comments pertaining to the nature and scope of Theorem 1.1 are in order:

• Theorem 1.1 makes the case that estimating the square function in Lp, along with other
related issues considered above, may be regarded as “zeroth order calculus”, since only
integrability and quasi-metric geometry are involved, without recourse to differentiability
(or vector space structures). In particular, our approach is devoid of any PDE results
and techniques. Compared with works in the upper-half space Rn × (0,∞), or so-called
generalized upper-half spaces E × (0,∞) (cf., e.g., [35] and the references therein), here we
work in an ambient X with no distinguished “vertical” direction. Moreover, the set E is
allowed to have arbitrary ADR co-dimension in the ambient X . In this regard we also wish
to point out that Theorem 1.1 permits the consideration of fractal subsets of the Euclidean
space (such as the case when E is the von Koch’s snowflake in R2, in which scenario d = ln 4

ln 3).

• Passing from L2 estimates to Lp estimates is no longer done via a linearization procedure,
since the environment no longer permits it, so instead we use tent space theory and exploit
the connection between the Lusin and the Carleson operators on spaces of homogeneous type
(thus generalizing work from [17] in the Euclidean setting). This reinforces the philosophy
that the square-function is a singular integral operator at least in spirit (if not in the letter).
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• The various quantitative aspects of the claims in items (1)-(11) of Theorem 1.1 are naturally
related to one another. The reader is also alerted to the fact that similar results to those
contained in Theorem 1.1 are proved in the body of the manuscript for a larger class of
kernels (satisfying less stringent conditions) than in the theorem above. The specific way in
which Theorem 1.1 follows from these more general results is discussed in Section 7.

• A key feature of items (12) and (13) of Theorem 1.1 is that the lower bound on the interval
of allowable p ∈ ( d

d+γ ,∞) required for Hardy space Hp(E, ρ|E , σ) estimates depends on the
index ind(E, ρ|E) defined in (2.6). In particular, the value of this index is sensitive to the
“optimal” quasi-distance equivalent to the given quasi-distance ρ|E on E. This is significant
even when ρ is a genuine distance and (E, ρ|E) is a metric space. For example, if n ∈ N,
then Rn equipped with the Euclidean distance has index ind(Rn, | · − · |) = 1, whereas the
four-corner planar Cantor set C equipped with the restriction of the Euclidean distance has
index ind(C , | · − · |

∣∣
C

) = ∞ by [61, Proposition 4.79]. Moreover, the techniques we use to
establish this dependence when ρ is a quasi-distance are also required when ρ is a genuine
distance. In a nutshell, some quasi-distances are better behaved than others and so one
has to make provisions for detecting the optimal quasi-distance compatible with a given
quasi-metric space structure.

• Here is an example of a nonstandard geometric setting within the range of applicability of
Theorem 1.1. Define X := C × [0, 1] ⊂ R3 where, as before, C denotes the four-corner
planar Cantor set in R2, and consider ρ := | · − · |

∣∣
X

, and µ := H2bX . Then (X , ρ, µ) is a
2-dimensional ADR space. Moreover, if we take E := C × {0}, then E is a closed subset of
(X , τρ), and if σ := H1bE, then

(
E, ρ

∣∣
E
, σ
)

is a 1-dimensional ADR space. In this scenario,

we have ind
(
E, ρ

∣∣
E

)
=∞ and hence, in the formulation of items (12)-(13) of Theorem 1.1,

it holds that γ = α and the range of allowable p is
(

d
d+α ,∞

)
.

We now describe several consequences of Theorem 1.1 for subsets E of the Euclidean space.
First we record the following square function estimate, which extends work from [26].

Theorem 1.2. Suppose that E is a closed subset of Rn+1 that is d-dimensional ADR for some
d ∈ {1, . . . , n} and let σ denote the surface measure induced by the d-dimensional Hausdorff
measure on E. Assume that E has big pieces of Lipschitz images of subsets of Rd, i.e., there
exist ε,M ∈ (0,∞) so that for every x ∈ E and every R ∈ (0,∞), there is a Lipschitz mapping
ϕ with Lipschitz norm at most equal to M from the ball Bd(0, R) in Rd into Rn+1 such that

σ
(
E ∩B(x,R) ∩ ϕ(Bd(0, R))

)
≥ εRd. (1.36)

Let ψ : Rn+1 → R denote a smooth, compactly supported, odd function and for each k ∈ Z set
ψk(x) := 2−kdψ(2−kx) for x ∈ Rn+1. If p ∈

(
d
d+1 ,∞

)
, then there exists C ∈ (0,∞) such that

�
E

(∑
k∈Z

 
∆(x,2k)

∣∣∣∣�
E
ψk(z − y)f(z) dσ(z)

∣∣∣∣2dσ(y)

)p/2
dσ(x) ≤ C‖f‖pHp(E,σ) (1.37)

for every f ∈ Hp(E, σ), where ∆(x, 2k) := {y ∈ E : |y − x| < 2k} for each x ∈ E and k ∈ Z.

The case when p = 2 of Theorem 1.2, in which scenario (1.37) takes the form∑
k∈Z

�
E

∣∣∣∣�
E
ψk(x− y)f(y) dσ(y)

∣∣∣∣2 dσ(x) ≤ C
�
E
|f |2 dσ, (1.38)
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has been treated in [26, Section 3, p. 21]. The main point of Theorem 1.2 is that (1.38) continues
to hold, when formulated as in (1.37) for every p ∈

(
d
d+1 ,∞

)
. The proof of this result, presented

in the last part of Section 7, relies on Theorem 1.1 and uses the fact that no regularity condition
on the kernel θ(x, y) is assumed in the variable x (compare with (1.22)-(1.23)).

Next, we discuss another consequence of Theorem 1.1 in the Euclidean setting which gives
an extension of results due to G. David and S. Semmes.

Theorem 1.3. Suppose that K is a real-valued function satisfying

K ∈ C2(Rn+1 \ {0}), K is odd, and
K(λx) = λ−nK(x) for all λ > 0, x ∈ Rn+1 \ {0}. (1.39)

Let E denote a closed subset of Rn+1 that is n-dimensional ADR, let σ denote the surface
measure induced by the n-dimensional Hausdorff measure on E, and define the integral operator
T acting on functions f ∈ Lp(E, σ), 1 ≤ p ≤ ∞, by

T f(x) :=

�
E
K(x− y)f(y) dσ(y), ∀x ∈ Rn+1 \ E. (1.40)

Let D(E) denote a dyadic cube structure on E and, for each Q ∈ D(E), let TE(Q) denote
the dyadic Carleson tent over Q. If the set E is uniformly rectifiable (UR), in the sense of
Definition 5.4, then the following properties hold:

(1) There exists C ∈ (0,∞) such that for each f ∈ L2(E, σ) it holds that

�
Rn+1\E

|(∇T f)(x)|2 dist (x,E) dx ≤ C
�
E
|f(x)|2 dσ(x). (1.41)

(2) There exists C ∈ (0,∞) such that for each f ∈ L∞(E, σ) it holds that

sup
Q∈D(E)

(
1

σ(Q)

�
TE(Q)

|(∇T f)(x)|2 dist (x,E) dx

)1/2

≤ C‖f‖L∞(E,σ). (1.42)

(3) There exists C ∈ (0,∞) such that for each f ∈ L∞(E, σ) it holds that

sup
x∈E, r>0

(
1

σ
(
E ∩B(x, r)

) �
B(x,r)\E

|(∇T f)(y)|2 dist (y,E) dy

)1/2

≤ C‖f‖L∞(E,σ). (1.43)

(4) Let Hp(E, σ) denote the Lebesgue space Lp(E, σ) when p ∈ (1,∞), and the Coifman-
Weiss Hardy space when p ∈

(
n
n+1 , 1

]
. If p ∈

(
n
n+1 ,∞

)
and κ ∈ (0,∞), then T extends

to Hp(E, σ) and there exists C ∈ (0,∞) such that for all f ∈ Hp(E, σ) it holds that[�
E

( �
Γκ(x)

|(∇T f)(y)|2 dy

dist (y,E)n−1

)p/2
dσ(x)

]1/p

≤ C‖f‖Hp(E,σ), (1.44)

where Γκ(x) :=
{
y ∈ Rn+1 \ E : |x− y| < (1 + κ) dist(y,E)

}
for each x ∈ E.
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(5) If p ∈
(

n
n+1 ,∞

)
and q ∈ (1,∞), then the operator

dist (·, E)∇T : Hp(E, σ) −→ L(p,q)(Rn+1, E) (1.45)

is well-defined, linear and bounded on the mixed norm space L(p,q)(Rn+1, E) (see (6.6)).

Theorem 1.1 particularized to the setting of Theorem 1.3 gives that conditions (1)-(5)
above are equivalent. The fact that (1) holds in the special case when T is associated as
in (1.40) with each of the kernels Kj(x) := xj/|x|n+1, 1 ≤ j ≤ n + 1, is due to David and
Semmes [27]. The new result here is that (1) (hence also all of (1)-(5)) holds more generally
for the entire class of kernels described in (1.39). We shall prove the latter fact in Corollary 5.7
below. Compared with [26], the class of kernels (1.39) is not tied up to any particular partial
differential operator (in the manner that the kernels Kj(x) := xj/|x|n+1, 1 ≤ j ≤ n + 1, are
related to the Laplacian). Moreover, in Section 5.3 we establish a version of Theorem 1.3
for variable coefficient kernels, which ultimately applies to integral operators on domains on
manifolds associated with the Schwartz kernels of certain classes of pseudodifferential operators
acting between vector bundles.

The condition that the set E is UR in the context of Theorem 1.3 is optimal, as seen from
the converse statement stated below. This result is closely interfaced with the characterization
of uniform rectifiability, due David and Semmes, in terms of (1.15)-(1.16). In keeping with
these conditions, the formulation of our result involves the Riesz-transform operator R := ∇S.

Theorem 1.4. Let E denote a closed subset of Rn+1 that is n-dimensional ADR, let σ denote
the surface measure induced by the n-dimensional Hausdorff measure on E, and define the
vector-valued integral operator R acting on functions f ∈ Lp(E, σ), 1 ≤ p ≤ ∞, by

Rf(x) :=

�
E

x− y
|x− y|n+1

f(y) dσ(y), ∀x ∈ Rn+1 \ E. (1.46)

Let D(E) denote a dyadic cube structure on E and, for each Q ∈ D(E), denote by TE(Q) the
dyadic Carleson tent over Q. If any of properties (1)-(9) below hold, then E is a UR set:

(1) There exists C ∈ (0,∞) such that for each f ∈ L2(E, σ) it holds that

�
Rn+1\E

|(∇Rf)(x)|2 dist (x,E) dx ≤ C
�
E
|f(x)|2 dσ(x). (1.47)

(2) It holds that

sup
Q∈D(E)

(
1

σ(Q)

�
TE(Q)

|(∇R1)(x)|2 dist (x,E) dx

)
<∞. (1.48)

(3) There exists C ∈ (0,∞) such that for each f ∈ L∞(E, σ) it holds that

sup
Q∈D(E)

(
1

σ(Q)

�
TE(Q)

|(∇Rf)(x)|2 dist (x,E) dx

)1/2

≤ C‖f‖L∞(E,σ). (1.49)
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(4) It holds that

sup
x∈E, r>0

(
1

σ
(
E ∩B(x, r)

) �
B(x,r)\E

|(∇R1)(y)|2 dist (y,E) dy

)
<∞. (1.50)

(5) There exists a para-accretive function b : E → C such that

sup
Q∈D(E)

(
1

σ(Q)

�
TE(Q)

|(∇Rb)(x)|2 dist (x,E) dx

)
<∞. (1.51)

(6) There exists C ∈ (0,∞) such that for each f ∈ L∞(E, σ) it holds that

sup
x∈E, r>0

(
1

σ
(
E ∩B(x, r)

) �
B(x,r)\E

|(∇Rf)(y)|2 dist (y,E) dy

)1/2

≤ C‖f‖L∞(E,σ). (1.52)

(7) There exist C0 ∈ [1,∞), c0 ∈ (0, 1] and a collection {bQ}Q∈D(E) of σ-measurable functions
bQ : E → C such that for each Q ∈ D(E) the following properties hold:�

E
|bQ|2 dσ ≤ C0σ(Q),

∣∣∣∣�
Q̃
bQ dσ

∣∣∣∣ ≥ 1

C0
σ(Q̃) for some Q̃ ⊆ Q with `(Q̃) ≥ c0`(Q),

�
TE(Q)

|(∇RbQ)(x)|2 dist (x,E) dx ≤ C0σ(Q). (1.53)

(8) There exists C0 ∈ [1,∞) and, for each surface ball ∆ = ∆(xo, r) := B(xo, r) ∩ E, where
xo ∈ E and r ∈ (0,diamρ(E)] ∩ (0,∞), there exists a σ-measurable function b∆ : E → C
supported in ∆, such that the following properties hold:�

E
|b∆|2 dσ ≤ C0σ(∆),

∣∣∣∣�
∆
b∆ dσ

∣∣∣∣ ≥ 1

C0
σ(∆),

�
B(xo,4r)\E

|(∇R b∆)(x)|2 dist (x,E) dx ≤ C0σ(∆). (1.54)

(9) There exist p ∈ (0,∞) and C, κ ∈ (0,∞) such that for each f ∈ Lp(E, σ) it holds that

sup
λ>0

[
λ · σ

({
x ∈ E :

�
Γκ(x)

|(∇Rf)(y)|2

dist (y,E)n−1
dy > λ2

})1/p
]
≤ C‖f‖Lp(E,σ), (1.55)

where Γκ(x) :=
{
y ∈ Rn+1 \ E : |x− y| < (1 + κ) dist(y,E)

}
for each x ∈ E.

The fact that condition (1) above implies that E is a UR set has been proved by David and
Semmes (see [27, pp. 252-267]). Based on this result, that (2)-(3) also imply that E is a UR
set then follows with the help of Theorem 1.1 upon observing that the components of R are
operators T as in (1.40) associated with the kernels Kj(x) := xj/|x|n+1, j ∈ {1, ..., n+1}, which
satisfy (1.22)-(1.23). Compared to David and Semmes’ result mentioned above (to the effect
that the L2 square function for the operators associated with the kernels Kj , 1 ≤ j ≤ n + 1,
implies that the set E is UR), a remarkable corollary of Theorem 1.4 is that a mere weak-L2

square function estimate for the operators associated with the kernels Kj(x) := xj/|x|n+1,
j ∈ {1, ..., n+ 1}, as in (1.40), implies that E is a UR set.

Throughout the manuscript, we adopt the following conventions. The symbol 1A denotes
the characteristic function of a set A. The letter C represents a finite positive constant that
may change from one line to the next. The infinity symbol∞ denotes +∞. The set of positive
integers is denoted by N whilst N0 := N ∪ {0}.
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2 Analysis and Geometry on Quasi-Metric Spaces

This section contains preliminary material, organized into four subsections dealing, respec-
tively, with: a metrization result for arbitrary quasi-metric spaces, geometrically doubling
quasi-metric spaces, approximations to the identity, and a discussion of the nature of Carleson
tents in quasi-metric spaces.

2.1 A metrization result for general quasi-metric spaces

Here we record some aspects of the sharp quantitative metrization result from [61, Section 3.2],
and properties of the Hausdorff outer-measure (cf. Proposition 2.3), on quasi-metric spaces.

We begin by assuming that X is a set of cardinality at least two and introduce the following
notation. A function ρ : X ×X → [0,∞) is called a quasi-distance on X provided there
exist two constants Cρ, Cρ̃ ∈ [1,∞) with the property that for every x, y, z ∈ X, it holds that

ρ(x, y) = 0⇔ x = y, ρ(y, x) ≤ Cρ̃ρ(x, y), ρ(x, y) ≤ Cρ max{ρ(x, z), ρ(z, y)}. (2.1)

We assume henceforth that Cρ and Cρ̃ are the smallest such constants. A pair (X , ρ) is called
a quasi-metric space. Given a set E ⊆X of cardinality at lest two, denote by ρ

∣∣
E

the quasi-
distance on E given by the restriction of the function ρ to E×E. The ρ-ball (or simply ball

if the quasi-distance ρ is clear from the context) centered at x ∈ X with radius r ∈ (0,∞) is
defined to be Bρ(x, r) := {y ∈X : ρ(x, y) < r} . Also, call E ⊆X ρ-bounded if E is contained
in a ρ-ball, and define its ρ-diameter (or simply diameter) as diamρ(E) := sup

{
ρ(x, y) : x, y ∈

E
}
. The ρ-distance (or simply distance) between two arbitrary, nonempty sets E,F ⊆ X

is naturally defined as distρ(E,F ) := inf {ρ(x, y) : x ∈ E, y ∈ F}. If E = {x} for some
x ∈ X and F ⊆ X , abbreviate distρ(x, F ) := distρ({x}, F ). We define τρ, the topology

canonically induced by ρ on X , to be the largest topology on X with the property that
for each point x ∈X the family {Bρ(x, r)}r>0 is a fundamental system of neighborhoods of x.
Finally, call two functions ρ1, ρ2 : X ×X → [0,∞) equivalent, and write ρ1 ≈ ρ2, if there
exist C ′, C ′′ ∈ (0,∞) with the property that C ′ρ1 ≤ ρ2 ≤ C ′′ρ1 on X ×X .

A few comments are in order. Suppose that (X , ρ) is a quasi-metric space. It is then clear
that if ρ′ : X ×X → [0,∞) is such that ρ′ ≈ ρ then ρ′ is a quasi-distance on X and τρ′ = τρ.
Also, it may be checked that

O ∈ τρ ⇐⇒ O ⊆X and ∀x ∈ O ∃ r > 0 such that Bρ(x, r) ⊆ O. (2.2)

As is well-known, the topology induced by the given quasi-distance on a quasi-metric space is
metrizable. We now record some aspects of the sharp quantitative metrization theorem from
[61, Section 3.2], which is an optimal quantitative version of this fact.

Theorem 2.1. Let (X , ρ) be a quasi-metric space with Cρ, C̃ρ ∈ [1,∞) as in (2.1) and
set αρ := 1/ log2Cρ ∈ (0,∞]. There exists a function ρ# : X × X → [0,∞), called the
regularization of ρ, such that the following properties hold:

(1) The function ρ# is a symmetric quasi-distance on X and ρ# ≈ ρ. More specifically,

ρ#(x, y) = ρ#(y, x) and (Cρ)
−2ρ(x, y) ≤ ρ#(x, y) ≤ C̃ρ ρ(x, y) for all x, y ∈ X . Also,

τρ# = τρ, Cρ# ≤ Cρ and (ρ|E)# ≈ ρ|E ≈ (ρ#)
∣∣
E

for any nonempty set E ⊆X .

(2) If β ∈ (0, αρ] is finite, then dρ,β : X ×X → [0,∞) defined by dρ,β(x, y) := ρ#(x, y)β,
for all x, y ∈ X , is a distance on X and (dρ,β)1/β ≈ ρ. In particular, dρ,β induces the
same topology on X as ρ, hence τρ is metrizable.
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(3) If β ∈ (0, αρ] is finite, then ρ# is Hölder regular of order β in the sense that

|ρ#(x, y)− ρ#(z, w)| ≤ 1
β max{ρ#(x, y)1−β, ρ#(z, w)1−β}(ρ#(x, z)β + ρ#(y, w)β) (2.3)

for all x, y, z, w ∈X with, in the case when β ≥ 1 only, x 6= y and z 6= w. In particular,
ρ# : (X ×X , τρ × τρ) −→ [0,∞) is continuous.

(4) If E is a nonempty subset of (X , τρ), then the regularized distance function

δE := distρ#(·, E) : X −→ [0,∞) (2.4)

is equivalent to distρ(·, E), and if β ∈ (0,min {1, αρ}], then δE is locally Hölder regular

of order β in the sense that there exists C ∈ (0,∞), depending on Cρ, C̃ρ, β, such that

|δE(x)− δE(y)|
ρ(x, y)β

≤ C
(
ρ(x, y) + max {distρ(x,E) , distρ(y,E)}

)1−β
(2.5)

for all x, y ∈X with x 6= y. In particular, δE : (X , τρ) −→ [0,∞) is continuous.

In view of Theorem 2.1, the “best” quasi-distance equivalent to a given ρ on X is quantified
by the following index

ind(X , ρ) := sup
ρ′≈ρ

(
log2Cρ′

)−1
= sup

ρ′≈ρ

log2

[
sup

x,y,z∈X
not all equal

ρ′(x, y)

max{ρ′(x, z), ρ′(z, y)}

]−1

, (2.6)

which was introduced and studied in [61, 2]. For example, a key feature of Theorem 2.1 is
the fact that if (X , ρ) is any quasi-metric space then ρβ is equivalent to a genuine distance
on X for any finite number β ∈ (0, ind (X , ρ)). This result is sharp and improves upon an
earlier version due to R.A. Maćıas and C. Segovia [57], in which these authors have identified
a smaller, non-optimal upper-bound for the exponent β.

In anticipation of briefly reviewing the notion of Hausdorff outer-measure on a quasi-metric
space, we recall a couple of definitions from measure theory. Given an outer-measure µ∗ on an
arbitrary set X , consider the collection of all µ∗-measurable sets defined as

Mµ∗ := {A ⊆X : µ∗(Y ) = µ∗(Y ∩A) + µ∗(Y \A), ∀Y ⊆X }. (2.7)

Carathéodory’s classical theorem allows one to pass from a given outer-measure µ∗ on X to a
genuine measure by observing that

Mµ∗ is a sigma-algebra, and µ∗
∣∣
Mµ∗

is a complete measure. (2.8)

The restriction of an outer-measure µ∗ on X to a subset E of X , denoted by µ∗bE, is defined
naturally by restricting the function µ∗ to the collection of all subsets of E. We shall use the
same symbol, b , in denoting the restriction of a measure to a measurable set. In this regard,
it is useful to know when the measure associated with the restriction of an outer-measure
to a set coincides with the restriction to that set of the measure associated with the given
outer-measure. Specifically, it may be checked that if µ∗ is an outer-measure on X , then(

µ∗bE
)∣∣∣

M(µ∗bE)

=
(
µ∗
∣∣
Mµ∗

)
bE, ∀E ∈Mµ∗ . (2.9)
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Next, if (X , τ) is a topological space and µ∗ is an outer-measure on X such that Mµ∗

contains the Borel sets in (X , τ), then call µ∗ a Borel outer-measure on X . Furthermore,
call such a Borel outer-measure µ∗ a Borel regular outer-measure if

∀A ⊆X ∃ a Borel set B in (X , τ) such that A ⊆ B and µ∗(A) = µ∗(B). (2.10)

After this digression, we now proceed to introduce the concept of d-dimensional Hausdorff
outer-measure for a subset of a quasi-metric space.

Definition 2.2. Let (X , ρ) be a quasi-metric space. For d ≥ 0, A ⊆X and ε > 0, define

HdX, ρ, ε(A) := inf
{∑

j∈N
(diamρ(Aj))

d : A ⊆
⋃

j∈N
Aj and diamρ(Aj) ≤ ε for every j ∈ N

}
,

(2.11)
where inf ∅ := +∞, then define the d-dimensional Hausdorff outer-measure HdX, ρ(A) by

HdX, ρ(A) := limε→0+ HdX, ρ, ε(A) = supε>0HdX, ρ, ε(A) ∈ [0,∞]. (2.12)

This is abbreviated as HdX (A) when the choice of ρ is irrelevant or clear from the context.

It is readily verified thatH0
X, ρ is equivalent to the counting measure. Other basic properties

of the Hausdorff outer-measure are collected in the proposition below, proved in [62]. To state
it, recall that a measure µ on a quasi-metric space (X , ρ) is called Borel provided the sigma-
algebra on which it is defined contains all Borel sets relative to the topological space (X , τρ).
Also, call a measure µ on a quasi-metric space (X , ρ) Borel regular provided it is Borel and

∀µ-measurable A ⊆X ∃ a Borel set B in (X , τρ) with A ⊆ B and µ(A) = µ(B). (2.13)

In addition, we require the related notion whereby a measure µ on a quasi-metric space (X , ρ)
is called Borel semiregular provided it is Borel and

for each µ-measurable A ⊆X with µ(A) <∞ there exists

a Borel set B in (X , τρ) with µ((A \B) ∪ (B \A)) = 0.
(2.14)

Borel regular measures are automatically Borel semiregular. Next, we make the convention for
a quasi-metric space (X , ρ) and d ≥ 0 whereby

H d
X, ρ denotes the measure associated with the outer-measure HdX, ρ as in (2.8). (2.15)

Proposition 2.3. Let (X , ρ) be a quasi-metric space and d ≥ 0. The following hold:

(1) HdX, ρ is a Borel outer-measure on (X , τρ), and H d
X, ρ is a Borel measure on (X , τρ).

(2) If ρ# is as in Theorem 2.1, then HdX, ρ#
is a Borel regular outer-measure on (X , τρ),

and H d
X, ρ#

is a Borel regular measure on (X , τρ).

(3) It holds that HdX, ρ′ ≈ HdX, ρ whenever ρ′ ≈ ρ, in the sense that there exist C1, C2 ∈ (0,∞),
depending only on ρ and ρ′, such that

C1HdX, ρ(A) ≤ HdX, ρ′(A) ≤ C2HdX, ρ(A) for all A ⊆X . (2.16)
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(4) If E ⊆ X , then the d-dimensional Hausdorff outer-measure in the quasi-metric space
(E, ρ|E) is equivalent, in the sense of (2.16), to the restriction to E of the d-dimensional
Hausdorff outer-measure in X , that is, HdE, ρ|E ≈ H

d
X, ρ

⌊
E.

(5) If E ⊆X , then HdX, ρ#

⌊
E is a Borel regular outer-measure on (E, τρ|E ) and the measure

associated with it, as in (2.8), is a Borel regular measure on (E, τρ|E ). Furthermore, if

E is HdX, ρ#
-measurable in the sense of (2.7) (in particular, if E is a Borel subset of

(X , τρ)), then H d
X, ρ#

bE is a Borel regular measure on (E, τρ|E ) and it coincides with

the measure associated with the outer-measure HdX, ρ#
bE.

(6) If m ∈ (d,∞), E ⊆X and HdX, ρ(E) <∞, then HmX, ρ(E) = 0.

2.2 Geometrically doubling quasi-metric spaces

In this subsection we shall work in a more specialized setting than that of general quasi-
metric spaces considered so far, by considering geometrically doubling quasi-metric spaces, as
described in the definition below.

Definition 2.4. A quasi-metric space (X , ρ) is called geometrically doubling if there exists
a number N ∈ N, called the geometric doubling constant of (X , ρ), with the property that any
ρ-ball of radius r in X may be covered by at most N ρ-balls in X of radii r/2.

To put this matter into a larger perspective, recall that a subset E of a quasi-metric space
(X , ρ) is said to be totally bounded provided that for any r ∈ (0,∞) there exists a finite
covering of E with ρ-balls of radii r. Then for a quasi-metric space (X , ρ) the quality of
being geometrically doubling may be regarded as a scale-invariant version of the demand that
all ρ-balls in X are totally bounded. In fact it may be readily verified that if (X , ρ) is a
geometrically doubling quasi-metric space, then

∃N ∈ N such that ∀ϑ ∈ (0, 1) any ρ-ball of radius r in X
may be covered by at most N−[log2 ϑ] ρ-balls in X of radii ϑr,

(2.17)

where [log2 ϑ] is the smallest integer greater than or equal to log2 ϑ. En route, let us also point
out that the property of being geometrically doubling is hereditary, in the sense that if (X , ρ)
is a geometrically doubling quasi-metric space with geometric doubling constant N , and if E
is an arbitrary subset of X , then (E, ρ

∣∣
E

) is a geometrically doubling quasi-metric space with

geometric doubling constant at most equal to N log2 CρN .
The relevance of the property (of a quasi-metric space) of being geometrically doubling

is apparent from the fact that in such a context a number of useful geometrical results hold,
which are akin to those available in the Euclidean setting. A case in point, is the Whitney
decomposition theorem discussed in Proposition 2.5 below. A version of the classical Whitney
decomposition theorem in the Euclidean setting (as presented in, e.g., [70, Theorem 1.1, p. 167])
has been worked out in [19, Theorem 3.1, p. 71] and [20, Theorem 3.2, p. 623] in the context of
bounded open sets in spaces of homogeneous type. Recently, the scope of this work has been
further refined in [61] by allowing arbitrary open sets in geometrically doubling quasi-metric
spaces, as presented in the following proposition.

Proposition 2.5. Let (X , ρ) be a geometrically doubling quasi-metric space. If λ ∈ (1,∞),
then there exist Λ ∈ (λ,∞) and N ∈ N, depending only on Cρ, C̃ρ, λ and the geometric doubling

17



constant of (X , ρ), such that if O is an open, nonempty, proper subset of (X , τρ), then there
exist countable collections {xj}j∈J in O and {rj}j∈J in (0,∞) with the following properties:

(1) O =
⋃
j∈J Bρ(xj , rj).

(2) There exists ε ∈ (0, 1), depending only on Cρ, λ and the geometric doubling constant of
(X , ρ), such that supx∈O#

{
j ∈ J : Bρ

(
x, εdistρ(x,X \ O)

)
∩ Bρ(xj , λrj) 6= ∅

}
≤ N .

It also holds that
∑

j∈J 1Bρ(xj ,λrj)(x) ≤ N for all x ∈ O.

(3) Bρ(xj , λrj) ⊆ O and Bρ(xj ,Λrj) ∩ (X \ O) 6= ∅ for all j ∈ J .

(4) ri ≈ rj uniformly on {i, j ∈ J : Bρ(xi, λri)∩Bρ(xj , λrj) 6= ∅} and there exists C ∈ (0,∞)
such that rj ≤ C diamρ(O) for all j ∈ J .

Regarding terminology, we shall frequently employ the following convention:

Convention 2.6. Given a geometrically doubling quasi-metric space (X , ρ), an open, nonempty,
proper subset O of (X , τρ), and a parameter λ ∈ (1,∞), we will refer to the balls Bρ#(xj , rj)
obtained by treating (X , ρ#) in Proposition 2.5 as Whitney cubes, denote the collection of
these cubes by Wλ(O), and for each I ∈Wλ(O), write `(I) for the radius of I. Furthermore,
if I ∈ Wλ(O) and c ∈ (0,∞), we shall denote by cI the dilate of the cube I by factor c,
i.e., the ball having the same center as I and radius c`(I).

Spaces of homogeneous type, reviewed next, are an important subclass of the class of
geometrically doubling quasi-metric spaces.

Definition 2.7. A space of homogeneous type is a triplet (X , ρ, µ), where (X , ρ) is a
quasi-metric space and µ is a Borel measure on (X , τρ) with the property that all ρ-balls are
µ-measurable, and which satisfies, for some finite constant C ≥ 1, the doubling condition

0 < µ
(
Bρ(x, 2r)

)
≤ Cµ

(
Bρ(x, r)

)
<∞, ∀x ∈X , ∀ r > 0. (2.18)

The smallest such constant is denoted Cµ and called the doubling constant of µ.

Iterating (2.18) gives

µ(B1)

µ(B2)
≤ Cµ,ρ

(
radius of B1

radius of B2

)Dµ
, for all ρ-balls B2 ⊆ B1,

where Dµ := log2 Cµ ≥ 0 and Cµ,ρ := Cµ
(
CρC̃ρ

)Dµ ≥ 1. (2.19)

The exponent Dµ is referred to as the doubling order of µ. For further reference, let us also
record here the well-known fact that

given a space of homogeneous type (X , ρ, µ), it holds that
diamρ (X ) <∞ if and only if µ(X ) <∞. (2.20)

Going further, a distinguished subclass of the class of spaces of homogeneous type, which
will play a basic role in this work, is the category of Ahlfors-David regular spaces defined next.
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Definition 2.8. Suppose that d > 0. A d-dimensional Ahlfors-David regular (or simply
d-dimensional ADR, or d-ADR) space is a triplet (X , ρ, µ), where (X , ρ) is a quasi-metric
space and µ is a Borel measure on (X , τρ) with the property that all ρ-balls are µ-measurable,
and for which there exists a constant C ∈ [1,∞) such that

C−1 rd ≤ µ
(
Bρ(x, r)

)
≤ C rd, ∀x ∈X , for every finite r ∈ (0, diamρ(X )]. (2.21)

The constant C in (2.21) will be referred to as the ADR constant of X .

As alluded to earlier, if (X , ρ, µ) is a d-dimensional ADR space then, trivially, (X , ρ, µ) is
also a space of homogeneous type. For further reference we note here that (cf., e.g., [62])

(X , ρ, µ) is d-ADR =⇒
(
X , ρ#,H

d
X ,ρ#

)
is d-ADR. (2.22)

In particular, it follows from (2.22), (1) in Theorem 2.1, and (3)-(5) in Proposition 2.3 that

(X , ρ) quasi-metric space,
E Borel subset of (X , τρ)

σ Borel measure on (E, τρ|E )

such that (E, ρ|E , σ) is d-ADR

 =⇒
(
E, ρ#

∣∣
E
,H d

X ,ρ#
bE
)

is d-ADR. (2.23)

Also, if (X , ρ, µ) is d-ADR, then there exists a finite constant C > 0 such that

HdX, ρ#
(A) ≤ C inf

{
µ(O) : O is open and A ⊆ O

}
for every A ⊆X , (2.24)

µ(A) ≤ CH d
X, ρ#

(A) for every Borel subset A of (X , τρ). (2.25)

In addition, if µ is actually a Borel regular measure, then

µ(A) ≈H d
X, ρ#

(A), uniformly for Borel subsets A of (X , τρ). (2.26)

We now discuss a couple of technical lemmas which are going to be useful for us later on.

Lemma 2.9. Let 0 < d < m < ∞. Assume that (X , ρ, µ) is an m-dimensional ADR space.
If E is a Borel subset of (X , τρ) and there exists a Borel measure σ on (E, τρ|E ) such that
(E, ρ

∣∣
E
, σ) is a d-dimensional ADR space, then µ(E) = 0.

Proof. Fix x ∈ E. Using (2.25), (2.23) and item (6) in Proposition 2.3, we obtain

µ(E) ≤ CH m
X ,ρ#

(E) = C lim
n→∞

H m
X ,ρ#

(E ∩Bρ#(x, n)) = 0, (2.27)

since H d
X ,ρ#

(E ∩Bρ#(x, n)) ≤ Cnd <∞ for all n ∈ N.

Lemma 2.10. Let (X , ρ) be a quasi-metric space. Suppose that E is a Borel subset of (X , τρ)
and that there exists a Borel measure σ on (E, τρ|E ) such that (E, ρ

∣∣
E
, σ) is a d-dimensional

ADR space for some d ∈ (0,∞). Then there exists c ∈ (0,∞) such that if x ∈ X and
r ∈ (0,diamρ#(E)] with Bρ#(x, r) ∩ E 6= ∅, then H d

X, ρ#

(
Bρ#(x,Cρr) ∩ E

)
≥ c rd.

Proof. Let x ∈X with Bρ#(x, r)∩E 6= ∅. If y ∈ Bρ#(x, r)∩E, then Bρ#(y, r) ⊆ Bρ#(x,Cρr),

so by (2.23) and letting C denote the ADR constant of
(
E, ρ#

∣∣
E
,H d

X, ρ#
bE
)
, we have

H d
X, ρ#

(
Bρ#(x,Cρr) ∩ E

)
≥H d

X, ρ#

(
Bρ#(y, r) ∩ E

)
≥ C−1rd, (2.28)

as required.
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For further reference, given an ambient quasi-metric space (X , ρ) and a set E for which
there exists a Borel measure σ on (E, τρ|E ) such that (E, ρ#|E , σ) is a space of homogeneous
type, we let ME denote the Hardy-Littlewood maximal function defined by

(MEf)(x) := sup
r>0

1

σ
(
Bρ#(x, r)

) �
Bρ# (x,r)

|f(y)| dσ(y), x ∈ E. (2.29)

Following work in [15] and [23], we now discuss the existence of a dyadic grid structure on
geometrically doubling quasi-metric spaces. The result below is essentially due to M. Christ [15]
but with two refinements. First, Christ’s result is established in the presence of a background
doubling, Borel regular measure, which is more restrictive than assuming that the ambient
quasi-metric space is geometrically doubling. Second, Christ’s dyadic grid result involves a
scale δ ∈ (0, 1), which we show may be taken to be 1/2, as in the Euclidean setting.

Proposition 2.11. Assume that (E, ρ) is a geometrically doubling quasi-metric space and
select κE ∈ Z ∪ {−∞} such that 2−κE−1 < diamρ(E) ≤ 2−κE . For each k ∈ Z with k ≥ κE,
there exist a collection Dk(E) := {Qkα}α∈Ik of subsets of E indexed by a nonempty, at most
countable set of indices Ik, and a collection {xkα}α∈Ik of points in E, such that the collection
D(E) :=

⋃
k∈Z, k≥κE Dk(E) has the following properties:

(1) If k ∈ Z with k ≥ κE and α ∈ Ik, then Qkα is open in τρ.

(2) If k ∈ Z with k ≥ κE and α, β ∈ Ik with α 6= β, then Qkα ∩Qkβ = ∅.

(3) If k, ` ∈ Z with ` > k ≥ κE and α ∈ Ik, β ∈ I`, then either Q`β ⊆ Qkα or Qkα ∩Q`β = ∅.

(4) If k, ` ∈ Z with k > ` ≥ κE and α ∈ Ik, then there is a unique β ∈ I` such that Qkα ⊆ Q`β.

(5) There exist 0 < a0 ≤ a1 <∞ such that if k ∈ Z with k ≥ κE and α ∈ Ik, then

Bρ(x
k
α, a02−k) ⊆ Qkα ⊆ Bρ(xkα, a12−k). (2.30)

In particular, given a measure σ on E for which (E, ρ, σ) is a space of homogeneous type,
there exists c > 0 such that if Qk+1

β ⊆ Qkα, then σ(Qk+1
β ) ≥ cσ(Qkα).

(6) There exists N ∈ N such that if k ∈ Z with k ≥ κE and α ∈ Ik, then

#
{
β ∈ Ik+1 : Qk+1

β ⊆ Qkα
}
≤ N. (2.31)

Furthermore, if x ∈ E and r ∈ (0, 2−k), then #
{
Q ∈ Dk(E) : Q ∩Bρ(x, r) 6= ∅

}
≤ N .

(7) If k ∈ Z with k ≥ κE, then
⋃
α∈Ik Q

k
α is dense in (E, τρ) and

E =
⋃

α∈Ik

{
x ∈ E : distρ(x,Q

k
α) ≤ ε2−k

}
, ∀ ε > 0. (2.32)

Moreover, if α ∈ Ik, then
⋃
β∈Ik+1, Q

k+1
β ⊆Qkα

Qk+1
β is dense in Qkα and

Qkα ⊆
⋃

β∈Ik+1, Q
k+1
β ⊆Qkα

{
x ∈ E : distρ(x,Q

k+1
β ) ≤ ε2−k−1

}
, ∀ ε > 0. (2.33)

Also, there exist b0, b1 ∈ (0,∞), depending only on the geometric doubling constant of E,
such that if x ∈ E and r ∈ (0,diamρ(E)], then there exist k ∈ Z, k ≥ κE and α ∈ Ik with

Qkα ⊆ Bρ(x, r) and b0r ≤ 2−k ≤ b1r. (2.34)
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(8) If σ is a measure on E for which (E, ρ, σ) is a space of homogeneous type, then a collection
D(E) can be constructed so that (1)-(7) hold and, in addition, there exist ϑ ∈ (0, 1) and
c ∈ (0,∞) such that if k ∈ Z with k ≥ κE and α ∈ Ik, then

(
Qkα, ρ|Qkα , σbQ

k
α

)
is a space

of homogeneous type, with doubling constant independent of k and α, and

σ
({
x ∈ Qkα : distρ#(x,E \Qkα) ≤ t 2−k

})
≤ c tϑσ(Qkα), ∀ t > 0. (2.35)

(9) If σ is a measure on E for which (E, ρ, σ) is a space of homogeneous type, then a collection
D(E) can be constructed as in (8) such that if k ∈ Z with k ≥ κE and α ∈ Ik, then

σ
(
E \

⋃
α∈Ik

Qkα

)
= σ

(
Qkα \

⋃
β∈Ik+1, Q

k+1
β ⊆Qkα

Qk+1
β

)
= 0. (2.36)

We now clarify some terminology before discussing the proof of this result. The sets Q
in D(E) will be referred to as dyadic cubes on E. Also, following a well-established custom,
when Qk+1

α ⊆ Qkβ, we say that Qk+1
α is a child of Qkβ, and that Qkβ is a parent of Qk+1

α . For a
given dyadic cube, an ancestor is then a parent, or a parent of a parent, or so on. Moreover,
for each k ∈ Z with k ≥ κE , we call Dk(E) the dyadic cubes of generation k and, for each
Q ∈ Dk(E), define the side-length of Q to be `(Q) := 2−k, and the center of Q to be the
point xkα ∈ E such that Q = Qkα.

Henceforth, we make the convention whereby saying that D(E) is a dyadic cube structure

(or dyadic grid) on E indicates that D(E) is associated with E as in Proposition 2.11. This
presupposes that E is the ambient set for a geometrically doubling quasi-metric space, in which
case D(E) satisfies properties (1)-(7) above and that, in the presence of a background Borel
doubling measure σ, properties (8) and (9) also hold.

We are now ready to proceed with the proof of Proposition 2.11.

Proof of Proposition 2.11. This is a slight extension and clarification of a result proved by
M. Christ in [15], which generalized earlier work by G. David in [23], and we will limit ourselves
to discussing only the novel aspects of the present formulation. For the sake of reference, we
begin by recalling the main steps in the construction in [15]. For a fixed real number δ ∈ (0, 1)
and for any integer k ∈ Z, Christ considers a maximal collection of points zkα ∈ E such that

ρ#(zkα, z
k
β) ≥ δk, ∀α 6= β. (2.37)

Hence, for each k ∈ Z, the set {zkα}α is δk-dense in E in the sense that for each x ∈ E there
exists α such that ρ#(x, zkα) < δk. Then (cf. [15, Lemma 13, p. 8]) there exists a partial order
relation � on the set {(k, α) : k ∈ Z, α ∈ Ik} with the following properties:

(a) If (k, α) � (l, β), then k ≥ l.

(b) For each (k, α) and l ≤ k, there exists a unique β such that (k, α) � (l, β).

(c) If (k, α) � (k − 1, β), then ρ#(zkα, z
k−1
β ) < δk−1.

(d) If ρ#(zlβ, z
k
α) ≤ 2Cρδ

k, then (l, β) � (k, α).

Having established this, Christ then chooses a number c ∈ (0, 1/(2Cρ)) and defines

Qkα :=
⋃

(l,β)�(k,α)
Bρ#(zlβ, cδ

l). (2.38)
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The novel aspects of the present formulation are as follows.
First, the dyadic cubes in [15, Theorem 11, p. 7] are labeled over all k ∈ Z, but (2.30) shows

that when E is bounded, the index set Ik becomes a singleton, and in particular Dk(E) = {E},
when 2−k is sufficiently large. While this is not an issue in and of itself, we find it useful to
eliminate this redundancy for later considerations and restrict to indices k ≥ κE .

Second, the result in [15, Theorem 11, p. 7] is stated with some δ ∈ (0, 1), and in particular,
with δk instead of 2−k in (2.30)-(2.35). We will justify this change at the end of the proof.

Third, the result in [15, Theorem 11, p. 7] is formulated in the setting of spaces of ho-
mogeneous type (equipped with a symmetric quasi-distance). An inspection of the proof,
however, reveals that the arguments in [15, pp. 7-10], applied with the regularization ρ# from
Theorem 2.1, also prove properties (1)-(6) under the weaker assumption that (E, ρ) is a geo-
metrically doubling quasi-metric space.

Fourth, property (7) follows from a careful inspection of the proof of [15, Theorem 11, p. 7],
which reveals that for each k ∈ Z with k ≥ κE , and any j ∈ N sufficiently large, compared to k,
the set

⋃
α∈Ik Q

k
α contains a 2−j-dense subset of E that is maximal with respect to inclusion.

Of course, this shows that the union in question is dense in (E, τρ), and so (2.32) follows.
Fifth, property (8) is identical to condition (3.6) in [15, Theorem 11, p. 7] except that the

regularization ρ# from Theorem 2.1 is used instead of the regularization from [57].
Sixth, property (9) corresponds to (3.1) in [15, Theorem 11, p. 7] and the proof therein uses

the Lebesgue Differentiation Theorem, which requires that continuous functions vanishing out-
side bounded subsets of E are dense in L1(E, σ). This density result has been established under
the assumption that the measure σ is Borel regular in [61, Theorem 7.10], and further refined to
the case that σ is Borel semiregular in [2]. We avoid having to impose any regularity assump-
tion on the measure by relying on the following special case of the Lebesgue Differentiation
Theorem, which we claim is valid for arbitrary Borel measures: For every open set O ⊆ E in
τρ and every {rj}j∈N ⊆ (0,∞) with limj→∞ rj = 0, it holds that

lim sup
j→∞

 
Bρ# (x,rj)

∣∣1O(y)− 1O(x)
∣∣ dσ(y) = 0, for σ-a.e. x ∈ E. (2.39)

Assuming (2.39), we now prove (2.36). Let k ∈ Z with k ≥ κE and set Ok :=
⋃
α∈Ik Q

k
α. The

second displayed formula on p. 10 of [15] shows that there exists c ∈ (0,∞) such that

lim sup
r→0+

σ
(
Ok ∩Bρ#(x, r)

)
σ
(
Bρ#(x, r)

) ≥ c, for each x ∈ E, (2.40)

and since Ok is open in τρ by (1), it follows from (2.39) that σ(E \ Ok) = 0, so (2.36) holds.
To prove (2.39), by working with truncated versions of 1O via characteristic functions

of ρ#-balls exhausting E, we may now assume without loss of generality that σ(O) < ∞.
For each j ∈ N, the reasoning in [2] shows that the function Fj : E → [0,∞] defined by
Fj(x) :=

�
Bρ# (x,rj)

∣∣1O(y)− 1O(x)
∣∣ dσ(y), for all x ∈ E, is Borel measurable, hence

Sθ :=

{
x ∈ E : lim sup

j→∞

 
Bρ# (x,rj)

∣∣1O(y)− 1O(x)
∣∣ dσ(y) > θ

}
(2.41)

is a Borel set in (E, τρ) for each θ ∈ [0,∞). Thus, it suffices to prove that σ(S0) = 0, and this
will follow by proving that σ(Sθ) = 0 for each θ ∈ (0,∞). To this end, let θ, ε ∈ (0,∞). Fix
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0 < β ≤ 1/ log2Cρ, so by [61, Lemma 4.14, p. 166], there exists a sequence {h`}`∈N of ρ-Hölder
functions of order β on E such that 0 ≤ h` ≤ 1 and h` ↗ 1O pointwise as `→∞. Then, since
σ(O) < ∞, Lebesgue’s Monotone Convergence Theorem implies that h` → 1O in L1(E, σ) as
`→∞, thus there exists `o ∈ N such that ‖1O − h`o‖L1(E,σ) < ε. If x ∈ E and j ∈ N, then

 
Bρ# (x,rj)

|1O(y)− 1O(x)| dσ(y) ≤
 
Bρ# (x,rj)

|(1O − h`o)(y)| dσ(y) + |(1O − h`o)(x)|

+

 
Bρ# (x,rj)

|h`o(y)− h`o(x)| dσ(y), (2.42)

so the monotonicity of the limit superior implies that Sθ ⊆ A1 ∪A2 ∪A3, where

A1 : =

{
x ∈ E : lim sup

j→∞

 
Bρ# (x,rj)

|(1O − h`o)(y)| dσ(y) > θ/3

}
, (2.43)

A2 : =

{
x ∈ E : |(1O − h`o)(x)| > θ/3

}
, (2.44)

A3 : =

{
x ∈ E : lim sup

j→∞

 
Bρ# (x,rj)

|h`o(y)− h`o(x)| dσ(y) > θ/3

}
. (2.45)

It follows by reasoning as in (2.41) that A1, A2, A3 are Borel sets in (E, τρ). We have A3 = ∅,
since h`o is ρ-Hölder, while Tschebyshev’s inequality implies that

σ(A2) ≤ 3

θ
‖1O − h`o‖L1(E,σ) ≤

3ε

θ
. (2.46)

Also, since the Hardy-Littlewood maximal operator is weak-type (1, 1) (cf., e.g., [2]), we have

σ(A1) ≤ σ
({
x ∈ E : ME

(
1O − h`o

)
(x) > θ/3

})
≤ C

θ
‖1O − h`o‖L1(E,σ) ≤

Cε

θ
, (2.47)

for some C ∈ (0,∞). Altogether, this shows that σ(Sθ) ≤ Cε/θ for all ε ∈ (0,∞), hence
σ(Sθ) = 0. This concludes the proof that σ(S0) = 0 and completes the justification of (2.39).

We now return to prove that it is always possible to set δ = 1/2 in the construction of
Christ in [15]. To do this, we adopt Christ’s convention of labeling the dyadic cubes over all
k ∈ Z, since eliminating the inherent redundancy when E is bounded may be done afterwords.
Let D(E) :=

⋃
k∈ZDk(E) denote a collection of dyadic cubes satisfying properties (1)-(9) but

with δk replacing 2−k in (2.30)-(2.35). We now construct another collection of dyadic cubes
D(E) :=

⋃
k∈ZDk(E) with the same properties but with δ = 1/2. We consider two cases.

Case I: 1/2 < δ < 1. Set m0 := 0 and, for each integer k > 0, let mk be the largest positive
integer such that δmk ≥ 2−k. Thus,

δmk+1 < 2−k ≤ δmk . (2.48)

Similarly, for each k < 0, let mk denote the least integer such that δmk+1 < 2−k. Thus, again
we have (2.48). Of course, we shall have mk < 0 when k < 0. The sequence {mk}k∈Z is strictly
increasing. Indeed, for every k ∈ Z, we have

mk + 1 ≤ mk+1. (2.49)
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To see this in the case that k ≥ 0, observe that

2−k−1 = 1
22−k ≤ 1

2δ
mk < δmk+1, (2.50)

where in the first inequality we have used (2.48) and in the second that 1/2 < δ. Thus, (2.49)
holds, since by definition mk+1 is the greatest integer for which 2−(k+1) ≤ δmk+1 . In the case
k ≤ 0, since 1 < 2δ, we have

δ(mk+1−1)+1 < 2δmk+1+1 < 2 · 2−(k+1) = 2−k, (2.51)

where in the second inequality we have used (2.48). Since mk is the smallest integer for which
δmk+1 < 2−k, we again obtain (2.49). For each k ∈ Z, we then define

Dk(E) := Dmk(E). (2.52)

It is routine to verify that the collection D(E) :=
⋃
k∈ZDk(E) satisfies the desired properties,

with some of the constants possibly depending on δ.

Case II: 0 < δ < 1/2. In this case, we reverse the roles of 1/2 and δ in the construction
above, to construct a strictly increasing sequence of integers {mk}k∈Z, with m0 := 0, for which

2−mk ≤ δk < 2−mk+1, ∀ k ∈ Z. (2.53)

It then follows that there is a fixed positive integer q0 ≈ log2(1/δ) such that for each k ∈ Z,

mk+1 − q0 ≤ mk < mk+1. (2.54)

Indeed, we have

2−mk ≤ δk =
1

δ
δk+1 <

1

δ
2−mk+1+1 =

2

δ
2−mk+1 , (2.55)

where in the two inequalities we have used (2.53). We then obtain (2.54) by taking logarithms.
For each j ∈ Z, there exists a unique k ∈ Z such that mk ≤ j < mk+1, and we then define

Dj(E) := Dk(E), whenever mk ≤ j < mk+1. (2.56)

It is routine to verify that the collection D(E) :=
⋃
k∈ZDk(E) satisfies the desired properties,

with some of the constants possibly depending on δ. In verifying the various properties, it is
helpful to observe that by (2.54), it holds that

2−j ≈ 2−mk ≈ δk, whenever mk ≤ j < mk+1. (2.57)

This finishes the proof of the proposition.

2.3 Approximations to the identity on quasi-metric spaces

This subsection is devoted to reviewing the definition and properties of approximations to the
identity on ADR spaces. To set the stage, we make the following definition.
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Definition 2.12. Assume that (E, ρ, σ) is a d-dimensional ADR space for some d > 0 and
recall κE ∈ Z ∪ {−∞} from Proposition 2.11. A collection {Sl}l∈Z, l≥κE of integral operators

Slf(x) :=

�
E
Sl(x, y)f(y) dσ(y), x ∈ E, (2.58)

with kernels Sl : E×E → R, is an approximation to the identity of order γ on E if there
exists C ∈ (0,∞) such that the following hold for every integer l ≥ κE and every x, x′, y, y′ ∈ E:

(1) 0 ≤ Sl(x, y) ≤ C2ld, and if ρ(x, y) ≥ C2−l, then Sl(x, y) = 0.

(2) |Sl(x, y)− Sl(x′, y)| ≤ C2l(d+γ)ρ(x, x′)γ.

(3)
∣∣[Sl(x, y)− Sl(x′, y)]− [Sl(x, y

′)− Sl(x′, y′)]
∣∣ ≤ C2l(d+2γ)ρ(x, x′)γρ(y, y′)γ.

(4) Sl(x, y) = Sl(y, x) and
�
E Sl(x, y) dσ(y) = 1.

Starting with the work of Coifman (cf. the discussion in [25, pp. 16-17 and p. 40]), the
existence of approximations to the identity of some order γ > 0 on ADR spaces has been
established in [25, p. 40], [36, pp. 10-11], [28, p. 16] (at least when d = 1), and [61], for various
values of γ. Quite recently, a version valid for the value of the order parameter γ which is
optimal in relation to the quasi-metric space structure has been obtained in [2], from which
we quote the following result (recall the index from (2.6)):

Proposition 2.13. Assume that (E, ρ, σ) is a d-dimensional ADR space for some d > 0. If
0 < γ < ind(E, ρ), then there exists an approximation to the identity {Sl}l∈Z, l≥κE of order γ on
E. Furthermore, if p ∈ (1,∞), then supl∈Z, l≥κE ‖Sl‖Lp(E,σ)→Lp(E,σ) < +∞ and the following
properties hold for all f ∈ Lp(E, σ):

(1) If the measure σ is Borel semiregular on (E, τρ), then liml→+∞ Slf = f in Lp(E, σ).

(2) If diamρ(E) = +∞, then liml→−∞ Slf = 0 in Lp(E, σ).

Later on we shall need a Calderón-type reproducing formula involving the conditional
expectation operators associated with an approximation to the identity, as discussed above.
While this is a topic treated at some length in [25], [28], [36], we prove below a version of this
result which best suits the purposes we have in mind.

To state the result, we first record the following preliminaries. A series
∑

j∈N xj of vectors
in a Banach space B is said to be unconditionally convergent if the series

∑∞
j=1 xσ(j)

converges in B for all permutations σ of N, in which case the sum of the series in B is defined
unambiguously as

∑
j∈N xj :=

∑∞
j=1 xσ(j) for some (hence any) permutation σ of N (cf., e.g.,

[37, Corollary 3.11, p. 99]). The following useful characterizations of unconditional convergence
(in a Banach space setting) will be needed (cf., e.g., [37, Theorem 3.10, p. 94]):

∑
j∈N

xj unconditionally convergent⇐⇒
∞∑
j=1

εjxj converges ∀ εj = ±1 (2.59)

⇐⇒

{
∀ ε > 0 ∃Nε ∈ N such that

∥∥∥∑
j∈I

xj

∥∥∥ < ε

∀ finite subsets I ⊂ N with min I ≥ Nε.

Moreover, for any countable set I, a series
∑

j∈I xj of vectors in a Banach space B is said to
be unconditionally convergent if there exists a bijection ϕ : N→ I such that

∑
j∈N xϕ(j) is
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unconditionally convergent, in the sense just defined, in which case the sum of the series in B
is defined as

∑
j∈I xj :=

∑∞
j=1 xϕ(j). This property is independent of the bijection ϕ used and

it follows from (2.59) that the following property provides an equivalent characterization:

∀ {Si}i∈N such that Si finite and Si ⊆ Si+1 ⊆ I for each i ∈ N,
the sequence

{∑
j∈Si xj

}
i∈N

converges in B.
(2.60)

We now state the aforementioned Calderón-type reproducing formula.

Proposition 2.14. Assume that (E, ρ, σ) is a d-dimensional ADR space for some d > 0 and
that the measure σ is Borel semiregular on (E, τρ). Fix 0 < γ < ind(E, ρ), let {Sl}l∈Z, l≥κE
denote an approximation to the identity of order γ on E and define the integral operators
Dl := Sl+1 − Sl for each integer l ≥ κE. Then there exist a bounded linear operator R on
L2(E, σ) and a collection

{
D̃l

}
l∈Z, l≥κE

of linear operators on L2(E, σ) such that∑
l∈Z, l≥κE

‖D̃lf‖2L2(E,σ) ≤ C‖f‖
2
L2(E,σ), ∀ f ∈ L2(E, σ), (2.61)

and, with I denoting the identity operator on L2(E, σ),

I + SκER =
∑

l∈Z, l≥κE

DlD̃l, pointwise unconditionally in L2(E, σ), (2.62)

with the convention that S−∞ := 0 when diamρ(E) = +∞.

As a preamble to the proof of the above proposition we momentarily digress and record a
version of the Cotlar-Knapp-Stein Lemma which suits our purposes. The result is proved by
combining (2.60) and Lemma 2.16 with the well-known version, which is stated as below but
with J finite and/or without including property (3) (cf., e.g., [72, Theorem 1, p. 280]).

Lemma 2.15. Assume that H0, H1 are two Hilbert spaces and consider a family of operators
{Tj}j∈I, indexed by a countable set I, with Tj : H0 → H1 linear and bounded for every j ∈ I.
If the Tj’s are almost orthogonal in the sense that

C0 := sup
j∈I

(∑
k∈I

√
‖T ∗j Tk‖H0→H0

)
<∞, C1 := sup

k∈I

(∑
j∈I

√
‖TjT ∗k ‖H1→H1

)
<∞, (2.63)

then for any subset J ⊆ I, the following properties hold:

(1) If x ∈H0, then
∑

j∈J
Tjx converges unconditionally in H1.

(2) If
(∑

j∈J
Tj

)
x :=

∑
j∈J

Tjx, for all x ∈H0, then
∥∥∥∑

j∈J
Tj

∥∥∥
H0→H1

≤
√
C0C1.

(3) If x ∈H0, then
(∑

j∈I
‖Tjx‖2H1

)1/2
≤ 2
√
C0C1‖x‖H0.

Lemma 2.16. Let H be a Hilbert space with norm ‖ ·‖H . If {xj}j∈I is a sequence in H over
a countable set I and C := sup

{∥∥∑
j∈Jo xj

∥∥
H

: Jo ⊆ I is finite
}

, then
∑

j∈I ‖xj‖2H ≤ 4C2 and∑
j∈I

xj is unconditionally convergent ⇐⇒ C <∞ =⇒
∥∥∥∑

j∈I
xj

∥∥∥
H
≤ C. (2.64)
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Proof. It suffices to assume that I = N. Let {xj}j∈N ⊆ H and assume that C < ∞. Let
{rj}j∈N denote a Rademacher system of functions on [0, 1]. If 〈·, ·〉H stands for the inner
product in H , then for any finite set Jo ⊆ N, by orthonormality we have

� 1

0

∥∥∥∑
j∈Jo

rj(t)xj

∥∥∥2

H
dt =

∑
j∈Jo
‖xj‖2H . (2.65)

On the other hand, for each t ∈ [0, 1] we may estimate∥∥∥∑
j∈Jo

rj(t)xj

∥∥∥
H

=
∥∥∥(∑

j∈Jo, rj(t)=+1
xj

)
−
(∑

j∈Jo, rj(t)=−1
xj

)∥∥∥
H
≤ 2C. (2.66)

By combining (2.65) and (2.66), we obtain
∑

j∈Jo ‖xj‖
2
H ≤ 4C2 for every finite subset Jo of N,

from which the required norm estimate readily follows.
Moving on, assume that C < ∞ and that

∑
j∈N xj does not converge unconditionally to

seek a contradiction. Then (cf. the first equivalence in (2.59)), there exists a choice of signs
εj ∈ {±1}, j ∈ N, with the property that the sequence of partial sums of the series

∑
j∈N εjxj

is not Cauchy in H . In turn, this implies that there exist ϑ > 0 along with two sequences
{ai}i∈N, {bi}i∈N of numbers in N, such that

ai ≤ bi < ai+1 and
∥∥∥∑

ai≤j≤bi
εjxj

∥∥∥
H
≥ ϑ, for every i ∈ N. (2.67)

Next, by (2.67), the sequence {yi}i∈N in H defined by yi :=
∑

ai≤j≤bi εjxj satisfies

‖yi‖H ≥ ϑ, for every i ∈ N. (2.68)

Now fix an arbitrary finite subset Io of N and set Jo :=
{
j ∈ N : ∃ i ∈ Io such that ai ≤ j ≤ bi

}
.

Thus, Jo is a finite subset of N and we have∥∥∥∑
i∈Io

yi

∥∥∥
H

=
∥∥∥∑

i∈Io

(∑
ai≤j≤bi

εjxj

)∥∥∥
H

=
∥∥∥(∑

j∈Jo, εj=+1
xj

)
−
(∑

j∈Jo, εj=−1
xj

)∥∥∥
H
≤ 2C, (2.69)

where the second equality relies on the fact from (2.67) that ai ≤ bi < ai+1. Hence,

sup
{∥∥∥∑

i∈Io
yi

∥∥∥
H

: Io ⊆ N is finite
}
≤ 2C. (2.70)

It follows that
∑

i∈N ‖yi‖2H ≤ 16C2 <∞, which forces lim
i→∞
‖yi‖H = 0, and contradicts (2.68).

This shows that if C < ∞, then
∑

j∈N xj is unconditionally convergent. Once the (norm)

convergence is established, then C <∞ implies ‖
∑

j∈N xj‖H ≤ lim supN→∞ ‖
∑N

j=1 xj‖H ≤ C,
which is the second implication in (2.64). Therefore, it remains to prove that C <∞ when the
series

∑
j∈N xj is unconditionally convergent. Let N1 ∈ N denote Nε with ε := 1 from (2.59)

and set M := sup
{∥∥∑

j∈Io xj
∥∥

H
: Io ⊆ {1, ..., N1}

}
<∞. If Jo ⊂ N is finite, then∥∥∥∑

j∈Jo
xj

∥∥∥
H
≤
∥∥∥∑

j∈Jo∩{1,...,N1}
xj

∥∥∥
H

+
∥∥∥∑

j∈Jo\{1,...,N1}
xj

∥∥∥
H
≤M + 1, (2.71)

from which it follows that C <∞.
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We next present the proof of Proposition 2.14.

Proof of Proposition 2.14. For each l ∈ Z with l ≥ κE , denote by hl(·, ·) the integral kernel
of the operator Dl. Thus, hl(·, ·) = Sl+1(·, ·) − Sl(·, ·) and, as a consequence of properties
(1)-(4) in Definition 2.12, we see that hl(·, ·) is a symmetric function on E × E, and there
exists C ∈ (0,∞) such that for each l ∈ Z with l ≥ κE and all x, x′, y ∈ E, we have

|hl(x, y)| ≤ C2 ld1{ρ(x,y)≤C2−l}, (2.72)

|hl(x, y)− hl(x′, y)| ≤ C2 l(d+γ)ρ(x, x′)γ , (2.73)�
E
hl(x, y) dσ(x) = 0. (2.74)

Of course, due to the symmetry of h, smoothness and cancellation conditions in the second
variable, similar to (2.73) and (2.74), respectively, also hold.

Furthermore, for each j, k ∈ Z with j, k ≥ κE , using first (2.74), then (2.72) and (2.73),
and then the fact that (E, ρ, σ) is d-ADR, we may write∣∣∣∣�

E
hj(x, z)hk(z, y) dσ(z)

∣∣∣∣ =

∣∣∣∣�
E

[hj(x, z)− hj(x, y)]hk(z, y) dσ(z)

∣∣∣∣
≤ C2j(d+γ)

�
E
ρ#(y, z)γ2kd1{ρ#(y,·)≤C2−k}(z) dσ(z)

≤ C2j(d+γ)2−kγ . (2.75)

Combining (2.75), and the analogous estimate obtained by interchanging the roles of j and k,
with the support condition (2.72), it follows that for each j, k ∈ Z with j, k ≥ κE , it holds that
(compare with [25, p. 15] and [28, (1.14), p. 16])∣∣∣∣�

E
hj(x, z)hk(z, y) dσ(z)

∣∣∣∣ ≤ C2−|j−k|γ 2d·min(j,k)1{ρ(x,y)≤C2−min(j,k)}, ∀x, y ∈ E. (2.76)

Note that for each j, k ∈ Z with j, k ≥ κE we have that DjDk : L2(E, σ)→ L2(E, σ) is a linear
and bounded integral operator whose integral kernel is given by

�
E hj(x, z)hk(z, y) dσ(z), for

x, y ∈ E. Based on this and (2.76) we may then conclude that for each j, k ∈ Z with j, k ≥ κE ,∣∣(DjDkf)(x)
∣∣ ≤ C2−|j−k|γ

 
Bρ# (x,C2−min(j,k))

|f(y)| dσ(y)

≤ C2−|j−k|γME(f)(x), ∀x ∈ E, (2.77)

for every f ∈ L1
loc(E, σ). In turn, the boundedness of ME and (2.77) yield

‖DjDk‖L2(E,σ)→L2(E,σ) ≤ C2−|j−k|γ , ∀ j, k ∈ Z, j, k ≥ κE . (2.78)

Having established (2.78), it follows that the family of linear operators
{
Dl

}
l∈Z, l≥κE

, from

L2(E, σ) into itself, is almost orthogonal. As such, Lemma 2.15 implies that

sup
{∥∥∥ ∑

l∈J, l≥κE

Dl

∥∥∥
L2(E,σ)→L2(E,σ)

: J ⊂ Z is finite
}
≤ C <∞, (2.79)
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that the Littlewood-Paley estimate( ∑
l∈Z, l≥κE

‖Dlf‖2L2(E,σ)

)1/2
≤ C‖f‖L2(E,σ), ∀ f ∈ L2(E, σ), (2.80)

holds and, in combination with Proposition 2.13, that(
I − SκE

)
f =

∑
l∈Z, l≥κE

Dlf for each f ∈ L2(E, σ),

where the series converges unconditionally in L2(E, σ).

(2.81)

To proceed, fix a number N ∈ N. Based on (2.79), we may square (2.81) and obtain,
pointwise in L2(E, σ),(

I − SκE
)2

= lim
M→∞

[( ∑
j∈Z, j≥κE , |j|≤M

Dj

)( ∑
k∈Z, k≥κE , |k|≤M

Dk

)]
= lim

M→∞

( ∑
|j−k|≤N

j,k≥κE , |j|,|k|≤M

DjDk +
∑

|j−k|>N
j,k≥κE , |j|,|k|≤M

DjDk

)
. (2.82)

Going further, fix i ∈ Z and consider the family {Tl}l∈Ji of operators on L2(E, σ), where

Tl := Dl+iDl for every l ∈ Ji :=
{
l ∈ Z : l ≥ max{κE , κE − i}

}
. (2.83)

Then, with ‖·‖ temporarily abbreviating ‖·‖L2(E,σ)→L2(E,σ), for each j, k ∈ Ji we may estimate

‖T ∗j Tk‖ ≤ min
{
‖Dj‖‖Dj+iDk+i‖‖Dk‖ , ‖DjDj+i‖‖Dk+i‖‖Dk‖

}
≤ C min

{
2−|k−j|γ , 2−|i|γ

}
, (2.84)

thanks to (2.79) and (2.78). This readily implies that sup
j∈Ji

( ∑
k∈Ji

√
‖T ∗j Tk‖

)
≤ C(1 + |i|)2−|i|γ/2

and sup
k∈Ji

( ∑
j∈Ji

√
‖Tj T ∗k ‖

)
≤ C(1 + |i|)2−|i|γ/2 for some C ∈ (0,∞) independent of i. Hence, for

each i ∈ Z, the family
{
Dl+iDl

}
l∈Z, l≥max{κE ,κE−i}

is almost orthogonal, and by Lemma 2.15

there exists some constant C ∈ (0,∞) independent of i such that for every set J ⊆ Ji we have
that

∑
l∈J

Dl+iDl converges pointwise unconditionally in L2(E, σ) and

∥∥∥∑
l∈J

Dl+iDl

∥∥∥
L2(E,σ)→L2(E,σ)

≤ C(1 + |i|)2−|i|γ/2. (2.85)

Next, fix N ∈ N and let I be an arbitrary finite subset of {(l,m) ∈ Z×Z : l, m ≥ κE}. Then
for each function f ∈ L2(E, σ) with ‖f‖L2(E,σ) = 1, using (2.85) we may estimate∥∥∥ ∑

(j,k)∈I , |j−k|>N

DjDkf
∥∥∥
L2(E,σ)

=
∥∥∥ ∑
i∈Z, |i|>N

( ∑
l∈Z, (l+i,l)∈I

Dl+iDlf
)∥∥∥

L2(E,σ)
(2.86)

≤
∑

i∈Z, |i|>N

∥∥∥ ∑
l∈Z, (l+i,l)∈I

Dl+iDlf
∥∥∥
L2(E,σ)

≤
∑

i∈Z, |i|>N

C(1 + |i|)2−|i|γ/2 ≤ CγN2−Nγ/2,
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for some finite constant Cγ > 0 independent of N . It then follows from (2.64) and (2.86) that

RN :=
∑

j,k≥κE , |j−k|>N
DjDk converges pointwise unconditionally in L2(E, σ) (2.87)

and there exists Cγ ∈ (0,∞) such that ‖RN‖L2(E,σ)→L2(E,σ) ≤ CγN2−Nγ/2. (2.88)

In a similar fashion to (2.85)-(2.87), we may also deduce that

TN :=
∑

j,k≥κE , |j−k|≤N
DjDk converges pointwise unconditionally in L2(E, σ). (2.89)

We set DN
l :=

∑
i≥κE−l, |i|≤N Dl+i for each l ∈ Z, so TN =

∑
l∈Z, l≥κE DlD

N
l , where the sum

converges pointwise unconditionally in L2(E, σ). Then (2.82), (2.87) and (2.89) imply that(
I − SκE

)2
= RN + TN on L2(E, σ), (2.90)

which is convenient to further re-write as

I = RN + T̃N on L2(E, σ), where T̃N := TN + SκE
(
2I − SκE

)
. (2.91)

Thanks to the estimate in (2.87), it follows from (2.91) that

T̃N : L2(E, σ)→ L2(E, σ) is boundedly invertible for N ∈ N sufficiently large. (2.92)

Hence, for N sufficiently large and fixed, based on (2.92) we may write that I = T̃N (T̃N )−1,
and keeping in mind (2.91), we arrive at the following Calderón-type reproducing formula

I =
( ∑
l∈Z, l≥κE

DlD̃l

)
+ SκE

(
2I − SκE

)
(T̃N )−1, (2.93)

where the sum converges pointwise unconditionally in L2(E, σ), and

D̃l := DN
l (T̃N )−1, ∀ l ∈ Z with l ≥ κE . (2.94)

From this (2.62) follows with R :=
(
SκE − 2I

)
(T̃N )−1. Finally, (2.61) is a consequence of

(2.94), the fact that the sum defining DN
l has a finite number of terms, (2.92) and (2.80).

2.4 Dyadic Carleson tents

Suppose that (X , ρ) is a geometrically doubling quasi-metric space and that E is a nonempty,
closed, proper subset of (X , τρ). It follows from the discussion below Definition 2.4 that
(E, ρ

∣∣
E

) is also a geometrically doubling quasi-metric space. We now introduce dyadic Carleson
tents in this setting. These are sets in X \ E that are adapted to E in the same way that
classical Carleson boxes or tents in the upper-half space Rn+1

+ are adapted to Rn. We require
a number of preliminaries before we introduce these sets in (2.97) below. First, fix a collection
D(E) of dyadic cubes contained in E as in Proposition 2.11. Second, choose λ ∈ [2Cρ,∞) and
fix a Whitney covering Wλ(X \E) of balls contained in X \E as in Proposition 2.5. Following
Convention 2.6, we refer to these ρ#-balls as Whitney cubes, and for each I ∈Wλ(X \E), we
use the notation `(I) for the radius of I. Third, choose C∗ ∈ [1,∞), and for each Q ∈ D(E),
define the following collection of Whitney cubes:

WQ := {I ∈Wλ(X \ E) : C−1
∗ `(I) ≤ `(Q) ≤ C∗`(I) and distρ(I,Q) ≤ `(Q)}. (2.95)
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Fourth, for each Q ∈ D(E), define the following subset of (X , τρ):

UQ :=
⋃

I∈WQ

I. (2.96)

Since from Theorem 2.1 we know that the regularized quasi-distance ρ# is continuous, it follows
that the ρ#-balls are open. As such, that each I in WQ, hence UQ itself, is open. Finally, for
each Q ∈ D(E), the dyadic Carleson tent TE(Q) over Q is defined as follows:

TE(Q) :=
⋃

Q′∈D(E), Q′⊆Q

UQ′ . (2.97)

For most of the subsequent work we will assume that the Whitney covering Wλ(X \ E)
and the constant C∗ are chosen as in the following lemma. The reader should be aware that
even when (2.98) holds, there may exist Q ∈ D(E) for which UQ is empty.

Lemma 2.17. Let (X , ρ) be a geometrically doubling quasi-metric space and suppose that E
is a nonempty, closed, proper subset of (X , τρ). Fix a collection D(E) of dyadic cubes in E as
in Proposition 2.11. Next, choose λ ∈ [2Cρ,∞), fix a Whitney covering Wλ(X \E) of X \E,
and let Λ denote the constant associated with λ as in Proposition 2.5.

If C∗ ∈ [4C4
ρ Λ,∞), then there exists ε ∈ (0, 1), depending only on λ and geometry, such

that the collection {UQ}Q∈D(E) associated with Wλ(X \E) and C∗ as in (2.95)-(2.96), satisfies{
x ∈X \ E : δE(x) < εdiamρ(E)

}
⊆

⋃
Q∈D(E)

UQ. (2.98)

Proof. If diamρ(E) =∞, then both sides of (2.98) are equal to X \ E for all ε ∈ (0, 1), since
the Whitney cubes cover X \E, so the result is immediate. Now assume that diamρ(E) <∞.
Fix some integer N ∈ N, to be specified later, and consider an arbitrary point x ∈X \E with
δE(x) < 2−Ndiamρ(E). Then by (2.2) and the definition of κE , we have 0 < δE(x) < 2−N−κE ,
hence there exists k ∈ Z with k ≥ κE such that 2−N−k−1 ≤ δE(x) < 2−N−k. Now, select a ball
I = Bρ#(xI , `(I)) ∈Wλ(X \E) such that x ∈ I. Then, by (3) in Proposition 2.5, there exists
z ∈ E such that ρ#(xI , z) < Λ`(I). Consequently,

δE(x) ≤ ρ#(x, z) ≤ Cρ max {ρ#(x, xI), ρ#(xI , z)} < CρΛ`(I). (2.99)

In addition, (3) in Proposition 2.5 implies that Bρ#(xI , λ`(I)) ⊆X \E, hence, for every y ∈ E

2Cρ`(I) ≤ λ`(I) ≤ ρ#(xI , y) ≤ Cρ `(I) + Cρ ρ#(x, y). (2.100)

After canceling like-terms in (2.100) and taking the infimum over all y ∈ E, we arrive at

`(I) ≤ δE(x). (2.101)

Next, since δE(x) < 2−N−k, there exists x0 ∈ E such that ρ#(x, x0) < 2−N−k. Further-
more, by invoking (7) in Proposition 2.11 we may choose Q ∈ Dk(E) with the property that
Bρ#(x0, 2

−N−k) ∩Q contains at least one point x1. Thus, by (1) in Theorem 2.1 we have

distρ(I,Q) ≤ distρ(x,Q) ≤ ρ(x, x1) ≤ C2
ρρ#(x, x1) (2.102)

≤ C2
ρCρ# max {ρ#(x, x0), ρ#(x0, x1)} < C3

ρ2−N−k = C3
ρ2−N`(Q).
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Starting with (2.101) and keeping in mind that δE(x) < 2−N−k, we obtain

`(I) < 2−N−k = 2−N`(Q) ≤ `(Q). (2.103)

Next, by (2.99) we write 2−N−1`(Q) = 2−N−k−1 ≤ δE(x) ≤ CρΛ`(I), which further entails

C∗ ≥ 2N+1CρΛ =⇒ `(I) ≥ C−1
∗ `(Q). (2.104)

Finally, if C∗ ≥ 4C4
ρ Λ, then by (2.102)-(2.104), upon choosing N ∈ N such that

N − 1 ≤ log2

(
C3
ρ

)
< N, (2.105)

it follows that I ∈WQ, hence x ∈ I ⊆ UQ, and so (2.98) holds with ε := 2−N .

We now return to the context introduced in the first paragraph of this subsection, where
λ ∈ [2Cρ,∞) and C∗ ∈ [1,∞). Then there exists Co ∈ [1,∞) such that

C−1
o `(Q) ≤ δE(x) ≤ Co`(Q), ∀Q ∈ D(E) and ∀x ∈ UQ. (2.106)

Indeed, an inspection of (2.99), (2.101), (2.95) and (2.96) shows that (2.106) holds when

Co := C∗CρΛ, (2.107)

where Λ is the constant associated with λ as in Proposition 2.5. We will need the containments
below for the dyadic Carleson tents {TE(Q)}Q∈D(E) from (2.97).

Lemma 2.18. Assume all of the hypotheses contained in the first paragraph of Lemma 2.17.
If C∗ ∈ [1,∞), then there exists C ∈ (0,∞), depending only on C∗ and ρ, such that

TE(Q) ⊆ Bρ
(
x,C`(Q)

)
\ E, ∀Q ∈ D(E), ∀x ∈ Q. (2.108)

If C∗ ∈ [4C4
ρ Λ,∞), then there exists ε ∈ (0, 1), depending only on λ and geometry, such that

Bρ#
(
xQ, ε`(Q)

)
\ E ⊆ TE(Q), ∀Q ∈ D(E). (2.109)

Proof. The containment in (2.108) follows from (2.97). To prove (2.109), let C∗ ∈ [4C4
ρ Λ,∞).

Fix ε ∈ (0, 1) to be specified later and choose N as in (2.105). Let Q ∈ D(E) and fix
x ∈ Bρ#

(
xQ, ε`(Q)

)
\ E. Then ρ#(xQ, x) < ε`(Q). We now restrict ε < 2−N−1 to obtain

δE(x) ≤ ρ#(xQ, x) < ε`(Q) ≤ 2εdiamρ(E) < 2−Ndiamρ(E). (2.110)

Thus, as in the first part of the proof of Lemma 2.17, we have δE(x) < min {2−N−k, ε`(Q)} for
some k ∈ Z, k ≥ κE . Hence, there exists x0 ∈ E such that ρ#(x, x0) < min {2−N−k, ε`(Q)}.
By property (7) in Proposition 2.11, we choose Q′ ∈ Dk(E) such that Bρ#

(
x0, ε`(Q)

)
∩Q′ 6= ∅.

If, in addition, ε < a0C
−4
ρ , then

Bρ#
(
x0, ε`(Q)

)
∩ E ⊆ Q and Q′ ∩Q 6= ∅, (2.111)

since if y ∈ Bρ#
(
x0, ε`(Q)

)
∩ E, then

ρ#(xQ, y) ≤ Cρ max {Cρ max {ρ#(x0, x), ρ#(x, xQ)}, ρ#(x0, y)} < εC2
ρ`(Q) (2.112)
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shows that y ∈ Q (recall that Bρ#
(
xQ, a0C

−2
ρ `(Q)

)
∩ E ⊆ Q by (2.30)) and so Q′ ∩ Q 6= ∅.

Using the reasoning in the proof of Lemma 2.17 that yielded (2.102)-(2.105) we obtain

x ∈ I ⊆ UQ′ . (2.113)

Thus, using also (2.106), we have

`(Q′) ≤ CoδE(x) ≤ Coρ#(xQ, x) < Coε`(Q). (2.114)

Hence, under the additional restriction ε < C−1
o , we have `(Q′) < `(Q), which when combined

with (2.111) and (3) in Proposition 2.11, forces Q′ ⊆ Q. In concert with (2.113) and (2.97),
this shows that x ∈ TE(Q) when 0 < ε < min{2−N−1, a0C

−4
ρ , C−1

o }, as required.

We conclude this section with a finite overlap property for the sets {UQ}Q∈D(E) from (2.96).

Lemma 2.19. Let (X , ρ) be a geometrically doubling quasi-metric space and suppose that E
is a nonempty, closed, proper subset of (X , τρ). Fix a ∈ [1,∞), a collection D(E) of dyadic
cubes in E as in Proposition 2.11, and C∗ ∈ [1,∞).

If λ ∈ [a,∞), and we fix a Whitney covering Wλ(X \ E) of X \ E as in Proposition 2.5,
with Whitney cubes {WQ}Q∈D(E) as in (2.95), then there exists N ∈ N, depending only on λ,
C∗ and geometry, such that ∑

Q∈D(E)

1U∗Q ≤ N, (2.115)

where U∗Q :=
⋃
I∈WQ

aI (compare with (2.96)).

Proof. Fix a ∈ [1,∞), λ ∈ [a,∞) and a Whitney covering Wλ(X \ E), so by Proposition 2.5
we have

∑
I∈Wλ(X \E) 1λI ≤ N1 for some N1 ∈ N. Now define I :=

⋃
Q∈D(E)WQ ⊆Wλ(X \E)

and, for each I ∈ I, set qI := {Q ∈ D(E) : I ∈ WQ}. We claim that # qI ≤ N2 for all
I ∈Wλ(X \ E) and some N2 ∈ N. To see this, consider I ∈Wλ(X \ E) and Q ∈ D(E) such
that I ∈WQ. Then, from (2.95) we deduce that

C−1
∗ `(I) ≤ `(Q) ≤ C∗`(I) and distρ(I,Q) ≤ C∗`(I), (2.116)

and the claim follows from the fact that
(
E, ρ

∣∣
E

)
is geometrically doubling. We then have∑

Q∈D(E)

1U∗Q ≤
∑

Q∈D(E)

∑
I∈WQ

1λI =
∑
I∈I

(# qI) · 1λI ≤ N1N2, (2.117)

so (2.115) holds with N := N1N2.

3 T (1) and local T (b) Theorems for Square Functions

This section consists of two parts, dealing with a T (1) Theorem and a local T (b) Theorem for
square functions on sets of arbitrary co-dimension, relative to an ambient quasi-metric space
(the notion of dimension refers to the degree of Ahlfors-David regularity). The T (1) Theorem
generalizes the Euclidean co-dimension one result proved by M. Christ and J.-L. Journé in [16]
(cf. also [14, Theorem 20]). The local T (b) Theorem generalizes the Euclidean co-dimension
one result implicit in the solution of the Kato problem in [46, 42, 4] and explicit in [3, 40, 47].

33



We consider the following context. Fix two real numbers d,m such that 0 < d < m, an
m-dimensional ADR space (X , ρ, µ), a closed subset E of (X , τρ), and a Borel measure σ on
(E, τρ|E ) with the property that (E, ρ

∣∣
E
, σ) is a d-dimensional ADR space. Suppose that

θ : (X \ E)× E −→ R is Borel measurable with respect to
the relative topology induced by the product topology τρ × τρ on (X \ E)× E, (3.1)

and has the property that there exist Cθ, α, υ ∈ (0,∞) and a ∈ [0, υ) such that for all
x ∈X \ E, y ∈ E and ỹ ∈ E with ρ(y, ỹ) ≤ 1

2ρ(x, y), the following hold:

|θ(x, y)| ≤ Cθ
ρ(x, y)d+υ

(distρ(x,E)

ρ(x, y)

)−a
, (3.2)

|θ(x, y)− θ(x, ỹ)| ≤ Cθ
ρ(y, ỹ)α

ρ(x, y)d+υ+α

(distρ(x,E)

ρ(x, y)

)−a−α
. (3.3)

Then define the integral operator Θ for all functions f ∈ Lp(E, σ), 1 ≤ p ≤ ∞, by

(Θf)(x) :=

�
E
θ(x, y)f(y) dσ(y), ∀x ∈X \ E. (3.4)

We note that Lemma 3.4 below guarantees that this integral is absolutely convergent. Also, the
terms in parentheses in (3.2)-(3.3) are greater than or equal to 1, since ρ(x, y) ≥ distρ(x,E) > 0,
and so the inclusion of these terms weakens the hypotheses.

We proceed to prove square function versions of the T (1) Theorem and the local T (b)
Theorem for Θ. As usual, we prove the local T (b) Theorem by applying the T (1) Theorem.

3.1 An arbitrary codimension T (1) theorem for square functions

The main result in this subsection is the following T (1) theorem for square functions.

Theorem 3.1. Let 0 < d < m <∞. Assume that (X , ρ, µ) is an m-dimensional ADR space,
E is a closed subset of (X , τρ), and σ is a Borel semiregular measure on (E, τρ|E ) with the
property that (E, ρ

∣∣
E
, σ) is a d-dimensional ADR space.

Suppose that Θ is an integral operator with kernel θ satisfying (3.1)-(3.4). Let D(E) denote
a dyadic cube structure on E, consider a Whitney covering Wλ(X \E) of X \E and a constant
C∗ as in Lemma 2.17 with the corresponding dyadic Carleson tents from (2.97). If

sup
Q∈D(E)

(
1

σ(Q)

�
TE(Q)

|Θ1(x)|2δE(x)2υ−(m−d) dµ(x)

)
<∞, (3.5)

then there exists C ∈ (0,∞), depending only on Cθ, the ADR constants of E and X , and the
value of the supremum in (3.5), such that�

X \E
|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C

�
E
|f(x)|2 dσ(x), ∀ f ∈ L2(E, σ). (3.6)

Conversely, under the original background assumptions, excluding (3.3), if�
x∈X , 0<δE(x)<η diamρ(E)

|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C
�
E
|f(x)|2 dσ(x), ∀ f ∈ L2(E, σ),

(3.7)

for some C, η ∈ (0,∞), then (3.5) holds.
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We record some preliminaries. The following discrete Carleson Estimate is well-known.

Lemma 3.2. Let (E, ρ, σ) be a space of homogeneous type and denote by D(E) a dyadic cube
structure on E. If a sequence {BQ}Q∈D(E) ⊆ [0,∞] satisfies the discrete Carleson Condition

C := sup
R∈D(E)

[ 1

σ(R)

∑
Q∈D(E), Q⊆R

BQ

]
<∞, (3.8)

then for every sequence {AQ}Q∈D(E) ⊆ R it holds that∑
Q∈D(E)

AQBQ ≤ C
�
E
A∗ dσ, (3.9)

where A∗(x) := supQ∈D(E), x∈Q |AQ| if x ∈
⋃
Q∈D(E)Q and A∗(x) := 0 otherwise.

The following quantitative version of the classical Urysohn Lemma is in [61] (cf. also [1]).

Lemma 3.3. Let (E, ρ) be a quasi-metric space and suppose that 0 < β ≤ [log2Cρ]
−1. If

F0, F1 ⊆ E are nonempty and distρ(F0, F1) > 0, then there exists η : E → R such that

0 ≤ η ≤ 1 on E, η ≡ 0 on F0, η ≡ 1 on F1, (3.10)

and for which there exists a finite constant C > 0, depending only on ρ, such that

sup
x,y∈E, x 6=y

|η(x)− η(y)|
ρ(x, y)β

≤ C
(
distρ(F0, F1)

)−β
. (3.11)

The next two preliminary lemmas are from geometric measure theory.

Lemma 3.4. Let (X , ρ) be a quasi-metric space. Suppose that E ⊆X is nonempty and σ is
a measure on E such that (E, ρ

∣∣
E
, σ) is a d-dimensional ADR space for some d > 0. If m > d,

then there exists C ∈ (0,∞), depending only on m, ρ, and the ADR constant of E, such that�
E

1

ρ#(x, y)m
dσ(y) ≤ CδE(x)d−m, ∀x ∈X \ E. (3.12)

Moreover, if ε > 0 and c > 0, then there exists C ∈ (0,∞), depending only on ε, c, ρ, and the
ADR constant of E, such that�

y∈E, ρ#(y,x)>cr

rε

ρ#(y, x)d+ε
f(y) dσ(y) ≤ CME(f)(x), ∀x ∈ E, ∀ r > 0, (3.13)

for every σ-measurable function f : E → [0,∞], where ME is as in (2.29).

Proof. If m > d, then since (E, ρ#|E , σ) is a d-dimensional ADR space, we have

�
E

1

ρ#(y, x)m
dσ(y) ≤

∞∑
j=0

�
E

1{z: ρ#(z,x)∈[2jδE(x),2j+1δE(x))}(y)
1

ρ#(y, x)m
dσ(y)

≤ C
∞∑
j=0

1

[2jδE(x)]m
σ
(
Bρ#(x, 2j+1δE(x)) ∩ E

)
≤ CδE(x)d−m (3.14)

for all x ∈ X \ E, which proves (3.12). The estimate in (3.13) is proved similarly by decom-
posing the domain of integration in dyadic annuli centered at x and at scale r.
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The proof of the following result can be found in [62].

Lemma 3.5. Let 0 < d < m <∞. Assume that (X , ρ, µ) is an m-dimensional ADR space, E
is a closed nonempty subset of (X , τρ), and there exists a measure σ on E such that (E, ρ

∣∣
E
, σ)

is a d-dimensional ADR space. If γ < m− d, then there exists C0 ∈ (0,∞), depending only on
γ and the ADR constants of E and X , such that

�
x∈Bρ(x0,R), δE(x)<r

δE(x)−γ dµ(x) ≤ C0 r
m−d−γRd, (3.15)

for every x0 ∈ E and every r,R > 0.

At this stage, we are ready to present the proof of Theorem 3.1.

Proof of Theorem 3.1. Set AQf :=
�
Q f dσ for all Q ∈ D(E) and measurable f : E → C.

Step I. We claim that for each r ∈ (1,∞), there exist constants C, β ∈ (0,∞) such that

sup
x∈UQ

∣∣δE(x)υ
(
Θ(Dlg)(x)− (Θ1)(x)AQ(Dlg)

)∣∣ ≤ C2−|k−l|β inf
w∈Q

[
M2
E(|g|r)(w)

] 1
r
, (3.16)

for all l, k ∈ Z with l, k ≥ κE, all Q ∈ Dk(E) and all locally integrable functions g : E → R,
where Dl := Sl+1 − Sl is the integral operator defined in Proposition 2.14 with kernel hl(·, ·).
We prove (3.16) by distinguishing two cases below. Fix k0 ∈ N0 to be specified later.

Case I: k + k0 ≥ l. In this case, since |k − l| ≤ k − l + 2k0, we have

2−(k+k0−l) ≈ 2−|k−l|, (3.17)

where the comparability constants depend only on k0. For all x ∈ UQ, we write

δE(x)υ
(
Θ(Dlg)(x)− (Θ1)(x)AQ(Dlg)

)
=

�
E

[�
E

Φ(x, y)hl(y, z) dσ(y)

]
g(z) dσ(z), (3.18)

where

Φ(x, y) := δE(x)υ
[
θ(x, y)− 1

σ(Q)(Θ1)(x)1Q(y)
]
, ∀x ∈X \ E, ∀ y ∈ E. (3.19)

Note that, by design,

�
E

Φ(x, y) dσ(y) = 0, ∀x ∈X \ E, (3.20)

and we claim that

|Φ(x, y)| ≤ C

σ(Q)
, ∀x ∈ UQ, ∀ y ∈ E. (3.21)

Indeed, if x ∈ UQ, then δE(x) ≈ `(Q), so (3.2) and (4) in Theorem 2.1 imply that

δE(x)υ|θ(x, y)| ≤ CδE(x)υ−a

ρ(x, y)d+υ−a ≤
CδE(x)υ−a

δE(x)d+υ−a ≤
C

`(Q)d
≤ C

σ(Q)
, ∀ y ∈ E, (3.22)
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whilst (3.12) implies that

δE(x)υ|(Θ1)(x)| ≤ CδE(x)υ−a
�
E

dσ(y)

ρ#(x, y)d+υ−a ≤ C, ∀x ∈ UQ. (3.23)

Fix ε ∈ (0, 1) and C0 > 0, to be specified later. If w ∈ Q and z ∈ E, then (3.20) gives∣∣∣∣�
E

Φ(x, y)hl(y, z) dσ(y)

∣∣∣∣ ≤ �
E
|Φ(x, y)||hl(y, z)− hl(w, z)| dσ(y) =: I1 + I2, (3.24)

where I1 is the integral restricted to the set {y ∈ E, ρ#(y, xQ) ≤ C02(k+k0−l)ε`(Q)} and xQ is

the center of Q. To estimate I1, we claim that, for γ from (2.72), if C̃ is sufficiently large, then

|hl(y, z)− hl(w, z)| ≤ C 2 l(d+γ)2(k+k0−l)εγ`(Q)γ1{ρ#(w,·)≤C̃2−l}(z)

whenever z ∈ E, y ∈ E, w ∈ Q and ρ#(y, xQ) ≤ C02(k+k0−l)ε`(Q). (3.25)

To prove this claim, first note that if C0 is large, then since k + k0 − l ≥ 0, we have

y ∈ E, w ∈ Q and ρ#(y, xQ) ≤ C02(k+k0−l)ε`(Q) ⇒ ρ#(y, w) ≤ CC02(k+k0−l)ε`(Q). (3.26)

From now on, assume that C0 is large enough to ensure the validity of (3.26). Second, if y, w
are as in (3.26) and z ∈ E is such that ρ#(z, w) ≥ C̃2−l, then

C̃2−l ≤ ρ#(z, w) ≤ Cρ#(z, y) + 2k0C0C2−l, (3.27)

for some geometric constant C > 0. Setting C̃ := 2k0+1C0C and C1 := 2k0C0C, we now have

y ∈ E, w ∈ Q, ρ#(y, xQ) ≤ C02(k+k0−l)ε`(Q)

and ρ#(z, w) ≥ C̃2−l

}
=⇒ ρ#(z, y) > C12−l. (3.28)

Moreover, we can further increase C0 and, in turn, C̃ to insure that the constant C1 in the
last inequality in (3.28) is larger that the constant C in (2.72). Henceforth, assume that such
a choice has been made. Then a combination of (3.26), (3.28) and (2.73) yields (3.25).

Next, we choose 0 < ε < γ
d+γ < 1, which ensures that β1 := γ − ε(d + γ) > 0, and use

(3.21), (3.25) and the d-ADR property to estimate

I1 ≤ C 2 dl 2−(k+k0−l)β1 1{ρ#(w,·)≤C̃2−l}(z), ∀ z ∈ E. (3.29)

To estimate the contribution of I1 in (3.18), based on (3.29) and (3.17), we obtain

�
E
I1|g(z)| dσ(z) ≤ C2−(k+k0−l)β1

 
z∈E, ρ#(z,w)≤C2−l

|g(z)| dσ(z) ≤ C2−|k−l|β1MEg(w), (3.30)

uniformly for all w ∈ Q.
Next, we turn our attention to I2 from (3.24). Note that since we are currently assuming

that k + k0 ≥ l, the condition ρ#(y, xQ) ≥ C02(k+k0−l)ε`(Q) forces y 6∈ c1Q for some finite
positive constant c1, which may be further increased as desired by suitably increasing the value
of C0. Thus, assuming that C0 is sufficiently large to guarantee c1 > 1, we obtain 1Q(y) = 0
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if y ∈ E and ρ#(y, xQ) ≥ C02(k+k0−l)ε`(Q). In turn, this implies that Φ(x, y) = δE(x)υθ(x, y)
on the domain of integration in I2. Thus, for each z ∈ E, we have

I2 ≤ C2−kυ
�
y∈E, ρ#(y,xQ)>C02(k+k0−l)ε`(Q)

|θ(x, y)| |hl(y, z)| dσ(y) (3.31)

+ C2−kυ|hl(w, z)|
�
y∈E, ρ#(y,xQ)>C02(k+k0−l)ε`(Q)

|θ(x, y)| dσ(y) =: I3 + I4.

We also remark that the design of UQ and the fact that k + k0 − l ≥ 0 ensure that

y ∈ E, ρ#(y, xQ) > C02(k+k0−l)ε`(Q) =⇒
{
ρ#(x, y) ≈ ρ#(w, y) ≈ ρ#(xQ, y),
uniformly for x ∈ UQ and w ∈ Q. (3.32)

Using (3.2), (3.32), the comparability δE(x) ≈ `(Q) for x ∈ UQ, and (2.72), we have

I3 ≤ C 2−kυ
�
y∈E, ρ#(y,w)>C2(k+k0−l)ε`(Q)

δE(x)−a

ρ#(y, w)d+υ−a |hl(y, z)| dσ(y)

≤ C 2−(k+k0−l)ε(υ−a)2dl
�
y∈E, ρ#(y,w)≥Cr

rυ−a

ρ#(y, w)d+υ−a 1{ρ#(y,·)≤C2−l}(z) dσ(y), (3.33)

for all z ∈ E, where r := 2(k+k0−l)ε−k. Then, by (3.13) and (3.17), we obtain

�
E
I3|g(z)| dσ(z) ≤ C 2−(k+k0−l)ε(υ−a)

�
y∈E, ρ#(y,w)≥Cr

rυ−a

ρ#(y, w)d+υ−a (MEg)(y) dσ(y)

≤ C 2−|k−l|ε(υ−a)(M2
Eg)(w), uniformly for all w ∈ Q. (3.34)

Similarly, we have

I4 ≤ C2−(k+k0−l)ε(υ−a) 2 dl1{ρ#(w,·)≤C2−l}(z)

�
y∈E, ρ#(y,xQ)>Cr

rυ−a

ρ#(y, xQ)d+υ−a dσ(y) (3.35)

for all z ∈ E. Then, by (3.13) and (3.17), we obtain
�
E
I4|g(z)| dσ(z) ≤ C 2−|k−l|ε(υ−a)(MEg)(w), uniformly for all w ∈ Q. (3.36)

If r ∈ [1,∞), then Lebesgue’s Differentiation Theorem, which holds since σ is Borel semiregular
(see [2]), combined with the monotonicity of ME , and Hölder’s inequality, implies that

MEg ≤
[
M2
E(|g|r)

] 1
r and M2

Eg ≤
[
M2
E(|g|r)

] 1
r pointwise in E. (3.37)

Thus, in Case I, (3.30), (3.34), (3.36) prove (3.16) with β given by β2 := min{β1, ε(υ−a)} > 0.

Case II: k + k0 < l. In this case, we write

δE(x)υΘ(Dlg)(x) =

�
E

Ψ(x, z) g(z) dσ(z), ∀x ∈ UQ, (3.38)

where

Ψ(x, z) := δE(x)υ
�
E
θ(x, y)hl(y, z) dσ(y), ∀x ∈X \ E, ∀ z ∈ E. (3.39)
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To proceed, fix x ∈ UQ arbitrary. Based on (2.74) and (2.72), we have

|Ψ(x, z)| ≤ δE(x)υ
�
y∈E, ρ#(y,z)≤C2−l

|θ(x, y)− θ(x, z)||hl(y, z)| dσ(y), ∀ z ∈ E. (3.40)

As a consequence of (3.3), we have

|θ(x, y)− θ(x, z)| ≤ C ρ(y, z)αδE(x)−a−α

ρ(x, y)d+υ−a if y, z ∈ E, ρ(y, z) < 1
2ρ(x, y). (3.41)

Observe that, since here k + k0 < l, if the points y, z ∈ E are such that ρ#(y, z) ≤ C2−l, then

ρ(y, z) ≤ Cρ#(y, z) ≤ C2−l ≤ C2−k02−k ≤ C2−k0δE(x) ≤ C2−k0ρ(x, y) < 1
2ρ(x, y), (3.42)

where the last inequality follows by choosing k0 large. We henceforth fix such a k0 ∈ N0. Then
(3.41) holds for all y in (3.40). For w ∈ Q arbitrary, we claim that

∃C ′ > 0 such that ∀ z, y ∈ E
satisfying ρ(y, z) ≤ C2−l

}
it holds that

{
ρ(x, y) ≥ C ′[2−k + ρ#(w, z)],
uniformly for x ∈ UQ, w ∈ Q.

(3.43)

Indeed, if y, z are as in the left side of (3.43), then ρ(x, y) ≥ CδE(x) ≈ `(Q) ≈ 2−k and

ρ#(w, z) ≤ Cρ(w, z) ≤ C(2−k + ρ(x, y) + 2−l) ≤ Cρ(x, y). (3.44)

This proves (3.43). Combining (3.43), (3.41), (2.72) and (3.40), we obtain

|Ψ(x, z)| ≤ C2−kυ
�
y∈E, ρ#(y,z)≤C2−l

2k(a+α)2−lα

(2−k + ρ#(w, z))d+υ−a 2 dl dσ(y)

≤ C2−|k−l|α
2−k(υ−a)

(2−k + ρ#(w, z))d+υ−a , ∀ z ∈ E, (3.45)

where the second inequality uses the d-ADR property and that k < l. Thus, using (3.13) and
(3.37), for each r ∈ [1,∞), we obtain∣∣δE(x)υΘ(Dlg)(x)

∣∣ ≤ C2−|k−l|α
[
M2
E(|g|r)(w)

] 1
r , uniformly for all w ∈ Q. (3.46)

To estimate |δE(x)υ(Θ1)(x)AQ(Dlg)|, first note that (3.23) holds in this case, so we have

|δE(x)υ(Θ1)(x)AQ(Dlg)| ≤ C
∣∣∣∣�
E

1

σ(Q)

�
Q
hl(y, z) dσ(y) g(z) dσ(z)

∣∣∣∣ . (3.47)

To continue, for some fixed ε ∈ (0, 1), define

SQ :=
{
x ∈ Q : distρ#(x,E \Q) ≤ C2−|k−l|ε`(Q)

}
and FQ := Q \ SQ. (3.48)

Also, consider a function ηQ : E → R such that supp ηQ ⊆ Q, 0 ≤ ηQ ≤ 1, ηQ = 1 on FQ, and

|ηQ(x)− ηQ(y)| ≤ C
( ρ(x, y)

2−|k−l|ε`(Q)

)γ
, ∀x ∈ E, ∀ y ∈ E, (3.49)
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for some γ ∈ (0, 1). That such a function exists is a consequence of Lemma 3.3. Hence,∣∣∣∣ 
Q
hl(y, z) dσ(y)

∣∣∣∣ ≤ 1

σ(Q)

∣∣∣∣�
E

(
1Q − ηQ(y)

)
hl(y, z) dσ(y)

∣∣∣∣
+

1

σ(Q)

∣∣∣∣�
E
ηQ(y)hl(y, z) dσ(y)

∣∣∣∣ =: II1(z) + II2(z), ∀ z ∈ E. (3.50)

Fix z ∈ E. To estimate II2(z), use (2.74), (2.72), (3.49) and the d-ADR property to obtain

II2(z)≤ 1

σ(Q)

�
y∈E, ρ#(y,z)≤C2−l

|ηQ(y)− ηQ(z)||hl(y, z)|dσ(y)≤ 1

σ(Q)

[
2−l

2−|k−l|ε2−k

]γ
. (3.51)

In addition, since whenever y ∈ supp ηQ ⊆ Q and ρ#(y, z) ≤ C2−l ≤ C`(Q) one necessarily
has ρ#(w, z) ≤ C`(Q), for all w ∈ Q, it follows that one may strengthen (3.51) to

II2(z) ≤ C 1

σ(Q)
2−|k−l|(1−ε)γ1{ρ#(w,·)≤C`(Q)}(z), for all w ∈ Q. (3.52)

Hence, by recalling (3.37), for each r ∈ [1,∞) and for all w ∈ Q, we further obtain�
E
II2(z)|g(z)| dσ(z) ≤ C2−|k−l|(1−ε)γ(MEg)(w) ≤ C2−|k−l|(1−ε)γ

[
M2
E(|g|r)(w)

]1/r
. (3.53)

To estimate II1(z), fix r ∈ (1,∞) and set 1
r + 1

r′ = 1. Property (8) of Proposition 2.11

implies that there exists c > 0 and τ ∈ (0, 1) such that σ(SQ) ≤ c2−|k−l|ετσ(Q). Therefore,
since supp (1Q − ηQ) ⊆ SQ, by applying (2.72), Hölder’s inequality and (3.37), we obtain�

E
II1(z)|g(z)| dσ(z) ≤ C 1

σ(Q)

�
SQ

�
z∈E, ρ#(y,z)≤C2−l

2 dl|g(z)| dσ(z) dσ(y)

≤ C 1

σ(Q)

�
Q

1SQ(y)(MEg)(y) dσ(y)

≤ C
[
σ(SQ)

σ(Q)

] 1
r′
[ 

Q
(MEg)r dσ

] 1
r

≤ C2−|k−l|ετ/r
′[
M2
E(|g|r)(w)

] 1
r , for all w ∈ Q. (3.54)

Thus, in Case II, (3.53) and (3.54) prove (3.16) with β given by β3 := min{(1−ε)γ, ετr′ , α} > 0.
This completes Step I, since Case I and Case II prove (3.16) with β := min{β2, β3} > 0.

Step II. We claim that there exists C ∈ (0,∞) such that, for all f ∈ L2(E, σ), we have∑
k∈Z, k≥κE

∑
Q∈Dk(E)

�
UQ

∣∣δE(x)υ
(
(Θf)(x)− (Θ1)(x)AQf

)∣∣2 dµ(x)

δE(x)m−d
≤ C

�
E
|f |2 dσ. (3.55)

To prove this claim, fix r ∈ (1, 2) and β > 0 such that (3.16) holds. Then, by (2.62), we have∑
k∈Z, k≥κE

∑
Q∈Dk(E)

�
UQ

∣∣δE(x)υ
(
Θ− (Θ1)(x)AQ

)
(f)(x)

∣∣2 dµ(x)

δE(x)m−d
(3.56)

≤ 2
∑

k∈Z, k≥κE

∑
Q∈Dk(E)

�
UQ

∣∣∣ ∑
l∈Z, l≥κE

δE(x)υ
(
Θ− (Θ1)(x)AQ

)
(DlD̃lf)(x)

∣∣∣2 dµ(x)

δE(x)m−d

+ 2
∑

k∈Z, k≥κE

∑
Q∈Dk(E)

�
UQ

∣∣∣δE(x)υ
(
Θ− (Θ1)(x)AQ

)
(SκE (Rf))(x)

∣∣∣2 dµ(x)

δE(x)m−d
=: A1 +A2.
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Pick now ε ∈ (0, β) arbitrary and proceed to estimate A1 as follows:

A1 = 2
∑
k≥κE

∑
Q∈Dk(E)

�
UQ

∣∣∣∑
l≥κE

2−|k−l|ε2|k−l|εδE(x)υ
(
Θ− (Θ1)(x)AQ

)
(DlD̃lf)(x)

∣∣∣2 dµ(x)

δE(x)m−d

≤ C
∑
l≥κE

∑
k≥κE

∑
Q∈Dk(E)

22|k−l|ε
�
UQ

∣∣δE(x)υ
(
Θ− (Θ1)(x)AQ

)
(DlD̃lf)(x)

∣∣2 dµ(x)

δE(x)m−d

≤ C
∑
l≥κE

∑
k≥κE

∑
Q∈Dk(E)

22|k−l|ε2−2|k−l|β inf
w∈Q

[
M2
E

(
|D̃lf |r

)
(w)
] 2
r

�
UQ

2k(m−d) dµ

≤ C
∑
l≥κE

∑
k≥κE

2−2|k−l|(β−ε)
�
E

[
M2
E

(
|D̃lf |r

)] 2
r
dσ ≤ C

∑
l≥κE

�
E
|D̃lf |2 dσ ≤ C

�
E
|f |2 dσ,

(3.57)

where the first inequality uses the Cauchy-Schwarz inequality and supk∈Z
∑

l∈Z 2−2|k−l|ε <∞,
the second inequality uses (3.16), and the final line uses µ(UQ) ≤ C2−km and 2−kd ≤ Cσ(Q)

for all Q ∈ Dk(E), supl∈Z
∑

k∈Z 2−2|k−l|(β−ε) <∞, the L
2
r (E, σ) boundedness of ME and(2.61).

To estimate A2, note that if E is unbounded, then κE = −∞, so A2 = 0 (recall S−∞ := 0).
Now assume that E is bounded, hence κE ∈ Z. In Case I above, we may replace Dl with Sl
in the proof of (3.16), since only the regularity of the kernel is used. Therefore, if r ∈ (1,∞),
then there exist C, β ∈ (0,∞) such that for all integers k ≥ l ≥ κE and all Q ∈ Dk(E), we have

sup
x∈UQ

∣∣δE(x)υ
(
Θ(Slg)(x)− (Θ1)(x)AQ(Slg)

)∣∣ ≤ C2−|k−l|β inf
w∈Q

[
M2
E(|g|r)(w)

] 1
r
, (3.58)

for all locally integrable g : E → R. Applying (3.58) with l := κE and g := Rf then yields

A2 ≤ C
∑
k≥κE

∑
Q∈Dk(E)

2−2|k−κE |β inf
w∈Q

[
M2
E

(
|Rf |r

)
(w)
] 2
r

�
UQ

2k(m−d) dµ

≤ C
∑
k≥κE

∑
Q∈Dk(E)

2−2|k−κE |β
�
Q

[
M2
E

(
|Rf |r

)] 2
r
dσ

≤ C
�
E

[
M2
E

(
|Rf |r

)] 2
r
dσ ≤ C

�
E
|f |2 dσ,

(3.59)

since R is a bounded on L2(E, σ). Now (3.57) and (3.59) imply (3.55), as required.

Step III. The end-game in the proof of the implication “ (3.5)⇒(3.6)”. Fix ε ∈ (0, 1) as in
Lemma 2.17 (here we need C∗∈ [4C4

ρ Λ,∞)). Then (2.98) and (2.115) imply

�
{x∈X \E: δE(x)<εdiamρ(E)}

|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x)

≤ C
∑
k≥κE

∑
Q∈Dk(E)

�
UQ

∣∣(Θf)(x)− (Θ1)(x)AQf
∣∣2δE(x)2υ−(m−d) dµ(x)

+C
∑
k≥κE

∑
Q∈Dk(E)

�
UQ

∣∣(Θ1)(x)AQf
∣∣2δE(x)2υ−(m−d) dµ(x). (3.60)

41



If we set BQ :=
�
UQ |(Θ1)(x)|2δE(x)2υ−(m−d) dµ(x), then (2.97), (2.115) and (3.5) imply∑

Q′∈D(E), Q′⊆Q

BQ ≤ C
�
TE(Q)

|(Θ1)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ Cσ(Q), ∀Q ∈ D(E). (3.61)

Thus, the sequence {BQ}Q∈D(E) satisfies (3.8), and so Lemma 3.2 implies∑
Q∈D(E)

�
UQ

∣∣(Θ1)(x)AQf
∣∣2δE(x)2υ−(m−d) dµ(x) ≤ C

�
E

(MEf)2 dσ ≤ C
�
E
|f |2 dσ. (3.62)

By combining (3.60), (3.55) and (3.62), we obtain�
{x∈X \E: δE(x)<ε diamρ(E)}

|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C
�
E
|f |2 dσ. (3.63)

This proves (3.6) when diamρ(E) =∞. Now assume that E is bounded and fix R := diamρ(E),
O := {x ∈ X \ E : εR ≤ δE(x)} and x0 ∈ E. For each x ∈ O, there exists y ∈ E such that
ρ#(x, y) < 2δE(x), and so ρ(x, x0) ≤ C2

ρρ#(x, x0) ≤ C3
ρ max{2, 1

ε}δE(x). This implies that

ρ(x, x0) ≈ δE(x) for all x ∈ O, so by (3.2) we have |(Θf)(x)|2 ≤ CR d‖f‖2L2(E,σ)ρ(x, x0)−2(d+υ).

Thus, for some sufficiently small c > 0 and some C ∈ (0,∞), independent of f and R, we have�
O
|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x)

≤ CR d‖f‖2L2(E,σ)

�
X \Bρ# (x0,cR)

ρ#(x, x0)−m−d dµ(x) ≤ C‖f‖2L2(E,σ).
(3.64)

Now (3.6) follows by combining (3.63) and (3.64).

Step IV. The proof of the converse implication “ (3.7)⇒(3.5)”. We no longer assume (3.3)
and suppose that (3.7) holds for some η ∈ (0,∞). We may assume, without loss of generality,
that η is as large as desired. This is trivial in the case diamρ(E) = ∞, whilst in the case
diamρ(E) <∞, if 0 < η < ηo <∞, then�

{x∈X \E: η diamρ(E)≤δE(x)<ηo diamρ(E)}
|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C

�
E
|f |2 dσ, (3.65)

since (3.2) shows that |(Θf)(x)|2 ≤ C‖f‖2L2(E,σ)[diamρ(E)]−d−2υ for all x in the integral above.

For all Q ∈ D(E) and some large finite positive constant Co, we have

1

σ(Q)

�
TE(Q)

|Θ1(x)|2δE(x)2υ−(m−d) dµ(x)

≤ 2

σ(Q)

�
TE(Q)

∣∣(Θ1E∩Bρ# (xQ,Co`(Q))

)
(x)
∣∣2δE(x)2υ−(m−d) dµ(x)

+
2

σ(Q)

�
TE(Q)

∣∣(Θ1E\Bρ# (xQ,Co`(Q))

)
(x)
∣∣2δE(x)2υ−(m−d) dµ(x) =: I1 + I2.

(3.66)

By choosing η sufficiently large, (2.108), (3.7) and the doubling property of σ, we have

I1 ≤
2

σ(Q)

�
{x∈X : 0<δE(x)<η diamρ(E)}

∣∣(Θ1E∩Bρ# (xQ,Co`(Q))

)
(x)
∣∣2δE(x)2υ−(m−d) dµ(x)

≤ C

σ(Q)

�
E

∣∣1E∩Bρ# (xQ,Co`(Q))(x)
∣∣2 dσ(x) ≤ C. (3.67)
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Next, by (3.2), (3.13) and the choice of Co (cf. (3.32)), there exists C ∈ (0,∞) such that

∣∣(Θ1E\Bρ# (xQ,Co`(Q))

)
(x)
∣∣ ≤ C �

E\Bρ# (xQ,Co`(Q))

δE(x)−a

ρ#(x, y)d+υ−a dσ(y)

≤ C`(Q)−(υ−a)δE(x)−a, ∀x ∈ TE(Q). (3.68)

Consequently, applying (2.108), (3.15) (recall that υ − a > 0) and σ(Q) ≈ `(Q)d, we obtain

I2 ≤
C

σ(Q)
`(Q)−2(υ−a)

�
Bρ# (xQ,C`(Q))

δE(x)2(υ−a)−(m−d) dµ(x) ≤ C. (3.69)

Estimates (3.67) and (3.69) together prove (3.5), which completes the proof of the theorem.

3.2 An arbitrary codimension local T (b) theorem for square functions

The main result in this subsection is the following local T (b) theorem for square functions.

Theorem 3.6. Let 0 < d < m <∞. Assume that (X , ρ, µ) is an m-dimensional ADR space,
E is a closed subset of (X , τρ), and σ is a Borel semiregular measure on (E, τρ|E ) with the
property that (E, ρ

∣∣
E
, σ) is a d-dimensional ADR space.

Suppose that Θ is an integral operator with kernel θ satisfying (3.1)-(3.4). Let D(E) denote
a dyadic cube structure on E, consider a Whitney covering Wλ(X \E) of X \E and a constant
C∗ as in Lemma 2.17 with the corresponding dyadic Carleson tents from (2.97). If there exist
C0 ∈ [1,∞), c0 ∈ (0, 1] and for each Q ∈ D(E) a σ-measurable function bQ : E → C such that

(i)
�
E |bQ|

2 dσ ≤ C0σ(Q),

(ii) there exists Q̃ ∈ D(E), Q̃ ⊆ Q, `(Q̃) ≥ c0`(Q), and
∣∣∣�Q̃ bQ dσ∣∣∣ ≥ 1

C0
σ(Q̃),

(iii)
�
TE(Q) |(Θ bQ)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C0σ(Q),

then there exists C ∈ (0,∞), depending only on C0, Cθ, the ADR constants of E and X , and
(when E is bounded) diamρ(E), such that

�
X \E

|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C
�
E
|f(x)|2 dσ(x), ∀f ∈ L2(E, σ). (3.70)

We will use the following stopping-time construction to prove Theorem 3.6.

Lemma 3.7. Let (E, ρ, σ) be a space of homogeneous type. If there exist C0 ∈ [1,∞), c0 ∈ (0, 1]
and, for each Q ∈ D(E), a σ-measurable function bQ : E → C and a cube Q̃ ∈ D(E) such that

�
E
|bQ|2 dσ ≤ C0σ(Q), Q̃ ⊆ Q, `(Q̃) ≥ c0`(Q),

∣∣∣∣�
Q̃
bQ dσ

∣∣∣∣ ≥ 1

C0
σ(Q̃), (3.71)

then there exists a number η ∈ (0, 1) such that, for each cube Q ∈ D(E) and corresponding
cube Q̃ in (3.71), there exists a sequence

{
Qj
}
j∈J ⊆ D(E) of pairwise disjoint cubes such that

(1) Qj ⊆ Q̃ for every j ∈ J , σ
(
Q̃ \

⋃
j∈J Qj

)
≥ η σ(Q̃),
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(2)
∣∣∣�Q′ bQ dσ∣∣∣ ≥ 1

2 for every Q′ ∈
{
Q′ ∈ D(E) : Q′ ⊆ Q̃ and Q′ ∩

(⋃
j∈J Qj

)
= ∅
}

=: FQ.

Proof. It follows from (3) and (9) in Proposition 2.11 that

σ
(
Q \

⋃
Q′⊆Q,Q′∈Dl(E)Q′

)
= 0, ∀Q ∈ Dk(E), ∀k, l ∈ Z with l ≥ k ≥ κE . (3.72)

We use (3.71) to normalize each bQ so that
�
Q̃
bQ dσ = 1, thus

�
E |bQ|

2 dσ ≤ C3
0σ(Q). Also

σ(Q) ≤ C1σ(Q̃) for some C1 ∈ [1,∞) independent of Q, Q̃. (3.73)

Fix Q and Q̃ as in (3.71). We perform a stopping-time argument for Q̃ by successively dividing
it into dyadic sub-cubes Q′ ⊆ Q̃ and stopping whenever Re

�
Q′ bQ dσ ≤

1
2 . This is possible by

(3.72) and the normalization of bQ. We obtain a family of cubes
{
Qj
}
j∈J ⊆ D(E) such that:

(a) Qj ⊆ Q̃ ⊆ Q for each j ∈ J and Qj ∩Qj′ = ∅ whenever j, j′ ∈ J , j 6= j′.

(b) Re
�
Qj
bQ dσ ≤ 1

2 for each j ∈ J .

(c) the family
{
Qj
}
j∈J is maximal with respect to (a) and (b) above, i.e., if Q′ ∈ D(E) is such

that Q′ ⊆ Q̃, then either there exists j0 ∈ J such that Q′ ⊆ Qj0 , or Re
�
Q′ bQ dσ >

1
2 .

We combine the above results to obtain

σ(Q̃) =

�
Q̃
bQ dσ = Re

�
Q̃\(

⋃
j∈J Qj)

bQ dσ +
∑
j∈J

Re

�
Qj

bQ dσ

≤
(�

E
|bQ|2dσ

) 1
2
σ
(
Q̃ \ ∪j∈JQj

) 1
2 + 1

2

∑
j∈J

σ(Qj)

≤ C
1
2
1 C

3
2
0 σ(Q̃)

1
2σ
(
Q̃ \ ∪j∈JQj

) 1
2 + 1

2σ(Q̃). (3.74)

Hence, σ
(
Q̃ \ ∪j∈JQj

)
≥ ησ(Q̃) with η := 1

4C1C3
0
, which proves (1), whilst (c) implies (2).

We are now ready to present the proof of Theorem 3.6.

Proof of Theorem 3.6. By Theorem 3.1, it suffices to show that |Θ1|2δ2υ−(m−d)
E dµ is a Carleson

measure in X \E relative to E, that is, that (3.5) holds. We first show that (3.5) holds for Θ
replaced by some truncated operators. More precisely, for each i ∈ N consider the kernel

θi(x, y) := 1{1/i<δE<i}(x)θ(x, y), ∀x ∈X \ E, ∀ y ∈ E, (3.75)

and introduce the integral operator

(Θif)(x) :=

�
E
θi(x, y)f(y) dσ(y), ∀x ∈X \ E. (3.76)

Clearly,

(Θif)(x) = 1{1/i<δE<i}(x)(Θf)(x), ∀x ∈X \ E, ∀ i ∈ N, (3.77)
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and, with Cθ as in (3.2), for all x ∈X \ E, y ∈ E and ỹ ∈ E with ρ(y, ỹ) ≤ 1
2ρ(x, y), we have

|θi(x, y)| ≤ Cθ
δE(x)−a

ρ(x, y)d+υ−a , (3.78)

|θi(x, y)− θi(x, ỹ)| ≤ Cθ
ρ(y, ỹ)αδE(x)−a−α

ρ(x, y)d+υ−a . (3.79)

For each i ∈ N and x ∈X \ E, by (3.76), (3.78) and Lemma 3.4 (since υ − a > 0), we have

|(Θi1)(x)| ≤ C1{1/i<δE<i}(x)

�
E

δE(x)−a

ρ#(x, y)d+υ−a dσ(y) ≤ C1{1/i<δE<i}(x)[δE(x)]−υ

≤ Ciυ1{1/i<δE<i}(x). (3.80)

Using (2.108) and Lemma 3.5, for all Q ∈ D(E), with xQ denoting the center of Q, we obtain

�
TE(Q)

|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x)

≤ Ci2υ
�
x∈Bρ# (xQ,C`(Q)), δE(x)<i

δE(x)2υ−(m−d) dµ(x) ≤ Ci4υσ(Q),
(3.81)

where C ∈ (0,∞) does not depend on Q nor on i. Hence, if we now define

ci := sup
Q∈D(E)

1

σ(Q)

�
TE(Q)

|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x), ∀ i ∈ N, (3.82)

then 0 ≤ ci ≤ Ci4υ <∞ for all i ∈ N. We must now show that supi∈N ci <∞. Fix Q ∈ D(E)

and the corresponding cube Q̃ satisfying (ii) in Theorem 3.6 with c0 ∈ (0, 1]. We have

∃ p, q ∈ Z satisfying 0 ≤ p− q ≤ log2(1/c0) such that Q̃ ∈ Dp(E), Q ∈ Dq(E). (3.83)

Next, recall the notation in Lemma 3.7 to define E∗Q :=
⋃
Q′∈FQ UQ′ . Then by (2.97) we have

TE(Q) ⊆ E∗Q ∪
(⋃
j∈J

TE(Qj)
)
∪
( ⋃

Q′′∈Dp(E)

Q′′⊆Q,Q′′ 6=Q̃

TE(Q′′)
)
∪
( ⋃

r∈Z
q≤r<p

⋃
Q′′∈Dr(E)
Q′′⊆Q

U ′′Q
)
. (3.84)

Consequently, for each i ∈ N we may write

�
TE(Q)

|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x) (3.85)

≤
�
E∗Q

|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x) +
∑
j∈J

�
TE(Qj)

|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x)

+
∑

Q′′∈Dp(E), Q′′⊆Q,Q′′ 6=Q̃

�
TE(Q′′)

|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x)

+

p−1∑
r=q

∑
Q′′∈Dr(E), Q′′⊆Q

�
UQ′′
|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x).
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To estimate the first integral on the right in (3.85), we combine (2.115), (3.71) and (2) in
Lemma 3.7 with the fact, implied by (3.77), that |Θi1| ≤ |Θ1| for all i ∈ N, to obtain

�
E∗Q

|Θi1(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C
∑

Q′∈FQ

�
UQ′
|(Θ1)(x)AQ′bQ|2δE(x)2υ−(m−d) dµ(x)

≤ C
�
TE(Q)

|(ΘbQ)(x)|2δE(x)2υ−(m−d) dµ(x) + C

�
E
|bQ|2 dσ ≤ Cσ(Q), (3.86)

where the final line uses (2.97), (3.55) with f := bQ, and assumptions (i) and (iii) of Theo-
rem 3.6. For the first sum in (3.85), we use (3.82) and Lemma 3.7 to obtain∑

j∈J

�
TE(Qj)

|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ ci σ
(⋃
j∈J

Qj
)
≤ ci (1− η)σ(Q̃). (3.87)

For the second sum in (3.85), we use (3.82) to obtain∑
Q′′∈Dp(E), Q′′⊆Q,Q′′ 6=Q̃

�
TE(Q′′)

|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ ciσ(Q \ Q̃). (3.88)

For the final two sums in (3.85), we use (3.80), (2.106), (2.108) and (3.83) to obtain

p−1∑
r=q

∑
Q′′∈Dr(E), Q′′⊆Q

�
UQ′′
|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C log2(1/c0)σ(Q). (3.89)

Combining (3.85)-(3.89) and (3.73), there exists C ∈ (0,∞) such that for all i ∈ N, we have

�
TE(Q)

|Θi1|2δ2υ−(m−d)
E dµ ≤ ci (1− η)σ(Q̃) + ciσ(Q \ Q̃) + Cσ(Q)

≤ ci (1− ηC−1
1 )σ(Q) + Cσ(Q),

(3.90)

for all Q ∈ D(E). It follows that ci ≤ ci (1− ηC−1
1 ) + C, hence supi∈N ci ≤ η−1C1C <∞.

We may now apply (3.77) and Lebesgue’s Monotone Convergence Theorem to obtain

�
TE(Q)

|(Θ1)(x)|2δE(x)2υ−(m−d) dµ(x) = lim
i→∞

�
TE(Q)

|(Θi1)(x)|2δE(x)2υ−(m−d) dµ(x)

≤ (supi∈Nci)σ(Q) ≤ Cσ(Q),

(3.91)

for all Q ∈ D(E). This completes the proof of (3.5) and finishes the proof of Theorem 3.6.

4 An Inductive Scheme for Square Function Estimates

We now apply the local T (b) Theorem from the previous section to establish an inductive
scheme for square function estimates. We show that an integral operator Θ, associated with
an Ahlfors-David regular set E as in (3.4), satisfies square function estimates whenever the set
E contains (uniformly, at all scales and locations) so-called big pieces of sets on which square
function estimates for Θ hold. In short, we say that big pieces of square function estimates
(BPSFE) imply square function estimates (SFE). We emphasize that this “big pieces functor”
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is applied to square function estimates for a fixed operator Θ. Thus, the result in this section
is not a consequence of the stability of UR sets under the so-called big pieces functor, as our
particular square function bounds may not be equivalent to the property that E is UR.

We work in the context introduced at the beginning of Section 3, except we must assume
in addition that the integral kernel θ is not adapted to a fixed set E. In particular, fix two real
numbers 0 < d < m and an m-dimensional ADR space (X , ρ, µ). Suppose that

θ : (X ×X ) \
{

(x, x) : x ∈X
}
−→ R

is Borel measurable with respect to the product topology τρ × τρ,
(4.1)

and has the property that there exist Cθ, α, υ ∈ (0,∞) such that for all x, y, ỹ ∈ X with
x 6= y, x 6= ỹ and ρ(y, ỹ) ≤ 1

2ρ(x, y), the following hold:

|θ(x, y)| ≤ Cθ
ρ(x, y)d+υ

, (4.2)

|θ(x, y)− θ(x, ỹ)| ≤ Cθ
ρ(y, ỹ)α

ρ(x, y)d+υ+α
. (4.3)

For a closed subset E of (X , τρ) and a Borel semiregular measure σ on (E, τρ|E ) such that
(E, ρ

∣∣
E
, σ) is a d-dimensional ADR space, define the operator ΘE for all f ∈ Lp(E, σ), 1 ≤

p ≤ ∞, by

(ΘEf)(x) :=

�
E
θ(x, y)f(y) dσ(y), ∀x ∈X \ E. (4.4)

We then say that E has Square Function Estimates (SFE) relative to θ if�
X \E

|ΘEf(z)|2 distρ#(z, E)2υ−(m−d) dµ(z) ≤ C
�
E
|f |2 dσ, ∀f ∈ L2(E, σ). (4.5)

We now define what it means for a set to have big pieces of square function estimates.

Definition 4.1. Let 0 < d < m < ∞ denote real numbers, suppose that (X , ρ, µ) is an
m-dimensional ADR space and assume that θ satisfies (4.1)-(4.3). A set E ⊆ X is said to
have Big Pieces of Square Function Estimate (BPSFE) relative to θ if it is closed in (X , τρ),
there exist a Borel semiregular measure σ on (E, τρ|E ), such that

(
E, ρ

∣∣
E
, σ
)

is a d-dimensional
ADR space, and constants η, C1, C2 ∈ (0,∞), referred to as the BPSFE character of E, with
the following property: for each x ∈ E and each r ∈ (0,diamρ#(E)], there exists a closed subset

Ex,r of (X , τρ) such that
(
Ex,r, ρ

∣∣
Ex,r

, σx,r
)
, where σx,r := H d

X, ρ#
bEx,r is given by (2.15), is

a d-dimensional ADR space, with ADR constant at most equal to C1, satisfying

σ
(
Ex,r ∩ E ∩Bρ#(x, r)

)
≥ η rd (4.6)

and �
X \Ex,r

|ΘEx,rf(z)|2 distρ#(z, Ex,r)
2υ−(m−d) dµ(z) ≤ C2

�
Ex,r

|f |2 dσx,r, (4.7)

for all f ∈ L2(Ex,r, σx,r), where ΘEx,r is the operator associated with Ex,r as in (4.4).
For each integer k ≥ 2, a set E ⊆X is said to have (BP)k+1SFE relative to θ if the above

properties hold but with (4.7) replaced by the requirement that

Ex,r has (BP)kSFE relative to θ, with (BP)kSFE character controlled by C2, (4.8)

where (BP)1SFE denotes BPSFE.
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Remark 4.2. This property may be discretized with respect to a dyadic cube structure D(E).
In particular, it follows from (2.30) and (2.34) that BPSFE is equivalent to the property that
for each Q ∈ D(E), there exists a set EQ with the properties required of Ex,r in Definition 4.1.

We now state and prove the main result in this section.

Theorem 4.3. Let 0 < d < m < ∞ denote real numbers, suppose that (X , ρ, µ) is an m-
dimensional ADR space, and assume that θ is as in (4.1)-(4.3). If the set E ⊆X has BPSFE
relative to θ then there exists a finite constant C > 0, depending only on ρ, m, d, υ, Cθ, the
BPSFE character of E, and the ADR constants of E and X , such that�

X \E
|ΘEf(x)|2 δE(x)2υ−(m−d) dµ(x) ≤ C

�
E
|f |2 dσ, ∀ f ∈ L2(E, σ), (4.9)

where σ := H d
X, ρ#

bE is given by (2.15).

Proof. Suppose that E has BPSFE relative to θ, so by Remark 4.2, for each Q ∈ D(E) there
exists EQ such (4.6)-(4.7) hold with Ex,r replaced by EQ, and define bQ : E → R by setting
bQ(y) := 1Q∩EQ(y) for all y ∈ E. We will prove (4.9) by applying Theorem 3.6, so we only
need to prove that (i)–(iii) in Theorem 3.6 hold for {bQ}Q∈D(E). Condition (i) is immediate

whilst condition (ii), with Q̃ := Q, is a consequence of (4.6). To verify condition (iii), let
Q ∈ D(E), fix C1 ∈ (1,∞) to be specified later, and recall the notation in (2.4) to write�

TE(Q)
|ΘEbQ(x)|2δE(x)2υ−(m−d) dµ(x)

=

�
TE(Q)

|ΘEbQ(x)|21{z∈X : δEQ (z)>C1δE(z)}(x) δE(x)2υ−(m−d) dµ(x)

+

�
TE(Q)

|ΘEbQ(x)|21{z∈X :C−1
1 δE(z)≤δEQ (z)≤C1δE(z)}(x) δE(x)2υ−(m−d) dµ(x)

+

�
TE(Q)

|ΘEbQ(x)|21{z∈X : δEQ (z)<C−1
1 δE(z)}(x) δE(x)2υ−(m−d) dµ(x)

= : I1 + I2 + I3.

(4.10)

To estimate I1, we obtain a pointwise bound for ΘEbQ. To this end, first observe that

O :=
{
z ∈X : δEQ(z) > C1δE(z)

}
=⇒ O ∩ EQ = ∅. (4.11)

Hence, by (4.2) and (3.12) in Lemma 3.4, we have

|ΘEbQ(x)| ≤
�
EQ

|θ(x, y)| dσ(y) ≤ C

δEQ(x)υ
, ∀x ∈ O. (4.12)

We fix x0 ∈ Q∩EQ, since Q∩EQ 6= ∅ by (4.6), so by (2.108), there exists c ∈ (0,∞) such that

I1 ≤ C
�
Bρ# (x0,c`(Q))∩O

δEQ(x)−2υδE(x)2υ−(m−d) dµ(x). (4.13)

Now fix M ∈ (C2
ρ ,∞], choose C1 ∈ (M,∞), and observe that if x ∈ O then δEQ(x) > MδE(x),

hence Bρ#
(
x, δEQ(x)/M

)
∩ E 6= ∅, so by Lemma 2.10, there exists C ∈ (0,∞) such that

δEQ(x)d

Md
≤ CH d

X, ρ#

(
Bρ#

(
x,Cρ

δEQ(x)

M

)
∩ E

)
, ∀x ∈ O. (4.14)
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Using this in (4.13) we obtain

I1 ≤ C
�
Bρ# (x0,c`(Q))∩O

�
Bρ# (x,CρδEQ (x)/M)∩E

1 dH d
X, ρ#

(z) δEQ(x)−2υ−dδE(x)2υ−(m−d) dµ(x).

(4.15)
We make the claim that for each ϑ ∈ (0, 1)

if x ∈X \ EQ and z ∈X are

such that ρ#(x, z) < ϑ
Cρ
δEQ(x)

}
=⇒ 1− ϑ

Cρ
δEQ(x) ≤ δEQ(z) ≤ CρδEQ(x). (4.16)

Indeed, for each η > 1 close to 1, there exists y ∈ EQ satisfying ρ#(y, x) < ηδEQ(x), thus
δEQ(z) ≤ ρ#(y, z) ≤ CρηδEQ(x), and δEQ(z) ≤ CρδEQ(x) follows. Also, if w ∈ EQ, then

δEQ(x) ≤ ρ#(x,w) ≤ ϑδEQ(x) + Cρρ#(z, w), which implies δEQ(x) ≤ Cρ
1−ϑδEQ(z), as required.

Going further, fix x ∈ Bρ#(x0, c`(Q))∩O and z ∈ Bρ#
(
x,CρδEQ(x)/M

)
∩E and make two

observations. First, an application of (4.16) with ϑ := C2
ρ/M ∈ (0, 1) yields

M − C2
ρ

MCρ
δEQ(x) ≤ δEQ(z) ≤ CρδEQ(x) and ρ#(z, x) <

Cρ
M
δEQ(x) ≤

C2
ρ

M − C2
ρ

δEQ(z), (4.17)

hence x ∈ Bρ#
(
z,

C2
ρ

M−C2
ρ
δEQ(z)

)
. Second, since x0 ∈ EQ, M > C2

ρ and Cρ ≥ 1, we obtain

ρ#(x0, z) ≤ Cρ max
{
ρ#(x0, x), ρ#(x, z)

}
< Cρ max

{
c `(Q),

Cρ
M δEQ(x)

}
(4.18)

≤ Cρ max
{
c `(Q), 1

Cρ
δEQ(x)

}
≤ Cρ max

{
c `(Q), 1

Cρ
ρ#(x0, x)

}
= Cρc `(Q),

thus z ∈ Bρ#(x0, Cρc`(Q)). Setting CM := C2
ρ/(M − C2

ρ), by (4.17) and (4.11), we now have

I1 ≤ C
�
Bρ# (x0,Cρc`(Q))∩(E\EQ)

δEQ(z)−2υ−d
�
Bρ# (z,CM δEQ (z))\EQ

δE(x)2υ−(m−d) dµ(x) dH d
X, ρ#

(z)

≤ C
�
Bρ# (x0,Cρc`(Q))∩(E\EQ)

δEQ(z)−2υ−dδEQ(z)2υ+d dH d
X, ρ#

(z)

≤ CH d
X, ρ#

(
Bρ#(x0, Cρc `(Q)) ∩ E

)
≤ C`(Q)d ≤ Cσ(Q), (4.19)

where we used Lemma 3.5 and the fact that
(
E, ρ

∣∣
E
,H d

X, ρ#
bE
)

is d-ADR and that x0 ∈ E.

To estimate I3, we first note that since TE(Q) ∩ E = ∅, then (4.2) and (3.12) imply that

|ΘEbQ(x)| =
∣∣∣∣�
E
θ(x, y) bQ(y) dσ(y)

∣∣∣∣ ≤ �
E
|θ(x, y)| dσ(y) ≤ C

δE(x)υ
, ∀x ∈ TE(Q). (4.20)

Also, we have |ΘEbQ(x)| ≤ CδEQ(x)−υ for each x ∈ TE(Q)\EQ (cf. (4.12)). Next, fix α, β > 0
such that α+ β = υ. A logarithmic convex combination of these inequalities then yields

|ΘEbQ(x)| ≤ CδEQ(x)−αδE(x)−β ∀x ∈ TE(Q) \ EQ. (4.21)

By Lemma 2.9, we have µ(EQ) = 0, so using (4.21) in place of (4.12), we obtain (cf. (4.13))

I3 ≤ C
�
Bρ# (x0,c`(Q))∩(Õ\EQ)

δE(x)−2β+2υ−(m−d)δEQ(x)−2α dµ(x), (4.22)
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where we set Õ :=
{
z ∈ X : δE(z) > C1δEQ(z)

}
. The same reasoning leading up to (4.19),

applied with E and EQ interchanged, then gives

I3 ≤ C
�
Bρ# (x0,Cρc`(Q))∩(EQ\E)

δE(z)−2β+2υ−m
�
Bρ# (z,CM δE(z))\E

δE(x)−2α dµ(x) dH d
X, ρ#

(z)

≤ C
�
Bρ# (x0,Cρc`(Q))∩(EQ\E)

δE(z)−2β+2υ−mδE(z)−2α+m dH d
X, ρ#

(z)

≤ CH d
X, ρ#

(
Bρ#(x0, Cρc `(Q)) ∩ EQ

)
≤ C`(Q)d ≤ Cσ(Q) (4.23)

by applying Lemma 3.5, provided we choose 0 < α < (m − d)/2, and the fact that both(
E, ρ

∣∣
E
,H d

X, ρ#
bE
)

and
(
EQ, ρ

∣∣
EQ
,H d

X, ρ#
bEQ

)
are d-ADR spaces and that x0 ∈ E ∩ EQ.

To estimate I2, by (4.4), (6) in Proposition 2.3 and (4.7), with σQ := H d
X, ρ#

bEQ, we have

I2 =

�
TE(Q)\EQ

|ΘEQbQ(x)|21{z∈X :C−1
1 δE(z)≤δEQ (z)≤C1δE(z)}(x) δE(x)2υ−(m−d) dµ(x)

≤ C
�

X \EQ
|ΘEQbQ(x)|2 δEQ(x)2υ−(m−d) dµ(x)

≤ C
�
EQ

|bQ|2 dσQ ≤ CH d
X, ρ#

(
Q ∩ EQ

)
≤ Cσ(Q),

(4.24)

which combined with (4.19) and (4.23) shows that (iii) in Theorem 3.6 holds, as required.

The refinement of Theorem 4.3 below follows as a corollary by a simple induction argument.

Theorem 4.4. Let 0 < d < m < ∞ denote real numbers, suppose that (X , ρ, µ) is an m-
dimensional ADR space, and assume that θ is as in (4.1)-(4.3). If E is a closed in (X , τρ)
and has the property that there exists a Borel semiregular measure σ on (E, τρ|E ) such that(
E, ρ

∣∣
E
, σ
)

is a d-dimensional ADR space, then the following properties are equivalent:

(1) E has (BP)kSFE relative to θ for some k ∈ N.

(2) E has (BP)kSFE relative to θ for every k ∈ N.

(3) E has (BP)0SFE relative to θ.

5 Square Function Estimates on Uniformly Rectifiable Sets

Given an n-dimensional Ahlfors-David regular set Σ in Rn+1 that has so-called big pieces
of Lipschitz graphs (BPLG), the inductive scheme established in the previous section allows
us to deduce square function estimates for an integral operator ΘΣ, as in (4.4), whenever
square function estimates are satisfied by ΘΓ for all Lipschitz graphs Γ in Rn+1. Furthermore,
induction allows us to prove the same result when the set Σ only has (BP)kLG for any k ∈ N.
The definition of (BP)kLG is given in Definition 5.5. A recent result by J. Azzam and R. Schul
(cf. [9, Corollary 1.7]) proves that uniformly rectifiable sets have (BP)2LG (the converse
implication also holds and can be found in [27, p. 16]), and this allows us to obtain square
function estimates on uniformly rectifiable sets.
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We work in the Euclidean codimension one setting throughout this section. In particular,
fix n ∈ N and let Rn+1 be the ambient space, so that in the notation of Section 4, we would
have d = n, m = n+1 and (X , ρ, µ) is Rn+1 with the Euclidean metric and Lebesgue measure.
We also restrict our attention to the following class of kernels in order to obtain square function
estimates on Lipschitz graphs. Suppose that K : Rn+1 \ {0} → R satisfies

K ∈ C2(Rn+1 \ {0}), K(λx) = λ−nK(x) for all λ > 0, x ∈ Rn+1 \ {0}, K is odd. (5.1)

In particular, the first two properties above imply that if CK := max
0≤j≤2

‖∇jK‖L∞(Sn−1) then

|∇jK(x)| ≤ CK |x|−n−j , ∀x ∈ Rn+1 \ {0}, ∀ j ∈ {0, 1, 2}. (5.2)

For a closed subset Σ of Rn+1, let σ := H n
Rn+1bΣ denote the surface measure induced by the

n-dimensional Hausdorff measure on Σ from (2.15), and define the integral operator T for all
functions f ∈ Lp(Σ, σ), 1 ≤ p ≤ ∞, by

T f(x) :=

�
Σ
K(x− y)f(y) dσ(y), ∀x ∈ Rn+1 \ Σ. (5.3)

In the notation of Section 4, we have {E,ΘE , θ} = {Σ,∇T ,∇K}. We begin by proving
square function estimates for ∇T in the case when Σ is a Lipschitz graph. The inductive
scheme from the previous section then allows us to extend that result to the case when Σ has
(BP)kLG for any k ∈ N, and hence when Σ is uniformly rectifiable.

5.1 Square function estimates on Lipschitz graphs

The main result in this subsection is the square function estimate for Lipschitz graphs contained
in the theorem below. A parabolic variant of this result appears in [43], and the present proof
is based on the arguments given there, and in [38].

Theorem 5.1. Let A : Rn → R be a Lipschitz function and set Σ :=
{

(x,A(x)) : x ∈ Rn
}

.
Moreover, assume that K is as in (5.1) and consider the operator T as in (5.3). Then there
exists a finite constant C > 0 depending only on ‖∂αK‖L∞(Sn) for |α| ≤ 2, and the Lipschitz
constant of A such that for each function f ∈ L2(Σ, σ) it holds that

�
Rn+1\Σ

|(∇T f)(x)|2 dist(x,Σ) dx ≤ C
�

Σ
|f |2 dσ. (5.4)

As a preamble to the proof of Theorem 5.1, we state and prove a couple of technical lemmas.
The first has essentially appeared previously in [14], and is based upon ideas of [55].

Lemma 5.2. Assume that A : Rn → R is a locally integrable function such that ∇A ∈ L2(Rn).
Pick a smooth, real-valued, nonnegative, compactly supported function φ defined in Rn with�
Rn φ(x) dx = 1 and for each t > 0 set φt(x) := t−nφ(x/t) for x ∈ Rn. Finally, define

EA(t, x, y) := A(x)−A(y)− 〈∇x(φt ∗A)(x), (x− y)〉, ∀x, y ∈ Rn, ∀ t > 0. (5.5)

Then, for some finite positive constant C = C(φ, n),
� ∞

0
t−n−2

�
Rn

�
|x−y|≤λt

|EA(t, x, y)|2 dy dx dt
t ≤ Cλ

n+3‖∇A‖2L2(Rn), ∀λ ≥ 1. (5.6)
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Proof. Applying the changes of variables t = λ−1τ , y = x+h and then employing Plancherel’s
theorem in the variable x, we may write (with ‘hat’ denoting the Fourier transform)

� ∞
0
t−n−2

�
Rn

�
|x−y|≤λt

|EA(t, x, y)|2 dy dx dt
t

(5.7)

= λn+2

� ∞
0

τ−n−2

�
Rn

�
|h|≤τ

∣∣A(x)−A(x+ h) + 〈∇x(φλ−1τ ∗A)(x), h〉
∣∣2 dh dx dτ

τ

= λn+2

� ∞
0

τ−n−2

�
Rn

�
|h|≤τ

∣∣1− ei〈ζ,h〉 + i〈ζ, h〉 φ̂(λ−1τζ)
∣∣2 |∇̂A(ζ)|2

|ζ|2 dh dζ
dτ

τ

= λn+2

� ∞
0

�
Rn

�
|w|≤1

∣∣1− eiτ〈ζ,w〉 + iτ〈ζ, w〉 φ̂(λ−1τζ)
∣∣2

τ2|ζ|2
|∇̂A(ζ)|2 dw dζ dτ

τ
,

where the last equality in (5.7) is based on the change of variables h = τw.
Next we observe that for every ζ ∈ Rn and w ∈ Rn with |w| ≤ 1 it holds that∣∣1− eiτ〈ζ,w〉 + iτ〈ζ, w〉 φ̂(λ−1τζ)

∣∣
τ |ζ|

≤ C min
{
τ |ζ|, λ

τ |ζ|

}
(5.8)

for some C > 0 depending only on φ. To see why (5.8) is true, consider the following two cases.

Case I: If τ |ζ| ≤
√
λ, then using Taylor expansions about zero for the complex exponential

function and φ̂, and since φ̂(0) = 1, λ ≥ 1 and |w| ≤ 1, we obtain∣∣1− eiτ〈ζ,w〉 + iτ〈ζ, w〉+ iτ〈ζ, w〉 (φ̂(λ−1τζ)− 1)
∣∣ ≤ Cτ2|ζ|2. (5.9)

Case II: If τ |ζ| >
√
λ, then since φ̂ is a Schwartz function, λ ≥ 1 and |w| ≤ 1, we have∣∣1− eiτ〈ζ,w〉 + τ〈ζ, w〉 φ̂(λ−1τζ)

∣∣ ≤ 2 + Cτ |ζ| (1 + λ−1τ |ζ|)−1 ≤ Cλ. (5.10)

These prove (5.8), and integrating in τ ∈ (0,∞) with respect to the Haar measure then implies

� ∞
0

∣∣1− eiτ〈ζ,w〉 + iτ〈ζ, w〉 φ̂(λ−1τζ)
∣∣2

τ2|ζ|2
dτ

τ
≤
� ∞

0
min

{
τ2|ζ|2, λ2

τ2|ζ|2
} dτ
τ
≤ Cλ. (5.11)

A combination of (5.7), (5.11) and Plancherel’s theorem now yields (5.6), as required.

The second lemma needed here has essentially appeared previously in [64].

Lemma 5.3. Let F : Rn+1 \ {0} → R be a continuous function which is even and positive
homogeneous of degree −n− 1. Then for any a ∈ Rn and any t > 0 it holds that

�
Rn
F (y, a · y + t) dy =

1

2t

�
Sn−1

� ∞
−∞

F (ω, s) ds dω =

�
Rn
F (y, t) dy. (5.12)

In particular, if F is some first-order partial derivative, say F = ∂jG, j ∈ {1, .., n + 1}, of a
function G ∈ C1(Rn+1 \ {0}) which is odd and homogeneous of degree −n, then

�
Rn
F (y, a · y + t) dy = 0 for any a ∈ Rn and t > 0. (5.13)
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After this preamble, we are ready to present the proof of Theorem 5.1.

Proof of Theorem 5.1. A moment’s reflection shows that it suffices to establish (5.4) with the
domain of integration Rn+1 \ Σ in the left-hand side replaced by

Ω := {(x, t) ∈ Rn+1 : t > A(x)}. (5.14)

Assume that this is the case and note that by making the bi-Lipschitz change of variables
Rn × (0,∞) 3 (x, t) 7→ (x,A(x) + t) ∈ Ω, with Jacobian equivalent to a finite constant, the
estimate (5.4) follows from the boundedness of T j : L2(Rn, dx)→ L2(Rn+1

+ , dtt dx) defined by

T jf(x, t) :=

�
Rn
Kj
t (x, y)f(y) dy (5.15)

for j = 1, . . . , n+ 1, where the family of kernels {Kj
t (x, y)}t>0 is given by

Kj
t (x, y) := t (∂jK)(x− y,A(x)−A(y) + t), x, y ∈ Rn, t > 0, j = 1, . . . , n+ 1. (5.16)

The approach we present utilizes ideas developed in [16] and [38]. Based on (5.1)-(5.2) it is
not difficult to check that the family {Kj

t (x, y)}t>0 is standard, i.e., there hold

|Kj
t (x, y)| ≤ C t(t+ |x− y|)−(n+1) (5.17)

|∇xKj
t (x, y)|+ |∇yKj

t (x, y)| ≤ C t(t+ |x− y|)−(n+2). (5.18)

As such, a particular version of Theorem 3.1 gives that the operators in (5.15) are bounded as
soon as we show that for each j = 1, . . . , n+ 1,

|T j(1)(x, t)|2 dt
t dx is a Carleson measure in Rn+1

+ . (5.19)

To this end, fix j ∈ {1, . . . , n+ 1} and select a real-valued, nonnegative function φ ∈ C∞c (Rn),
vanishing for |x| ≥ 1, with

�
Rn φ(x) dx = 1 and, as usual, for every t > 0, set φt(x) := t−nφ(x/t)

for x ∈ Rn. We write T j(1) = (T j(1)− T̃ j(1)) + T̃ j(1) where

T̃ jf(x, t) :=

�
Rn
K̃j
t (x, y)f(y) dy, x ∈ Rn, t > 0, (5.20)

with

K̃j
t (x, y) := t (∂jK)(x− y, 〈∇x(φt ∗A)(x), x− y〉+ t), x, y ∈ Rn, t > 0. (5.21)

To prove that |(T j − T̃ j)(1)(x, t)|2 dxdtt is a Carleson measure, fix x0 in Rn, r > 0, and split

(T j − T̃ j)(1) = (T j − T̃ j)(1B(x0,100r)) + (T j − T̃ j)(1Rn\B(x0,100r)), (5.22)

Using (5.17) and the fact that a similar estimate holds for K̃j
t (x, y), we may write

� r

0

�
B(x0,r)

|(T j − T̃ j)(1Rn\B(x0,100r))(x, t)|2 dx dt
t

≤ C
� r

0

�
B(x0,r)

(�
Rn\B(x0,100r)

t

|x− y|n+1
dy
)2
dx dt

t

= C

� r

0

�
B(x0,r)

(�
Rn\B(0,99r)

t

|z|n+1
dz
)2
dx dt

t = C rn. (5.23)
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It remains to show that� r

0

�
B(x0,r)

|(T j − T̃ j)(1B(x0,100r))(x, t)|2 dx dt
t ≤ C r

n. (5.24)

We now use Lemma 5.2 with the following adjustment. Fix a function Φ ∈ C∞(R) such that
0 ≤ Φ ≤ 1, supp Φ ⊆ [−150r, 150r], Φ ≡ 1 on [−125r, 125r], and ‖Φ′‖L∞(R) ≤ c/r. If we now

set Ã(x) := Φ(|x− x0|)(A(x)−A(x0)) for every x ∈ Rn, it follows that

Ã(x)− Ã(y) = A(x)−A(y) and ∇(φt ∗ Ã)(x) = ∇(φt ∗A)(x)
whenever x ∈ B(x0, r), y ∈ B(x0, 100r), t ∈ (0, r).

(5.25)

Hence, the expression (T j−T̃ j)(1B(x0,100r))(x, t) does not change for x ∈ B(x0, r) and t ∈ (0, r)

if we replace A by Ã. In addition, since ‖∇Ã‖L∞(Rn) ≤ C‖∇A‖L∞(Rn), taking into account

the support of Ã we have ‖∇Ã‖L2(Rn) ≤ Crn/2‖∇A‖L∞(Rn) for some C > 0 independent of r.
Hence, there is no loss of generality in assuming that the original Lipschitz function A satisfies

‖∇A‖L2(Rn) ≤ Crn/2‖∇A‖L∞(Rn). (5.26)

Under this assumption we now return to the task of proving (5.24). To get started, recall (5.5).
We claim that there exists C = C(A, φ) > 0 such that

|Kj
t (x, y)− K̃j

t (x, y)| ≤ C t(t+ |x− y|)−(n+2)|EA(t, x, y)|, ∀x, y ∈ Rn, ∀ t > 0. (5.27)

Indeed, by making use of the Mean-Value Theorem and (5.2), the claim will follow if we show
that there exists C = C(A, φ) > 0 with the property that

supξ∈I [|ξ|+ |x− y|]−(n+2) ≤ C[t+ |x− y|]−(n+2), (5.28)

where I denotes the interval with endpoints t+A(x)−A(y) and t+ 〈∇x(φt ∗A)(x), (x− y)〉.
From the properties of A and φ we see that ξ = t+O(|x− y|), with constants depending only
on A and φ. In particular, there exists some small ε = ε(A, φ) > 0 such that if |x−y| < εt then
t ≤ C|ξ| ≤ C(|ξ|+ |x− y|). On the other hand, if |x− y| ≥ εt then clearly t ≤ C(|ξ|+ |x− y|).
Thus, there exists C > 0 such that t ≤ C(|ξ|+ |x− y|) for ξ ∈ I, which implies that for some
C = C(A, φ) > 0 it holds that t+ |x− y| ≤ C(|ξ|+ |x− y|) whenever ξ ∈ I, proving (5.28).

Next, making use of (5.27), we may write

� r

0

�
B(x0,r)

|(T j − T̃ j)(1B(x0,100r))(x, t)|2 dx
dt

t

≤ C
� ∞

0

�
Rn

(�
Rn

t

(t+ |x− y|)n+2
|EA(t, x, y)| dy

)2
dx

dt

t

≤ C
� ∞

0

�
Rn

(
t−n−1

�
B(x,t)

|EA(t, x, y)| dy
)2
dx

dt

t

+ C

� ∞
0

�
Rn

( ∞∑
`=0

�
B(x,2`+1t)\B(x,2`t)

t

|x− y|n+2
|EA(t, x, y)| dy

)2

dx
dt

t

≤ C
� ∞

0

�
Rn

( ∞∑
`=0

2−`(2`t)−n−1

�
B(x,2`+1t)

|EA(t, x, y)| dy

)2

dx
dt

t
. (5.29)
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Now, we apply Minkowski’s inequality in order to obtain

� ∞
0

�
Rn

( ∞∑
`=0

2−`(2`t)−n−1

�
B(x,2`+1t)

|EA(t, x, y)| dy

)2

dx
dt

t

≤

( ∞∑
`=0

[� ∞
0

�
Rn

2−2`(2`t)−2n−2

(�
B(x,2`+1t)

|EA(t, x, y)| dy
)2

dx
dt

t

]1/2
)2

. (5.30)

By the Cauchy-Schwarz inequality, the last expression above is dominated by( ∞∑
`=0

[
2`(−n−4)

� ∞
0

�
Rn
t−n−2

�
B(x,2`+1t)

|EA(t, x, y)|2 dy dx dt
t

]1/2
)2

. (5.31)

Invoking now Lemma 5.2 with λ := 2`+1 ≥ 1 for ` ∈ N∪{0}, each inner triple integral in (5.31)
is dominated by C2`(n+3)‖∇A‖2L2(Rn) with C > 0 finite constant independent of `. Thus, the

entire expression in (5.31) is

≤ C

( ∞∑
`=0

[
2`(−n−4) · 2`(n+3)‖∇A‖2L2(Rn)

]1/2)2

= C‖∇A‖2L2(Rn) ≤ Cr
n, (5.32)

where for the last inequality in (5.32) we have used (5.26). This finishes the proof of (5.24).
In turn, when (5.24) is combined with (5.23), we obtain

|(T j − T̃ j)(1)(x, t)|2 dt
t dx is a Carleson measure in Rn+1

+ . (5.33)

At this stage, there remains to observe that, thanks to Lemma 5.3, we have

T̃ j(1)(x, t) =

�
Rn
t (∂jK)

(
x− y, 〈∇x(φt ∗A)(x), (x− y)〉+ t

)
dy ≡ 0, ∀x ∈ Rn, ∀ t > 0.

(5.34)

The proof of Theorem 5.1 is thus completed.

5.2 Square function estimates on (BP)kLG sets

We continue to work in the context of Rn+1 introduced at the beginning of Section 5, and
abbreviate the n-dimensional Hausdorff outer measure from Definition 2.2 as Hn := HnRn+1 .
We prove that square function estimates are stable under the so-called big pieces functor.
Square function estimates on uniformly rectifiable sets then follow as a simple corollary. Let
us begin by reviewing the concept of uniform rectifiability. In particular, following G. David
and S. Semmes [26], we make the following definition.

Definition 5.4. A closed set Σ ⊆ Rn+1 is called uniformly rectifiable if it is n-dimensional
Ahlfors-David regular and the following holds: There exist ε, M ∈ (0,∞), referred to as the UR
constants of Σ, such that for each x ∈ Σ and r > 0, there is a Lipschitz map ϕ : Bn

r → Rn+1,
where Bn

r is a ball of radius r in Rn, with Lipschitz constant at most equal to M , such that

Hn
(
Σ ∩B(x, r) ∩ ϕ(Bn

r )
)
≥ εrn. (5.35)

If Σ is compact, then this is only required for r ∈ (0, diam (Σ)].
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There are a variety of equivalent characterizations of uniform rectifiability (cf., e.g., [27,
Theorem I.1.5.7, p. 22]); the version above is often specified by saying that Σ has Big Pieces

of Lipschitz Images (BPLI). Another version, in which Lipschitz maps are replaced with
Bi-Lipschitz maps, is specified by saying that Σ has Big Pieces of Bi-Lipschitz Images

(BPBI). The equivalence between BPLI and BPBI can be found in [27, p. 22]. We also require
the following notion of sets having big pieces of Lipschitz graphs.

Definition 5.5. A set Σ ⊆ Rn+1 is said to have Big Pieces of Lipschitz Graphs (BPLG) if
it is n-dimensional Ahlfors-David regular and the following holds: There exist ε, M ∈ (0,∞),
referred to as the BPLG constants of Σ, such that for each x ∈ Σ and r > 0, there is an
n-dimensional Lipschitz graph Γ ⊆ Rn+1 with Lipschitz constant at most equal to M , such that

Hn
(
Σ ∩B(x, r) ∩ Γ) ≥ εrn. (5.36)

If Σ is compact, then this is only required for r ∈ (0, diam (Σ)].
Let (BP)1LG denote BPLG. For each k ∈ N, a set Σ ⊆ Rn+1 is said to have Big Pieces

of (BP)kLG ((BP)k+1LG) if it is n-dimensional Ahlfors-David regular and the following holds:
There exist δ, ε, M ∈ (0,∞), referred to as the (BP)k+1LG constants of Σ, such that for each
x ∈ Σ and r > 0, there is a set Ω ⊆ Rn+1 that has (BP)kLG with ADR constant at most equal
to M , and (BP)kLG constants ε, M , such that

Hn
(
Σ ∩B(x, r) ∩ Ω) ≥ δrn. (5.37)

If Σ is compact, then this is only required for r ∈ (0, diam (Σ)].

We now combine the inductive scheme from Section 4 with the square function estimates
for Lipschitz graphs from Subsection 5.1 to prove that square function estimates are stable
under the so-called big pieces functor.

Theorem 5.6. Let k ∈ N and suppose that Σ ⊆ Rn+1 has (BP)kLG. Let K be a real-valued
kernel satisfying (5.1), and let T denote the integral operator associated with Σ as in (5.3).
Then there exists a constant C ∈ (0,∞) depending only on n, the (BP)kLG constants of Σ,
and ‖∂αK‖L∞(Sn) for |α| ≤ 2, such that

�
Rn+1\Σ

|∇T f(x)|2 dist(x,Σ) dx ≤ C
�

Σ
|f |2 dσ, ∀ f ∈ L2(Σ, σ), (5.38)

where σ := H nbΣ is the measure induced by the n-dimensional Hausdorff measure on Σ.

Proof. The proof proceeds by induction on N. For k = 1, suppose that Σ ⊆ Rn+1 has BPLG
with BPLG constants ε0, C0 ∈ (0,∞). For each x ∈ Σ and r > 0, there is an n-dimensional
Lipschitz graph Γ ⊆ Rn+1 with Lipschitz constant at most equal to C0, such that

Hn
(
Σ ∩B(x, r) ∩ Γ) ≥ ε0r

n. (5.39)

It follows from Theorem 5.1 that Σ has BPSFE with BPSFE character depending only on
the BPLG constants of Σ, and ‖∂αK‖L∞(Sn) for |α| ≤ 2. It then follows from Theorem 4.3
that (5.38) holds for some C ∈ (0,∞) depending only on n and the constants just mentioned.

Now let j ∈ N and assume that the statement of the theorem holds in the case k = j.
Suppose that Σ ⊆ Rn+1 has (BP)j+1LG with (BP)j+1LG constants ε1, ε2, C1 ∈ (0,∞). For
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each x ∈ Σ and r > 0, there is a set Ω ⊆ Rn+1 that has (BP)jLG with ADR constant at most
equal to C1, and (BP)jLG constants ε1, C1, such that

Hn
(
Σ ∩B(x, r) ∩ Ω) ≥ ε2r

n. (5.40)

It follows by the inductive assumption that Σ has BPSFE with BPSFE character depending
only on the constants specified in the theorem in the case k = j. Applying again Theorem 4.3
we obtain that (5.38) holds for some C ∈ (0,∞) depending only on n, the (BP)j+1LG constants
of Σ, and ‖∂αK‖L∞(Sn) for |α| ≤ 2. This completes the proof.

The recent result by J. Azzam and R. Schul (cf. [9, Corollary 1.7]) that uniformly rectifiable
sets have (BP)2LG allows us to obtain the following as an immediate corollary of Theorem 5.6.

Corollary 5.7. Suppose that Σ ⊆ Rn+1 is a uniformly rectifiable set. Let K be a real-valued
kernel satisfying (5.1), and let T denote the integral operator associated with Σ as in (5.3).
Then there exists a constant C ∈ (0,∞), depending only on n, the UR constants of Σ, and
‖∂αK‖L∞(Sn) for |α| ≤ 2, such that�

Rn+1\Σ
|∇T f(x)|2 dist(x,Σ) dx ≤ C

�
Σ
|f |2 dσ, ∀ f ∈ L2(Σ, σ), (5.41)

where σ := H nbΣ is the measure induced by the n-dimensional Hausdorff measure on Σ.

5.3 Square function estimates for integral operators with variable kernels

The square function estimates from Theorem 5.6 and Corollary 5.7 have been formulated for
convolution type integral operators and our goal in this subsection is to prove some versions of
these results which apply to integral operators with variable coefficient kernels. A first result
in this regard reads as follows.

Theorem 5.8. Let k ∈ N and suppose that Σ ⊆ Rn+1 is compact and has (BP)kLG. Then
there exists a positive integer M = M(n) with the following significance. Assume that U is a
bounded, open neighborhood of Σ in Rn+1 and consider a function

U ×
(
Rn+1 \ {0}

)
3 (x, z) 7→ b(x, z) ∈ R (5.42)

which is odd and (positively) homogeneous of degree −n in the variable z ∈ Rn+1 \ {0}, and
which has the property that

∂βx∂αz b(x, z) is continuous and bounded on U × Sn for |α| ≤M and |β| ≤ 1. (5.43)

Finally, define the variable kernel integral operator

Bf(x) :=

�
Σ
b(x, x− y)f(y) dσ(y), x ∈ U \ Σ, (5.44)

where σ := H nbΣ is the measure induced by the n-dimensional Hausdorff measure on Σ.
Then there exists a constant C ∈ (0,∞) depending only on n, the (BP)kLG constants of

Σ, the diameter of U , and ‖∂βx∂αz b‖L∞(U×Sn) for |α| ≤ 2, |β| ≤ 1, such that�
U\Σ
|∇Bf(x)|2 dist(x,Σ) dx ≤ C

�
Σ
|f |2 dσ, ∀ f ∈ L2(Σ, σ). (5.45)

In particular, (5.45) holds whenever Σ is uniformly rectifiable (while retaining the other
background assumptions).
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The following two geometric lemmas from [62] will be used to prove Theorem 5.8.

Lemma 5.9. Let (X , ρ) be a geometrically doubling quasi-metric space and let Σ ⊆ X be a
set such that

(
Σ, ρ

∣∣
Σ
,HdX ,ρbΣ

)
is a d-dimensional ADR space for some d > 0. Assume that µ

is a Borel measure on X satisfying

sup
x∈X , r>0

µ
(
Bρ#(x, r)

)
rm

< +∞ (5.46)

for some m ≥ 0. Fix a constant c > 0 and real numbers α < m− d and N < m−max {α, 0}.
Then there exists C ∈ (0,∞), depending on the supremum in (5.46), the geometric doubling
constant of (X , ρ), the ADR constant of Σ, as well as on N , α, and c, such that

�

Bρ# (x,r)\Σ

distρ#(y,Σ)−α

ρ#(x, y)N
dµ(y),≤ C rm−α−N ∀x ∈X , ∀ r > distρ#(x,E)/c. (5.47)

Lemma 5.10. Let (X , ρ) be a quasi-metric space. Suppose E ⊆ X is nonempty and σ is
a measure on E such that (E, ρ

∣∣
E
, σ) is a d-dimensional ADR space for some d > 0. Fix a

real number 0 ≤ N < d. Then there exists C ∈ (0,∞) depending only on N , ρ, and the ADR
constant of E, such that

�

E∩Bρ# (x,r)

1

ρ#(x, y)N
dσ(y) ≤ C rd−N , ∀x ∈X , ∀ r > distρ#(x,E). (5.48)

We are now ready to present the proof of Theorem 5.8.

Proof of Theorem 5.8. Set

H0 := 1, H1 := n+ 1, and H` :=

(
n+ `

`

)
−
(
n+ `− 2

`− 2

)
if ` ≥ 2, (5.49)

and, for each ` ∈ N0, let
{

Ψi`

}
1≤i≤H`

be an orthonormal basis for the space of spherical
harmonics of degree ` on the n-dimensional sphere Sn. In particular,

H` ≤ (`+ 1) · (`+ 2) · · · (n+ `− 1) · (n+ `) ≤ Cn `n for ` ≥ 2 (5.50)

and, if ∆Sn denotes the Laplace-Beltrami operator on Sn, then for each ` ∈ N0 and 1 ≤ i ≤ H`,

∆SnΨi` = −`(n+ `− 1)Ψi` on Sn, and Ψi`

( x
|x|

)
=
Pi`(x)

|x|`
(5.51)

for some homogeneous harmonic polynomial Pi` of degree ` in Rn+1. Also,{
Ψi`

}
`∈N0, 1≤i≤H`

is an orthonormal basis for L2(Sn), (5.52)

hence,

‖Ψi`‖L2(Sn) = 1 for each ` ∈ N0 and 1 ≤ i ≤ H`. (5.53)

More details on these matters may be found in, e.g., [73, pp. 137–152] and [72, pp. 68–75].
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Next, fix an even integer d > (n/2) + 2. Sobolev’s embedding theorem then gives that for
each ` ∈ N0 and 1 ≤ i ≤ H` (with I standing for the identity on Sn)

‖Ψi`‖C2(Sn) ≤ Cn
∥∥(I −∆Sn)d/2Ψi`

∥∥
L2(Sn)

≤ Cn`d, (5.54)

where the last inequality is a consequence of (5.51)-(5.53).
Fix ` ∈ N0 and 1 ≤ i ≤ H` arbitrary. If we now define

ai`(x) :=

�
Sn
b(x, ω)Ψi`(ω) dω, for each x ∈ U , (5.55)

it follows from the last formula in (5.51) and the assumptions on b(x, z) that

ai` is identically zero whenever ` is even. (5.56)

Also, for each N ∈ N with 2N ≤M and each multiindex β of length at most 1 we have

sup
x∈U

∣∣[−`(n+ `− 1)]N (∂βai`)(x)
∣∣ = sup

x∈U

∣∣∣�
Sn

(∂βx b)(x, ω)
(
∆N
SnΨi`

)
(ω) dω

∣∣∣
= sup

x∈U

∣∣∣�
Sn

(
∂βx∆N

Snb
)
(x, ω)Ψi`(ω) dω

∣∣∣
≤ sup

x∈U

∥∥(∂βx∆N
Snb
)
(x, ·)

∥∥
L2(Sn)

≤ Cn sup
(x,z)∈U×Sn
|α|≤M

∣∣(∂βx∂αz b)(x, z)∣∣ =: Cb <∞. (5.57)

Hence, for each number N ∈ N with 2N ≤M , there exists a constant Cn,N such that

sup
x∈U , |β|≤1

∣∣(∂βai`)(x)
∣∣ ≤ Cn,NCb `−2N , ` ∈ N0, 1 ≤ i ≤ H`. (5.58)

For each fixed x ∈ U , expand the function b(x, ·) ∈ L2(Sn) with respect to the orthonormal
basis

{
Ψi`

}
`∈N0, 1≤i≤H`

in order to obtain (in the sense of L2(Sn) in the variable z/|z| ∈ Sn)

b(x, z) = b
(
x,

z

|z|

)
|z|−n =

∑
`∈2N+1

H∑̀
i=1

ai`(x)Ψi`

( z
|z|

)
|z|−n, (5.59)

where the last equality is a consequence of (5.56). For each ` ∈ 2N + 1 let us now set

ki`(z) := Ψi`

( z
|z|

)
|z|−n, z ∈ Rn+1 \ {0}, (5.60)

so that, if d is as in (5.54), then for each |α| ≤ 2 we have

‖∂αki`‖L∞(Sn) ≤ Cn‖Ψi`‖C2(Sn) ≤ Cn`d. (5.61)

Also, given any f ∈ L2(Σ, σ), set

Bi`f(x) :=

�
Σ
ki`(x− y)f(y) dσ(y), x ∈ U \ Σ, (5.62)
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and note that for any compact subset O of U \ Σ and any multiindex α with |α| ≤ 1,

sup
x∈O

∣∣(∂αBi`f)(x)
∣∣ ≤ C(n,O,Σ)`d, (5.63)

by (5.61). On the other hand, if N > (d+ 1)/2 (a condition which we shall assume from now
on) then (5.54) and (5.58) imply that the last series in (5.59) converges to b(x, z) uniformly for
x ∈ U and z in compact subsets of Rn+1 \ {0}. As such, it follows from (5.60) and (5.62) that

Bf(x) =
∑

`∈2N+1

H∑̀
i=1

ai`(x)Bi`f(x), uniformly on compact subsets of U \ Σ. (5.64)

Using this, (5.63) and (5.58), we may differentiate term-by-term to obtain

(
∇Bf

)
(x) =

∑
`∈2N+1

H∑̀
i=1

ai`(x)
(
∇Bi`f

)
(x) +

∑
`∈2N+1

H∑̀
i=1

(∇ai`)(x)Bi`f(x), (5.65)

uniformly for all x in compact subsets of U \ Σ.
Moving on, observe that for each ` ∈ 2N + 1 and 1 ≤ i ≤ H`, Theorem 5.6 gives

�
U\Σ
|∇Bi`f(x)|2 dist(x,Σ) dx ≤ Ci`

�
Σ
|f |2 dσ, ∀ f ∈ L2(Σ, σ), (5.66)

where C ∈ (0,∞) depends only on n and the (BP)kLG constants of Σ, and where

Ci` = C max
|α|≤2

‖∂αki`‖L∞(Sn) ≤ C`d, (5.67)

by (5.54). If M ∈ N is odd and satisfies M > d + 1, then we may choose N ∈ N such that
d+ 1 < 2N < M , in which case (5.58) and (5.67) imply that for all f ∈ L2(Σ, σ), we have

∑
`∈2N+1

H∑̀
i=1

(�
U\Σ
|ai`(x)|2|∇Bi`f(x)|2 dist(x,Σ) dx

)1/2

≤ Cn,NCb
∑

`∈2N+1

H∑̀
i=1

`−2N
(�
U\Σ
|∇Bi`f(x)|2 dist(x,Σ) dx

)1/2

≤ Cn,NCb
( ∑
`∈2N+1

H∑̀
i=1

`d/2−2N
)(�

Σ
|f |2 dσ

)1/2
= C

(�
Σ
|f |2 dσ

)1/2
. (5.68)

Next, if ` ∈ N, 1 ≤ i ≤ H` and f ∈ L2(Σ, σ), then(�
U\Σ
|∇ai`|2|Bi`f(x)|2 dist(x,Σ) dx

)1/2
≤ Cn,NCb `−2N

(�
U\Σ

∣∣dist(x,Σ)1/2Bi`f(x)
∣∣2 dx)1/2

= Cn,NCb `
−2N

(�
U\Σ

∣∣Ti`f(x)
∣∣2 dx)1/2

, (5.69)

where Ti` : L2(Σ, σ) −→ L2(U \ Σ) is the integral operator with integral kernel

Ki`(x, y) := dist(x,Σ)1/2ki`(x− y), x ∈ U \ Σ, y ∈ Σ. (5.70)
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Note that

sup
x∈U\Σ

�
Σ

∣∣Ki`(x, y)
∣∣ dσ(y) ≤ ‖Ψi`‖L∞(Sn) sup

x∈U\Σ

�
Σ

dist(x,Σ)1/2

|x− y|n
dσ(y)

≤ C`d sup
x∈U\Σ

�
Σ

1

|x− y|n−1/2
dσ(y)

≤ C`d diam(U)1/2, (5.71)

by (5.54) and Lemma 5.10, and that

sup
y∈Σ

�
U\Σ

∣∣Ki`(x, y)
∣∣ dx ≤ ‖Ψi`‖L∞(Sn) sup

y∈Σ

�
U\Σ

dist(x,Σ)1/2

|x− y|n
dx

≤ C`d diam(U)3/2, (5.72)

by (5.54) and Lemma 5.9. From (5.71)-(5.72) and Schur’s Lemma we deduce that∥∥Ti`∥∥L2(Σ,σ)→L2(U\Σ)
≤ C`d diam(U). (5.73)

Combining (5.73) and (5.69) we conclude that(�
U\Σ
|∇ai`|2|Bi`f(x)|2 dist(x,Σ) dx

)1/2
≤ C(U)`d

(�
Σ
|f |2 dσ

)1/2
, (5.74)

for all f ∈ L2(Σ, σ), whenever ` ∈ N and 1 ≤ i ≤ H`. Thus, there exists C ∈ (0,∞) such that

∑
`∈2N+1

H∑̀
i=1

(�
U\Σ
|∇ai`|2|Bi`f(x)|2 dist(x,Σ) dx

)1/2
≤ C

(�
Σ
|f |2 dσ

)1/2
, (5.75)

for all f ∈ L2(Σ, σ).
Fix now an arbitrary compact subset O of U \ Σ. Then (5.65), (5.68) and (5.75) imply(�

O
|∇Bf(x)|2 dist(x,Σ) dx

)1/2
≤ C

(�
Σ
|f |2 dσ

)1/2
, (5.76)

where the constant C is independent of O and f ∈ L2(Σ, σ). Upon letting O ↗ U \Σ in (5.76),
Lebesgue’s Monotone Convergence Theorem then yields (5.45). Finally, the last claim in the
statement of Theorem 5.8 is justified in a similar manner, based on Corollary 5.7.

It is also useful to treat the following variant of (5.44):

B̃f(x) :=

�

Σ

b(y, x− y)f(y) dσ(y), x ∈ U \ Σ. (5.77)

The same analysis works with x replaced by y in the spherical harmonic expansion (5.59) (the
argument is simpler since then ai` acts as a multiplier in the y variable) to prove the following.

Theorem 5.11. In the setting of Theorem 5.8 with B̃ given by (5.77) and assuming, instead
of (5.43), that ∂αz b(x, z) is continuous and bounded on U × Sn for all |α| ≤M , it holds that�

U\Σ
|∇B̃f(x)|2 dist(x,Σ) dx ≤ C

�
Σ
|f |2 dσ, ∀ f ∈ L2(Σ, σ). (5.78)
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Theorem 5.8 and Theorem 5.11 also apply to the Schwartz kernels of certain pseudodif-
ferential operators. Recall that a pseudodifferential operator Q(x,D) with symbol q(x, ξ) in
Hörmander’s class Sm1,0 is given by the oscillatory integral

Q(x,D)u = (2π)−(n+1)/2

�
q(x, ξ)û(ξ)ei〈x, ξ〉dξ = (2π)−(n+1)

�
q(x, ξ)ei〈x−y, ξ〉u(y)dydξ. (5.79)

We define a smaller class of symbols Smcl by requiring that the (matrix-valued) function q(x, ξ)
has an asymptotic expansion of the form

q(x, ξ) ∼ qm(x, ξ) + qm−1(x, ξ) + · · · , (5.80)

with qj smooth in x and ξ and homogeneous of degree j in ξ (for |ξ| ≥ 1). We call qm(x, ξ), i.e.
the leading term in (5.80), the principal symbol of q(x,D). In fact, we shall find it convenient
to work with classes of symbols which only exhibit a limited amount of regularity in the spatial
variable (while still C∞ in the Fourier variable). Specifically, for each r ≥ 0 we define

CrSm1,0 :=
{
q(X, ξ) : ‖Dα

ξ q(·, ξ)‖Cr ≤ Cα(1 + |ξ|)m−|α|, ∀α
}
. (5.81)

Denote by OPCrSm1,0 the class of pseudodifferential operators associated with such symbols.
We write OPCrSmcl for the subclass of classical pseudodifferential operators in OPCrSm1,0 whose

symbols can be expanded as in (5.80), where qj(x, ξ) ∈ CrSm−j1,0 is homogeneous of degree j in
ξ for |ξ| ≥ 1, j = m,m− 1, . . . . Finally, we set ØPCrSmcl for the space of all formal adjoints of
operators in OPCrSmcl .

Given a classical pseudodifferential operator Q(x,D) ∈ OPCrS−1
cl , we denote by kQ(x, y)

and SymQ(x, ξ) its Schwartz kernel and its principal symbol, respectively. Next, if the sets
Σ ⊆ U ⊆ Rn+1 are as in Theorem 5.8, we can introduce the integral operator

BQf(x) :=

�
Σ
kQ(x, y)f(y) dσ(y), x ∈ U \ Σ. (5.82)

In this context, Theorem 5.8 and Theorem 5.11 yield the following result.

Theorem 5.12. Let Σ ⊆ Rn+1 be compact and uniformly rectifiable, and assume that U is a
bounded, open neighborhood of Σ in Rn+1. Let Q(x,D) ∈ OPC1S−1

cl be such that SymQ(x, ξ)
is odd in ξ. Then the operator (5.82) satisfies

�
U\Σ
|∇BQf(x)|2 dist(x,Σ) dx ≤ C

�
Σ
|f |2 dσ, ∀ f ∈ L2(Σ, σ). (5.83)

Moreover, a similar result is valid for a pseudodifferential operator Q(x,D) ∈ ØPC0S−1
cl .

In fact, since the main claims in Theorem 5.12 are local in nature and given the invariance
of the class of domains and pseudodifferential operators (along with their Schwartz kernels and
principal symbols) under smooth diffeomorphisms, these results extend naturally to domains
on manifolds and pseudodifferential operators acting between vector bundles, and as such,
extend results proved in [64] for Lipschitz subdomains of Riemannian manifolds.
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6 Lp Square Function Estimates

We have so far only considered L2 square function estimates. We now consider Lp versions for
p ∈ (0,∞]. The natural setting for the consideration of these estimates is in term of mixed norm
spaces L(p,q)(X , E), originally introduced in [60] (cf. also [10] for related matters). We begin
by using the tools developed in Section 2 to analyze these spaces in the context of an ambient
quasi-metric space X and a closed subset E. In the case X = Rn+1 and E = ∂Rn+1

+ h Rn,
the mixed norm spaces correspond to the tent spaces introduced by R. Coifman, Y. Meyer
and E.M. Stein in [17]. The preliminary analysis in Subsections 6.1 and 6.2 is based on the
techniques developed in that paper, although we need to overcome a variety of geometric
obstructions that arise outside of the Euclidean setting. We build on this in Subsection 6.3,
where we prove that L2 square function estimates associated with integral operators ΘE ,
as defined in Section 3, follow from weak Lp square function estimates for any p ∈ (0,∞).
This is achieved by combining the T (1) theorem from Subsection 3.1 with a weak type John-
Nirenberg lemma for Carleson measures, the Euclidean version of which appears in [5]. The
theory culminates in Subsection 6.4, where we prove an extrapolation theorem for estimates
associated with integral operators ΘE , as defined in Section 3. In particular, we prove that a
weak Lq square function estimate for any q ∈ (0,∞) implies that square functions are bounded
from Hp into Lp for all p ∈ ( d

d+γ ,∞), where Hp is a Hardy space, d is the the dimension of E,
and γ is a finite positive constant depending on the ambient space X and the operator ΘE .

6.1 Mixed norm spaces

We begin by considering the mixed norm spaces L(p,q) from [60] (cf. also [10]) and then,
following the theory of tent spaces in [17], record some extensive preliminaries that are used
throughout Section 6. In particular, Theorem 6.5 contains an equivalence for the quasi-norms
of the mixed norm spaces that is essential in the next subsection.

Let (X , ρ) be a quasi-metric space, E a nonempty subset of X , and µ a Borel measure on
(X , τρ). Recall the regularized version ρ# of the quasi-distance ρ discussed in Theorem 2.1,
and recall that we employ the notation δE(y) = distρ#(y,E) for each y ∈ X . Next, let κ > 0
be arbitrary, fixed, and consider the nontangential approach regions

Γκ(x) :=
{
y ∈X \ E : ρ#(x, y) < (1 + κ) δE(y)

}
, ∀x ∈ E. (6.1)

Occasionally, we shall refer to κ as the aperture of the nontangential approach region Γκ(x).
Since both ρ#(·, ·) and δE(·) are continuous (cf. Theorem 2.1) it follows that Γκ(x) is an open
subset of (X , τρ), for each x ∈ E, and that X \E =

⋃
x∈E Γκ(x), where E denotes the closure

of E in τρ. If, in addition, E is a proper closed subset of (X , τρ), then for any µ-measurable
function u : X \ E → [0,∞], both F : E −→ [0,∞] and G : E −→ [0,∞] defined by

F (x) :=

�
Γκ(x)

u(y) dµ(y) and G(x) := sup
y∈Γκ(x)

|u(y)|, ∀x ∈ E, (6.2)

are lower semi-continuous relative to the topology induced by τρ on E. For each q ∈ (0,∞)
and κ ∈ (0,∞), then define the Lq-based Lusin operator, or area operator, Aq,κ for all
µ-measurable functions u : X \ E → R := [−∞,+∞] by

(Aq,κu)(x) :=
(�

Γκ(x)
|u(y)|q dµ(y)

) 1
q
, ∀x ∈ E. (6.3)
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The lower semi-continuity of F in (6.2) implies that Aq,κu is lower semi-continuous, hence{
x ∈ E : (Aq,κu)(x) > λ

}
is an open subset of (E, τρ) for each λ > 0, (6.4)

and Aq,κu : E → [0,∞] is σ-measurable for any Borel measure σ on (E, τρ|E ). Also, define the

nontangential maximal operator Nκ for all functions u : X \ E → R by

(Nκu)(x) := sup
y∈Γκ(x)

|u(y)|, ∀x ∈ E. (6.5)

The lower semi-continuity of G in (6.2) implies that Nκu is lower semi-continuous. We now
follow [60, 10] to define the mixed norm space of type (p, q). If p ∈ (0,∞] and q ∈ (0,∞), set

L(p,q)(X , E, µ, σ;κ) := {u : X \ E → R : u is µ-measurable and Aq,κu ∈ Lp(E, σ)} (6.6)

with the quasi-norm ‖u‖L(p,q)(X ,E,µ,σ;κ) := ‖Aq,κu‖Lp(E,σ). If p ∈ (0,∞) and q =∞, set

L(p,∞)(X , E, µ, σ;κ) := {u : X \ E → R : ‖u‖L(p,∞)(X ,E,µ,σ;κ) := ‖Nκu‖Lp(E,σ) <∞}. (6.7)

Also, set L(∞,∞)(X , E, µ, σ;κ) := L∞(X \ E,µ). These spaces generalize the tent spaces T pq
on Rn+1

+ developed in [17], since T pq = L(p,q)
(
Rn+1, ∂Rn+1

+ ,1Rn+1
+

dx dt
tn+1 , dx

)
for all p, q ∈ (0,∞).

In Theorem 6.5, we clarify the dependence of the quasi-norm ‖ · ‖L(p,q)(X ,E,µ,σ;κ) on the
parameter κ. The proof requires the following preliminaries. For each A ⊆ E and κ > 0, define
the fan (or saw-tooth) region Fκ(A) above A, and the tent region Tκ(A) above A, by

Fκ(A) :=
⋃
x∈A

Γκ(x) and Tκ(A) :=
(
X \ E

)
\
(
Fκ(E \A)

)
. (6.8)

Also, let A and A◦ denote, respectively, the closure and interior of A in (E, τρ|E ). Finally, for
each y ∈X \ E, define the (reverse) conical projection πκy :=

{
x ∈ E : y ∈ Γκ(x)

}
.

Lemma 6.1. Let (X , ρ) be a quasi-metric space and E a proper, nonempty, closed subset of
(X , τρ). If κ ∈ (0,∞), then the following properties hold for all A ⊆ E:

(1) Fκ(A) = Fκ(A), Tκ(A◦) = Tκ(A) and Tκ(A) ⊆ Fκ(A).

(2) If A is a nonempty subset of E, then

Fκ(A) =
{
y ∈X \ E : distρ#(y,A) < (1 + κ) δE(y)

}
. (6.9)

If A is a nonempty proper subset of E, then

Tκ(A) =
{
x ∈X \ E : distρ#(x,A) ≤ (1 + κ)−1 distρ#(x,E \A)

}
(6.10)

=
{
y ∈X \ E : πκy ⊆ A

}
. (6.11)

(3) Fκ(E) = Tκ(E) = X \ E, and moreover, for any family (Aj)j∈J of subsets of E:⋃
j∈J
Fκ(Aj) = Fκ

(
∪j∈JAj

)
,

⋂
j∈J
Tκ(Aj) = Tκ

(
∩j∈JAj

)
, and (6.12)

A1 ⊆ A2 ⊆ E =⇒ Fκ(A1) ⊆ Fκ(A2) and Tκ(A1) ⊆ Tκ(A2). (6.13)
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(4) Fκ(A) is open and Tκ(A) is relatively closed in the topology induced by τρ.

(5) If y ∈X \ E, then πκy is relatively open in the topology induced by τρ.

(6) Bρ#
(
x,C−1

ρ r
)
\ E ⊆ Tκ

(
E ∩Bρ#(x, r)

)
for all r ∈ (0,∞) and all x ∈ E.

(7) If (E, ρ
∣∣
E

) is geometrically doubling, then there exists a constant Co ∈ (0,∞) such that
the following property holds: If O is a nonempty, open, proper subset of (E, τρ|E ) with a
Whitney decomposition {∆j}j∈J , where ∆j := E∩Bρ(xj , rj), as in Proposition 2.5, then

Tκ(O) ⊆
⋃
j∈J

Bρ(xj , Corj). (6.14)

Moreover, there exists C ∈ (0,∞) such that if x ∈ E, r > 0 and E \Bρ(x, r) 6= ∅, then

Tκ
(
E ∩Bρ(x, r)

)
⊆ Bρ(x,Cr) \ E. (6.15)

(8) If E is bounded, then there exists C ∈ (0,∞) such that if x0, x ∈ E and A is a proper
subset of E, then X \Bρ#

(
x0, C diamρ(E)

)
⊆ Γκ(x) and Tκ(A) ⊆ Bρ#

(
x0, C diamρ(E)

)
.

Proof. Except for (6.14), the above properties follow from definitions and the continuity of
ρ#(·, ·) and δE(·). To prove (6.14), let x ∈ Tκ(O) ⊆ X \ E, and since E is closed in (X , τρ),
this means that x does not belong to O and that distρ#(x,O) > 0. Thus, choose ε > 0 and
y ∈ O so that ρ#(x, y) < (1 + ε) distρ#(x,O). Then there exists j ∈ J such that y ∈ ∆j . We
claim that ε and Co can be chosen so x ∈ Bρ(xj , Corj), which will complete the proof. To
prove the claim, select β ∈ (0, (log2Cρ)

−1] and use (6.10) in combination with Theorem 2.1
and the fact that y belongs to ∆j = Bρ(xj , rj) ∩ E, to write[

ρ#(x, y)
]β
< (1 + ε)β

[
distρ#(x,O)

]β ≤ ( 1 + ε

1 + κ

)β[
distρ#(x,E \ O)

]β
≤
( 1 + ε

1 + κ

)β([
ρ#(x, y)

]β
+ Crβj

)
.

(6.16)

Thus, setting ε := κ/2 and Co := CρCκ,β, we have

ρ(x, y) ≤ C2
ρ ρ#(x, y) < C2

ρC
1/β
(

1+κ/2[
(1+κ)β−(1+κ/2)β

]1/β )rj =: Cκ,β rj , (6.17)

so ρ(xj , x) ≤ Cρ max{ρ(xj , y), ρ(y, x)} < CρCκ,βrj implies x ∈ Bρ(xj , Corj), as required.

Lemma 6.2. Let (X , ρ) be a quasi-metric space, E a proper, nonempty, closed subset of
(X , τρ), µ a Borel measure on (X , τρ) and σ a Borel measure on (E, τρ|E ). If κ > 0, y ∈X \E,

y∗ ∈ E such that ρ#(y, y∗) < (1 + η)δE(y) for some η ∈ (0, κ), and

0 < ε <
[
(1 + κ)β − (1 + η)β

]1/β
for some finite β ∈ (0, (log2Cρ)

−1],
(6.18)

then

E ∩Bρ#
(
y∗, εδE(y)

)
⊆ πκy ⊆ E ∩Bρ#

(
y∗, Cρ(1 + κ)δE(y)

)
. (6.19)

In particular, if (E, ρ
∣∣
E
, σ) is a space of homogeneous type, and κ, κ′ > 0, then

c−1
o σ(πκy ) ≤ σ(πκ

′
y ) ≤ co σ(πκy ), ∀ y ∈X \ E, (6.20)

where co := Cσ(C2
ρ/ε)

Dσ(1 + min{κ, κ′})Dσ , with Cσ and Dσ the constants defined in (2.19).
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Proof. Let κ > 0, y ∈X \ E and assume that (6.18) holds. If x ∈ E ∩Bρ#(y∗, εδE(y)), then

ρ#(x, y)β ≤ ρ#(x, y∗)
β + ρ#(y∗, y)β < εβδE(y)β + (1 + η)βδE(y)β < (1 + κ)βδE(y)β (6.21)

by Theorem 2.1, thus x ∈ πκy . Next, if x ∈ πκy , then ρ#(x, y) < (1 + κ)δE(y), hence

ρ#(x, y∗) ≤ Cρ# max{ρ#(x, y), ρ#(y, y∗)} < Cρ#(1 + κ)δE(y) ≤ Cρ(1 + κ)δE(y). (6.22)

We have now proved (6.19).
Now suppose that (E, ρ

∣∣
E
, σ) is a space of homogeneous type. If κ′ ≥ κ > 0 and (6.18)

holds, then (6.19) holds both as written and with κ replaced by κ′, so by (2.19) we have

c−1
1 σ(πκy ) ≤ σ(πκ

′
y ) ≤ c1 σ(πκy ), (6.23)

where c1 := Cσ,ρ#(Cρ(1 + κ)/ε)Dσ . In particular, since Cσ,ρ# = Cσ(Cρ#C̃ρ#)Dσ ≤ Cσ(Cρ)
Dσ ,

we have c1 ≤ Cσ(C2
ρ/ε)

Dσ(1+κ)Dσ . If 0 < κ′ < κ, then the same reasoning implies (6.23) with

c1 replaced by c2 := Cσ,ρ#(Cρ(1 + κ′)/ε)Dσ ≤ Cσ(C2
ρ/ε)

Dσ(1 + κ′)Dσ , so (6.20) holds.

We now assume that (E, ρ, σ) is a space of homogeneous type. For a σ-measurable set
A ⊆ E and γ ∈ (0, 1), define the set of γ-density points relative to A by

A∗γ :=
{
x ∈ E : inf

r>0

σ
(
Bρ#(x, r) ∩A

)
σ
(
Bρ#(x, r)

) ≥ γ
}
. (6.24)

The basic properties of such sets in spaces of homogeneous type are collected below.

Proposition 6.3. Let (E, ρ, σ) be a space of homogeneous type, ρ# the regularization of ρ as
in Theorem 2.1. If γ ∈ (0, 1) and A ⊆ E is σ-measurable, then the following properties hold:

(1) E \A∗γ =
{
x ∈ E : ME

(
1E\A

)
(x) > 1− γ

}
.

(2) A∗γ is closed in τρ.

(3) σ
(
E \A∗γ

)
≤ C

1−γσ(E \A).

(4) If A is closed in τρ, then A∗γ ⊆ A and σ(E \A∗γ) ≈ σ(E \A).

(5) For each λ > 0 there exist γ(λ) ∈ (0, 1) and c(λ) > 0 such that if γ(λ) ≤ γ < 1, then

inf
x∈E

[
inf

r>distρ# (x,A∗γ)

σ
(
Bρ#(x, λr) ∩A

)
σ
(
Bρ#(x, r)

) ]
≥ c(λ). (6.25)

(6) If σ is Borel semiregular, then σ(A∗γ \A) = 0.

(7) If Ã is a σ-measurable set such that A ⊆ Ã ⊆ E, then A∗γ ⊆ (Ã)∗γ.

Proof. If γ ∈ (0, 1) and A ⊆ E is σ-measurable, then (1) follows by the definition of A∗γ , since

E \A∗γ =
{
x ∈ E : ∃ r > 0 such that

σ
(
Bρ#(x, r) ∩A

)
σ
(
Bρ#(x, r)

) < γ
}

=
{
x ∈ E : sup

0<r≤diam ρ#
(E)

( 
Bρ# (x,r)

1E\A dσ
)
> 1− γ

}
. (6.26)
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Thus, to prove (2), it suffices to note that the function ME(1E\A) : (E, τρ) → [0,∞] is lower
semi-continuous. Indeed, this is a consequence of the continuity of ρ#(·, ·) from Theorem 2.1,
Fatou’s Lemma, and the fact that the pointwise supremum of any family of real-valued, lower
semi-continuous functions defined on E is itself lower semi-continuous. Also, we prove (3) by
combining (1) with the weak-(1, 1) boundedness of ME to obtain

σ
(
E \A∗γ

)
≤ C

1− γ
‖1E\A‖L1(E,σ) =

C

1− γ
σ(E \A). (6.27)

Next, if A is closed in τρ and x ∈ E \ A, then there exists r > 0 such that Bρ#(x, r) ⊆ E \ A,
which implies σ(Bρ#(x, r) ∩ A)) = 0, and so x 6∈ A∗γ . This shows that A∗γ ⊆ A, hence
σ(E \A) ≤ σ(E \A∗γ), and (4) follows by combining these facts with (3).

To prove (5), let λ > 0 and x ∈ E, and select r > 0 such that distρ#(x,A∗γ) < r. Then
there exists x0 ∈ A∗γ such that ρ#(x, x0) < r, which forces

Bρ#(x, λr) ⊆ Bρ#(x0, Cρ#(1 + λ)r) ⊆ Bρ#(x,C2
ρ#

(1 + λ)r). (6.28)

Consequently, since x0 ∈ A∗γ , we obtain

γσ
(
Bρ#(x0, Cρ#(1 + λ)r)

)
≤ σ

(
Bρ#(x0, Cρ#(1 + λ)r) ∩A

)
(6.29)

≤ σ
(
Bρ#(x0, Cρ#(1 + λ)r) \Bρ#(x, λr)

)
+ σ

(
Bρ#(x, λr) ∩A

)
,

which further implies that

σ
(
Bρ#(x, λr)

)
− (1− γ)σ

(
Bρ#(x0, Cρ#(1 + λ)r)

)
≤ σ

(
Bρ#(x, λr) ∩A

)
. (6.30)

Recalling the second inclusion in (6.28) and (2.19), we obtain

σ
(
Bρ#(x0, Cρ#(1 + λ)r)

)
≤ Cσ,ρ#(C2

ρ#
(1 + λ)/λ)Dσσ

(
Bρ#(x, λr)

)
, (6.31)

where Cσ,ρ# , Dσ are associated with σ, ρ# as in (2.19). Together, (6.30) and (6.31) yield

σ
(
Bρ#(x, λr)

)[
1− Cσ,ρ#(1− γ)(C2

ρ#
(1 + λ)/λ)Dσ

]
≤ σ

(
Bρ#(x, λr) ∩A

)
. (6.32)

Also, by (2.19), if λ ∈ (0, 1), then σ
(
Bρ#(x, r)

)
≤ Cσ,ρ#λ−Dσσ

(
Bρ#(x, λr)

)
, thus

σ
(
Bρ#(x, λr)

)
≥ min

{
1,

λDσ

Cσ,ρ#

}
σ
(
Bρ#(x, r)

)
, ∀λ > 0. (6.33)

We now complete the proof of (5) by setting

γ(λ) := 1− 1

2Cσ,ρ#

( λ

C2
ρ#

(1 + λ)

)Dσ
∈ (0, 1) and c(λ) :=

1

2
min

{
1,

λDσ

Cσ,ρ#

}
> 0, (6.34)

since then (6.32)-(6.33) imply that σ
(
Bρ#(x, λr)∩A

)
≥ c(λ)σ

(
Bρ#(x, r)

)
for all γ ∈

[
γ(λ), 1

)
.

If σ is Borel semiregular, then by Lebesgue’s Differentiation Theorem (see [2]), there exists
F ⊆ E such that σ(F ) = 0 and limr→0+

�
Bρ# (x,r) 1A dσ/σ(Bρ#(x, r)) = 1A(x) for all x ∈ E\F .

In particular, if x ∈ A∗γ \ F , then 1A(x) = limr→0+ σ(Bρ#(x, r) ∩A)/σ(Bρ#(x, r)) ≥ γ > 0,
which implies that A∗γ \ F ⊆ A, thus A∗γ \ A ⊆ F . Then, since A∗γ \ A is σ-measurable, we
must have σ(A∗γ \ A) = 0, which proves (6). Finally, property (7) is a direct consequence of
(6.24).
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The lemma below contains the final auxiliary results required for Theorem 6.5.

Lemma 6.4. Let (X , ρ) be a quasi-metric space, µ a Borel measure on (X , τρ), E a proper,
nonempty, closed subset of (X , τρ) and σ a Borel measure on (E, τρ|E ) such that (E, ρ

∣∣
E
, σ)

is a space of homogeneous type. The following properties hold for all µ-measurable functions
u : X \E → [0,∞], all σ-measurable sets A ⊆ E and all σ-measurable functions f : E → [0,∞]:

(1) If κ > 0, then

�
A

(�
Γκ(x)

u(y) dµ(y)
)
dσ(x) =

�
X \E

u(y)σ
(
A∩πκy

)
dµ(y) =

�
Fκ(A)

u(y)σ
(
A∩πκy

)
dµ(y). (6.35)

(2) For each κ, κ′ > 0, there exist γ ∈ (0, 1) and C ∈ (0,∞) such that

�
A∗γ

(�
Γκ(x)

u(y) dµ(y)
)
dσ(x) ≤ C

�
A

(�
Γκ′ (x)

u(y) dµ(y)
)
dσ(x). (6.36)

(3) For each κ, κ′ > 0, there exists C ∈ (0,∞) such that

�
E

(�
Γκ(x)

u(y) dµ(y)
)
f(x) dσ(x) ≤ C

�
E

(�
Γκ′ (x)

u(y) dµ(y)
)

(MEf)(x) dσ(x). (6.37)

Proof. The identities in (6.35) follow by Fubini’s Theorem and the fact that if y ∈X \E and
A ∩ πκy 6= ∅, then y ∈ Fκ(A). To prove (6.36), we recall the notation in (2.4) and claim that
for each κ, κ′ > 0, there exist γ ∈ (0, 1) and c > 0 such that

σ
(
A ∩ πκ′y

)
≥ c σ

(
A∗γ ∩ πκy

)
, ∀ y ∈ Fκ(A∗γ). (6.38)

If (6.38) holds, then by (6.35) and the fact that Fκ(A∗γ) ⊆X \ E, we have

�
A

�
Γκ′ (x)

u(y) dµ(y)dσ(x) ≥ c
�
Fκ(A∗γ)

u(y)σ
(
A∗γ ∩ πκy

)
dµ(y) = c

�
A∗γ

�
Γκ(x)

u(y) dµ(y)dσ(x).

(6.39)
Hence, to prove (6.36), it suffices to prove (6.38).

To prove (6.38), let κ, κ′ > 0 and fix γ ∈ (0, 1) to be chosen later. Fix η ∈ (0,min {κ, κ′}),
and for each y ∈ Fκ(A∗γ), choose y∗ ∈ E and ε > 0 such that (6.18) holds (for the chosen
value of η). Lemma 6.2 then implies that the inclusions in (6.19) hold for both κ and κ′. Also,
the fact that y ∈ Fκ(A∗γ) entails πκy ∩ A∗γ 6= ∅, which when combined with (6.19), implies that
Bρ#

(
y∗, Cρ(1 + κ)δE(y)

)
∩ A∗γ 6= ∅ and so distρ#(y∗, A

∗
γ) < Cρ(1 + κ)δE(y). Property (5) in

Proposition 6.3 with λ := ε/(Cρ(1 + κ)), x := y∗ and r := Cρ(1 +κ)δE(y), then guarantees the
existence of γ0 = γ0(λ) ∈ (0, 1) and c = c(κ) > 0 such that

σ
(
Bρ#(y∗, εδE(y)) ∩A

)
σ
(
Bρ#(y∗, Cρ(1 + κ)δE(y))

) ≥ c ∀ γ ∈ (γ0, 1). (6.40)

Hence, if we initially select γ ∈ (γ0, 1), then (6.40) and (6.19) imply that

σ
(
Bρ#(y∗, εδE(y)) ∩A

)
≥ c σ

(
Bρ#(y∗, Cρ(1 + κ)δE(y))

)
≥ c σ

(
πκy
)
≥ c σ

(
A∗γ ∩ πκy

)
. (6.41)
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Since (6.19) also holds with κ replaced by κ′, we also obtain

σ
(
A ∩ πκ′y

)
≥ σ

(
Bρ#(y∗, εδE(y)) ∩A

)
≥ c σ

(
A∗γ ∩ πκy

)
, (6.42)

which proves (6.38) and thus completes the proof of (6.36).
To prove (6.37), since

�
E

(�
Γκ(x)

u(y) dµ(y)
)
f(x) dσ(x) =

�
X \E

u(y)σ
(
πκy
)( 

πκy

f dσ
)
dµ(y), (6.43)

it suffices to show that there exists C1 ∈ (0,∞) such that

 
πκy

f dσ ≤ C1

 
πκ′y

MEf dσ, ∀ y ∈X \ E. (6.44)

To this end, fix y ∈X \E, y∗ ∈ E and ε > 0 such that (6.18) holds for some η ∈ (0,min{κ, κ′}),
hence (6.19) holds for κ and κ′. In particular, if z ∈ πκ′y , then ρ#(z, y∗) < Cρ(1 + κ′)δE(y), so

Bρ#
(
y∗, Cρ(1 + κ)δE(y)

)
⊆ Bρ#

(
z, C2

ρ(1 + max{κ, κ′})δE(y)
)

⊆ Bρ#
(
y∗, C

3
ρ(1 + max{κ, κ′})δE(y)

)
, ∀ z ∈ πκ′y . (6.45)

Using (6.19), (6.45) and (2.19), we obtain

 
πκy

f dσ ≤ 1

σ(Bρ#(y∗, εδE(y)))

�
Bρ#

(
y∗,Cρ(1+κ)δE(y)

) f dσ
≤ Cσ,ρ#

(
C3
ρε
−1(1 + max{κ, κ′})

)Dσ  
Bρ# (z,C2

ρ(1+max{κ,κ′})δE(y))
f dσ

≤ Cσ,ρ#
(
C3
ρε
−1(1 + max{κ, κ′})

)DσMEf(z), ∀ z ∈ πκ′y . (6.46)

Thus, setting C1 := Cσ,ρ#
(
C3
ρε
−1(1 + max{κ, κ′})

)Dσ , we have

 
πκy

f dσ ≤ C1 inf
z∈πκ′y

[MEf(z)] ≤ C1

 
πκ′y

MEf dσ, (6.47)

which proves (6.44) and finishes the proof of the lemma.

We now turn to the following equivalence for the quasi-norms of the mixed norm spaces.

Theorem 6.5. Let (X , ρ) be a quasi-metric space, µ a Borel measure on (X , τρ), E a proper,
nonempty, closed subset of (X , τρ), and σ a Borel measure on (E, τρ|E ) such that (E, ρ

∣∣
E
, σ)

is a space of homogeneous type. If κ, κ′ > 0, and (p, q) ∈ (0,∞)× (0,∞] or p = q =∞, then

‖u‖L(p,q)(X ,E,µ,σ;κ) ≈ ‖u‖L(p,q)(X ,E,µ,σ;κ′) (6.48)

for all µ-measurable functions u : X \ E → R.
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Proof. Let κ, κ′ > 0. There is nothing to prove when p = q = ∞, so now suppose that
(p, q) ∈ (0,∞)× (0,∞]. It suffices to find some C = C(κ, κ′) ∈ (0,∞) such that

‖u‖L(p,q)(X ,E,µ,σ;κ′) ≤ C‖u‖L(p,q)(X ,E,µ,σ;κ) (6.49)

for all µ-measurable functions u : X \E → R. We prove this below by considering four cases.

Case I: 0 < p < q < ∞. Let λ > 0 and set A :=
{
x ∈ E : (Aq,κu)(x) ≤ λ

}
. It follows from

(6.4) and (4) in Proposition 6.3 that A is closed in (E, τρ|E ) and A∗γ ⊆ A for all γ ∈ (0, 1). Let
γ = γ(κ, κ′) ∈ (0, 1) be such that (6.36) holds, so then by (3) in Proposition 6.3, we have

σ
(
{x ∈ E : (Aq,κ′u)(x) > λ}

)
≤ σ

(
E \A∗γ) + σ

(
{x ∈ A∗γ : (Aq,κ′u)(x) > λ}

)
≤ C

1− γ
σ(E \A) +

1

λq

�
A∗γ

(Aq,κ′u)(x)q dσ(x)

≤ C

1− γ
σ
(
{x ∈ E : (Aq,κu)(x) > λ}

)
+
C

λq

�
A

(Aq,κu)(x)q dσ(x). (6.50)

Multiplying by pλp−1 and integrating in λ ∈ (0,∞), we then obtain

‖Aq,κ′u‖pLp(E,σ) ≤
C

1− γ
‖Aq,κu‖pLp(E,σ) + C

� ∞
0

λp−q−1
(�
{Aq,κu≤λ}

(Aq,κu)q dσ
)
dλ. (6.51)

By Fubini’s Theorem, and since we are assuming that 0 < p < q <∞, we further have� ∞
0

λp−q−1
(�
{Aq,κu≤λ}

(Aq,κu)q dσ
)
dλ =

�
E

(� ∞
(Aq,κu)(x)

λp−q−1 dλ
)

(Aq,κu)(x)q dσ(x)

= (q − p)−1‖Aq,κu‖pLp(E,σ). (6.52)

In concert, (6.51) and (6.52) now yield (6.49) when 0 < p < q <∞.

Case II: p = q ∈ (0,∞). We obtain (6.49) by combining (6.35) with (6.20) to write

‖Ap,κ′u‖pLp(E,σ) =

�
X \E

|u(y)|pσ(πκ
′
y ) dµ(y) ≈

�
X \E

|u(y)|pσ(πκy ) dµ(y) = ‖Ap,κu‖pLp(E,σ).

(6.53)

Case III: 0 < q < p <∞. Let q/p+ 1/r = 1, so r ∈ (1,∞), thus duality and (6.37) imply that

‖Aq,κ′u‖Lp(E,σ) =
∥∥∥�

Γκ′ (x)
|u|q dµ

∥∥∥
L
p/q
x (E,σ)

= sup‖f‖Lr(E,σ)=1

�
E

(�
Γκ′ (x)

|u(y)|q dµ(y)
)
f(x) dσ(x)

≤ Csup‖f‖Lr(E,σ)=1

�
E

(�
Γκ(x)

|u(y)|q dµ(y)
)

(MEf)(x) dσ(x)

≤ Csup‖f‖Lr(E,σ)=1‖Aq,κu‖Lp(E,σ)‖MEf‖Lr(E,σ) ≤ C‖Aq,κu‖Lp(E,σ),

(6.54)

which proves (6.49) when 0 < q < p <∞.

Case IV: 0 < p <∞, q =∞. Let λ > 0 and set

Oκ :=
{
x ∈ E : (Nκu)(x) > λ

}
, Oκ′ :=

{
x ∈ E : (Nκ′u)(x) > λ

}
. (6.55)
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To prove (6.49), it suffices to show that σ(Oκ′) ≤ Cσ(Oκ), thus by (3) in Proposition 6.3, it
suffices to find γ ∈ (0, 1) such that Oκ′ ⊆ E \ (E \ Oκ)∗γ . To this end, let x ∈ Oκ′ , so there
exists y ∈ Γκ′(x) with |u(y)| > λ. Fix η ∈ (0,min {κ, κ′}) and select y∗ ∈ E and ε ∈ (0, 1) such
that (6.18) holds. In particular, ρ#(y, y∗) < (1 + η)δE(y). Observe from (6.19) and (6.55) that

E ∩Bρ#
(
y∗, εδE(y)

)
⊆ πκy ⊆ Oκ. (6.56)

We also claim that

E ∩Bρ#
(
y∗, εδE(y)

)
⊆ E ∩Bρ#

(
x,Cρ(1 + κ′)δE(y)

)
. (6.57)

To see this, recall that ε ∈ (0, 1) and note that if z ∈ E satisfies ρ#(z, y∗) < δE(y), then

ρ#(x, z) ≤ Cρ max {ρ#(x, y), ρ#(y, z)}

≤ Cρ max
{

(1 + κ′)δE(y), Cρ max {(1 + η)δE(y), δE(y)}
}

= Cρ(1 + κ′)δE(y), (6.58)

which proves (6.57). In concert, (6.56) and (6.57) yield

E ∩Bρ#
(
y∗, δE(y)

)
⊆ Oκ ∩Bρ#

(
x,Cρ(1 + κ′)δE(y)

)
. (6.59)

Let us also observe that

ρ#(x, y∗) ≤ Cρ max {(1 + κ′)δE(y), (1 + η)δE(y)} = Cρ(1 + κ′)δE(y). (6.60)

Setting r := Cρ(1 + κ′)δE(y), then by (6.59), (6.60) and the fact that (E, ρ
∣∣
E
, σ) is a space of

homogeneous type, there exists c ∈ (0, 1), depending only on κ, κ′ and geometry, such that

σ(Oκ ∩Bρ#(x, r)) ≥ σ(E ∩Bρ#(y∗, εδE(y))) ≥ cσ(E ∩Bρ#(x, r)). (6.61)

In particular, we have σ((E \Oκ)∩Bρ#(x, r))/σ(E∩Bρ#(x, r)) ≤ 1−c. Thus, selecting γ such
that 1− c < γ < 1 implies that x /∈ (E \ Oκ)∗γ , hence Oκ′ ⊆ E \ (E \ Oκ)∗γ , as required.

Remark 6.6. We expand on the comment at the bottom of page 183 in [72], and present an
example where (6.48) fails in the limiting case p =∞, q ∈ (0,∞), i.e. where

sup
x∈E

(�
Γκ(x)

|u(y)|q dµ(y)
)1/q

≈ sup
x∈E

(�
Γκ′ (x)

|u(y)|q dµ(y)
)1/q

(6.62)

fails. In particular, consider when X := R2, E := R ≡ ∂R2
+, κ :=

√
2−1 and κ′ ∈ (0,

√
2−1).

Also, without loss of generality, assume that q = 1 and consider u : X \ E → R given by

u(x, y) :=

{
x−2 if x > 0 and x < y < 2x,
0 otherwise.

(6.63)

Then

sup
z∈R

(�
Γκ(z)

|u(x, y)| dxdy
)
≥
�
|x|<y

|u(x, y)| dxdy =

� ∞
0

x−2
(� 2x

x
1 dy

)
dx =∞, (6.64)

whereas, for all z ∈ (0,∞), elementary geometry implies that�
Γκ′ (z)

|u(x, y)| dxdy ≤ Cz−2 ·Area{(x, y) ∈ Γκ′(z) : 0 < x < y < 2x} ≤ C, (6.65)

where C only depends on κ′, hence supz∈R

(�
Γκ′ (z)

|u(x, y)| dxdy
)
<∞, and (6.62) fails.
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6.2 Estimates relating the Lusin and Carleson operators

We now introduce a Carleson operator C to provide an equivalent quasi-norm for the mixed
norm spaces. This is essential in Subsection 6.4, and it is achieved by combining Theorem 6.5
with a good-λ inequality originating in [17]. In particular, the theorem below extends the
result on Rn+1

+ obtained in [17, Theorem 3]. We first dispense with the following preliminaries.
Let (X , ρ) be a quasi-metric space, µ a Borel measure on (X , τρ), E a nonempty, proper,

closed subset of (X , τρ), and σ a measure on E such that (E, ρ
∣∣
E
, σ) is a space of homogeneous

type. We say that µ is locally finite relative to (X , E, ρ) provided

µ
({
y ∈ Bρ(x,R)◦ : δE(y) > r

})
< +∞ for all x ∈X and R, r ∈ (0,∞), (6.66)

where the interior is taken in the topology τρ.
For q ∈ (0,∞) and κ ∈ (0,∞), define the Lq-based Carleson operator Cq,κ for all µ-

measurable functions u : X \ E → R := [−∞,+∞] by

(Cq,κu)(x) := sup
∆⊆E, x∈∆

( 1

σ(∆)

�
Tκ(∆)

|u(y)|qσ(πκy ) dµ(y)
) 1
q
, ∀x ∈ E, (6.67)

where the supremum is taken over all surface balls ∆ containing x and defined by

∆ := ∆(y, r) := E ∩Bρ#(y, r), y ∈ E, r > 0, (6.68)

and where the conical projection πκy and the tent Tκ(∆) over ∆ are from (6.8).
For p ∈ (0,∞) and r ∈ (0,∞], let Lp,r(E, σ) denote the Lorentz space with quasi-norm

‖f‖Lp,r(E,σ) :=

(� ∞
0

λrσ
(
{x ∈ E : |f(x)| > λ}

)r/p dλ
λ

)1/r

, if r <∞, (6.69)

‖f‖Lp,∞(E,σ) := sup
λ>0

[
λσ ({x ∈ E : |f(x)| > λ})1/p

]
. (6.70)

Note that Lp,p(E, σ) = Lp(E, σ) for each p ∈ (0,∞).

Theorem 6.7. Let (X , ρ) be a quasi-metric space, E a proper, nonempty, closed subset of
(X , τρ), µ a Borel measure on (X , τρ) that is locally finite relative to (X , E, ρ), and σ a
measure on E such that (E, ρ

∣∣
E
, σ) is a space of homogeneous type. If κ > 0 and q ∈ (0,∞),

then following estimates hold for every µ-measurable function u : X \ E → R:

(1) If p ∈ (0,∞), then ‖Aq,κu‖Lp(E,σ) ≤ C‖Cq,κu‖Lp(E,σ).

(2) If p ∈ (q,∞) and r ∈ (0,∞], then ‖Cq,κu‖Lp,r(E,σ) ≤ C‖Aq,κu‖Lp,r(E,σ).

(3) If p = q or p =∞ in (2), then

‖Cq,κu‖Lq,∞(E,σ) ≤ C‖Aq,κu‖Lq(E,σ) and ‖Cq,κu‖L∞(E,σ) ≤ C‖Aq,κu‖L∞(E,σ). (6.71)

(4) If p ∈ (q,∞), then ‖Aq,κu‖Lp(E,σ) ≈ ‖Cq,κu‖Lp(E,σ).

In each case, the comparability constants depend only on κ, q, p, r and geometric constants.
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Proof. Suppose that u : X \E → R is µ-measurable. Fix q ∈ (0,∞) and define cq := 2(1/q)−1,
if q ∈ (0, 1), and cq := 1, if q ≥ 1. To prove (1), we will prove the following good-λ inequality:

∀κ > 0, ∃κ′ > κ and ∃ c ∈ (0,∞) such that ∀ γ ∈ (0, 1] and ∀λ ∈ (0,∞), it holds that

σ
(
{x ∈ E : (Aq,κu)(x) > 2cqλ, (Cq,κu)(x) ≤γλ}

)
≤ c γqσ

(
{x ∈ E : (Aq,κ′u)(x) > λ}

)
. (6.72)

Assume for now that this holds. Fix κ, κ′ and c as in (6.72). If γ ∈ (0, 1] and λ > 0, then

σ
(
{x ∈ E : (Aq,κu)(x) > 2cqλ}

)
≤ σ

(
{x ∈ E : (Cq,κu)(x) > γλ}

)
+ c γqσ

(
{x ∈ E : (Aq,κ′u)(x) > λ}

)
. (6.73)

Multiplying by pλp−1, integrating in λ ∈ (0,∞) and applying Theorem 6.5, we obtain

(2cq)
−p‖Aq,κu‖pLp(E,σ) ≤ γ

−p‖Cq,κu‖pLp(E,σ) + cCp γq‖Aq,κu‖pLp(E,σ), ∀ γ ∈ (0, 1]. (6.74)

To justify subtracting the last term above, fix x0 ∈ E and, for each j ∈ N, set

uj := min {|u|, j} · 1Bρ# (x0,j)\{x∈E: δE(x)≤1/j} on X \ E. (6.75)

The support of Aq,κuj and the assumption that µ is locally finite relative to (X , E, ρ) imply

‖Aq,κuj‖Lp(E,σ) ≤ j · µ
(
Bρ#(x0, j)

)1/q
σ
(
E ∩Bρ#(x0, Cρ(1 + κ)j)

)1/p
<∞. (6.76)

Thus, choosing γ ∈ (0, 1] so that (2cq)
−p>2cCp γq, we have ‖Aq,κuj‖pLp(E,σ)≤ C̃‖Cq,κuj‖

p
Lp(E,σ)

for all j ∈ N and some C̃ ∈ (0,∞) independent of j. We then use Lebesgue’s Monotone
Convergence Theorem and Fatou’s Lemma to conclude that (1) holds.

To prove (1), it remains to establish (6.72). To this end, fix κ′ > κ > 0, γ ∈ (0, 1] and set

Oλ :=
{
x ∈ E : (Aq,κ′u)(x) > λ

}
, ∀λ > 0, (6.77)

which is open in (E, τρ|E ) by (6.4). Also, since Aq,κ′u ≥ Aq,κu pointwise in E, we have

{x ∈ E : (Aq,κu)(x) > 2cqλ} ⊆ Oλ. (6.78)

If Oλ = ∅, then the second line of (6.72) is trivially satisfied. Now assume that Oλ 6= ∅ and

the µ-measurable function u : X \ E → R is such that
Oλ from (6.77) is a proper subset of E for each λ > 0.

(6.79)

The assumption in (6.79) will be eliminated a posteriori. For a fixed, suitably chosen λo > 1, we
have a Whitney covering of Oλ by balls, relative to (E, ρ|E), of the form Bj := E∩Bρ#(xj , rj),
j ∈ N, satisfying (1)-(4) in Proposition 2.5 for some Λ > λo. It then suffices to prove that

∃κ′ > κ and ∃ c ∈ (0,∞) such that ∀ γ ∈ (0, 1] and ∀λ ∈ (0,∞), it holds that

σ
(
{x ∈ Bj : (Aq,κu)(x) > 2cqλ, (Cq,κu)(x) ≤γλ}

)
≤ c γqσ(Bj) for every j ∈ N, (6.80)

since combining (6.80) with (6.78) and properties (1)-(2) in Proposition 2.5, we obtain

σ
(
{x ∈ E :(Aq,κu)(x) > 2cqλ, (Cq,κu)(x) ≤γλ}

)
≤
∞∑
j=1

σ
(
{x ∈ Bj : (Aq,κu)(x) > 2cqλ, (Cq,κu)(x) ≤γλ}

)
≤ Cγqσ(Oλ), (6.81)

73



which implies (6.72).
We now turn to the proof of (6.80). Fix j ∈ N and assume, without loss of generality, that{

x ∈ Bj : (Aq,κu)(x) > 2cqλ, (Cq,κu)(x) ≤γλ
}
6= ∅, (6.82)

since otherwise there is nothing to prove. Write u = u1{δE≥rj} + u1{δE<rj} =: u1 + u2 and
choose zj ∈ E \ Oλ such that ρ#(xj , zj) ≤ Λrj by (3) in Proposition 2.5. We claim that

there exists κ′ > κ independent of j ∈ N with the property that
if x ∈ Bj and y ∈ Γκ(x) is such that δE(y) ≥ rj then y ∈ Γκ′(zj).

(6.83)

Indeed, if x ∈ Bj , y ∈ Γκ(x) and δE(y) ≥ rj , then

ρ#(y, zj) ≤ Cρ# max{ρ#(y, x), ρ#(x, zj)} ≤ Cρ max{(1 + κ), CρΛ}δE(y). (6.84)

Choosing κ′ > Cρ max{(1 + κ), CρΛ} − 1 ≥ κ, so κ′ is independent of j, we obtain (6.83) and

(Aq,κu1)(x)q ≤
�

Γκ′ (zj)
|u(y)|q dµ(y) = (Aq,κ′u)(zj)

q ≤ λq, ∀x ∈ Bj . (6.85)

Next, we use (6.35) to obtain

�
Bj

(Aq,κu2)(x)q dσ(x) ≤
�
y∈Fκ(Bj), δE(y)<rj

|u(y)|qσ(πκy ) dµ(y). (6.86)

In order to complete the proof of (6.80), we now prove, using the notation in (6.68), that

there exists a finite constant co > 0 such that for every r > 0 and every x0 ∈ E
if y ∈ Fκ(∆(x0, r)) and δE(y) < r then y ∈ Tκ

(
E ∩Bρ#(w, cor)

)
∀w ∈ ∆(x0, r).

(6.87)

Let y ∈ Fκ(∆(x0, r)) with δE(y) < r, so there exists x ∈ ∆(x0, r) with ρ#(y, x) < (1 +
κ)δE(y) < (1 + κ)r. Let co > Cρ be arbitrary. If w ∈ ∆(x0, r), then x ∈ E ∩Bρ#(w, cor) and

distρ#
(
y,E ∩Bρ#(w, cor)

)
≤ ρ#(y, x) < (1 + κ)δE(y). (6.88)

Also, if w ∈ ∆(x0, r) and z ∈ E \Bρ#(w, cor), since ρ#(y, w) ≤ Cρ max{Cρ, 1 + κ}r, we have

cor ≤ Cρ max
{
ρ#(z, y), Cρ max{Cρ, 1 + κ}r

}
= Cρ ρ#(z, y), (6.89)

where the last equality holds by now restricting co > C2
ρ max{Cρ, 1 + κ}. This implies that

Cρρ#(y, z) ≥ cor > coδE(y) for all z ∈ E \Bρ#(w, cor), so restricting co ≥ Cρ(1 + κ)2, we have

distρ#
(
y,E \Bρ#(w, cor)

)
≥ (1 + κ)2δE(y). (6.90)

Finally, choosing co > max
{
Cρ(1 + κ)2, C3

ρ , C
2
ρ(1 + κ)

}
, we obtain from (6.88) and (6.90) that

distρ#
(
y,E ∩Bρ#(w, cor)

)
≤ (1 + κ)−1distρ#

(
y,E \Bρ#(w, cor)

)
, (6.91)

which, by (6.10), implies that y ∈ Tκ
(
E ∩Bρ#(w, cor)

)
and proves (6.87).
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We can now complete the proof of (6.80). Combining (6.86) with (6.87), we obtain

1

σ(Bj)

�
Bj

(Aq,κu2)(x)q dσ(x) ≤ C

σ(Bj)

�
y∈Fκ(Bj), δE(y)<rj

|u(y)|qσ(πκy ) dµ(y)

≤ C

σ
(
E ∩Bρ#(w, corj)

) �
Tκ
(
E∩Bρ# (w,corj)

) |u(y)|qσ(πκy ) dµ(y)

≤ C infw∈Bj
[
(Cq,κu)(w)

]q ≤ Cγqλq, (6.92)

where we used the equivalence σ(Bj) ≈ σ
(
E ∩Bρ#(w, corj)

)
for all j ∈ N and w ∈ Bj , implied

by (2.19), and assumption (6.82). Tschebyshev’s inequality then implies that

σ
(
{x ∈ Bj : (Aq,κu2)(x) > λ}

)
≤ Cγqσ(Bj), (6.93)

for some C ∈ (0,∞) independent of γ ∈ (0, 1] and j ∈ N. Also, in view of (6.85), we obtain{
x ∈ Bj : (Aq,κu)(x) > 2cqλ

}
⊆
{
x ∈ Bj : (Aq,κu2)(x) > λ

}
, (6.94)

since pointwise on E we have Aq,κu ≤ cq
(
Aq,κu1 + Aq,κu2

)
, where cq is from above. Combined

with (6.93), this proves (6.80) and thus completes the proof of (1) when (6.79) holds.
We now complete the proof of (1) by removing assumption (6.79) in the following two cases:

Case I: diamρ(E) = ∞. An inspection of the proof reveals that (6.74) has only been utilized
with uj (from (6.75)) in place of u. Thus, it suffices to show that

{
x ∈ E : (Aq,κ′uj)(x) > λ

}
is

a proper subset of E for each j ∈ N and each λ > 0. This follows by observing that σ(E) =∞
by (2.20), whilst σ

({
x ∈ E : (Aq,κ′uj)(x) > λ

})
<∞ by (6.76) and Tschebyshev’s inequality.

Case II: diamρ(E) < ∞. We note that σ(E) < ∞ by (2.20). Set R := diamρ#(E), let εo > 0
to be specified later, and write |u| = |u|1{δE(·)<εoR} + |u|1{δE(·)≥εoR} =: u′ + u′′. Note that
u′, u′′ are µ-measurable with 0 ≤ u′, u′′ ≤ |u| and for each x ∈ E, we have

(Cq,κu
′′)(x) ≥

( 1

σ(E)

�
X \E

u′′(y)qσ(πκy ) dµ(y)
)1/q

≥ c
(�

y∈X \E, δE(y)≥εoR
u′′(y)q dµ(y)

)1/q
≥ c(Aq,κu

′′)(x), (6.95)

by taking r > R in (6.68), recalling (3) in Lemma 6.1, and noting that there exists C ∈ (0,∞)
such that for each y ∈X \ E (with y∗ and ε as in Lemma 6.2), we have

σ(πκy ) ≥ σ
(
E ∩Bρ#(y∗, εδE(y))

)
≥ σ

(
E ∩Bρ#(y∗, εεoR)

)
≥ Cσ(E) (6.96)

by the doubling property of σ. The monotonicity of the Carleson operator then implies that

‖Aq,κu
′′‖Lp(E,σ) ≤ C‖Cq,κu′′‖Lp(E,σ) ≤ C‖Cq,κu‖Lp(E,σ). (6.97)

To proceed, set εo := 1/4Cρ(1 + κ′) and fix x1, x2 ∈ E satisfying ρ#(x1, x2) > R/2. Then

Γκ′(x1) ∩ Γκ′(x2) ⊆ {x ∈X \ E : δE(x) > ε0R}. (6.98)

Indeed, if y ∈ Γκ′(x1) ∩ Γκ′(x2) then R/2 < ρ#(x1, x2) ≤ Cρ(1 + κ′)δE(y) = δE(y)/4εo. Next,
write u′ = u′1Γκ′ (x1) + u′

(
1− 1Γκ′ (x1)

)
=: u′1 + u′2. By (6.98) and the fact that u1 is supported
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in {δE(·) < εoR}, we have (Aq,κ′u
′
1)(x2) = 0 and (Aq,κ′u

′
2)(x1) = 0. Thus, hypothesis (6.79)

holds for u′1 and u′2, so the first part of the proof applies to u′1 and u′2, which implies that

‖Aq,κu
′‖Lp(E,σ) ≤ C‖Aq,κu

′
1‖Lp(E,σ) + C‖Aq,κu

′
2‖Lp(E,σ) (6.99)

≤ C‖Cq,κu′1‖Lp(E,σ) + C‖Cq,κu′2‖Lp(E,σ) ≤ C‖Cq,κu‖Lp(E,σ).

Together with (6.97), this proves (1) for u in Case II. The proof of (1) is thus complete.

To prove (2), first note that the pointwise estimate

(Cq,κu)(x0) ≤ C
[
ME(Aq,κu)q(x0)

] 1
q , ∀x0 ∈ E, (6.100)

holds for some C ∈ (0,∞) depending only on κ, p, q and geometric constants. Indeed, if ∆ is
a ball in (E, (ρ|E)#), then (6.35), (1) in Lemma 6.1 and (6.11) imply�

∆
(Aq,κu)(x)q dσ(x) =

�
Fκ(∆)

|u(y)|qσ
(
∆ ∩ πκy

)
dµ(y) ≥

�
Tκ(∆)

|u(y)|qσ
(
πκy
)
dµ(y) (6.101)

and (6.100) follows. Next, if p ∈ (q,∞) and r ∈ (0,∞], then ME is bounded on Lp/q,r/q(E, σ),
so by the general fact that ‖|f |α‖Lp,r(E,σ) = C(p, r, α)‖f‖αLpα,rα(E,σ) for all α > 0, we have

‖Cq,κu‖Lp,r(E,σ) ≤ C‖ME(Aq,κu)q‖1/q
Lp/q,r/q(E,σ)

≤ C‖Aq,κu‖Lp,r(E,σ), (6.102)

as required to prove (2). This also proves (4), since it is a combination of (1) and (2). To prove
(3), we use a computation similar to (6.102) based on (6.100), the weak-(1, 1) boundedness of
ME , and the boundedness of ME on L∞(E, σ). This finishes the proof of the theorem.

Remark 6.8. The case p = q = r of part (2) of Theorem 6.7, which corresponds to the
estimate ‖Cp,κu‖Lp(E,σ) ≤ C‖Ap,κu‖Lp(E,σ), fails in general. A counterexample in Euclidean
space when p = 2 is given in the remarks stated below Theorem 3 of [17].

6.3 Weak Lp square function estimates imply L2 square function estimates

We are now in a position to consider Lp versions of the L2 square function estimates considered
in Section 3 for integral operators ΘE . The main result, stated in Theorem 6.9, is that L2

square function estimates follow from weak Lp square function estimates for any p ∈ (0,∞).
The result is proved by combining the T (1) theorem in Theorem 3.1 with a weak type John-
Nirenberg lemma for Carleson measures based on Lemma 2.14 in [5] (cf. [27, Lemma IV.1.12]).

Theorem 6.9. Let 0 < d < m <∞. Assume that (X , ρ, µ) is an m-dimensional ADR space,
E is a closed subset of (X , τρ), and σ is a Borel semiregular measure on (E, τρ|E ) such that
(E, ρ

∣∣
E
, σ) is a d-dimensional ADR space. Suppose that Θ is an integral operator with kernel

θ satisfying (3.1)-(3.4). If there exist κ, p, Co ∈ (0,∞) such that

σ
({
x ∈ E :

�
Γκ(x)

|(Θ1∆)(y)|2 δE(y)2υ−m dµ(y) > λ2
})
≤ Coλ−pσ(∆), ∀λ > 0, (6.103)

for all surface balls ∆ ⊆ E, as in (6.68), then there exists C ∈ (0,∞), depending only on κ, p,
Co and finite positive geometric constants (including diamρ(E) when E is bounded), such that�

X \E
|(Θf)(x)|2δE(x)2υ−(m−d) dµ(x) ≤ C

�
E
|f(x)|2 dσ(x), ∀ f ∈ L2(E, σ). (6.104)
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Proof. We set q = 2 in Proposition 6.11 below to obtain the Carleson measure estimate in
(6.107) and then apply the T (1) theorem for square functions in Theorem 3.1.

Remark 6.10. The requirement in (6.103) is less restrictive than a weak Lp square function
estimate. In particular, it is satisfied whenever the weak Lp square function estimate

sup
λ>0

[
λ · σ

({
x ∈ E :

�
Γκ(x)

|(Θf)(y)|2δE(y)2υ−m dµ(y) > λ2
})1/p

]
≤ Co‖f‖Lp(E,σ) (6.105)

holds for all f ∈ Lp(E, σ), since then (6.103) follows by setting f = 1∆.

The remainder of this subsection concerns the proposition below used to prove Theorem 6.9.

Proposition 6.11. Assume the hypotheses of Theorem 6.9. Let D(E) denote a dyadic cube
structure on E and consider a Whitney covering Wλ(X \E) of X \E as in Lemma 2.17 with
corresponding dyadic Carleson tents from (2.97). If there exists κ, p, q, Co ∈ (0,∞) such that

σ
({
x ∈ E :

�
Γκ(x)

|(Θ1∆)(y)|q δE(y)qυ−m dµ(y) > λq
})
≤ Coλ−pσ(∆), ∀λ > 0, (6.106)

for all surface balls ∆ ⊆ E, as in (6.68), then there exists C ∈ (0,∞), depending only on
κ, p, q, Co and finite positive geometric constants such that

sup
Q∈D(E)

1

σ(Q)

�
TE(Q)

|(Θ1)(x)|qδE(x)qυ−(m−d) dµ(x) ≤ C. (6.107)

We require the following auxiliary results to prove Proposition 6.11. The first such result
is a variation of the Whitney decomposition in Proposition 2.5.

Lemma 6.12. Let (E, ρ, σ) be a space of homogeneous type with a Borel measure σ and a
dyadic cube structure D(E). Suppose that O is an open subset of (E, τρ) such that

(
O, ρ

∣∣
O, σbO

)
is a space of homogeneous type. If λ ∈ (1,∞) and Ω is an open, proper, non-empty subset
of O, then there exist ε ∈ (0, 1), N ∈ N, Λ ∈ (λ,∞) and a subset W ⊆ D(E) such that the
following properties hold:

(1) σ
(
Ω \

⋃
Q∈W Q

)
= 0.

(2) If Q, Q′ ∈ W and Q 6= Q′, then Q ∩Q′ = ∅.

(3) If x ∈ Ω, then #
{
Q ∈ W : Bρ

(
x, εdistρ(x,O \ Ω)

)
∩Q 6= ∅

}
≤ N .

(4) If Q ∈ W, then λQ ⊆ Ω and ΛQ ∩ [O \ Ω] 6= ∅.

(5) `(Q) ≈ `(Q′) uniformly for all Q, Q′ ∈ W such that λQ ∩ λQ′ 6= ∅.

(6)
∑

Q∈W 1λQ ≤ N .

Proof. Given λ ∈ (1,∞) and an open, proper, non-empty subset Ω of the space of homogeneous
type

(
O, ρ

∣∣
O, σbO

)
, we obtain ε ∈ (0, 1), N ∈ N, Λ ∈ (λ,∞) and a covering of Ω with balls

such that Ω =
⋃
j∈N
(
O ∩Bρ(xj , rj)

)
by applying Proposition 2.5. For each j ∈ N, set

Ij :=
{
Q ∈ D(E) : `(Q) ≈ rj and Q ∩Bρ(xj , rj) 6= ∅

}
. (6.108)

Then (1)-(6) hold for any maximal disjoint subcollectionW of
⋃
j∈N Ij by the properties of the

dyadic cube structure D(E) and the covering {Bρ(xj , rj)}j∈N in Propositions 2.11 and 2.5.

77



We now state the aforementioned weak type John-Nirenberg lemma for Carleson measures,
cf. [5, Lemma 2.14] for a result similar in spirit in the Euclidean setting.

Lemma 6.13. Assume the hypotheses of Proposition 6.11. Let κ, q, N ∈ (0,∞) and β ∈ (0, 1).
There exists ηo ∈ (0,∞), depending only on geometric constants, such that if η ∈ [ηo,∞) and

σ({x ∈ Q : SQ(x) > N}) < (1− β)σ(Q), ∀Q ∈ D(E), (6.109)

where SQ(x) :=

(�
y∈Γκ(x): ρ#(x,y)<η`(Q)

|(Θ1)(y)|qδE(y)qυ−mdµ(y)

)1/q

, for all x ∈ E, then there

exists C ∈ (0,∞), depending only on κ, η, finite positive geometric constants and the constants
in the kernel estimates for θ in (3.1)-(3.4), such that

sup
Q∈D(E)

1

σ(Q)

�
TE(Q)

|(Θ1)(x)|qδE(x)qυ−(m−d) dµ(x) ≤ Cβ−1(1 +N q). (6.110)

Proof. Fix η0 ∈ (0,∞), to be specified, and suppose that (6.109) holds for some η ∈ [η0,∞),
κ, q, N ∈ (0,∞) and β ∈ (0, 1). For each i ∈ N, let Θi be as in (3.77) and associate the
function SiQ to Θi in the sense that SQ is associated to Θ. We fix κ̃ ∈ (0, κ), to be specified,

and use the notation SiQ,κ̃ for the function defined similarly to SiQ but with κ̃ in place of κ.

The set ΩN,i
Q := {x ∈ Q : SiQ(x) > N} is an open, proper subset of Q by (6.109), the pointwise

inequality SiQ ≤ SQ, and since SiQ is lower semi-continuous by (6.4). We also define

Ai := sup
Q∈D(E)

1

σ(Q)

�
Q

(SiQ,κ̃(x))q dσ(x), ∀ i ∈ N. (6.111)

To show that Ai <∞, let xQ denote the center of Q and apply (6.35) to obtain

�
Q

(SiQ,κ̃(x))q dσ(x) ≤
�
y∈Fκ̃(Q): distρ# (y,Q)≤c`(Q)

|(Θi1)(y)|qδE(y)qυ−mσ
(
Q ∩ πκ̃y

)
dµ(y)

≤ C
�
Bρ# (xQ,c`(Q))

|(Θi1)(y)|qδE(y)qυ−(m−d) dµ(y), (6.112)

for some c ∈ (0,∞) depending on η and geometry, where we used σ(Q ∩ πκ̃y ) ≤ CδE(y)d,
which follows from Lemma 6.2, the fact that (E, ρ

∣∣
E
, σ) is d-dimensional ADR, and that

δE(y) ≤ distρ#(y,Q) ≤ Cdiamρ(E) when y ∈ Bρ#(xQ, c`(Q)). Also, as in (3.81), we have

�
Bρ# (xQ,C`(Q))

|(Θi1)(y)|qδE(y)qυ−(m−d) dµ(y) ≤ Ci2qυ`(Q)d ≤ Ci2qυσ(Q), (6.113)

for all Q ∈ D(E), hence Ai <∞ for each i ∈ N.
We claim that there exists C ∈ (0,∞), with the dependency stated in the theorem, such

that supi∈NA
i ≤ β−1(C +N q). To prove this, let i ∈ N and Q ∈ D(E). It suffices to consider

when ΩN,i
Q 6= ∅, since otherwise SiQ,κ̃ ≤ SiQ ≤ N ≤ β−1N q on Q. We noted above that ΩN,i

Q is

an open proper subset of Q whilst
(
Q, ρ|Q, σbQ

)
is a space of homogeneous type with doubling
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constant independent of Q by Proposition 2.11. Thus, by Lemma 6.12, we have a Whitney
decomposition of ΩN,i

Q , relative to Q, of dyadic cubes {Qk}k∈IN,iQ
. Let FN,iQ := Q\ΩN,i

Q to write

�
Q

(SiQ,κ̃(x))q dσ(x) =

�
FN,iQ

(SiQ,κ̃(x))q dσ(x) +
∑

k∈IN,iQ

�
Qk

(SiQ,κ̃(x))q dσ(x) =: I + II.

(6.114)
Since κ̃ ∈ (0, κ), we have SiQ,κ̃ ≤ S

i
Q ≤ N on FN,iQ , so I ≤ N qσ(Q). To estimate II, we write

II =
∑

k∈IN,iQ

�
Qk

(SiQk,κ̃(x))q dσ(x) (6.115)

+
∑

k∈IN,iQ

�
Qk

�
y∈Γκ̃(x): η`(Qk)≤ρ#(x,y)<η`(Q)

|(Θi1)(y)|qδE(y)qυ−mdµ(y)dσ(x) =: III + IV.

To estimate III, recall (6.111), the fact that the family {Qk}k∈IN,iQ
consists of pairwise disjoint

cubes from D(E) contained in ΩN,i
Q , and assumption (6.109), to obtain

III ≤
∑

k∈IN,iQ

Aiσ(Qk) ≤ Aiσ
(
ΩN,i
Q

)
≤ Ai(1− β)σ(Q). (6.116)

To estimate IV , fix C0 > 0, to be specified later, and note that |(Θi1)(y)| ≤ C/δE(y)υ for
all y ∈X \ E by (3.2) and (3.12). Thus, if k ∈ IN,iQ and x ∈ Qk, then

�
y∈Γκ̃(x): η`(Qk)≤ρ#(x,y)≤C0`(Qk)

|(Θi1)(y)|qδE(y)qυ−m dµ(y)

≤ C`(Qk)−mµ({y ∈ Γκ̃(x) : η`(Qk) ≤ ρ#(x, y) ≤ C0`(Qk)}) ≤ C, (6.117)

and similarly �
y∈Γκ̃(x): ηC−1

ρ `(Q)≤ρ#(x,y)≤η`(Q)
|(Θi1)(y)|qδE(y)qυ−m dµ(y) ≤ C, (6.118)

for some C ∈ (0,∞) independent of x, k, Q and i. Next, by the properties of the Whitney
decomposition, for each k ∈ IN,iQ , there exists xk ∈ FN,iQ such that distρ#(xk, x) ≤ c `(Qk) for
all x ∈ Qk and some c ∈ (0,∞) independent of k, Q and i. We claim that there exits κ̃ ∈ (0, κ),
depending only on κ, C0 and geometric constants, but independent of k, Q and i, such that

x ∈ Qk, y ∈ Γκ̃(x) and C0`(Qk) < ρ#(x, y) =⇒ y ∈ Γκ(xk). (6.119)

Indeed, if κ̃ ∈ (0, κ), x ∈ Qk, y ∈ Γκ̃(x) and C0`(Qk) < distρ#(y,Q), then

C0`(Qk) < ρ#(y, x) < (1 + κ̃)δE(y) < (1 + κ)δE(y), (6.120)

so choosing ϑ ∈
(
0, (log2Cρ)

−1
]

such that (ρ#)ϑ is a genuine distance by Theorem 2.1, we have

ρ#(y, xk)
ϑ ≤ ρ#(y, x)ϑ + ρ#(x, xk)

ϑ < (1 + κ̃)ϑδE(y)ϑ + cϑ(1 + κ)ϑδE(y)ϑ/Cϑ0 , (6.121)

and (6.119) holds by choosing C0 > c[1−(1+κ)−ϑ]−1/ϑ and 0 < κ̃ < (1+κ)[1−(c/C0)ϑ]1/ϑ−1.
Next, we restrict η0 ∈ [cCρ,∞), so that ρ#(xk, y) ≤ η`(Q) when ρ#(x, y) < ηC−1

ρ `(Q) and

x ∈ Qk. In combination with (6.119), if k ∈ IN,iQ and x ∈ Qk, we then have
�
y∈Γκ̃(x):C0`(Qk)<ρ#(x,y)<ηC−1

ρ `(Q)
|(Θi1)(y)|qδE(y)qυ−m dµ(y) ≤ (SiQ(xk))

q ≤ N q. (6.122)
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We complete the estimate for IV by combining (6.117), (6.118) and (6.122) to obtain

IV ≤ (C +N q)
∑

k∈IN,iQ

σ(Qk) ≤ (C +N q)σ(Q). (6.123)

We now combine (6.123) with (6.114)-(6.116) to conclude that

�
Q

(SiQ,κ̃(x))qdσ ≤ Ai(1− β)σ(Q) + (C +N q)σ(Q), ∀Q ∈ D(E), (6.124)

hence Ai ≤ Ai(1− β) + C +N q for each i ∈ N, and supi∈NA
i ≤ β−1(C +N q), as required.

Now define SQ,κ̃ as SQ but with κ̃ instead of κ. Since limi→∞ S
i
Q,κ̃ = SQ,κ̃ pointwise in E

and supi∈NA
i ≤ β−1(C +N q), Lebesgue’s Monotone Convergence Theorem implies that

sup
Q∈D(E)

1

σ(Q)

�
Q

(SQ,κ̃(x))q dσ(x) ≤ β−1(C +N q). (6.125)

Next, since ρ#(x, y) ≤ η`(Q) for all x, y ∈ Bρ#
(
xQ, ηC

−1
ρ `(Q)

)
, based on (6.35), property (1)

in Lemma 6.1, (6.11) and the fact that
(
E, ρ

∣∣
E
, σ
)

is a d-dimensional ADR space, we have

�
∆(xQ,ηC

−1
ρ `(Q))

(SQ,κ̃(x))q dσ(x)

≥
�

∆(xQ,ηC
−1
ρ `(Q))

�
Γκ̃(x)

1Bρ# (xQ,ηC
−1
ρ `(Q))(y) |(Θ1)(y)|qδE(y)qυ−m dµ(y)dσ(x)

≥
�
Tκ̃(∆(xQ,ηC

−1
ρ `(Q)))

1Bρ# (xQ,ηC
−1
ρ `(Q))(y) |(Θ1)(y)|qδE(y)qυ−mσ

(
πκ̃y
)
dµ(y)

≈
�
Tκ̃(∆(xQ,ηC

−1
ρ `(Q)))

1Bρ# (xQ,ηC
−1
ρ `(Q))(y) |(Θ1)(y)|qδE(y)qυ−(m−d) dµ(y),

(6.126)

for all Q ∈ D(E). Also, there exists M ∈ N, depending only on geometric constants, such that
for every Q ∈ D(E), the ball ∆(xQ, ηC

−1
ρ `(Q)) is covered by at most M cubes Q̃ ∈ D(E) with

`(Q̃) = `(Q) and S
Q̃

= SQ. Therefore, by (6.125), (6.126) and (6) in Lemma 6.1, we obtain

sup
Q∈D(E)

1

σ(Q)

�
Bρ# (xQ, ηC

−2
ρ `(Q))\E

|(Θ1)(x)|qδE(x)qυ−(m−d) dµ(x) ≤ Cβ−1(1 +N q). (6.127)

Then (6.110) follows by using (2.108) to choose η0 ∈ [cCρ,∞) large enough, depending only
on geometric constants, so that TE(Q) ⊆ Bρ#(xQ, ηC

−2
ρ `(Q)) \ E for all Q ∈ D(E).

The result below is a geometric estimate on nontangential approach regions from [62].

Lemma 6.14. Let 0 < d < m <∞. Assume that (X , ρ, µ) is an m-dimensional ADR space,
E is a closed subset of (X , τρ), and there exists a Borel measure σ on (E, τρ|E ) such that
(E, ρ

∣∣
E
, σ) is a d-dimensional ADR space. For each κ > 0, β < m and M > m − β, there

exists C ∈ (0,∞), depending on κ, M , β, and the ADR constants of X and E, such that

�
Γκ(z)

δE(x)−β

ρ#(x, y)M
dµ(x) ≤ Cρ(y, z)m−β−M , for all z, y ∈ E with z 6= y. (6.128)
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Now we are ready to proceed with the proof of Proposition 6.11.

Proof of Proposition 6.11. Assume the hypotheses of Proposition 6.11. Lemma 6.13 shows
that it suffices to find some N ∈ (0,∞), β ∈ (0, 1) and η ∈ [ηo,∞) such that (6.109) holds. To
this end, fix N, c ∈ (0,∞), to be specified, and η ∈ [ηo,∞). For each Q ∈ D(E), we have

σ({x ∈ Q : SQ(x) > N}) (6.129)

≤ σ
({
x ∈ Q :

�
Γκ(x)∩Bρ# (x,η`(Q))

|(Θ1cQ)(y)|qδE(y)qυ−m dµ(y) > (N/2)q
})

+ σ
({
x ∈ Q :

�
Γκ(x)∩Bρ# (x,η`(Q))

|(Θ1E\cQ)(y)|qδE(y)qυ−m dµ(y) > (N/2)q
})

=: I + II,

where cQ := E∩Bρ#(xQ, c `(Q)). Assumption (6.106) and doubling imply that I ≤ CN−pσ(Q).
To estimate II, we fix a finite constant co ≥ supQ′∈D(E)

(
diamρ#(Q′)/`(Q′)

)
and let x ∈ Q.

If y ∈ Bρ#(x, η`(Q)) and z ∈ E \ cQ, then

ρ#(z, xQ) ≤ Cρρ#(z, y) + Cρ max {η, co} `(Q)

≤ Cρρ#(z, y) + c−1C2
ρ max {η, co} ρ#(z, xQ),

(6.130)

so restricting c ∈ (0,∞) such that c−1C2
ρ max {η, co} < 1/2, we have ρ#(z, xQ) ≤ 2Cρρ#(z, y),

and then by (3.2) and (3.13), we obtain

|(Θ1E\cQ)(y)| ≤ C
�
z∈E: ρ#(z,xQ)>c `(Q)

dσ(z)

ρ#(z, xQ)d+υ−a ≤ C
δE(y)−a

`(Q)υ−a
. (6.131)

Moreover, since (E, ρ|E , σ) is ADR, we now choose c ∈ (0,∞) as above and such that there
exists w ∈ c2Q \ c1Q for some 1 < c1 < c2 < c. Then ρ#(x,w) ≈ `(Q) and we claim that

ρ#(y, w) ≈ `(Q), uniformly for all y ∈ Γκ(x) ∩Bρ#(x, η`(Q)). (6.132)

Indeed, if ρ#(y, x) < η`(Q), then ρ#(y, w) ≤ Cρ max{ρ#(y, x), ρ#(x,w)} ≤ C`(Q), and if in
addition y ∈ Γκ(x), then ρ#(y, x) < (1 + κ)δE(y) ≤ (1 + κ)ρ#(y, w), hence

C`(Q) ≤ ρ#(x,w) ≤ Cρ(1 + κ)ρ#(y, w) ≤ C`(Q). (6.133)

Now choosing M > q(υ − a), and using (6.131), (6.132) and Lemma 6.14, we obtain

�
y∈Γκ(x): ρ#(x,y)<η`(Q)

|(Θ1E\cQ)(y)|qδE(y)qυ−m dµ(y)

≤ C`(Q)M−q(υ−a)

�
Γκ(x)

δE(y)−[m−q(υ−a)]

ρ#(y, w)M
dµ(y) ≤ C, ∀x ∈ Q. (6.134)

Applying Tschebyshev’s inequality, we then obtain

II ≤ C

N

�
Q

(�
y∈Γκ(x): ρ#(x,y)<η`(Q)

|(Θ1E\cQ)(y)|q dµ(y)

δE(y)m−qυ

)1/q

dσ(x) ≤ C

N
σ(Q). (6.135)

Now combining (6.129) and (6.135), we have

σ({x ∈ Q : SQ(x) > N}) ≤ CN−min{1,p}σ(Q), ∀Q ∈ D(E), (6.136)

so (6.109) holds for any β ∈ (0, 1) by choosing N ∈ (0,∞) such that CN−min{1,p} < 1−β.
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6.4 Extrapolating square function estimates

We now use Theorems 6.7 and 6.9 to prove the extrapolation results in Theorem 6.17 below for
square function estimates associated with integral operators ΘE , as defined in Section 3. Let us
first digress to clarify terminology and background results concerning the scale of Hardy spaces
Hp(E, ρ, σ) for p ∈ (0,∞) in the context of a d-dimensional ADR space (E, ρ, σ). In particular,
we record an atomic characterization for these spaces based on the work of R.R. Coifman and
G. Weiss in [20], and a maximal function characterization based on the work of R.A. Maćıas
and C. Segovia in [58]. The theory of Hardy spaces in this context has also been developed by
D. Mitrea, I. Mitrea, M. Mitrea and S. Monniaux in [61] and subsequetly refined by R. Alvarado
and M. Mitrea in [2].

We begin by defining, for each β ∈ (0,∞), the homogeneous Hölder space

Ċ β(E, ρ) :=
{
f : E → R : ‖f‖Ċ β(E,ρ) := sup

x,y∈E, x 6=y

|f(x)− f(y)|
ρ(x, y)β

<∞
}
. (6.137)

Let Ċ β
c (E, ρ) denote the subspace of functions in Ċ β(E, ρ) that vanish identically outside a

bounded set. The class of test functions D(E, ρ) :=
⋂

0<β<ind(E,ρ) Ċ β
c (E, ρ), with ind(E, ρ)

defined as in (2.6), is then equipped with the topology τD , defined as follows: Fix a nested
family {Kn}n∈N of ρ-bounded subsets of E such that every ρ-ball is contained some Kn. For
each n ∈ N, let Dn(E, ρ) denote the collection of functions in D(E, ρ) that vanish on E \Kn,
which becomes a Frechét space when equipped with the topology τn induced by the family of
norms

{‖ · ‖∞ + ‖ · ‖Ċ β(E,ρ) : β is a rational number such that 0 < β < ind(E, ρ)}. (6.138)

For each n ∈ N, the topology induced by τn+1 on Dn(E, ρ) coincides with τn, so we define τD
as the the associated strict inductive limit topology on D(E, ρ). We then define the space

of distributions D ′(E, ρ) on E as the (topological) dual of D(E, ρ) and let 〈·, ·〉 denote the
natural duality pairing between distributions in D ′(E, ρ) and test functions in D(E, ρ).

For each γ ∈ (0, ind(E, ρ)), define the grand maximal function of f ∈ D ′(E, ρ) by

f∗ρ,γ(x) := supψ∈B γρ (x)

∣∣〈f, ψ〉∣∣, ∀x ∈ E, (6.139)

where B γρ (x) is the set of all (ρ, γ)-normalized bump-functions supported near x, that is,
ψ ∈ D(E, ρ) such that ψ = 0 on E \Bρ(x, r) and ‖ψ‖∞ + rγ‖ψ‖Ċ γ(E,ρ) ≤ r

−d for some r > 0.

For d/(d+ ind(E, ρ)) < p <∞, define the Hardy space

Hp(E, ρ, σ) := {f ∈ D ′(E, ρ) : f∗ρ#,γ ∈ L
p(E, σ) for all d(1

p − 1) < γ < ind(E, ρ)} (6.140)

and the closely related space

H̃p(E, ρ, σ) := {f ∈ D ′(E, ρ) : f∗ρ#,γ ∈ L
p(E, σ) for some d(1

p − 1) < γ < ind(E, ρ)}. (6.141)

For d/(d+ ind(E, ρ)) < p ≤ 1, a function a ∈ L∞(E, σ) is called a p-atom if there exist x0 ∈ E
and a real number r > 0 such that

supp a ⊆ E ∩Bρ(x0, r), ‖a‖L∞(E,σ) ≤ r−d/p,
�
E
a dσ = 0, (6.142)
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(when E is bounded, the constant function σ(E)−1/p is also called a p-atom), and we define

Hp
at(E, ρ, σ) :=

{
f ∈

(
Ċ d(1/p−1)(E, ρ)

)∗
: there exist {λj}j∈N ∈ `p(N) and p-atoms {aj}j∈N

such that
∑

j∈N λjaj converges to f in
(
Ċ d(1/p−1)(E, ρ)

)∗}
, (6.143)

with the quasi-norm ‖f‖Hp
at(E,ρ,σ) := inf

{(∑
j∈N |λj |p

)1/p
: f =

∑
j∈N λjaj as in (6.143)

}
.

The following characterizations of these spaces from [2] extend work in [58] and [61].

Theorem 6.15. Let d > 0. Assume that (E, ρ, σ) is d-dimensional ADR. If p ∈ (1,∞), then

Hp(E, ρ, σ) = H̃p(E, ρ, σ) = Lp(E, σ). (6.144)

If d/(d+ ind(E, ρ)) < p ≤ 1 and d(1
p − 1) < γ < ind(E, ρ), then

‖f‖Hp
at(E,ρ,σ) ≈ ‖(f̃ )∗ρ#,γ‖Lp(E,σ), ∀ f ∈ Hp

at(E, ρ, σ), (6.145)

where f̃ ∈ D ′(E, ρ) denotes the restriction of f to D(E, ρ). Moreover, the assignment f 7→ f̃
provides an injective linear mapping from Hp

at(E, ρ, σ) onto H̃p(E, ρ, σ), and thus provides
a natural identification of Hp(E, ρ, σ) and H̃p(E, ρ, σ) with Hp

at(E, ρ, σ). Furthermore, there
exists C ∈ (0,∞), depending on p, ρ, γ, such that if f ∈ D ′(E, ρ) and f∗ρ#,γ ∈ Lp(E, σ),
then there exist {λj}j∈N ∈ `p(N) and p-atoms {aj}j∈N such that

∑
j∈N λjaj converges to f in

D ′(E, ρ) with ‖{λj}j∈N‖`p ≤ C‖f∗ρ#,γ‖Lp(E,σ). Conversely, for {λj}j∈N ∈ `p(N) and p-atoms

{aj}j∈N, if
∑

j∈N λjaj converges to some f in D ′(E, ρ), then ‖f∗ρ#,γ‖Lp(E,σ) ≤ C‖{λj}j∈N‖`p .

We will also need the following estimate from [62] for a Marcinkiewicz-type integral.

Lemma 6.16. Let d > 0. Assume that (E, ρ, σ) is d-dimensional ADR. If α > 0, then there
exists C ∈ (0,∞) such that for all nonempty closed subsets F of (E, τρ), it holds that

�
F

�
E

distρ# (y, F )α

ρ#(x, y)d+α
dσ(y) dσ(x) ≤ Cσ(E \ F ). (6.146)

We will consider an integral operator Θ with kernel θ as in (3.1)-(3.2) for which, instead
of (3.3), there exists α ∈ (0,∞) such that for all x ∈ X \ E, y ∈ E and ỹ ∈ E with
ρ(y, ỹ) ≤ 1

2ρ(x, y), the following holds:

|θ(x, y)− θ(x, ỹ)| ≤ Cθ
ρ(y, ỹ)α

ρ(x, y)d+υ+α

(distρ(x,E)

ρ(x, y)

)−a
. (6.147)

In particular, setting γ := min{α, ind(E, ρ|E)}, for κ > 0, q ∈ (1,∞) and p ∈ ( d
d+γ ,∞), the

(p, q)-Square Function Estimate (SFE)p,q is said to hold when[�
E

(�
Γκ(x)

|(Θf)(y)|q dµ(y)

δE(y)m−qυ

)p/q
dσ(x)

]1/p

≤ C‖f‖Hp(E,ρ|E ,σ) (6.148)

holds for all f ∈ Hp(E, ρ|E , σ), or equivalently, when δ
υ−m/q
E Θ : Hp(E, ρ|E , σ) −→ L(p,q)(X , E)

is a well-defined bounded linear operator, where

‖f‖Hp(E,ρ|E ,σ) :=

{
‖f‖Lp(E,σ) if p ∈ (1,∞),

‖f‖Hp
at(E,ρ|E ,σ) if p ∈ ( d

d+γ , 1].
(6.149)
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Also, for p ∈ (0,∞), the weak (p, q)-Square Function Estimate (wSFE)p,q is said to hold when

sup
λ>0

[
λ · σ

({
x ∈ E :

�
Γκ(x)

|(Θf)(y)|q dµ(y)

δE(y)m−qυ
> λq

})1/p
]
≤ C‖f‖Lp(E,σ) (6.150)

holds for all f ∈ Lp(E, σ). We now present the extrapolation result.

Theorem 6.17. Let 0 < d < m <∞. Assume that (X , ρ, µ) is an m-dimensional ADR space,
E is a closed subset of (X , τρ), and σ is a Borel measure on (E, τρ|E ) such that (E, ρ

∣∣
E
, σ) is a

d-dimensional ADR space. Suppose that Θ is an integral operator with kernel θ satisfying (3.1),
(3.2), (3.4) and (6.147) for some α ∈ (0,∞). Let κ > 0 and set γ := min{α, ind(E, ρ|E)}. The
following properties hold:

(1) If q ∈ (1,∞), po ∈ (1,∞) and (wSFE)po,q holds, then (wSFE)1,q holds and (SFE)p,q holds
for each p ∈ (1, po).

(2) If q ∈ (1,∞) and either (SFE)q,q holds or (wSFE)po,q holds for some po ∈ (q,∞), then
(SFE)p,q holds for each p ∈ ( d

d+γ ,∞).

(3) If σ is a Borel semiregular measure on (E, τρ|E ), po ∈ (0,∞) and (wSFE)po,2 holds, then

(SFE)p,2 holds for each p ∈ ( d
d+γ ,∞).

Proof. We successively prove (1), (2) and (3) below. The proof of (2) is split into Parts (a)-(e).

Proof of (1). Let q ∈ [1,∞), po ∈ (1,∞) and suppose that (wSFE)po,q holds. It suffices to

prove that Aq,κ ◦ (δ
υ−m/q
E Θ) is weak type (1, 1), that is, there exists C ∈ (0,∞) such that

σ
({
x ∈ E : Aq,κ(δ

υ−m/q
E (Θf))(x) > λ

})
≤ Cλ−1‖f‖L1(E,σ), ∀λ > 0, ∀ f ∈ L1(E, σ), (6.151)

since this is the statement that (wSFE)1,q holds, and then since Aq,κ◦(δυ−m/qE Θ) is subadditive
and weak type (po, po) by the (wSFE)po,q assumption, the Marcinkiewicz interpolation theorem

implies that Aq,κ ◦ (δ
υ−m/q
E Θ) is strong type (p, p), hence (SFE)p,q holds, for each p ∈ (1, po).

To prove (6.151), let f ∈ L1(E, σ). If 0<λ ≤ ‖f‖L1(E,σ)/σ(E)<∞, then E is bounded and

σ
({
x ∈ E : Aq,κ

(
δ
υ−m/q
E (Θf)

)
(x) > λ

})
≤ σ(E) ≤ λ−1‖f‖L1(E,σ), (6.152)

so (6.151) holds. Now assume that λ > ‖f‖L1(E,σ)/σ(E) and, without loss of generality, that f
has bounded support. We now introduce a Calderón-Zygmund decomposition of f at level λ.
More precisely (cf., e.g., [19]), there exist C ∈ (0,∞), N ∈ N, depending only on geometry,
balls Qj := Bρ(xj , rj), j ∈ J ⊆ N, and functions g, b : E → R such that f = g + b on E with

g ∈ L1(E, σ) ∩ L∞(E, σ), ‖g‖L1(E,σ) ≤ C‖f‖L1(E,σ), |g(x)| ≤ Cλ, ∀x ∈ E, (6.153)

b =
∑

j∈J
bj , supp bj ⊆ Qj ,

�
E
bj dσ = 0,

 
Qj

|bj | dσ ≤ Cλ, ∀ j ∈ J, (6.154)

and setting O :=
⋃
j∈J Qj ⊆ E and F := E \ O, it holds that∑

j∈J
1Qj ≤ N, σ(O) ≤ Cλ−1‖f‖L1(E,σ), distρ(Qj , F ) ≈ rj , ∀ j ∈ J. (6.155)

The series in (6.154) converges absolutely in L1(E, σ), since
∑

j∈J ‖bj‖L1(E,σ) ≤ C‖f‖L1(E,σ).
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To prove (6.151), since (wSFE)po,q holds and po > 1, we first use (6.153) to obtain

σ
({
x ∈ E : Aq,κ

(
δ
υ−m/q
E (Θg)

)
(x) > λ/2

})
≤ Cλ−po‖g‖poLpo (E,σ) ≤ Cλ

−1‖f‖L1(E,σ). (6.156)

We then use (6.155) to obtain

σ
({
x ∈ O : Aq,κ

(
δ
υ−m/q
E (Θb)

)
(x) > λ/2

})
≤ σ(O) ≤ Cλ−1‖f‖L1(E,σ) (6.157)

whilst it is immediate that

σ
({
x ∈ F : Aq,κ

(
δ
υ−m/q
E (Θb)

)
(x) > λ/2

})
≤ λ−1

�
F
Aq,κ

(
δ
υ−m/q
E (Θb)

)
dσ. (6.158)

Thus, to prove (6.151), since Aq,κ ◦ (δ
υ−m/q
E Θ) is quasi-subadditive, it remains to prove that

�
F
Aq,κ

(
δ
υ−m/q
E (Θb)

)
dσ ≤ C‖f‖L1(E,σ). (6.159)

To prove (6.159), let j ∈ J , Qj = Bρ(xj , rj), x ∈ F and y ∈ Γκ(x). We use (6.154) to write

|(Θbj)(y)| ≤
�
Qj

|θ(y, z)− θ(y, xj)||bj(z)| dσ(z) =: I1 + I2, (6.160)

where I1 and I2 are the integrals over Bρ#(xj , ερ#(y, xj)) and Qj \Bρ#(xj , ερ#(y, xj)) for some

ε > 0. We choose 0 < ε < 2−1C̃−1
ρ C−2

ρ so that by Theorem 2.1, if ρ#(z, xj) < ερ#(y, xj), then

ρ(z, xj) ≤ C2
ρρ#(z, xj) < εC2

ρρ#(y, xj) ≤ εC̃ρC2
ρρ#(y, xj) <

1
2ρ(y, xj). (6.161)

It then follows from assumption (6.147) and (6.154) that

I1 ≤ C
�
Qj

ρ#(z, xj)
αδE(y)−a

ρ#(y, xj)d+υ+α−a |bj(z)| dσ(z) ≤ Cλ
rαj δE(y)−aσ(Qj)

ρ#(y, xj)d+υ+α−a . (6.162)

To estimate I2, let z ∈ Qj \Bρ#(xj , ερ#(y, xj)). We have

rj ≈ distρ(Qj , F ) ≤ C̃ρρ(x, xj) ≤ C(1 + κ)δE(y) + Cρ(y, xj) ≤ Cρ(y, xj), (6.163)

whilst ρ(z, xj) < rj implies that ρ(y, xj) ≤ Cε−1rj , hence rj ≈ ρ(y, xj) uniformly for all
j ∈ J , y ∈ Γκ(x) and x ∈ F . Also, replacing xj with z in (6.163) shows that rj ≤ Cρ(y, z),
hence ρ(y, xj) ≤ Cρ(y, z) + Crj ≤ Cρ(y, z) uniformly for all j ∈ J , y ∈ Γκ(x), x ∈ F and
z ∈ Qj \Bρ#(xj , ερ#(y, xj)). Together with (3.2), on the domain of integration in I2, we have

∣∣θ(y, z)− θ(y, xj)∣∣ ≤ CδE(y)−a

ρ#(y, z)d+υ−a +
CδE(y)−a

ρ#(y, xj)d+υ−a ≤
Crαj δE(y)−a

ρ#(y, xj)d+υ+α−a . (6.164)

Together with (6.154), this allows us to estimate

I2 ≤ Cλ
rαj δE(y)−aσ(Qj)

ρ#(y, xj)d+υ+α−a . (6.165)
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Cumulatively, (6.160), (6.162) and (6.165) prove that

Aq,κ
(
δ
υ−m/q
E (Θbj)

)
(x) ≤ Cλ rαj σ(Qj)

(�
Γκ(x)

δE(y)q(υ−a)−m

ρ#(y, xj)q(d+υ+α−a)
dµ(y)

)1/q

(6.166)

uniformly for all j ∈ J and x ∈ F .
For all j ∈ J and x ∈ F , using (6.166) and Lemma 6.14 (recall that ν − a > 0), we obtain

Aq,κ
(
δ
υ−m/q
E (Θbj)

)
(x) ≤ Cλ rαj σ(Qj)ρ(x, xj)

−d−α ≤ Cλ
�
Qj

distρ#(z, F )α

ρ#(x, z)d+α
dσ(z), (6.167)

where in the last inequality we used that distρ#(z, F ) ≈ rj , uniformly for all z ∈ Qj , and that

ρ(x, z) ≤ Cρ(x, xj) + Crj ≤ Cρ(x, xj) + C distρ(Qj , F ) ≤ Cρ(x, xj), ∀ z ∈ Qj . (6.168)

Summing over j ∈ J and using the sublinearity of Aq,κ
(
δ
υ−m/q
E Θ(·)

)
(recall that q ≥ 1), and

the finite overlap property in (6.155), we obtain

Aq,κ
(
δ
υ−m/q
E (Θb)

)
(x) ≤ Cλ

�
O

distρ#(z, F )α

ρ#(x, z)d+α
dσ(z), ∀x ∈ F. (6.169)

Consequently, from (6.169), Lemma 6.16 and (6.155), we deduce that�
F
Aq,κ

(
δ
υ−m/q
E (Θb)

)
(x) dx ≤ Cλσ(E \ F ) = Cλσ(O) ≤ C‖f‖L1(E,σ). (6.170)

This proves (6.159), which in turn proves (6.151) and property (1 ) in the theorem.

Proof of (2). The proof of (2) is divided into Parts (a)-(e) below.

Part (a): Let q ∈ (1,∞), p ∈ (1, q] and assume that (SFE)q,q holds in order to prove that
(SFE)p,q holds. If p = q, then there is nothing to prove. If p ∈ (1, q), then since property (1)
implies that (SFE)r,q holds for each r ∈ (1, q), it follows that (SFE)p,q holds.

Part (b): Let q ∈ (1,∞), p ∈ (q,∞) and assume that (SFE)q,q holds in order to prove that
(SFE)p,q holds. In particular, by the equivalence in Theorem 6.7, it suffices to show that

‖Cq,κ(δ
υ−m/q
E (Θf))‖Lp(E,σ) ≤ C‖f‖Lp(E,σ). (6.171)

Moreover, by the boundedness of the Hardy-Littlewood maximal operator on Lp(E, σ) and
Lp/q(E, σ), since p > max{q, 1}, it suffices to show, for all f ∈ Lp(E, σ), that

Cq,κ
(
δ
υ−m/q
E (Θf)

)
(x0) ≤ C

[(
ME(|f |q)(x0)

)1/q
+ (ME(ME(f)))(x0)

]
, ∀x0 ∈ E. (6.172)

To this end, let r > 0 and x0 ∈ E. Fix c ∈ (0,∞), to be specified, set ∆ := E ∩ Bρ#(x0, r),
c∆ := E ∩ Bρ#(x0, cr), and write f = f1c∆ + f1E\c∆ =: f1 + f2. Using (6.35), Lemma 6.2,
the fact that (E, ρ|E , σ) is d-dimensional ADR, and (SFE)q,q, we obtain

1

σ(∆)

�
Tκ(∆)

|(Θf1)(x)|qδE(x)qυ−(m−d) dµ(x)

≤ C

σ(∆)

�
E

(�
Γκ(x)

|(Θf1)(y)|q δE(y)qυ−m dµ(y)
)
dσ(x)

≤ C

σ(∆)

�
c∆
|f |q dσ ≤ CME(|f |q)(x0). (6.173)
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To treat the contribution from f2, we now choose c > Cρ. If y ∈ E \ c∆ and w ∈ ∆,
then cr < ρ#(y, x0) ≤ Cρ max{ρ#(y, w), ρ#(w, x0)} ≤ Cρρ#(y, w), hence E \ c∆ ⊆ {y ∈ E :
ρ#(y, w) > r} and ρ#(y, x0) ≈ ρ#(y, w). Therefore, if z ∈ Tκ(∆), then since ρ#(y, x0) ≤
Cρ max{ρ#(y, z), (1 + κ)δE(z)} ≤ Cρ#(y, z), by (3.2) and (3.13), we have

|(Θf2)(z)| ≤ C
�
E\c∆

δE(z)−a

ρ#(z, y)d+υ−a |f(y)| dσ(y) ≤ CδE(z)−a

rυ−a
(MEf)(w), ∀w ∈ ∆. (6.174)

Thus, in concert with (6.15) and Lemma 3.5 (which uses υ − a > 0), we obtain(
1

σ(∆)

�
Tκ(∆)

|(Θf2)(z)|qδE(z)qυ−(m−d) dµ(z)

)1/q

≤ C

rυ−a
inf
w∈∆

(MEf)(w)

(
1

σ(∆)

�
Bρ# (x0,Cr)\E

δE(z)q(υ−a)−(m−d) dµ(z)

)1/q

≤ C inf
w∈∆

(MEf)(w) ≤ C
 

∆
MEf dσ ≤ CME(MEf)(x0). (6.175)

Now (6.172), and thus (SFE)p,q, follows from (6.173) and (6.175) in view of (6.67) and the fact

that Cq,κ ◦
(
δ
υ−m/q
E Θ

)
is sub-linear in the current context.

Part (c): Let q ∈ (1,∞), p ∈ ( d
d+γ , 1] and assume that (SFE)q,q holds in order to prove that

sup
{
‖Aq,κ

(
δ
υ−m/q
E (Θa)

)
‖pLp(E,σ) : a is a p-atom

}
≤ C. (6.176)

To do this, let a denote a p-atom with x0 ∈ E and r > 0 as in (6.142), so supp a ⊆ Bρ#(x0, C̃ρr).
Fix c ∈ (1,∞), to be specified, and set ∆ := E ∩Bρ#(x0, cr) to write

∥∥Aq,κ(δυ−m/qE (Θa)
)∥∥p
Lp(E,σ)

=

�
∆

( �
Γκ(x)

|(Θa)(y)|qδE(y)qυ−m dµ(y)

)p/q
dσ(x)

+

�
E\∆

(�
Γκ(x)

|(Θa)(y)|qδE(y)qυ−m dµ(y)

)p/q
dσ(x) =: I1 + I2. (6.177)

Using Hölder’s inequality, the fact that (E, ρ|E , σ) is d-ADR, (SFE)q,q and (6.142), we obtain

I1 ≤ C
( �

∆

�
Γκ(x)

|(Θa)(y)|qδE(y)qυ−m dµ(y)dσ(x)

)p/q
rd(1−p/q)

≤ C‖Aq,κ
(
δ
υ−m/q
E (Θa)

)
‖pLq(E,σ) r

d(1−p/q) ≤ C‖a‖pLq(E,σ) r
d(1−p/q) ≤ C, (6.178)

for some C ∈ (0,∞) independent of a.
It remains to estimate I2. Let x ∈ E \∆ and y ∈ Γκ(x). If z ∈ E ∩Bρ#(x0, C̃ρr), then

ρ#(x0, z) ≤ C̃ρr ≤
1

c
ρ#(x, x0) ≤ C

c
max{ρ#(x, y), ρ#(y, x0)} ≤ C

c
(1 + κ)ρ#(y, x0), (6.179)

so now choosing c ∈ (1,∞) sufficiently large, depending only on geometry, we have

ρ(z, x0) ≤ 1
2ρ(y, x0), ∀ z ∈ E ∩Bρ#(x0, C̃ρr). (6.180)
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Thus, using (6.147), (6.142) and that supp a ⊆ Bρ#(x0, C̃ρr) and (E, ρ|E , σ) is d-ADR, we have

|(Θa)(y)| ≤
�
E∩Bρ# (x0,C̃ρr)

|θ(y, z)− θ(y, x0)||a(z)| dσ(z)

≤ C
�
E∩Bρ# (x0,C̃ρr)

ρ#(z, x0)αδE(y)−a

ρ#(y, x0)d+υ+α−a |a(z)| dσ(z)

≤ C2γ−αδE(y)−a
�
E∩Bρ# (x0,C̃ρr)

ρ#(z, x0)γ

ρ#(y, x0)d+υ−a+γ
|a(z)| dσ(z)

≤ C δE(y)−arγ+d(1−1/p)

ρ#(y, x0)d+υ−a+γ
, ∀ y ∈ Γκ(x), ∀x ∈ E \∆. (6.181)

Furthermore, applying Lemma 6.14, we obtain

�
Γκ(x)

|(Θa)(y)|q dµ(y)

δE(y)m−qυ
≤ C rqγ+qd(1−1/p)

ρ#(x, x0)qd+qγ
, ∀x ∈ E \∆. (6.182)

Finally, applying (3.13) (with f ≡ 1) and noting that p(d+ γ) > d, we obtain

I2 ≤ Crpγ+pd(1−1/p)

�
E\∆

dσ(x)

ρ#(x, x0)pd+pγ
≤ C r

pγ+pd(1−1/p)

rpd+pγ−d = C. (6.183)

The uniform bound on p-atoms in (6.176) now follows from (6.177), (6.178) and (6.183).

Part (d): Let q ∈ (1,∞), p ∈ ( d
d+γ , 1] and assume that (SFE)q,q holds in order to prove that

(SFE)p,q holds. We begin by defining the sets

Ċ γ
b,0(E, ρ|E) := {f ∈ Ċ γ(E, ρ|E) : f has bounded support and

�
E f dσ = 0}. (6.184)

F(E) :=

{
Ċ γ
b,0(E, ρ|E) if E is unbounded;

Ċ γ
b,0(E, ρ|E) ∪ {1E} if E is bounded.

(6.185)

D0(E) := the finite linear span of functions in F(E). (6.186)

We now prove that D0(E) is dense in Hp(E, ρ|E , σ). First, recall the approximation to the
identity {Sl}l∈Z, l≥κE of order γ from Proposition 2.13. It follows from Definition 2.12 that
Sla ∈ D0(E) for every p-atom a and each l ∈ N. Also, it is proved in [49, Lemma 3.2(iii), p. 108],
that {Sl}l∈N is uniformly bounded from Hp(E, ρ|E , σ) to Hp(E, ρ|E , σ) and that Slf → f in
Hp(E, ρ|E , σ) as l→ +∞ for all f ∈ Hp(E, ρ|E , σ). Together, these facts prove that individual
p-atoms may be approximated in Hp(E, ρ|E , σ) with functions from D0(E), and since finite
linear spans of p-atoms are dense in Hp(E, ρ|E , σ) by Theorem 6.15, it follows that D0(E) is
dense in Hp(E, ρ|E , σ).

To prove that (SFE)p,q holds, it now suffices to find C ∈ (0,∞) such that

‖δυ−m/qE Θf‖L(p,q)(X ,E,µ,σ;κ) ≤ C‖f‖Hp(E,ρ|E ,σ), ∀ f ∈ D0(E), (6.187)

since then the density of D0(E) in Hp(E, ρ|E , σ) and the fact that the mixed-norm spaces
L(p,q)(X , E, µ, σ;κ) are quasi-Banach spaces (see [63, 10]), imply that the bounded linear

operator δ
υ−m/q
E Θ : D0(E) → L(p,q)(X , E, µ, σ;κ) extends to a bounded linear operator from
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Hp(E, ρ|E , σ) into L(p,q)(X , E, µ, σ;κ), as required. In particular, since the mixed-norm spaces
are only quasi-normed, the fact that the linear extension is bounded relies on the following
property of a general quasi-normed vector space (X, ‖ · ‖) (see [61, Theorem 1.5(6)]): There
exists C ∈ [1,∞) such that for any sequence xj → x in X as j → ∞ in the topology induced
by the quasi-norm, it holds that C−1‖x‖ ≤ lim infj→∞ ‖xj‖ ≤ lim supj→∞ ‖xj‖ ≤ C‖x‖.

To prove (6.187), let f ∈ Ċ γ
b,0(E, ρ|E), so by [49, Proposition 3.1, p. 112], there exist

(λj)j∈N ∈ `p and a sequence of p-atoms (aj)j∈N such that
∑

j∈N λjaj converges to f in both
Hp(E, ρ|E , σ) and Lq(E, σ), and

∑
j∈N |λj |p ≤ C‖f‖pHp(E,ρ|E ,σ) for some C ∈ (0,∞) indepen-

dent of f . The (SFE)q,q assumption implies that δ
υ−m/q
E Θ : Lq(E, σ) → L(q,q)(X , E, µ, σ;κ)

is a bounded linear operator, hence limN→∞
∑N

j=1 λjδ
υ−m/q
E Θaj converges to δ

υ−m/q
E Θf in

L(q,q)(X , E, µ, σ;κ). We may then apply [63, Theorem 1.5] to obtain a subsequence of these
partial sums, corresponding to an increasing sequence (Nk)k∈N ⊆ N, such that

lim
k→∞

Fk(x) := lim
k→∞

Nk∑
j=1

λjδ
υ−m/q
E (Θaj)(x) = δ

υ−m/q
E (Θf)(x), for µ-a.e. x ∈X \ E. (6.188)

Since we are assuming that 0 < p ≤ 1 < q <∞, it holds that ‖ ·‖p
L(p,q)(X ,E,µ,σ;κ)

is subadditive,

so for each k ∈ N, by the uniform estimate on p-atoms from (6.176) in Part (c), we have

‖Fk‖pL(p,q)(X ,E,µ,σ;κ)
=

∥∥∥∥∥
Nk∑
j=1

λjδ
υ−m/q
E Θaj

∥∥∥∥∥
p

L(p,q)(X ,E,µ,σ;κ)

≤ C
Nk∑
j=1

|λj |p ≤ C‖f‖pHp(E,ρ|E ,σ).

(6.189)
We now combine the general fact that ‖u‖L(p,q)(X ,E,µ,σ;κ) = ‖ |u| ‖L(p,q)(X ,E,µ,σ;κ) with Fatou’s

Lemma in L(p,q)(X , E, µ, σ;κ), (6.188) and (6.189) to obtain

‖δυ−m/qE Θf‖L(p,q)(X ,E,µ,σ;κ) = ‖ lim inf
k→∞

|Fk|‖L(p,q)(X ,E,µ,σ;κ)

≤ lim inf
k→∞

‖Fk‖L(p,q)(X ,E,µ,σ;κ) ≤ C‖f‖Hp(E,ρ|E ,σ). (6.190)

We established (6.190) for any f ∈ Ċ γ
b,0(E, ρ|E), which proves (6.187) for all f ∈ D0(E)

except in the case when E is bounded and f = 1E . In that case, since E is d-ADR, it holds
that σ(E) <∞, so by Hölder’s inequality and the (SFE)q,q assumption, we have

‖δυ−m/qE Θ1E‖L(p,q)(X ,E,µ,σ;κ) ≤ σ(E)
1
p
− 1
q ‖Aq,κ

(
δ
υ−m/q
E Θ1E

)
‖Lq(E,σ) ≤ Cσ(E)

1
p = C. (6.191)

Now (6.187) follows by (6.190) and (6.191), which completes the proof that (SFE)p,q holds.

Part (e): Let q ∈ (1,∞), p ∈ ( d
d+γ ,∞) and assume that (wSFE)po,q holds for some po ∈ (q,∞)

in order to prove that (SFE)p,q holds. In this case, property (1) implies that (SFE)r,q holds
for each r ∈ (1, po), hence (SFE)q,q holds and (SFE)p,q follows by Parts (a), (b) and (d).

Proof of (3). Now suppose that σ is a Borel semiregular measure on (E, τρ|E ). If po ∈ (0,∞)
and (wSFE)po,2 holds, then Theorem 6.9 implies that (SFE)2,2 holds, so then property (2 )
implies that (SFE)p,2 holds for each p ∈ ( d

d+γ ,∞).
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7 Conclusion

Theorem 1.1 asserts the equivalence of a number of the properties encountered in the manuscript.

Proof of Theorem 1.1. The fact that (1) ⇒ (2) is a consequence of Theorem 3.1. It is easy to
see that if (2) holds, then (7) holds by taking bQ := 1Q for each Q ∈ D(E), hence (2) ⇒ (7).
The implication (7) ⇒ (1) is proved in Theorem 3.6. The implication (9) ⇒ (1) is proved in
Theorem 4.3. Moreover, (1) ⇔ (9) ⇔ (10) by Theorem 4.4. The implication (11) ⇒ (12) is
proved in Theorem 6.17. Clearly (12) ⇒ (11), while (11) ⇒ (1) is contained in Theorem 6.9.
To show that (1) ⇒ (11), suppose that (1) holds, let f ∈ L2(E, σ) and λ > 0, and estimate

λ2 · σ
({
x ∈ E :

�
Γκ(x)

|(Θf)(y)|2 dµ(y)

δE(y)m−2υ
> λ2

})
≤
�
E

�
Γκ(x)

|(Θf)(y)|2 dµ(y)

δE(y)m−2υ
dσ(x)

≤
�

X \E

|(Θf)(y)|2

δE(y)m−2υ
σ(πκy ) dµ(y)

≤ C
�

X \E
|(Θf)(y)|2δE(y)2υ−(m−d) dµ(y)

≤ C‖f‖2L2(E,σ), (7.1)

where the first inequality uses Tschebyshev’s inequality, the second uses (6.35), the third uses
(6.19) in Lemma 6.2 and the fact that (E, ρ

∣∣
E
, σ) is d-ADR, and the last uses (1.25). Thus,

(1) ⇒ (11) as desired. Since (1.35) is a rewriting of (1.34), it is immediate that (12) ⇔ (13).
In summary, so far we have shown that (1), (2), (7) and (9)-(13) are equivalent.

The implication (6) ⇒ (4) is trivial and, based on (2.108), we have that (4) ⇒ (2). We
focus next on (1) ⇒ (6). Suppose (1) holds and fix f ∈ L∞(E, σ), x ∈ E, and r ∈ (0,∞)
arbitrary. Then, using the notation Bcr := Bρ#(x, cr) for c > 0, we may write

�
Br\E

|Θf |2δ2υ−(m−d)
E dµ ≤

�
Br\E

(
|Θ(f1E∩B2rCρ

)|2 + |Θ(f1E\B2rCρ
)|2
)
δ

2υ−(m−d)
E dµ =: I+ II.

(7.2)
To estimate I we apply (1.25) and the property of E being d-dimensional ADR to obtain

I ≤ C
�
E∩B2rCρ

|f |2 dσ ≤ C‖f‖2L∞(E,σ)σ(E ∩Br). (7.3)

As regards II, we first note that if z ∈ Br \ E and y ∈ E \ B2rCρ are arbitrary points then
ρ#(x, y) ≤ Cρ(ρ#(x, z) +ρ#(z, y)) < Cρr+Cρρ#(z, y) ≤ 1

2ρ#(x, y) +Cρρ#(z, y) which implies
ρ#(z, y) ≥ ρ#(x, y)/(2Cρ). This fact, in combination with (1.22) and (3.13), yields

|Θ(f1E\B2rCρ
)(z)| ≤ C‖f‖L∞(E,σ)

�
E\B2rCρ

1

ρ#(x, y)d+υ
dσ(y) ≤ C‖f‖L∞(E,σ) r

−υ, (7.4)

for all z ∈ Br \ E, so applying (3.15) (with R := r and γ := m− d− 2υ) we obtain

II ≤ C‖f‖2L∞(E,σ)r
−2υrd+2υ ≤ C‖f‖2L∞(E,σ)σ(E ∩Br). (7.5)

At this point, (1.30) follows from (7.2), (7.3), and (7.5), completing the proof of (1) ⇒ (6).
Based on (2.108) we have that (6) ⇒ (3) while (3) ⇒ (2) is trivial.
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Next, we show that (8) ⇒ (7). Suppose that (8) holds and set εo := min{ε, a0}, where ε is
as in Lemma 2.18 and a0 is as in (2.30). Let Q ∈ D(E) and set ∆Q := Bρ#(xQ, εo`(Q)/2Cρ)∩E.
Then (2.30), (2.109) and the fact that E is d-dimensional ADR imply

∆Q ⊆ Q, Bρ#(xQ, εo`(Q)) \ E ⊆ TE(Q), σ(∆Q) ≈ σ(Q) = C`(Q)d. (7.6)

Hence, if we now define bQ := b∆Q
, where b∆Q

is the function associated to ∆Q as in (8),
then b∆Q

satisfies (1.32) which, when combined with the support condition of b∆Q
and the last

condition in (7.6), implies that bQ satisfies the first two conditions in (1.31) (with Q̃ = Q). In
order to show that bQ also verifies the last condition in (1.31), we write

�
TE(Q)

|(Θ bQ)(x)|2δE(x)2υ−(m−d) dµ(x)=

�
TE(Q)\Bρ# (xQ,εo`(Q))

|(Θ bQ)(x)|2δE(x)2υ−(m−d) dµ(x)

+

�
Bρ# (xQ,εo`(Q))

|(Θ bQ)(x)|2δE(x)2υ−(m−d) dµ(x) =: I1 + I2. (7.7)

To estimate I1, note that if x ∈ TE(Q)\Bρ#
(
xQ, εo`(Q)

)
and y ∈ ∆Q, then ρ#(x, y) ≥ εo

2Cρ
`(Q),

so (1.22), (1.31) and (7.6) imply that |(Θ bQ)(x)| ≤ C`(Q)−υ, and with (2.108) we have

I1 ≤ C`(Q)−2υ

�
TE(Q)\Bρ# (xQ,εo`(Q))

δE(x)2υ−(m−d) dµ(x)

≤ C`(Q)−2υ

�
Bρ# (xQ,C`(Q))\E

δE(x)2υ−(m−d) dµ(x)

≤ C`(Q)−2υ`(Q)d+2υ ≤ Cσ(Q), (7.8)

where the third inequality uses (3.15) (with R = r = `(Q) and γ := m− d− 2υ). To estimate
I2, first note that by (1.32) and (7.6), it is immediate that I2 ≤ C0σ(∆Q) ≤ Cσ(Q). This fact,
(7.7) and (7.8) show that bQ also satisfies the last condition in (1.31), since the constants in
our estimates are independent of Q. This completes the proof of (8) ⇒ (7).

To see that (1) ⇒ (8), set b∆ := 1∆ for each surface ball ∆. The first two estimates in
(1.32) are immediate while the third is a consequence of (1.25) with f := b∆.

It is trivial that (2) ⇒ (5). Now assume that (5) holds. If we set bQ := b1Q for each
Q ∈ D(E), then (1.31) holds for the family {bQ}Q∈D(E), by (1.29) and the fact that b is
para-accretive. This shows that (5) ⇒(7), and so the proof of Theorem 1.1 is complete.

We conclude the manuscript with the proof of Theorem 1.2.

Proof of Theorem 1.2. The idea is to apply Theorem 6.17 in the setting X := E × [0,∞) and
E ≡ E × {0} (i.e., we identify (y, 0) ≡ y for every y ∈ E). Moreover, we set

ρ((x, t), (y, s)) := max{|x− y|, |t− s|} for every (x, t), (y, s) ∈ E × [0,∞), (7.9)

and set µ := σ⊗L1, where L1 is the one-dimensional Lebesgue measure on [0,∞), and consider
the integral operator Θ in (3.4) with integral kernel θ : (X \ E)× E → R defined by

θ((x, t), y) := 2−kψk(x− y) if x, y ∈ E, t > 0 and k ∈ Z, 2k ≤ t < 2k+1. (7.10)
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It is not difficult to verify that (X , ρ, µ) is a (d+ 1)-ADR space, that αρ = 1, that θ satisfies
(3.1)-(3.3) for a := 0, α := 1, υ := 1, and that δE(x, t) = t for every x ∈ E and t ∈ [0,∞). In
particular, γ defined in Theorem 6.17 now equals 1. Fix some κ > 0 and observe that

Γκ(x) =
{

(y, t) ∈ E × (0,∞) : |x− y| < (1 + κ)t
}
, ∀x ∈ E. (7.11)

If f ∈ L2(E, σ), then by Fubini’s Theorem, the fact that E is d-ADR, and (7.10), we have

�
E

�
Γκ(x)

|(Θf)(y, t)|2 dµ(y, t)

δE(y, t)d−1
dσ(x) =

�
E

�
Γκ(x)

|(Θf)(y, t)|2 t1−ddµ(y, t)dσ(x)

=

�
E×(0,∞)

|(Θf)(y, t)|2 t1−dσ(E ∩B(y, (1 + κ)t)) dµ(y, t)

≈ C
� ∞

0

�
E
|(Θf)(y, t)|2 t dσ(y) dt

= C
∑

k∈Z

� 2k+1

2k

�
E

∣∣∣∣ �
E

2−kψk(y − z)f(z) dσ(z)

∣∣∣∣2dσ(y) t dt

= C
∑

k∈Z

�
E

∣∣∣∣ �
E
ψk(y − z)f(z) dσ(z)

∣∣∣∣2dσ(y). (7.12)

It was proved in [26, Theorem, p. 10] that there exists C ∈ (0,∞) such that

∑
k∈Z

�
E

∣∣∣∣ �
E
ψk(x− y)f(y) dσ(y)

∣∣∣∣2 dσ(x) ≤ C
�
E
|f |2 dσ, ∀ f ∈ L2(E, σ). (7.13)

Therefore, the (SFE)2,2 estimate from (6.148) holds, so Theorem 6.17 implies that (SFE)p,2
holds for each p ∈

(
d
d+1 ,∞

)
, which by reasoning as in (7.12), is equivalent to the estimate

�
E

(∑
k∈Z

 
∆(x,(1+κ)2k)

∣∣∣∣�
E
ψk(z − y)f(z) dσ(z)

∣∣∣∣2 dσ(y)

)p/2
dσ(x) ≤ C ′‖f‖pHp(E,σ), (7.14)

for all f ∈ Hp(E, σ), which implies (1.37). In fact, estimate (7.14) is equivalent to (1.37).
To prove the nontrivial implication, choose N ∈ N sufficiently large and consider (7.14) with
ψ̃(x) := ψ(x/2N ) in place of ψ, and note that if ψ ∈ C∞0 (Rn+1) is odd, then ψ̃(x) is also odd,

smooth and compactly supported, and satisfies ψ̃k = 2dNψk+N for every k ∈ Z.
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[24] G. David and J.L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators,
Ann. of Math. (2), 120 (1984), no. 2, 371–397.
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