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Abstract

We establish square function estimates for integral operators on uniformly rectifiable
sets by proving a local T'(b) theorem and applying it to show that such estimates are
stable under the so-called big pieces functor. More generally, we consider integral operators
associated with Ahlfors-David regular sets of arbitrary codimension in ambient quasi-metric
spaces. The local T'(b) theorem is then used to establish an inductive scheme in which square
function estimates on so-called big pieces of an Ahlfors-David regular set are proved to be
sufficient for square function estimates to hold on the entire set. Extrapolation results
for LP and Hardy space versions of these estimates are also established. Moreover, we
prove square function estimates for integral operators associated with variable coefficient
kernels, including the Schwartz kernels of pseudodifferential operators acting between vector
bundles on subdomains with uniformly rectifiable boundaries on manifolds.
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1 Introduction

The purpose of this work is three-fold: first, to develop the so-called “local T'(b) theory”
for square functions in a very general context, in which we allow the ambient space to be of
homogeneous type, and in which the “boundary” of the domain is of arbitrary (positive integer)
co-dimension; second, to use a special case of this local T'(b) theory to establish boundedness,
for a rather general class of square functions, on uniformly rectifiable sets of codimension one
in Euclidean space; and third, to establish an extrapolation principle whereby an LP (or even
weak-type LP) estimate for a square function, for one fixed p, yields a full range of LP bounds.
We shall describe these results in more detail below, but let us first recall some of the history
of the development of the theory of square functions.

Referring to the role square functions play in mathematics, E. Stein wrote in 1982 (cf. [71])
that “[square] functions are of fundamental importance in analysis, standing as they do at the
crossing of three important roads many of us have traveled by: complex function theory, the
Fourier transform (or orthogonality in its various guises), and real-variable methods.” In the
standard setting of the unit disc D in the complex plane, the classical square function Sf of
some f: T — C (with T := 0D) is defined in terms of the Poisson integral u¢(r,w) of f in D
(written in polar coordinates) by the formula

(Sf)(z) = (/( ore TG dw)l/z, ZET, (1.1)

r

where I'(z) stands for the Stolz domain {(r,w) : |arg(z) —w| <1 —r < 3} in D. Let v denote
the (normalized) complex conjugate of us in . Then, if the analytic function F' := uy + iv
is one-to-one, the quantity (Sf)(z)? may be naturally interpreted as the area of the region
F(T'(2)) C C (recall that det(DF) = |[Vug|?). The operator was first considered by Lusin
and the observation just made justifies the original name for as Lusin’s area function (or
Lusin’s area integral). A fundamental property of S, originally proved by complex methods
(cf. [13, Theorem 3, pp. 1092-1093], and [31] for real-variable methods) is that

ISflleery = | fllaeery  for p € (0,00), (1.2)

which already contains the HP-boundedness of the Hilbert transform. Indeed, if F' = u + v is
analytic then the Cauchy-Riemann equations entail |Vu| = |Vv| and, hence, S(u|r) = S(v|T).
In spite of the technical, seemingly intricate nature of and its generalizations to higher
dimensions, such as

(Sh)(x) := </|— - |(VUf)(y,t)\Qtl_”dydt)1/2, z € R":= R, (1.3)

a great deal was known by the 1960’s about the information encoded into the size of S f, mea-
sured in LP, thanks to the pioneering work of D.L. Burkholder, A.P. Calderén, C. Fefferman,
R.F. Gundy, N. Lusin, J. Marcinkiewicz, C. Segovia, M. Silverstein, E.M. Stein, A. Zygmund,
and others. See, e.g., [11], [12], [13], [31], [68], [70], [T1], [72], and the references therein.
Subsequent work by B. Dahlberg, E. Fabes, D. Jerison, C. Kenig and others, starting
in the late 1970’s (cf. [21], [22], [29], [56], [66]), has brought to prominence the relevance of
square function estimates in the context of partial differential equations in non-smooth settings,
whereas work by D. Jerison and C. Kenig [54] in the 1980’s as well as G. David and S. Semmes
in the 1990’s (cf. [26], [27]) has lead to the realization that square function estimates are



also intimately connected with the geometry of sets (especially geometric measure theoretic
aspects). More recently, square function estimates have played an important role in the solution
of the Kato problem in [46], [42], [4].

The operator S defined in is obviously non-linear but the estimate

IS fllze < Cl fll e (1.4)

may be linearized by introducing a suitable (linear) vector-valued operator. Specifically, set
T :={(z,t) € R : |2| < t} and consider the Hilbert space

H = {h :I' — C": h is measurable and ||h|

= (/F Vl(z,t)\Qtl”dtd;,*)é < oo}. (1.5)

Also, let S f:R™ — JZ be defined by the formula
((SF)(@))(2,t) := (Vuy)(x — 2,t), VxR, VY(zt)eT, (1.6)

ie., S is the integral operator (mapping scalar-valued functions defined on R"™ into .#’-valued
functions defined on R™), whose kernel &k : R™ x R™ \ diagonal — ¢, which is of convolution
type, is given by (k(z,y))(z,t) := (VP)(z —y — 2), for all z,y € R, x # y, and (z,t) € T,
where P () is the Poisson kernel in R:"!. Then, if LP(R", %) stands for the Bochner space
of 7-valued, p-th power integrable functions on R", it follows that

1S flloqeny < Cllflap@ny <= 15 lloqan, 2y < ClL o (an)- (1.7)

The relevance of the linearization procedure described in — is that it highlights the
basic role of the case p = 2 in . This is because the operator S falls within the scope
of theory of Hilbert space-valued singular integral operators of Calderéon-Zygmund type for
which boundedness on L? automatically extrapolates to the entire scale LP, for 1 < p < oo
(the extension to the case when p < 1 makes use of other specific features of S ).

From the point of view of geometry, what makes the above reduction to the case p = 2 work
is the fact that the upper-half space has the property that x + 1" C R’fﬁl for every x € 8R’_ﬁ+1.
Such a cone property actually characterizes Lipschitz domains (cf. [48]), in which scenario this
is the point of view adopted in [65, Theorem 4.11, p. 73].

Hence, S may be eminently regarded as a singular integral operator with a Hilbert space-
valued Calderén-Zygmund kernel and, as such, establishing the L? bound

Hgf”L?(R",,%”) <O fllp2mn (1.8)

is of basic importance to jump-start the study of the operator S. Now, as is well-known (and
easy to check; see, e.g., [72, pp. 27-28]), follows from Fubini’s and Plancherel’s theorems.

For the goals we have in mind in the present work, it is worth recalling a quote from
C. Fefferman’s 1974 ICM address [30] where he writes that “When neither the Plancherel
theorem nor Cotlar’s lemma applies, L*>-boundedness of singular operators presents very hard
problems, each of which must (so far) be dealt with on its own terms.” For scalar singular
integral operators, this situation began to be remedied in 1984 with the advent of the T'(1)-
Theorem, proved by G. David and J.-L. Journé in [24]. This was initially done in the Euclidean
setting, using Fourier analysis methods. It was subsequently generalized and refined in a
number of directions, including the extension to spaces of homogeneous type by R. Coifman



(unpublished, see the discussion in [I4]), and the T'(b) Theorems proved by A.McIntosh and
Y. Meyer in [59], and by G. David, J.L. Journé and S. Semmes in [25]. The latter reference also
contains an extension to the class of singular-integral operators with matrix-valued kernels.
The more general case of operator-valued kernels has been treated by Figiel [32] and by T.
Hytonen and L. Weis [53], who prove T'(1) Theorems in the spirit of the original work in [24] for
singular integrals associated with kernels taking values in Banach spaces satisfying the UMD
property. Analogous T'(b) theorems were obtained by Hjtonen [50] (in Euclidean space) and
by Hjtonen and Martikainen [5I] (in a metric measure space). Yet in a different direction,
initially motivated by applications to the theory of analytic capacity, L?>-boundedness criteria
which are local in nature appeared in the work of M. Christ [I5]. Subsequently, Christ’s local
T'(b) theorem has been extended to the setting of non-doubling spaces by F. Nazarov, S. Treil
and A. Volberg in [67]. Further extensions of the local T'(b) theory for singular integrals appear
in [6], [8], [7] and [52].

Much of the theory mentioned in the preceding paragraph has also been developed in
the context of square functions, as opposed to singular integrals. In the convolution setting
discussed above, follows immediately from Plancherel’s theorem, but the latter tool fails
in the case when R’}fl is replaced by a domain whose geometry is rough (so that, e.g., the cone
property is violated), and/or one considers a square-function operator whose integral kernel
O(z,y) is no longer of convolution type (as was the case for S). A case in point is offered by
the square-function estimate of the type

& dt
|10 sy < Ol (1.9)
where
(@tf)(:c) = / O(x,y) f(y) dy, rzeR", t >0, (1.10)

with {6:(+,-)}+>0 a standard Littlewood-Paley family, i.e., satisfying for some exponent a > 0,

ta

0 (x, <C ,
| t(x y)‘ > (t+|$7y|)n+a

(1.11)

/|l
o NN < ly— v : o . .

Then, in general, linearizing estimate in a manner similar to yields an integral
operator which is no longer of convolution type. As such, Plancherel’s theorem is not directly
effective in dealing with given that the task at hand is establishing the L?-boundedness
of a variable kernel (Hilbert-valued) singular integral operator. However, M. Christ and J.-L.
Journé have shown in [I6] (under the same size/regularity conditions in (1.11)-(L.12)) that the
square function estimate is valid if the following Carleson measure condition holds:

s /0 " ]é @@ EY) < o, (1.13)

where the supremum is taken over all cubes ) in R™. The latter result is also implicit in the
work of Coifman and Meyer [I8]. Moreover, S. Semmes’ has shown in [69] that (1.9) holds if
there exists a para-accretive function b such that (1.13) holds with “1” replaced by “b”.



Refinements of Semmes’ global T'(b) theorem for square functions, in the spirit of M. Christ’s
local T'(b) theorem for singular integrals [15], have subsequently been established in [3], [40],
[41]. The local T'(b) theorem for square functions which constitutes the main result in [41]

reads as follows. Suppose ©; is as in (1.10)) with kernel satisfying (1.11))-(1.12]) as well as
|z — ']
(t+ |z =yt

|0:(x,y) — Oi(2',y)| < C if |z —a'| <t/2. (1.14)
In addition, assume that there exist a constant C, € (0,00), an exponent ¢ € (1,00) and a
collection {bg } ¢ of functions indexed by all dyadic cubes @ in R with the following properties:

@) [ lolitdr<clql )| [ bolw)ds| = ZlQl
i [ ([ vowqor )" ar < el

Then the square function estimate holds. The case ¢ = 2 of this theorem does not require
(1.14) (just regularity in the second variable, as in )EL and was already implicit in the
solution of the Kato problem in [46], [42], [4]. It was formulated explicitly in [3], [40]. An
extension of the result of [41] to the case that the half-space is replaced by R"*!\ E. where
E is a closed Ahlfors-David regular set (cf. Definition below) of Hausdorff dimension n,
appears in [34]. The latter extension has been used to prove a result of free boundary type, in
which higher integrability of the Poisson kernel, in the presence of certain natural background
hypotheses, is shown to be equivalent to uniform rectifiability (cf. Definition below) of the
boundary [44], [45]. Further extensions of the result of [41], to the case in which the kernel 6,
and pseudo-accretive system by may be matrix-valued (as in the setting of the Kato problem),
and in which 6; need no longer satisfy the pointwise size and regularity conditions —,
will appear in the forthcoming Ph.D. thesis of A. Grau de la Herran [33].

A primary motivation for us in the present work is the connection between square function
bounds (or their localized versions in the form of “Carleson measure estimates”), and a quan-
titative, scale invariant notion of rectifiability. This subject has been developed extensively by
David and Semmes [26], [27] (but with some key ideas already present in the work of P. Jones
[55]). Following [26], [27], we shall give in the sequel (cf. Definition [5.4), a precise definition
of the property that a closed set E is “Uniformly Rectifiable” (UR), but for now let us merely
mention that UR sets are the ones on which “nice” singular integral operators are bounded
on L?. David and Semmes have shown that these sets may also be characterized via certain
square function estimates, or equivalently, via Carleson measure estimates. For example, let
E C R™""! be a closed set of codimension one, which is (n-dimensional) Ahlfors-David regular
(ADR) (cf. Definition[2.8). Then E is UR if and only if we have the Carleson measure estimate

—-n 2 2 ..
s%pr /B‘(V Sl)(x)! dist(z, F) dz < oo, (1.15)

where the supremum runs over all Euclidean balls B := B(z,r) C R*" with r < diam(FE),
and center z € F, and where Sf is the harmonic single layer potential of the function f, i.e.,

Sf(x) :=cp /E lz —y[1 " f(y) dH™ (), z e R\ E. (1.16)

'In fact, even the case g # 2 does not require (I.14), if the vertical square function is replaced by a conical
one; see [33] for details.



Here H" denotes n-dimensional Hausdorff measure. For an appropriate normalizing constant
cnlx|*~™ is the usual fundamental solution for the Laplacian in R"*!. We refer the reader to
[27] for details, but see also Section |4 where we present some related results. We note that by
“T'1” reasoning (cf. Section [3| below), is equivalent to the square function bound

/ |(V2Sf)(2)|? dist(z, E) dx < C’/ |f(2)]? dH" () . (1.17)
Rr+I\E E

Using an idea of P. Jones [55], one may derive, for UR sets, a quantitative version of the
fact that rectifiability may be characterized in terms of existence a.e. of approximate tangent
planes. Again, a Carleson measure expresses matters quantitatively. For z € E and ¢ > 0, set

. 1 dist(y, P)\* . . 1/2
ol 1) := inf <tn /B . (t) A (y)) , (1.18)

where the infimum runs over all n-planes P. Then a closed, ADR set E of codimension one is
UR if and only if the following Carleson measure estimate holds on E x R :

sup r " /r/ N Bo(x,t)? d?-[”(x)% < 00. (1.19)

zoE€EE,r>0

See [26] for details, and for a formulation in the case of higher codimension. A related result,
also obtained in [26], is that a set E as above is UR if and only if, for every odd ¢ € C§°(R" 1),
the following discrete square function bound holds:

2

2"“”1/1 M —y)) fly) dH"(y)

dH"(x)ng/E]f(m)lde”(x). (1.20)

k=—00

Again, there is a Carleson measure analogue, and a version for sets E of higher codimension.

The following theorem collects some of the main results in our present work. It generalizes
results described earlier in the introduction, which were valid in the codimension one case,
and in which the ambient space 2~ was Euclidean. To state it, recall that (in a context to be
made precise below) a measurable function b : E — C is called para-accretive if it is essentially
bounded and there exist constants ¢, C' € (0, 00) such that the following conditions are satisfied:

VQeD(E) 3QeD(E) suchthat QCQ, £(Q)>cl(Q ’][ bdo| > (1.21)

Other relevant definitions will be given in the sequel.

Theorem 1.1. Let 0 < d < m < co. Assume that (2, p, ) is an m-dimensional ADR space.
Let 0 : (Zx Z)\{(z,x): z € 2} — R denote a Borel measurable function, with respect to the
product topology T, X T,, for which there exist Cy, a, v € (0,00) such that for all z, y, y € X
with x # vy, © # Y and p(y,y) < %p(m,y), the following properties hold:

0(z,y)| < W, (1.22)
102, y) — 0(z,7)| < Co (x(z)ZUM (1.23)



Assume that E is a closed subset of (Z,7,) and that o is a Borel semireqular measure on
(E,Ty,) such that (E, Pl 0) is a d-dimensional ADR space, and define the integral operator
© = Op for all functions f € LP(E,0), 1 <p < o0, by

©1)() = /E 0@.)f()do(y), Vo€ 2 \E. (1.24)

Let D(E) denote a dyadic cube structure on E and, for each @ € D(E), let Tp(Q) denote the
dyadic Carleson tent over Q. Also, let py denote the reqularized version of the quasi-distance
p, as in Theorem and for each v € 2", set 6g(x) = inf{py(x,y) : y € E}.

Then the following properties are equivalent:

(1) There exists C € (0,00) such that for each f € L?(E, o) it holds that
| len@psser e < ¢ [ f@Pdot@).  25)
2\E E

(2) It holds that

su L )2 6 ()2~ (m=d) x o0
QEDFE) (U(Q) /TE(Q)](@l)( )|” 65 (x) dp( )> < oo. (1.26)

(8) There exists C € (0,00) such that for each f € L*°(E, o) it holds that

1/2
L 2 2v—(m—d)
Qiﬁé%’m(a(@) [ len@rsse du<z>> <Clflmpor (120

(4) It holds that

1 / 2 2v—(m—d)
o O1% dp | < oo 1.28
z€E,r>0 (U(E N Bp# ((1;’ 'r)) B,, (e )\E | | E H ( )

(5) There exists a para-accretive function b: E — C such that

su L )26 (2)? =D dp(x 00
S <0(Q) [, @ Pt~ du >> <oo.  (129)

(6) There exists C € (0,00) such that for each f € L*°(E, o) it holds that

sup

1/2
1 2v—(m—d)

Of[*s i) < Clfllpe(pe). (1.30

2B, >0 (a(EﬂBp#(x,r))/B O/ 0 “) < O fllpe (o) (1.30)

o (@)\B

7) There exist Cy € [1,00), co € (0,1] and a collection {b (g of o-measurable functions
QJIQEeD(E)
bg : E — C such that for each Q € D(E) the following properties hold:

> Ci a(Q) for some Q C Q with £(Q) > col(Q),

0

[ aPao < ciot@). | [rqao
E Q

| 1@be)a) o " D du(a) < Coo(Q), (1.31)
Te(Q)



(8) There exists Cy € [1,00) and, for each surface ball A = A(xo,7) := By, (xo,7)NE, where
z, € E and r € (0,diam,(E)] N (0,00), there exists a o-measurable function ba : E — C
supported in A, such that the following properties hold:

[ baldo < o), | [ bado] > o)

E A C(]

/B o0\ E 1(©ba)(2)*0p ()2~ "D du(z) < Coo(A). (1.32)
o (T0,2C,T

(9) The set E has BPSFE relative to  (see Definition [{.1]).
(10) The set E has (BP)"SFE relative to 0 for some, or any, k € N (see Definition .
(11) There exist p € (0,00) and C,k € (0,00) such that for each f € LP(E, o) it holds that

wp[voo({rer: [ 1@WE T > 0)) "] < s, 03)

A>0

where T'x(x) denotes the nontangential approach region defined in (6.1)).

(12) Set vy := min{«,ind(F, p|g)}, where the index is defined in (2.6). If p € (ﬁ,oo) and
k € (0,00), then © extends to the Hardy space HP(E, p|g, o) defined in Section and
there exists C € (0,00) such that for each f € HP(E, p|g, o) it holds that

UE </m(m> ©NwF %)pﬂda(@] N < Clifllzr E.plp.0)- (1.34)

(13) Set v := min{o,ind(E, p|g)}. If p € (%,oo) and q € (1,00), then the operator
559« HP(E, plg, o) — LD (2 E) (1.35)

is well-defined, linear and bounded on the mixed norm space L(p"I)(%, E) defined in .

A few comments pertaining to the nature and scope of Theorem are in order:

e Theorem makes the case that estimating the square function in LP, along with other
related issues considered above, may be regarded as “zeroth order calculus”, since only
integrability and quasi-metric geometry are involved, without recourse to differentiability
(or vector space structures). In particular, our approach is devoid of any PDE results
and techniques. Compared with works in the upper-half space R™ x (0,00), or so-called
generalized upper-half spaces E x (0,00) (cf., e.g., [35] and the references therein), here we
work in an ambient 2~ with no distinguished “vertical” direction. Moreover, the set F is
allowed to have arbitrary ADR co-dimension in the ambient 2 . In this regard we also wish
to point out that Theorem permits the consideration of fractal subsets of the Euclidean

In4

space (such as the case when F is the von Koch’s snowflake in R?, in which scenario d = 3

e Passing from L? estimates to LP estimates is no longer done via a linearization procedure,
since the environment no longer permits it, so instead we use tent space theory and exploit
the connection between the Lusin and the Carleson operators on spaces of homogeneous type
(thus generalizing work from [I7] in the Euclidean setting). This reinforces the philosophy
that the square-function is a singular integral operator at least in spirit (if not in the letter).



e The various quantitative aspects of the claims in items (1)-(11) of Theorem 1.1]are naturally
related to one another. The reader is also alerted to the fact that similar results to those
contained in Theorem are proved in the body of the manuscript for a larger class of
kernels (satisfying less stringent conditions) than in the theorem above. The specific way in
which Theorem follows from these more general results is discussed in Section [7}

o A key feature of items (12) and (13) of Theorem [1.1]is that the lower bound on the interval
of allowable p € (%, o0) required for Hardy space HP(E, p|g, o) estimates depends on the
index ind(E, p|g) defined in (2.6). In particular, the value of this index is sensitive to the
“optimal” quasi-distance equivalent to the given quasi-distance p|g on E. This is significant
even when p is a genuine distance and (F, p|g) is a metric space. For example, if n € N,
then R™ equipped with the Euclidean distance has index ind(R™,| - — - |) = 1, whereas the
four-corner planar Cantor set ¢ equipped with the restriction of the Euclidean distance has
index ind(%, |- — - H%) = oo by [61], Proposition 4.79]. Moreover, the techniques we use to
establish this dependence when p is a quasi-distance are also required when p is a genuine
distance. In a nutshell, some quasi-distances are better behaved than others and so one
has to make provisions for detecting the optimal quasi-distance compatible with a given
quasi-metric space structure.

e Here is an example of a nonstandard geometric setting within the range of applicability of
Theorem (1.1} Define 2" := ¢ x [0,1] C R? where, as before, ¢ denotes the four-corner
planar Cantor set in R?, and consider p := |- — || ., and p:= H?*|Z". Then (2", p, ) is a
2-dimensional ADR space. Moreover, if we take E := % x {0}, then E is a closed subset of
(2,7,), and if o := H!| E, then (E, p‘E, J) is a 1-dimensional ADR space. In this scenario,

we have ind(E, p| ) = 00 and hence, in the formulation of items (12)-(18) of Theorem

it holds that v = « and the range of allowable p is (dJ%a, oo).

We now describe several consequences of Theorem [1.1]for subsets E of the Euclidean space.
First we record the following square function estimate, which extends work from [26].

Theorem 1.2. Suppose that E is a closed subset of R"! that is d-dimensional ADR. for some
d € {l,...,n} and let o denote the surface measure induced by the d-dimensional Hausdorff
measure on E. Assume that E has big pieces of Lipschitz images of subsets of R%, i.e., there
exist e, M € (0,00) so that for every x € E and every R € (0,00), there is a Lipschitz mapping
@ with Lipschitz norm at most equal to M from the ball Bd(O,R) in R® into R™*1 such that

o(ENB(z,R)N¢(BY0,R))) > eR" (1.36)

Let ¢ : R"™! - R denote a smooth, compactly supported, odd function and for each k € 7 set
Yp(z) =27k (27%z) forz e R™HL. Ifp € (#‘ll, 00), then there exists C' € (0,00) such that

/E ( Z’fez ][A(x,Qk)

for every f € HP(E, o), where A(z,2%) :={y € E: |y — x| < 2*} for each x € E and k € Z.
The case when p = 2 of Theorem in which scenario (|1.37)) takes the form

Yo,

2 p/2
o)) dolo) < Clf sy (137

/ Uiz — ) f(2) do(2)
E

2
do(z) < c/ 2 do, (1.38)
E

/ Y —y) f(y) do(y)
FE

10



has been treated in [26], Section 3, p. 21]. The main point of Theoremis that continues
to hold, when formulated as in for every p € (d%, oo). The proof of this result, presented
in the last part of Section[7] relies on Theorem [I.1]and uses the fact that no regularity condition
on the kernel 6(z,y) is assumed in the variable z (compare with (L.22)-(1.23)).

Next, we discuss another consequence of Theorem in the Euclidean setting which gives
an extension of results due to G. David and S. Semmes.

Theorem 1.3. Suppose that K is a real-valued function satisfying

K e C*(R™1\ {0}), K is odd, and

K(\z) = A""K(z) for all A\ > 0, z € R*T1\ {0}. (1.39)

Let E denote a closed subset of R™*1 that is n-dimensional ADR, let o denote the surface
measure induced by the n-dimensional Hausdorff measure on E, and define the integral operator
T acting on functions f € LP(E,0), 1 <p < oo, by

Tf(x) ::/EK(a:—y)f(y) do(y), Vi GR"H\E. (1.40)

Let D(E) denote a dyadic cube structure on E and, for each Q € D(E), let Tp(Q) denote
the dyadic Carleson tent over Q. If the set E is uniformly rectifiable (UR), in the sense of
Definition then the following properties hold:

(1) There exists C € (0,00) such that for each f € L*(E, o) it holds that
/ (VT £)()2 dist (z, ) dz < C/ (@) do(z). (1.41)
Rn+1\E FE

(2) There exists C' € (0,00) such that for each f € L>(E, o) it holds that

QeD(E)

1/2
1 .
sup (U(Q) /TE(Q)(VTf)(x)|2d1st(w,E)d:n> < C||f | (B.0)- (1.42)

(8) There exists C € (0,00) such that for each f € L*(E, o) it holds that

1/2
1

TAEA B VT ()P dist (y, E) d < Ol f oo (B (143
xe%‘f%o(a(mmx,r)) /%,r)\E'( £)(w)[? dist (y )y) |l (o). (1.43)

(4) Let HP(E,o) denote the Lebesgue space LP(E, o) when p € (1,00), and the Coifman-

Weiss Hardy space when p € (nL_H, 1}. Ifp € (nL-i-l’ oo) and k € (0,00), then T extends

to HP(E, o) and there exists C € (0,00) such that for all f € HP(E, o) it holds that

[/E </Fn(w) VTG (hst(;,y]_@)n—l>p/2d‘7($)} h < Cllf e (B,0)s (1.44)

where Dy (z) := {y e R"™I\ E: |z —y| < (1+k)dist(y, E)} for each z € E.

11



(5) If p € (nLH,oo) and q € (1,00), then the operator
dist (-, E) VT : HP(E,0) — LPO(R" E) (1.45)

is well-defined, linear and bounded on the mizved norm space LPO (R E) (see (6.6)).

Theorem particularized to the setting of Theorem gives that conditions (1)-(5)
above are equivalent. The fact that (1) holds in the special case when 7 is associated as
in with each of the kernels K;(x) := z;/|z|"*, 1 < j < n+ 1, is due to David and
Semmes [27]. The new result here is that (1) (hence also all of (1)-(5)) holds more generally
for the entire class of kernels described in . We shall prove the latter fact in Corollary
below. Compared with [26], the class of kernels (1.39)) is not tied up to any particular partial
differential operator (in the manner that the kernels K;(x) := z;/|z|"", 1 < j < n+ 1, are
related to the Laplacian). Moreover, in Section we establish a version of Theorem
for variable coeflicient kernels, which ultimately applies to integral operators on domains on
manifolds associated with the Schwartz kernels of certain classes of pseudodifferential operators
acting between vector bundles.

The condition that the set E is UR in the context of Theorem is optimal, as seen from
the converse statement stated below. This result is closely interfaced with the characterization
of uniform rectifiability, due David and Semmes, in terms of —. In keeping with
these conditions, the formulation of our result involves the Riesz-transform operator R := VS.

Theorem 1.4. Let E denote a closed subset of R"1 that is n-dimensional ADR, let o denote
the surface measure induced by the n-dimensional Hausdorff measure on E, and define the
vector-valued integral operator R acting on functions f € LP(E,0), 1 <p < oo, by

Rf(z):= /E ﬁf(y) do(y), Ve R\ E. (1.46)

Let D(E) denote a dyadic cube structure on E and, for each Q € D(E), denote by Tg(Q) the
dyadic Carleson tent over Q. If any of properties (1)-(9) below hold, then E is a UR set:

(1) There exists C € (0,00) such that for each f € L?(E, o) it holds that

/ \(VRf)(x)Fdist (z,FE)dx < C/ ]f(a;)|2da(x). (1.47)
R\ E E
(2) It holds that

su i 2)|? dist (z T 00

Qemfm (U(Q) /TE(Q)|(VR1)( )| dist (z, E) d ) < 0. (1.48)

(8) There exists C € (0,00) such that for each f € L*°(E, o) it holds that

1/2
sup <a(1Q) /TE(Q) (VR f)(x)|? dist (z, E) dm) < C|fllLe(B,0)- (1.49)

QED(E)
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(4) It holds that

1 / 5 .
oo\ o(EN Bz, ) VR1)(y)|" dist (y, E) dy | < oo. 1.50
z€E,r>0 (U(EQB((L'J*)) B(w,r)\EK )( )| ( ) ) ( )

(5) There exists a para-accretive function b : E — C such that

L z)|? dist (z T '¢)
QEBFE) <0’(Q) /TE(Q)](VRb)( )|* dist (z, E) d ) < 0. (1.51)

(6) There exists C € (0,00) such that for each f € L>®(E, o) it holds that

1/2
1 / 9 ..
sup | e VR ()2 dist (. E)dy | < Ollf (o). (152
erv’“>0<‘7(EﬂB(xﬂ“)) B(z,r)\E|( JW) dist (4, ) ) 1Fllzoe (.0 (1.52)

(7) There exist Cy € [1,00), co € (0,1] and a collection {bq}gen(r) of o-measurable functions
bg : E — C such that for each QQ € D(E) the following properties hold:

[ lbaP do < i@, | [ bods
E Q

/ (VRbo) ()2 dist (x, ) de < Coo(Q). (1.53)
Tr(Q)

> C'i a(Q) for some Q C Q with £(Q) > col(Q),

0

(8) There exists Cy € [1,00) and, for each surface ball A = A(z,, 1) := B(x,,7) N E, where
zo, € E and r € (0,diam,(E)] N (0,00), there exists a o-measurable function ba : E — C
supported in A, such that the following properties hold:

1
> —o(A),

/|bA|2da§Coa(A), /bAda
E A Co

/ (VR bA)(2)|? dist (x, E) dz < Coo(A). (1.54)
B(zo,4r)\E

(9) There exist p € (0 o0) and C,k € (0,00) such that for each f € LP(E, o) it holds that

(TROWPE o\
5 <
T;IS [)\ oliz € E: / | dist (g, ) = dy > A }) < CO|lflle(,e) (1.55)

where Ty(z) == {y e R"\ E: |z —y| < (1 + k) dist(y, E)} for each z € E.

The fact that condltlon (1) above implies that E is a UR set has been proved by David and
Semmes (see [27, pp.252-267]). Based on this result, that (2)-(3) also imply that E is a UR
set then follows With the help of Theorem upon observing that the components of R are
operators T as in (1.40]) associated with the kernels K;(x) := z;/|z[""}, j € {1,...,n+1}, which
satisfy ((1.22 - - Compared to David and Semmes result mentioned above (to the effect
that the L? square function for the operators associated with the kernels K;j,1<j<n+1,
implies that the set E is UR), a remarkable corollary of Theorem is that a mere weak-L?
square function estimate for the operators associated with the kernels K;(x) := xz;/|z|" ",
jeA{l,...,n+ 1}, asin (1.40), implies that E is a UR set.

Throughout the manuscript, we adopt the following conventions. The symbol 14 denotes
the characteristic function of a set A. The letter C represents a finite positive constant that
may change from one line to the next. The infinity symbol co denotes +o00. The set of positive
integers is denoted by N whilst Ny := N U {0}.
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2 Analysis and Geometry on Quasi-Metric Spaces

This section contains preliminary material, organized into four subsections dealing, respec-
tively, with: a metrization result for arbitrary quasi-metric spaces, geometrically doubling
quasi-metric spaces, approximations to the identity, and a discussion of the nature of Carleson
tents in quasi-metric spaces.

2.1 A metrization result for general quasi-metric spaces

Here we record some aspects of the sharp quantitative metrization result from [61, Section 3.2],
and properties of the Hausdorff outer-measure (cf. Proposition , on quasi-metric spaces.
We begin by assuming that 2" is a set of cardinality at least two and introduce the following
notation. A function p: 2" x 2" — [0,00) is called a quasi-distance on 2" provided there
exist two constants C,, C; € [1,00) with the property that for every z,y,z € X, it holds that

plr,y) =0 z=y, ply,r)<Chi(r,y), plr,y)<Crmax{p(z,z),p(z,y)} (2.1)

We assume henceforth that C, and C} are the smallest such constants. A pair (27, p) is called
a quasi-metric space. Given a set £ C 2" of cardinality at lest two, denote by p}  the quasi-
distance on F given by the restriction of the function p to E' x E. The p-ball (or simply ball
if the quasi-distance p is clear from the context) centered at x € 2" with radius r € (0, 00) is
defined to be B,(z,r) :={y € Z : p(x,y) <r}. Also, call E C 2" p-bounded if F is contained
in a p-ball, and define its p-diameter (or simply diameter) as diam,(E) := sup {p(z,y) : 2,y €
E} The p-distance (or simply distance) between two arbitrary, nonempty sets £, F C 2~
is naturally defined as dist,(E, F') := inf {p(z,y) : v € E, y € F}. If E = {x} for some
x € Z and F C 2, abbreviate dist,(x, F') := dist,({z}, F)). We define 7,, the topology
canonically induced by p on 2, to be the largest topology on 2" with the property that
for each point x € 2 the family {B,(x,r)},>0 is a fundamental system of neighborhoods of x.
Finally, call two functions p1,ps : 2" X 2~ — [0,00) equivalent, and write p; = po, if there
exist C',C" € (0, 00) with the property that C'p; < po < C"py on 2" x 2.

A few comments are in order. Suppose that (27, p) is a quasi-metric space. It is then clear
that if p : 2" x 2" — [0, 00) is such that p’ ~ p then p’ is a quasi-distance on 2~ and 7, = 7,,.
Also, it may be checked that

Oer, <= 0CZ and Ve O Ir >0 such that B,(z,r) C O. (2.2)

As is well-known, the topology induced by the given quasi-distance on a quasi-metric space is
metrizable. We now record some aspects of the sharp quantitative metrization theorem from
[61] Section 3.2], which is an optimal quantitative version of this fact.

Theorem 2.1. Let (27, p) be a quasi-metric space with Cp,ép € [1,00) as in (2.1) and
set a, = 1/logyC, € (0,00]. There exists a function py : X x X — [0,00), called the
regularization of p, such that the following properties hold:

(1) The function py is a symmetric quasi-distance on 2 and py ~ p. More specifically,

pu(,y) = pu(y,x) and (Cp)"2p(z,y) < pa(z,y) < Cppla,y) for all z,y € 2. Also,
Tpy = Tpy Cpy, < Cp and (plE)y =~ plE = (p#)’E for any nonempty set E C Z .

(2) If B € (0,a,)] is finite, then d,5 : X x X — [0,00) defined by d, 5(x,y) = py(z,y)”,
for all x,y € X, is a distance on Z and (dp”g)l/f8 ~ p. In particular, d, g induces the
same topology on 2 as p, hence 7, is metrizable.
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(3) If B € (0,a,] is finite, then py is Holder reqular of order (8 in the sense that

pa(2,y) = pp(z,w)] < gmax{pg(z,y)' ™7, pp(z,w) " }pp(, 2)7 + ppy, w)?) (2.3)

for all z,y, z,w € & with, in the case when > 1 only, * # y and z # w. In particular,
py (X x X', 1, x1,) — [0,00) is continuous.

(4) If E is a nonempty subset of (X", 7,), then the regularized distance function
op = dist,, (-, E) : 27— [0,00) (2.4)

is equivalent to dist,(-, E), and if B € (0,min {1, ,}], then ég is locally Hélder regular
of order (3 in the sense that there exists C € (0,00), depending on C,,C,, B, such that

0p(x) — 6E(y)]
p(z,y)P

< C (p(w,y) + max {dist,(z, E), distp(y,E)})lf’B (2.5)

for all x,y € " with x # y. In particular, ég : (2", 7,) — [0,00) is continuous.

In view of Theorem 2.1} the “best” quasi-distance equivalent to a given p on 2" is quantified
by the following index

-1
/
: -1 p(z,y)
ind(Z, p) := sup (logsC = sup [ log sup , 2.6
( ) p'=p ( 2r ) p'=p 2 z,y,2€X Inax{p’(a:, Z), p/(z, y)} ( )

not all equal

which was introduced and studied in [61), 2]. For example, a key feature of Theorem is
the fact that if (27, p) is any quasi-metric space then p? is equivalent to a genuine distance
on %2 for any finite number 5 € (0,ind (£, p)). This result is sharp and improves upon an
earlier version due to R.A. Macias and C. Segovia [57], in which these authors have identified
a smaller, non-optimal upper-bound for the exponent j.

In anticipation of briefly reviewing the notion of Hausdorff outer-measure on a quasi-metric
space, we recall a couple of definitions from measure theory. Given an outer-measure p* on an
arbitrary set 2, consider the collection of all p*-measurable sets defined as

My = {AC X (V) = p"(YNA) + 7 (Y \ 4), VY C Z}. (2.7)

Carathéodory’s classical theorem allows one to pass from a given outer-measure p* on 2" to a
genuine measure by observing that

9N, is a sigma-algebra, and ,u*{gm . is a complete measure. (2.8)
m

The restriction of an outer-measure p* on 2" to a subset E of 2, denoted by p*| E, is defined
naturally by restricting the function p* to the collection of all subsets of E. We shall use the
same symbol, | , in denoting the restriction of a measure to a measurable set. In this regard,
it is useful to know when the measure associated with the restriction of an outer-measure
to a set coincides with the restriction to that set of the measure associated with the given
outer-measure. Specifically, it may be checked that if y* is an outer-measure on 2", then

WIB)|, =l B VEeMe. (2.9)



Next, if (27, 7) is a topological space and p* is an outer-measure on 2~ such that 9,
contains the Borel sets in (27, 7), then call u* a Borel outer-measure on £ . Furthermore,
call such a Borel outer-measure p* a Borel regular outer-measure if

VACZ JaBorel set Bin (2, 7) such that A C B and p*(A) = p*(B). (2.10)

After this digression, we now proceed to introduce the concept of d-dimensional Hausdorff
outer-measure for a subset of a quasi-metric space.

Definition 2.2. Let (2, p) be a quasi-metric space. For d >0, A C 2 and e > 0, define

H , (A) = inf {Z ;

; N(diamp(Aj))d : AC UjeN A; and diam,(A;) < € for every j € N},

(2.11)
where inf () := +oo, then define the d-dimensional Hausdorff outer-measure H9. p(A) by

Yy (A) =1lim, o+ "%, (A) =sup.ooHY , .(A) € [0,00]. (2.12)

This is abbreviated as Hd% (A) when the choice of p is irrelevant or clear from the context.

It is readily verified that ’H%y p is equivalent to the counting measure. Other basic properties
of the Hausdorff outer-measure are collected in the proposition below, proved in [62]. To state
it, recall that a measure p on a quasi-metric space (27, p) is called Borel provided the sigma-
algebra on which it is defined contains all Borel sets relative to the topological space (£, 7,).
Also, call a measure p on a quasi-metric space (£, p) Borel regular provided it is Borel and

V p-measurable A C 2" 3 a Borel set B in (27, 7,) with A C B and pu(A) = u(B). (2.13)

In addition, we require the related notion whereby a measure p on a quasi-metric space (2, p)
is called Borel semiregular provided it is Borel and

for each p-measurable A C 2" with u(A) < oo there exists

. . (2.14)
a Borel set B in (2, 7,) with u((A\ B)U (B \ A)) = 0.

Borel regular measures are automatically Borel semiregular. Next, we make the convention for
a quasi-metric space (27, p) and d > 0 whereby

jf%’ , denotes the measure associated with the outer-measure de ,asin (2.8).  (2.15)

Proposition 2.3. Let (27, p) be a quasi-metric space and d > 0. The following hold:

(1) Hg&’,p is a Borel outer-measure on (2, 7,), and z%”%,p is a Borel measure on (Z',7,).

(2) If py is as in Theorem then ’Hd% p, s a Borel regular outer-measure on (2, 71p),

and A - py 18 a Borel regular measure on (2, 1p).

(3) It holds that H o~ HY, , Whenever p' = p, in the sense that there exist Cy,Cs € (0,00),
depending only on p and p', such that

C1 MY (A) <HY ,(A) < CaH% (A) forall AC Z. (2.16)
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(4) If E C %2, then the d-dimensional Hausdorff outer-measure in the quasi-metric space
(E, p|E) is equivalent, in the sense of (2.16)), to the restriction to E of the d-dimensional
Hausdorff outer-measure in 2, that is, HdE R ’Hd%’pLE.

(5) If EC Z, then H‘éy Py LE is a Borel reqular outer-measure on (E,7,,) and the measure
associated with it, as in (2.8)), is a Borel reqular measure on (E,7,,). Furthermore, if
E is Hfi%f’ Py -measurable in the sense of (2.7) (in particular, if E is a Borel subset of

(X', 71p)), then t%”ﬁ;’p# |E is a Borel regular measure on (E,7,,) and it coincides with

the measure associated with the outer-measure ’Hd% iy |E.

(6) If m € (d,00), EC 2" and H%. (E) < 0o, then H'y: (E) = 0.

2.2 Geometrically doubling quasi-metric spaces

In this subsection we shall work in a more specialized setting than that of general quasi-
metric spaces considered so far, by considering geometrically doubling quasi-metric spaces, as
described in the definition below.

Definition 2.4. A quasi-metric space (2", p) is called geometrically doubling if there exists
a number N € N, called the geometric doubling constant of (£, p), with the property that any
p-ball of radius r in Z may be covered by at most N p-balls in X~ of radii r/2.

To put this matter into a larger perspective, recall that a subset E of a quasi-metric space
(Z,p) is said to be totally bounded provided that for any r € (0,00) there exists a finite
covering of E with p-balls of radii . Then for a quasi-metric space (£, p) the quality of
being geometrically doubling may be regarded as a scale-invariant version of the demand that
all p-balls in 2" are totally bounded. In fact it may be readily verified that if (27, p) is a
geometrically doubling quasi-metric space, then

dN € N such that V9 € (0,1) any p-ball of radius r in 2~

may be covered by at most N~1°829) p_balls in 2" of radii 9r, (2.17)

where [log, ¥] is the smallest integer greater than or equal to log, ¥. En route, let us also point
out that the property of being geometrically doubling is hereditary, in the sense that if (27, p)
is a geometrically doubling quasi-metric space with geometric doubling constant N, and if F
is an arbitrary subset of 2", then (F, p‘ E) is a geometrically doubling quasi-metric space with
geometric doubling constant at most equal to N'°82C» N

The relevance of the property (of a quasi-metric space) of being geometrically doubling
is apparent from the fact that in such a context a number of useful geometrical results hold,
which are akin to those available in the Euclidean setting. A case in point, is the Whitney
decomposition theorem discussed in Proposition below. A version of the classical Whitney
decomposition theorem in the Euclidean setting (as presented in, e.g., [70, Theorem 1.1, p. 167])
has been worked out in [I9, Theorem 3.1, p. 71] and [20, Theorem 3.2, p. 623] in the context of
bounded open sets in spaces of homogeneous type. Recently, the scope of this work has been
further refined in [61] by allowing arbitrary open sets in geometrically doubling quasi-metric
spaces, as presented in the following proposition.

Proposition 2.5. Let (27,p) be a geometrically doubling quasi-metric space. If X € (1, 00),
then there exist A € (A, 00) and N € N, depending only on C,,C,, X and the geometric doubling
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constant of (2, p), such that if O is an open, nonempty, proper subset of (Z',7,), then there
exist countable collections {x;}jes in O and {rj}jcs in (0,00) with the following properties:

(1) O = UjeJBp(xjvrj)'

(2) There exists € € (0,1), depending only on C,, A and the geometric doubling constant of
(Z,p), such that sup,co # {j € J : By(z,edist,(z, 2\ O)) N By(z;, rj) # 0} < N.
It also holds that > .. ;1 (. xr)(x) < N forallx € O.
jeJ o (T5,AT5)

(3) By(zj, r;) €O and By(zj, Ar;) N (2 \O) #0 forall j € J.
(4) ri = rj uniformly on {i,j € J : By(xi, Arj) N By(xj, Arj) # 0} and there exists C € (0, 00)
such that r; < Cdiam,(O) for all j € J.

Regarding terminology, we shall frequently employ the following convention:

Convention 2.6. Given a geometrically doubling quasi-metric space (2", p), an open, nonempty,
proper subset O of (Z°,7,), and a parameter \ € (1,00), we will refer to the balls By, (x;,7;)
obtained by treating (X", p4) in Proposition as Whitney cubes, denote the collection of
these cubes by Wx(O), and for each I € Wy(O), write £(I) for the radius of I. Furthermore,
if I € Wx(O) and ¢ € (0,00), we shall denote by cI the dilate of the cube I by factor c,
i.e., the ball having the same center as I and radius cf(I).

Spaces of homogeneous type, reviewed next, are an important subclass of the class of
geometrically doubling quasi-metric spaces.

Definition 2.7. A space of homogeneous type is a triplet (2, p,p), where (Z',p) is a
quasi-metric space and p is a Borel measure on (2, 1,) with the property that all p-balls are
u-measurable, and which satisfies, for some finite constant C > 1, the doubling condition

0 < p(By(z,2r)) < Cu(By(z,7)) <oo, YzeZ, Vr>0. (2.18)
The smallest such constant is denoted C,, and called the doubling constant of f.

Iterating (2.18)) gives

(By1) <C radius of B
w(By) — 1P\ radius of By

where D, :=logy C, > 0 and C,, , := C,,(C,C,) """ > 1. (2.19)

=

Dy
) , for all p-balls By C By,

The exponent D, is referred to as the doubling order of u. For further reference, let us also
record here the well-known fact that

given a space of homogeneous type (27, p, i), it holds that

diam, (Z7) < oo if and only if u(2") < . (2.20)

Going further, a distinguished subclass of the class of spaces of homogeneous type, which
will play a basic role in this work, is the category of Ahlfors-David regular spaces defined next.
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Definition 2.8. Suppose that d > 0. A d-dimensional Ahlfors-David regular (or simply
d-dimensional ADR, or d-ADR) space is a triplet (27, p, i), where (2, p) is a quasi-metric
space and p is a Borel measure on (2, 1,) with the property that all p-balls are p-measurable,
and for which there ezists a constant C € [1,00) such that

c7trd < w(Bp(z,7)) < Cri, Yxe X, forevery finite r € (0,diam,(2)]. (2.21)
The constant C in (2.21)) will be referred to as the ADR constant of 2.

As alluded to earlier, if (27, p, 1) is a d-dimensional ADR space then, trivially, (2, p, p) is
also a space of homogeneous type. For further reference we note here that (cf., e.g., [62])

(Z,p,p) is d-ADR = (2, py, %;Zl',p#) is d-ADR. (2.22)

In particular, it follows from ([2.22), (1) in Theorem and (3)-(5) in Proposition that

(Z, p) quasi-metric space,

E Borel subset of (2, 7,)

o Borel measure on (E, 7,,)
such that (F, p|g, o) is d-ADR

= (B, pg|p 4 ,,|E) is d-ADR. (2.23)

Also, if (27, p, 1) is d-ADR, then there exists a finite constant C' > 0 such that
Hig;p# (A) < Cinf {u(O) : O is open and A C O} for every A C 2, (2.24)
w(A) < C’jffgf’ P (A) for every Borel subset A of (27, 7,). (2.25)
In addition, if u is actually a Borel regular measure, then
p(A) ~ ,%”V% py(A); uniformly for Borel subsets A of (2, 7,). (2.26)
We now discuss a couple of technical lemmas which are going to be useful for us later on.

Lemma 2.9. Let 0 < d < m < co. Assume that (2", p, ) is an m-dimensional ADR space.
If E is a Borel subset of (Z°,7,) and there exists a Borel measure o on (E,7,,) such that
(E,p‘E,a) is a d-dimensional ADR space, then p(E) = 0.

Proof. Fix x € E. Using (2.25)), (2.23)) and item (6) in Proposition we obtain

|E

W(E) < OHF, (B) = C lim A, (EN By, (2.n)) =0, (2.27)
since %’f%,p#(E N By, (v,n)) < Cn? < oo for all n € N. O

Lemma 2.10. Let (2, p) be a quasi-metric space. Suppose that E is a Borel subset of (2", T,)
and that there exists a Borel measure o on (E,T,,) such that (E,p}E,U) is a d-dimensional
ADR space for some d € (0,00). Then there exists ¢ € (0,00) such that if x € 2 and
r € (0,diam, , (E)] with By, (z,r) N E # 0, then (}f% Py (Bp,(x,Cor)NE) > crd.

Proof. Let x € 2 with B, (z,r)NE #0. Ify € B, (x,7)NE, then By, (y,r) C By, (x,Cyr),
so by (12.23)) and letting C' denote the ADR constant of (E , p#‘ B %} Py LE), we have

L%”J% i (Bp#(x, Cor)N E) > %@@l pi (Bp# (y,r)N E) > Oy, (2.28)

as required. ]
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For further reference, given an ambient quasi-metric space (£, p) and a set E for which
there exists a Borel measure o on (E,7,,) such that (E, px|g,0) is a space of homogeneous
type, we let Mg denote the Hardy-Littlewood maximal function defined by

(Mg f)(x) = sup ———

>0 W /BP# (x,r) 7@ do(y). vek. (2.29)

Following work in [15] and [23], we now discuss the existence of a dyadic grid structure on
geometrically doubling quasi-metric spaces. The result below is essentially due to M. Christ [15]
but with two refinements. First, Christ’s result is established in the presence of a background
doubling, Borel regular measure, which is more restrictive than assuming that the ambient
quasi-metric space is geometrically doubling. Second, Christ’s dyadic grid result involves a
scale § € (0,1), which we show may be taken to be 1/2, as in the Euclidean setting.

Proposition 2.11. Assume that (E,p) is a geometrically doubling quasi-metric space and
select kg € Z U {—o0} such that 27*6~1 < diam,(F) < 277, For each k € Z with k > kg,
there exist a collection Dy (E) := {QF}aer, of subsets of E indexed by a nonempty, at most
countable set of indices Iy, and a collection {xﬁ}aejk of points in E, such that the collection
D(E) := Urez, k>ry Dk(E) has the following properties:

(1) If k € Z with k > kg and o € I, then QF is open in 7,.

(2) If k € Z with k > kg and a, § € I, with o # B, theanﬂQfé:@.

(3) If k0 € Z with £ > k > kg and o € Iy, B € Iy, then either Qg CQk or Q" ﬂQg = 0.

(4) If k, £ € Z with k > £ > kg and o € I, then there is a unique 3 € Iy such that QF C Qg.

(5) There exist 0 < ag < a1 < 0o such that if k € Z with k > kg and « € I, then
B,(2%,a027%) C QF C B, (aF,a:27). (2.30)

In particular, given a measure o on E for which (E, p, o) is a space of homogeneous type,
there exists ¢ > 0 such that if QEH C QF, then U(Qngl) > co(QF).

(6) There exists N € N such that if k € 7 with k > kg and «a € Iy, then
#{B € lyr: Q5 CQE} <N (2.31)
Furthermore, if € E and r € (0,27%), then #{Q e Di(E) : QN By(x,r) # @}S N.
(7) If k € Z with k > kp, then U ¢y, QF is dense in (E,7,) and
E = Uaelk {z € E: disty(z,QF) <e27F}, Ve > 0. (2.32)
Moreover, if a € Iy, then UBGIkH,QZ“QQE QEH is dense in ngé and

QF C Uﬁelk+1 - {z € B: disty(z, Q") <e27*'}, Ve, (2.33)

Also, there exist by, by € (0,00), depending only on the geometric doubling constant of E,
such that if x € E and r € (0,diam,(E)], then there exist k € Z, k > kg and o € I}, with

Q" C B,(x,r) and byr < 27F < byr. (2.34)
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(8) If o is a measure on E for which (E, p, o) is a space of homogeneous type, then a collection
D(E) can be constructed so that (1)-(7) hold and, in addition, there exist ¥ € (0,1) and
c € (0,00) such that if k € Z with k > kg and « € Iy, then (Q’gé,p|Q§,aLQ§) s a space
of homogeneous type, with doubling constant independent of k and «, and

o({z € Qk: disty, (v, B\ QF) <t27%}) <ct’o(QF), Vt>o. (2.35)

(9) If o is a measure on E for which (E, p,0) is a space of homogeneous type, then a collection
D(E) can be constructed as in (8) such that if k € Z with k > kg and « € Iy, then

0<E \ Uaelk Q’;) - 0<QZ \ U561k+17QZ+1§Q§ QZ+1> =0. (2.36)

We now clarify some terminology before discussing the proof of this result. The sets @
in D(FE) will be referred to as dyadic cubes on E. Also, following a well-established custom,
when Q! C Qg, we say that Q**! is a child of Qg, and that Qg is a parent of Q¥*1. For a
given dyadic cube, an ancestor is then a parent, or a parent of a parent, or so on. Moreover,
for each k € Z with k > kg, we call Dy (FE) the dyadic cubes of generation k and, for each
Q € Di(E), define the side-length of Q to be £(Q) := 27, and the center of Q to be the
point z¥ € E such that Q = Q.

Henceforth, we make the convention whereby saying that D(F) is a dyadic cube structure
(or dyadic grid) on F indicates that D(F) is associated with E as in Proposition This
presupposes that F is the ambient set for a geometrically doubling quasi-metric space, in which
case D(F) satisfies properties (1)-(7) above and that, in the presence of a background Borel
doubling measure o, properties (8) and (9) also hold.

We are now ready to proceed with the proof of Proposition [2.11

Proof of Proposition[2.11. This is a slight extension and clarification of a result proved by
M. Christ in [I5], which generalized earlier work by G. David in [23], and we will limit ourselves
to discussing only the novel aspects of the present formulation. For the sake of reference, we
begin by recalling the main steps in the construction in [I5]. For a fixed real number § € (0, 1)
and for any integer k € Z, Christ considers a maximal collection of points z* € E such that

pu(zk By > va#s. (2.37)

Hence, for each k € 7Z, the set {z¥}, is 0*-dense in E in the sense that for each z € E there
exists a such that py(z,zK) < 6. Then (cf. [I5, Lemma 13, p.8]) there exists a partial order
relation < on the set {(k,a) : k € Z,« € I} with the following properties:

(a) If (k,a) < (1,), then k > I.
(b) For each (k,«) and [ < k, there exists a unique § such that (k,a) < (I, 8).
(c) If (k,a) < (k—1,0), then p#(zﬁ,zgfl) < ok,
(d) If p#(zé,z(’fé) < 2C,6%, then (I, 8) < (k, ).
Having established this, Christ then chooses a number ¢ € (0,1/(2C,)) and defines

k ._ l l
QF = U(w)j(kﬁa) By, (25, csh). (2.38)
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The novel aspects of the present formulation are as follows.

First, the dyadic cubes in [I5, Theorem 11, p. 7] are labeled over all k € Z, but shows
that when E is bounded, the index set I becomes a singleton, and in particular Dy (E) = {E},
when 27% is sufficiently large. While this is not an issue in and of itself, we find it useful to
eliminate this redundancy for later considerations and restrict to indices k > kg.

Second, the result in [I5, Theorem 11, p. 7] is stated with some § € (0, 1), and in particular,
with 6% instead of 27% in —. We will justify this change at the end of the proof.

Third, the result in [I5, Theorem 11, p.7] is formulated in the setting of spaces of ho-
mogeneous type (equipped with a symmetric quasi-distance). An inspection of the proof,
however, reveals that the arguments in [I5, pp. 7-10], applied with the regularization py from
Theorem also prove properties (1)-(6) under the weaker assumption that (E,p) is a geo-
metrically doubling quasi-metric space.

Fourth, property (7) follows from a careful inspection of the proof of [I5, Theorem 11, p. 7],
which reveals that for each k € Z with k > kg, and any j € N sufficiently large, compared to k,
the set Uy, Q" contains a 277-dense subset of F that is maximal with respect to inclusion.
Of course, this shows that the union in question is dense in (¥, 7,), and so follows.

Fifth, property (8) is identical to condition (3.6) in [I5, Theorem 11, p. 7] except that the
regularization px from Theorem is used instead of the regularization from [57].

Sixth, property (9) corresponds to (3.1) in [I5, Theorem 11, p. 7] and the proof therein uses
the Lebesgue Differentiation Theorem, which requires that continuous functions vanishing out-
side bounded subsets of E are dense in L!(E, o). This density result has been established under
the assumption that the measure o is Borel regular in [61, Theorem 7.10], and further refined to
the case that o is Borel semiregular in [2]. We avoid having to impose any regularity assump-
tion on the measure by relying on the following special case of the Lebesgue Differentiation
Theorem, which we claim is valid for arbitrary Borel measures: For every open set O C E in
7, and every {r;};jen C (0,00) with lim; o 7 = 0, it holds that

Jj—00

lim sup][ [1o(y) — 1o(x)|do(y) =0, for o-a.e. z € E. (2.39)
BP# (xvr]')

Assuming ([2.39)), we now prove (2.36)). Let k € Z with k > kg and set Oy := Uaelk QF. The
second displayed formula on p. 10 of [I5] shows that there exists ¢ € (0, 00) such that

O.NB,, (x,r
lim sup U( b b )) >c¢, foreachze L, (2.40)
0+ O'(Bp# (x, 7“))

and since Oy, is open in 7, by (1), it follows from that o(E \ O) =0, so holds.

To prove , by working with truncated versions of 1p via characteristic functions
of py-balls exhausting F, we may now assume without loss of generality that o(O) < oo.
For each j € N, the reasoning in [2] shows that the function F; : E — [0, 00] defined by
Fj(x) := pr#(x,rj) |1o(y) — 1op(z)|do(y), for all x € E, is Borel measurable, hence

Sp = {g: cb: limsup][ [1o(y) — 1o(z)| do(y) > 9} (2.41)
BP# (J,‘,T‘j)

Jj—00

is a Borel set in (FE,7,) for each 6 € [0, 00). Thus, it suffices to prove that o(Sp) = 0, and this
will follow by proving that o(Sp) = 0 for each 6 € (0,00). To this end, let 0, € € (0,00). Fix
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0 < 8 <1/logy Cp, so by [61, Lemma 4.14, p. 166], there exists a sequence {hy}sen of p-Holder
functions of order 5 on E such that 0 < hy < 1 and hy ' 1p pointwise as £ — co. Then, since
o(0) < 0o, Lebesgue’s Monotone Convergence Theorem implies that hy — 1o in L'(E,0) as
¢ — oo, thus there exists £, € N such that ||[1o — hy,[|L1(pe) <& If x € E and j € N, then

f o oW -to@ldet) < F o= he))ldo(w) + (Lo~ hy,)(o)
BP# (w,75) BP# (w,75)

+f e, (9) = he, ()] do(y), (2.42)
BP# (z,rj)

so the monotonicity of the limit superior implies that Sy C A; U As U A3, where

A= {a: eFE: liﬁi}p ]{Bp#(x’rj) (1o — he,)(y)| do(y) > 0/3}, (2.43)
Ay = {:1: €eE: |(1o—hg)(z)| > 9/3}, (2.44)
Az = {x ekb: h?l—?ogp ]{Bp#(%m) |he, (y) — he, (x)| do(y) > 9/3}. (2.45)

It follows by reasoning as in (2.41]) that Ay, As, A3 are Borel sets in (E,7,). We have Az =0,
since hy, is p-Holder, while Tschebyshev’s inequality implies that

3e

3
o(Az) < 5\\10 —h, Loy < 'k (2.46)

Also, since the Hardy-Littlewood maximal operator is weak-type (1,1) (cf., e.g., [2]), we have

c C
o(4) So({r € B: Mp(lo—he,)(@) > 0/3}) < 710 = he,lnipe) < 5

o (247)
for some C' € (0,00). Altogether, this shows that o(Sg) < Ce/f for all ¢ € (0,00), hence
o(Sp) = 0. This concludes the proof that o(Sp) = 0 and completes the justification of ([2.39).
We now return to prove that it is always possible to set § = 1/2 in the construction of
Christ in [I5]. To do this, we adopt Christ’s convention of labeling the dyadic cubes over all
k € Z, since eliminating the inherent redundancy when FE is bounded may be done afterwords.
Let D(E) := Upez Dk(£) denote a collection of dyadic cubes satisfying properties (1)-(9) but
with 6% replacing 27% in —. We now construct another collection of dyadic cubes
D(E) := Upez Dr(E) with the same properties but with 6 = 1/2. We consider two cases.

Case I: 1/2 < 6 < 1. Set mg := 0 and, for each integer k > 0, let my, be the largest positive
integer such that 6™ > 2=%_ Thus,

st < 97k < gk, (2.48)

Similarly, for each k < 0, let my, denote the least integer such that 6™ < 27%. Thus, again
we have (2.48). Of course, we shall have m; < 0 when k£ < 0. The sequence {my, }recz is strictly
increasing. Indeed, for every k € Z, we have

mp+1 < mgyq. (2.49)
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To see this in the case that k > 0, observe that

gkl = Lok < Lgmk o gmatl (2.50)

where in the first inequality we have used (2.48]) and in the second that 1/2 < §. Thus, (2.49)

holds, since by definition mg is the greatest integer for which 2~ (k+1) < §mr+1. In the case
k <0, since 1 < 24, we have

where in the second inequality we have used ([2.48]). Since my is the smallest integer for which
5™+l < 27F e again obtain (2.49). For each k € Z, we then define

Dy(E) = Dy, (E). (2.52)

It is routine to verify that the collection D(E) := |J;c;, Dr(E) satisfies the desired properties,
with some of the constants possibly depending on 4.

Case II: 0 < § < 1/2. In this case, we reverse the roles of 1/2 and ¢ in the construction
above, to construct a strictly increasing sequence of integers {my } ez, with mg := 0, for which

27mk < gk <27t YR ez (2.53)

It then follows that there is a fixed positive integer gy ~ logy(1/9) such that for each k € Z,

Migt+1 — Qo < ME < Mpy1. (2.54)
Indeed, we have
gk < gk — Lkt o Tommitt _ Zgomi (2.55)
- ) ) ) ’

where in the two inequalities we have used ([2.53]). We then obtain (2.54)) by taking logarithms.
For each j € Z, there exists a unique k € Z such that my < j < mgy1, and we then define

D;(E) == Dy(E), whenever my < j < myp41. (2.56)

It is routine to verify that the collection D(E) := (J,c, Dr(E) satisfies the desired properties,

with some of the constants possibly depending on §. In verifying the various properties, it is
helpful to observe that by (2.54)), it holds that

27 27 s §F whenever my < j < mpy1. (2.57)

This finishes the proof of the proposition. O

2.3 Approximations to the identity on quasi-metric spaces

This subsection is devoted to reviewing the definition and properties of approximations to the
identity on ADR spaces. To set the stage, we make the following definition.
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Definition 2.12. Assume that (E,p,0) is a d-dimensional ADR space for some d > 0 and
recall kg € Z U {—oo} from Proposition|2.11. A collection {S;}i1ez, 1>k, of integral operators

Sif(x) = /E Si(z,y)f(v) do(y),  x€E, (2.58)

with kernels S} : E X E — R, is an approximation to the identity of order ~ on E if there
exists C' € (0,00) such that the following hold for every integer | > kg and every x,z',y,y’ € E:

(1) 0 < Sy(z,y) < C24, and if p(z,y) > C27L, then Si(z,y) = 0.

(2) 1Si(z,y) — Si(a',y)| < C21MHD) p(z, 2")7.

(3) |[Si(z,y) = Su(@',y)] = [Si(x,y') — Si(a,y)]] < C2T20 p(, 2')p(y, y').
(4) Si(z,y) = Si(y.x) and [ Si(x,y) do(y) = 1.

Starting with the work of Coifman (cf. the discussion in [25, pp.16-17 and p.40]), the
existence of approximations to the identity of some order v > 0 on ADR spaces has been
established in [25] p. 40], [36, pp. 10-11], [28, p. 16] (at least when d = 1), and [61], for various
values of . Quite recently, a version valid for the value of the order parameter v which is
optimal in relation to the quasi-metric space structure has been obtained in [2], from which
we quote the following result (recall the index from (2.6))):

Proposition 2.13. Assume that (E,p,o0) is a d-dimensional ADR space for some d > 0. If
0 <~ < ind(E,p), then there exists an approzimation to the identity {S;}iez, 1>k, of ordery on
E. Furthermore, if p € (1,00), then supjez 1>k, ISl Lr(B,0)—> 1 (B0) < +00 and the following
properties hold for all f € LP(E,0):

(1) If the measure o is Borel semireqular on (E,T,), then limy_, o S f = f in LP(E,0).
(2) If diam,(E) = +o0, then lim;_,_ S f =0 in LP(E,0).

Later on we shall need a Calderén-type reproducing formula involving the conditional
expectation operators associated with an approximation to the identity, as discussed above.
While this is a topic treated at some length in [25], [28], [36], we prove below a version of this
result which best suits the purposes we have in mind.

To state the result, we first record the following preliminaries. A series jen & of vectors
in a Banach space % is said to be unconditionally convergent if the series Z;; Ty ()
converges in Z for all permutations o of N, in which case the sum of the series in & is defined
unambiguously as 37y ¥j 1= > 22 () for some (hence any) permutation o of N (cf., e.g.,
[37, Corollary 3.11, p. 99]). The following useful characterizations of unconditional convergence
(in a Banach space setting) will be needed (cf., e.g., [37, Theorem 3.10, p. 94]):

oo
Za:j unconditionally convergent <> Z gjxj converges Ve; = £1 (2.59)
JEN j=1

Ve >0 3N, € N such that szeIxjH <e
V finite subsets Z C N with min Z > N..

Moreover, for any countable set I, a series ) je1 % of vectors in a Banach space £ is said to
be unconditionally convergent if there exists a bijection ¢ : N — I such that ZjeN Ty(j) 18

25



unconditionally convergent, in the sense just defined, in which case the sum of the series in %
is defined as ) jer % = Z;’;l T,(j)- This property is independent of the bijection ¢ used and
it follows from (2.59|) that the following property provides an equivalent characterization:

V {S; }ien such that S; finite and S; C S;41 C I for each i € N,

the sequence {Zjes_ xj} , converges in &. (2.60)
K] 7/6

We now state the aforementioned Calderdon-type reproducing formula.

Proposition 2.14. Assume that (E,p,0) is a d-dimensional ADR space for some d > 0 and
that the measure o is Borel semireqular on (E,7,). Fiz 0 < v < ind(E,p), let {Si}icz i>xp
denote an approximation to the identity of order v on E and define the integral operators
Dy := 8141 — & for each integer | > kg. Then there exist a bounded linear operator R on

L*(E,o) and a collection {ﬁl}lez Iskp O linear operators on L*(E, o) such that
> D20 < ClG2m0, V€L E,0), (2.61)
€2, 1>k

and, with I denoting the identity operator on L*(E, ),
I+S.,R= Z DDy, pointwise unconditionally in L*(E, o), (2.62)
€7, 1>k p
with the convention that S_o := 0 when diam,(E) = +00.

As a preamble to the proof of the above proposition we momentarily digress and record a
version of the Cotlar-Knapp-Stein Lemma which suits our purposes. The result is proved by
combining and Lemma with the well-known version, which is stated as below but
with J finite and/or without including property (3) (cf., e.g., [T2, Theorem 1, p.280]).

Lemma 2.15. Assume that 76, 74 are two Hilbert spaces and consider a family of operators
{T}}jer1, indexed by a countable set I, with T; : 7y — 4 linear and bounded for every j € I.
If the T;’s are almost orthogonal in the sense that

Co = 5w (3 \IT Tkl ) <00, Cri=sup (3 \/IT T lsom ) <00 (263)
JEL Mper kel Y ier

then for any subset J C 1, the following properties hold:

(1) If x € 5, then ZjeJzj converges unconditionally in 4.
Ny . , </
(2) If (ZjGJT]):B : Zjej Tjx, for all x € 74, then HZJEJJ—"]HJZOO—)yﬁ </ Co(C1.

1/2
(3) Ifw € A, then (3 |Tyel%) " < 20/CoCilal -

Lemma 2.16. Let 7 be a Hilbert space with norm || -|| . If {x;};ec1 is a sequence in J€ over
a countable set I and C := sup {|| died, 5|, = Jo C L is finite}, then Sjer llzjll%, < 4C% and

Z o is unconditionally convergent <= C < oo = HZ <C. (2.64)
J

o
jel JH%&
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Proof. 1t suffices to assume that I = N. Let {z;}jey € 2 and assume that C < oco. Let
{rj}jen denote a Rademacher system of functions on [0,1]. If (-,-) stands for the inner
product in JZ, then for any finite set J, C N, by orthonormality we have

! 2
() _ 112
/0 szejo TJ(t)mJH%;dt = ZjeJo [ 7 (2.65)

On the other hand, for each ¢ € [0, 1] we may estimate

szejo Tj(t)xi’ a H <Zjejo7,ﬂj(t):+1 %‘) - (Zjeerj(t):_lmj)H%S 2C. (2.66)

By combining and (2.66)), we obtain > ied, |23, < 4C? for every finite subset .J, of N,
from which the required norm estimate readily follows.

Moving on, assume that C < oo and that Z]EN x; does not converge unconditionally to
seek a contradiction. Then (cf. the first equivalence in (2.59)), there exists a choice of signs
gj € {£1}, j € N, with the property that the sequence of partial sums of the series >, €;;
is not Cauchy in 5. In turn, this implies that there exist 99 > 0 along with two sequences
{a;}ien, {bi}ien of numbers in N, such that

a; <b; < a1 and Hzax<j<b- 5ja:jH%)2 ¥, for every ¢ € N. (2.67)

Next, by (2.67)), the sequence {y;};cn in S defined by y; := Zaigjgb,- ejx; satisfies
llyill w > 9,  for every i € N. (2.68)

Now fix an arbitrary finite subset I, of N and set J, := {j € N: di € I, such that a; < j < bi}.
Thus, J, is a finite subset of N and we have

Hzielo yi’ v Hzielo (Zaiga‘gbi 5jxj> H%”‘
_ A : < .
H (ZjEJo,sjz—H xj) (ZjEJo,E]-:—l xj) ij =2, (2.69)

where the second equality relies on the fact from (2.67)) that a; < b; < a;4+1. Hence,

il CNis ﬁnite} < 2. (2.70)

w {2, v

It follows that >,y ||vil%e < 16C% < oo, which forces lim ||y;||» = 0, and contradicts (2.68).
‘ 1—00
This shows that if C < oo, then ), ; is unconditionally convergent. Once the (norm)

convergence is established, then C < oo implies || 3,y j[lr < limsupy_ || Zjvzl zjlle <C,
which is the second implication in (2.64). Therefore, it remains to prove that C < oo when the
series ) jen L is unconditionally convergent. Let N1 € N denote N, with ¢ := 1 from (2.59)

and set M := sup{H Zjelo :er% 1, {1, ...,Nl}} < oo. If J, C N is finite, then
. < . : < .
szefo %Hyf = HZ]’EJOO{I,...,Nl} xﬂH% T HZjeJo\{L,_.,Nl} %H% <M+1, (2.71)
from which it follows that C < oo. O
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We next present the proof of Proposition [2.14]

Proof of Proposition[2.14 For each | € Z with | > kg, denote by ly(-,-) the integral kernel
of the operator D;. Thus, h(-,-) = Si41(-,-) — Si(+,+) and, as a consequence of properties
(1)-(4) in Definition we see that hy(-,-) is a symmetric function on F x E, and there
exists C' € (0,00) such that for each | € Z with | > kg and all z,2',y € F, we have

|hl($, y)‘ < C2 ldl{p(%y)gcg—l}, (272)
|hl(x7 y) - hl(x,a y)‘ < C2l(d+7)p($> x/)’yv (2'73)
/ hi(z,y) do(xz) = 0. (2.74)

E

Of course, due to the symmetry of h, smoothness and cancellation conditions in the second

variable, similar to (2.73)) and (2.74)), respectively, also hold.

Furthermore, for each j, k € Z with j,k > kg, using first (2.74)), then (2.72)) and (2.73)),
and then the fact that (F,p, o) is d-ADR, we may write

/ hj(z, z)hi(2,y) do(z)
E

/E i (2, 2) — (@, 9)] ez, ) do(2)
< C2i() /E o 22N oy (2) dor(2)
< ¢k, (2.75)

Combining (2.75]), and the analogous estimate obtained by interchanging the roles of j and k,
with the support condition (2.72), it follows that for each j, k € Z with j, k > kg, it holds that
(compare with [25 p. 15] and [28], (1.14), p. 16])

< 02 li=kly 2d~min(j7k)]_{p(x7y)§027 min(ik) ) Vr,ye E. (2.76)

/ hy (. 2)hi (2. y) do(2)
E

Note that for each j, k € Z with j,k > kg we have that D; Dy, : L?(E, o) — L?(E, o) is a linear
and bounded integral operator whose integral kernel is given by [, hj(x, 2)h(z,y) do(z), for
x,y € E. Based on this and (2.76)) we may then conclude that for each j, k € Z with j, k > kg,

(D; Dif) ()| < 02‘”"”][ 1 w)ldo(y)
By, (1,02 minG:h)
< C2 VM pMp(f)(@), VzeE, (2.77)

for every f € L} (E,o). In turn, the boundedness of Mg and (2.77) yield

loc

H‘DjDkHL2(E,U)—>L2(E7U) < 027|j7kh: VJ,]C € Za jvk > KEg- (278)

Having established (12.78]), it follows that the family of linear operators {Dl} 12, >k p’ from
L?(E, o) into itself, is almost orthogonal. As such, Lemma implies that

sup{H Z Dl‘ B0y 12 (B :J CZis ﬁnite} <C < o0, (2.79)

1€, 1>kp
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that the Littlewood-Paley estimate
2 1/2 2
(X D) <Ol lamay, ¥ f € LAE0), (2.80)
l€Z,I>KkE

holds and, in combination with Proposition that

(I-8s)f= >, Dif foreach f e L*(E,o0),
I€Z, 1>k (2.81)
where the series converges unconditionally in L?(E, o).

To proceed, fix a number N € N. Based on (2.79)), we may square (2.81)) and obtain,
pointwise in L(E, o),

(=) =gm |( 3 p)( X 0

JEZ»]ZHEv‘J‘SM kGZ,kZHE,|k|SM
—im (Y D+ D D;Dy). (2.82)
M—o0 . .
=K<V k>N
Jikzr, |5k <M PN ESY,

Going further, fix ¢ € Z and consider the family {7}};c s, of operators on L?*(E, o), where
Ty :=DyyiD; forevery e Ji:={le€Z:1>max{kp, kg —i}}. (2.83)

Then, with ||| temporarily abbreviating |- || 12(g,¢)—12(£,+), for each j, k € J; we may estimate

IT5 Tl < min{HDjHHDj+z'Dk+z'HHDkH7 HDJ'DJ'—H'HHDkHHHDkH}

< C min {2—|’f—j|7, 2—“'”}7 (2.84)

thanks to (2.79)) and (2.78). This readily implies that Sup< > ||TJ*Tk||) < C(1 + Ji|)27 /2
jGJi keJ;

and sup( > /T T;:H) < C(1+]i))271"1/2 for some C € (0, 00) independent of 4. Hence, for

keJ; Njed;
each ¢ € Z, the family {DlJriDl}lEZ,lZmax{NE,HE—i}
there exists some constant C € (0, c0) independent of i such that for every set J C J; we have
that > Dy y;D; converges pointwise unconditionally in L?(E, o) and

leJ
HZ DDy

Next, fix N € N and let .# be an arbitrary finite subset of {(Il,m) € ZxZ : I, m > kg}. Then
for each function f € L*(E, o) with || fll;2(g,») = 1, using (2.85) we may estimate

is almost orthogonal, and by Lemma [2.15

C(1 + |i|)27 172, (2.85)

L2(E,0)—L2(E, O')

DD )‘ 2.86

| Y oo, =l X (X pend)|,,, @

(4,k)eS, |j—k|>N i€Z,|[i|>N eZ, (I+il)es

< > |2 pwn],,, < 3 corlztR s o,
1€Z, |i|>N €L, (I+i,l)es 1€Z, |i|>N
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for some finite constant Cy > 0 independent of N. It then follows from ({2.64]) and (2.86| that

._ . . . oy . 2
Ry = ZjkaRE‘: k>N D; Dy, converges pointwise unconditionally in L*(F, o) (2.87)
and there exists C € (0,00) such that [|[Bn|12(p,0)=r2(50) < C’VNQ*NV/Q, (2.88)
In a similar fashion to (2.85))-(2.87), we may also deduce that

L . . . oy . 2
Ty = Zj,kZNE, <N D;D, converges pointwise unconditionally in L*(E,0).  (2.89)

We set DlN = Zisz—l i|<N Dy for each [ € Z, so Ty = )y I>kp DlDlN, where the sum
converges pointwise unconditionally in L?(E, o). Then (2.82)), (2.87) and (2.89) imply that

(I-8x,)>=Ry+Tnx on L*E,0), (2.90)
which is convenient to further re-write as
I=Ry+Ty on L*E,0), where Ty:=Ty+Su, (2 —Ssy). (2.91)
Thanks to the estimate in , it follows from that
Ty : L2(E,0) — L2(E,0) is boundedly invertible for N € N sufficiently large. (2.92)

Hence, for N sufficiently large and fixed, based on (2.92) we may write that I = TVN(TVN)_l,
and keeping in mind (2.91)), we arrive at the following Calderén-type reproducing formula

I= ( 3 le),) + Spp (2] = Sy ) (Tw) Y, (2.93)
I€Z,I>KkE

where the sum converges pointwise unconditionally in L?(E, o), and
D;:=DN(Ty)™', VieZ with | > kp. (2.94)

From this (2.62) follows with R := (S, — 2I) (Tx)~!. Finally, ([2.61)) is a consequence of
(2:94), the fact that the sum defining D}V has a finite number of terms, (2.92) and (2:80). O

2.4 Dyadic Carleson tents

Suppose that (27, p) is a geometrically doubling quasi-metric space and that E is a nonempty,
closed, proper subset of (£°,7,). It follows from the discussion below Definition that
(E, p‘ E) is also a geometrically doubling quasi-metric space. We now introduce dyadic Carleson
tents in this setting. These are sets in 2"\ F that are adapted to E in the same way that
classical Carleson boxes or tents in the upper-half space ]RTJF+1 are adapted to R™. We require
a number of preliminaries before we introduce these sets in below. First, fix a collection
D(E) of dyadic cubes contained in E as in Proposition Second, choose A € [2C,, 00) and
fix a Whitney covering Wy (2 \ F) of balls contained in 2"\ E as in Proposition Following
Convention we refer to these p4-balls as Whitney cubes, and for each I € Wy (2" \ E), we
use the notation ¢(I) for the radius of I. Third, choose Cy € [1,00), and for each @ € D(F),
define the following collection of Whitney cubes:

Wq i={I e Wy(2 \ E): C-(I) < £(Q) < C.t(I) and dist,(I,Q) < £(Q)}.  (2.95)
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Fourth, for each @ € D(E), define the following subset of (2, 7,):

Ug:= | J I (2.96)
IGWQ

Since from Theoremwe know that the regularized quasi-distance py is continuous, it follows
that the py-balls are open. As such, that each I in Wy, hence Uy itself, is open. Finally, for
each @ € D(F), the dyadic Carleson tent Tr(Q) over @ is defined as follows:

T(Q) == U Uy (2.97)
Q'eD(E), Q'CQ
For most of the subsequent work we will assume that the Whitney covering Wy (2" \ E)

and the constant C, are chosen as in the following lemma. The reader should be aware that
even when (2.98) holds, there may exist Q € D(F) for which Ug is empty.

Lemma 2.17. Let (2, p) be a geometrically doubling quasi-metric space and suppose that E
is a nonempty, closed, proper subset of (2", 7,). Fiz a collection D(E) of dyadic cubes in E as
in Proposition[2.11 Next, choose X € [2C,,00), fir a Whitney covering Wx(2 \ E) of 2"\ E,
and let A denote the constant associated with \ as in Proposition [2.5,

If C, € [4(3’;1 A, 0), then there exists € € (0,1), depending only on X\ and geometry, such

that the collection {Uq}gen (k) associated with Wy (2 \ E) and Cy as in (2.95)-(2.96), satisfies
{ze Z\E: dpx) <edam,(B)} C | ) Ug. (2.98)
QeD(E)

Proof. If diam,(E) = oo, then both sides of are equal to 2"\ E for all € € (0,1), since
the Whitney cubes cover 2"\ E, so the result is immediate. Now assume that diam,(E) < oo.
Fix some integer N € N, to be specified later, and consider an arbitrary point z € 2"\ E with
§p(r) < 27Ndiam,(E). Then by and the definition of kg, we have 0 < §g(z) < 27 N—rB,
hence there exists k € Z with k > kg such that 27V =*"1 < §p(z) < 27V=*. Now, select a ball
I'=B,,(z1,4(I)) € Wy(Z \ E) such that z € I. Then, by (3) in Proposition there exists
z € E such that p4(xr,z) < AL(I). Consequently,

5p(2) < pyle,2) < Cp max {pa(@,21), pylar, 2)} < CoAU(D), (2.99)
In addition, (3)in Propositionimplies that By, (z, M(I)) € 2"\ E, hence, for every y € E
20,6(1) < M(I) < pyp(1,y) < CpblI) + Cp py (2, y). (2.100)

After canceling like-terms in and taking the infimum over all y € E, we arrive at
o) < 8g(). (2.101)

Next, since dp(x) < 27V=F, there exists x9 € E such that py(z,z) < 27V~*. Further-
more, by invoking (7) in Proposition we may choose ) € Di(F) with the property that
B, (wo, 2~N=F) N Q contains at least one point x1. Thus, by (1) in Theorem [2.1| we have

dist,(I,Q) < dist,(z,Q) < p(x,z1) < C2py(x, 1) (2.102)
< Cng# max { px(x, o), pg(To, 1)} < CSQ_N_]“ = CEQ_NE(Q).
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Starting with and keeping in mind that §g(z) < 27V~*, we obtain
oI) < 27Nk =27 Np(Q) < £(Q). (2.103)
Next, by we write 27V 714(Q) = 27V "F"1 < §p(x) < C,AL(I), which further entails
C, > 2NTC A = ((I) > C7H(Q). (2.104)

Finally, if C\ > 403 A, then by (2.102))-(2.104]), upon choosing N € N such that

N —1<1ogy(C3) <N, (2.105)
it follows that I € Wg, hence x € I C Ug, and so (2.98)) holds with € := 2—N. O

We now return to the context introduced in the first paragraph of this subsection, where
A€ [2C,,00) and Cy € [1,00). Then there exists C, € [1,00) such that

CoH(Q) < dp(x) < CLl(Q), VYQeD(E) and Yz € Ug. (2.106)

Indeed, an inspection of (2.99)), (2.101)), (2.95) and (2.96) shows that (2.106)) holds when

Cy := C.CHA, (2.107)

where A is the constant associated with A as in Proposition [2.5] We will need the containments
below for the dyadic Carleson tents {Tr(Q)}oen(x) from (2.97).

Lemma 2.18. Assume all of the hypotheses contained in the first paragraph of Lemma[2.17
If Cy € [1,00), then there exists C € (0,00), depending only on Cy and p, such that

Te(Q) C B,(z,CUQ)) \E, VQeD(E), Vz € Q. (2.108)

IfC, € [40;‘; A, 00), then there exists € € (0,1), depending only on A and geometry, such that

By, (2q,e0(Q)) \ E C T(Q), VQ e D(E). (2.109)

Proof. The containment in (2.108) follows from (2.97)). To prove (2.109), let C € [46’;L A, 00).
Fix ¢ € (0,1) to be specified later and choose N as in (2.105). Let Q € D(E) and fix

z € By, (20,el(Q)) \ E. Then pu(zq,z) < el(Q). We now restrict ¢ < 27N=1 {0 obtain

5p(z) < pu(rg,z) < el(Q) < 2ediam,(F) < 2~ Vdiam,(E). (2.110)

Thus, as in the first part of the proof of Lemma we have 6z (x) < min {27V=F £0(Q)} for
some k € Z, k > rkp. Hence, there exists o € E such that py(z,z0) < min {27V £(Q)}.

By property (7) in Proposition we choose Q' € Di(E) such that By, (z0,e0(Q)) NQ" # 0.
If, in addition, € < aon_4, then
By, (20,el(Q)NECQ and QNQ#D, (2.111)
since if y € By, (a:o,sﬁ(Q)) N E, then

p#(2Q,y) < Cpmax {Cpmax {pg(z0, ), pg(x,2Q)}, pp(w0,9)} < CHU(Q) (2.112)
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shows that y € @ (recall that B, (wQ,aOC*ZE(Q)) NE CQ by (2 ) and so Q' 'NQ # 0.
Using the reasoning in the proof of Lemma [2.17| that yielded (2.102] m we obtain

relC UQ/. (2.113)

Thus, using also (2.106)), we have
U(Q") < Codp(x) < Copp(rq,x) < Cocl(Q). (2.114)

Hence, under the additional restriction ¢ < C; 1, we have £(Q') < £(Q), which when combined

with and (3) in Proposition u 2.11} forces @' C Q. In concert with ( and -,

this shows that r € Tp(Q) when 0 < & < min{2~ V-1 ;apCy 4051, as requlred
We conclude this section with a finite overlap property for the sets {Ug } gen(r) from (2.96).

Lemma 2.19. Let (2, p) be a geometrically doubling quasi-metric space and suppose that E
is a nonempty, closed, proper subset of (Z,7,). Fiz a € [1,00), a collection D(E) of dyadic
cubes in E as in Proposition [2.11], and C, € [1,00).

If X € [a,00), and we fix a Whitney covering Wx(2 \ E) of 2 \ E as in Proposition [2.5,
with Whitney cubes {WQ}QGJD)(E) as in , then there exists N € N, depending only on X,
C and geometry, such that

> 1y <N, (2.115)
QeD(E)

where Uf, = Ujer al (compare with m .

Proof. Fix a € [1,00), A € [a,00) and a Whitney covering Wy (2" \ E), so by Proposition
we have 3~ ey, (27 p) Iar < N1 for some Ny € N. Now define Z := Jgep gy Wo € WaA(Z7\ E)
and, for each I € Z, set q; := {Q € D(F) : I € Wg}. We claim that #¢; < N for all
I € Wy(Z \ E) and some Ny € N. To see this, consider I € W)(Z \ E) and Q € D(F) such
that I € Wg. Then, from we deduce that

CoH(I) < Q) < Cul(I) and  dist,(1,Q) < CLl(I), (2.116)

and the claim follows from the fact that (E , p‘ E) is geometrically doubling. We then have

Yoo Lyy< Do Y Lu=) (#a)-Lu < Nily, (2.117)

QeD(E) QeD(E) IeWg IeT

so (|2.115]) holds with N := N No. ]

3 T(1) and local 7'(b) Theorems for Square Functions

This section consists of two parts, dealing with a 7'(1) Theorem and a local T'(b) Theorem for
square functions on sets of arbitrary co-dimension, relative to an ambient quasi-metric space
(the notion of dimension refers to the degree of Ahlfors-David regularity). The T'(1) Theorem
generalizes the Euclidean co-dimension one result proved by M. Christ and J.-L. Journé in [16]
(cf. also [14, Theorem 20]). The local T'(b) Theorem generalizes the Euclidean co-dimension
one result implicit in the solution of the Kato problem in [46] 42 4] and explicit in [3], 40} 47].
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We consider the following context. Fix two real numbers d, m such that 0 < d < m, an
m-dimensional ADR space (27, p, i), a closed subset E of (27, 7,), and a Borel measure o on
(E,7,,) with the property that (E, p‘E, o) is a d-dimensional ADR space. Suppose that

0:(Z \E)x E— R is Borel measurable with respect to

the relative topology induced by the product topology 7, x 7, on (£ \ E) x E, (3.1)

and has the property that there exist Cp, a, v € (0,00) and a € [0,v) such that for all
e Z\E,ye FE and y € F with p(y,y) < %p(m, y), the following hold:

Cy dist (a: E) —a
0(z,y)| < P , 3.2
el s oy ( p(z,y) > 32
oy, y)“ dist, (z, )\ —a—«
. < . .
0 y) = 6,7 < Co e () (3.3)
Then define the integral operator © for all functions f € LP(E,0), 1 < p < 0o, by

©N@) = [ befwdoy).  Voe 2 \B, (3.9

We note that Lemma/[3.4 below guarantees that this integral is absolutely convergent. Also, the
terms in parentheses in (3.2)-(3.3) are greater than or equal to 1, since p(z,y) > dist,(z, E) > 0,
and so the inclusion of these terms weakens the hypotheses.

We proceed to prove square function versions of the 7'(1) Theorem and the local T'(b)
Theorem for ©. As usual, we prove the local T'(b) Theorem by applying the T'(1) Theorem.

3.1 An arbitrary codimension 7'(1) theorem for square functions
The main result in this subsection is the following 7'(1) theorem for square functions.

Theorem 3.1. Let 0 < d < m < co. Assume that (2, p, i) is an m-dimensional ADR space,
E is a closed subset of (2°,7,), and o is a Borel semiregular measure on (E,1,,) with the
property that (E,p’E, o) is a d-dimensional ADR space.

Suppose that © is an integral operator with kernel 0 satisfying —. Let D(E) denote
a dyadic cube structure on E, consider a Whitney covering Wx(Z \E) of Z"\ E and a constant
Cy as in Lemma with the corresponding dyadic Carleson tents from . If

sup (J(lQ) /T (Q)re)l(x)rzéE(x)%*(m*d) du(sc)) < o0, (3.5)

QeD(E)

then there exists C' € (0,00), depending only on Cy, the ADR constants of E and 2, and the
value of the supremum in (3.5)), such that

/ (©f)(@)*6p()* "D du(x) < C/ [f(@)[do(x), ¥ [feLB,o0). (3.6)
Z\E E
Conversely, under the original background assumptions, excluding (3.3)), if

(©1) (@) Pop(x)® "D dp(x) < C/E |f(@)|*do(x), V f € L*(E,0),
(3.7)

AE%, 0<dg(z)<ndiam,(E)

for some C,n € (0,00), then (3.5)) holds.
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We record some preliminaries. The following discrete Carleson Estimate is well-known.

Lemma 3.2. Let (E,p,0) be a space of homogeneous type and denote by D(F) a dyadic cube
structure on E. If a sequence {Bg}gen(r) C [0, 00] satisfies the discrete Carleson Condition
1

o= o omy 2 Pl < 59
then for every sequence {AqQ}oen(z) € R it holds that
Y AgBp<cC / A*do, (3.9)
QeD(E) d
where A*(x) := suPgen(r), 2 |4l if ¥ € Ugen(p) @ and A*(x) := 0 otherwise.
The following quantitative version of the classical Urysohn Lemma is in [61] (cf. also [I]).

Lemma 3.3. Let (E,p) be a quasi-metric space and suppose that 0 < [ < [log, Cp]fl. If
Fo, F1 C E are nonempty and dist,(Fy, F1) > 0, then there exists n: E — R such that

0<n<1 on E, n=0 on Fy, n=1 on F, (3.10)

and for which there exists a finite constant C > 0, depending only on p, such that
sup M < C(distp(Fo,Fl))fﬁ. (3.11)
z,y€eE, x#y P(%y)
The next two preliminary lemmas are from geometric measure theory.

Lemma 3.4. Let (27, p) be a quasi-metric space. Suppose that E C 2 is nonempty and o is
a measure on E such that (E, p‘E, o) is a d-dimensional ADR space for some d > 0. If m > d,
then there exists C € (0,00), depending only on m, p, and the ADR constant of E, such that

. Zydm N
/Ep#(x,y)md (y) < Cop(x)*™™,  Vze 2 \E. (3.12)

Moreover, if e > 0 and ¢ > 0, then there exists C € (0,00), depending only on €, ¢, p, and the
ADR constant of E, such that

re
L o W) SO, Vae B, V0. ()
IS , P#(Y,T >cr ’

for every o-measurable function f: E — [0,00|, where Mg is as in (2.29).

Proof. If m > d, then since (E, px|r, o) is a d-dimensional ADR space, we have

1 = 1
— - do(y) < / 1. 2155(2), 20155 (2))} ()~ do(Y)
/EP#(?J#U)m j;o 5 {z:pp(2,0)€[270E (2), 5())} pu(y, )™
- 1
<C — 6 (B, (z, 27 g(x))NE
<O 2 g Poal®:2 s N E)
< Cop(z)d—m (3.14)
for all z € 27\ E, which proves (3.12). The estimate in (3.13)) is proved similarly by decom-
posing the domain of integration in dyadic annuli centered at x and at scale r. O
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The proof of the following result can be found in [62].

Lemma 3.5. Let 0 < d < m < oo. Assume that (2, p, i) is an m-dimensional ADR space, E
is a closed nonempty subset of (2", 7,), and there exists a measure o on E such that (E, p B o)
is a d-dimensional ADR space. If v < m —d, then there exists Cy € (0,00), depending only on
~v and the ADR constants of E and 2", such that

/ $5(z) 7 dy(w) < Cor™ - e, (315)
$€Bp(1301R)7 6E($)<r

for every xog € E and every r, R > 0.
At this stage, we are ready to present the proof of Theorem [3.1]
Proof of Theorem[3.1] Set Aqf := fQ fdo for all Q € D(FE) and measurable f : E — C.

Step I. We claim that for each r € (1,00), there exist constants C, 3 € (0,00) such that

3=

sup |95(x)" (O(Dig)(z) — (O1)(2)Ag(Dig))| < €277 int [ME(lgI") (w)| ", (3.16)
€U wewR

for alll,k € Z with I,k > kg, all Q € Di(E) and all locally integrable functions g : E — R,
where Dy := 811 — &) is the integral operator defined in Proposition with kernel hy(-,-).
We prove (3.16) by distinguishing two cases below. Fix ky € Ny to be specified later.

Case I: k + ko > [. In this case, since |k — | < k — [ + 2kg, we have
9~ (ktko=l) o o= Ik=l] (3.17)

where the comparability constants depend only on k. For all x € Ug, we write

5E(:r)“(9(ng)(ﬂf)—(91)(35)AQ(D19))Z/E[/E<1>(x,y)hz(y72)d0(y) 9(z)do(z), (3.18)
where

O(z,y) = dp(x)’ [e(x,y) - ﬁ(@l)(x)lcg(y)}, Vre Z\E, VycekE. (3.19)

Note that, by design,
/ O(z,y)do(y) =0, Vee 2\ FE, (3.20)
E

and we claim that

(2, y)| < Vo €Uy, Yyé€E. (3.21)

.
o(Q)’
Indeed, if x € Ug, then dg(z) = £(Q), so (3.2) and (4) in Theorem imply that

Cop)'= _ Cop(@)™ _ C _ C

(@) 6@yl < o i S S S GQE S 2(Q)

Vy e E, (3.22)
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whilst (3.12)) implies that

5(2)")(O1)(z)| < Co(x)"~ /E W <C,  Vaelo (3.23)

Fix € € (0,1) and Cy > 0, to be specified later. If w € @Q and z € E, then (3.20) gives

/ (z, )iy, 2) d(f(y)‘ S/ (2, y)|[i(y, 2) — h(w, 2)[do(y) =: I + I, (3.24)
E E

where I is the integral restricted to the set {y € E, py(y,2g) < Co2F+tk0=Ds¢(Q)} and 2 is
the center of Q). To estimate I, we claim that, for v from (2.72), if C is sufficiently large, then

[hu(y, 2) = u(w, 2)| < C 2" tho=brgQya, 0 gy ()
whenever 2z € E, y € B, w € Q and px(y, tq) < Co2-Tho=Dep(Q). (3.25)

To prove this claim, first note that if Cj is large, then since k + kg — [ > 0, we have
y € B, weQand py(y, xq) < Co2®H00(Q) = pu(y,w) < CC2*HD4(Q).  (3.26)

From now on, assume that Cj is large enough to ensure the validity of (3.26]). Second, if y,w
are as in (3.26) and z € E is such that px(z, w) > C27!, then

c27l < pu(z,w) < Cpy(z,y) + 20 CoC27, (3.27)
for some geometric constant C > 0. Setting C = 2MH1CyC and Cy = 2k0CyC', we now have

yEE, weQ, pu(y,xg) < Co2tk+ko=Deg(Q)

and py(z,w) > 021 } = pu(z,y) > cy 27t (3.28)

Moreover, we can further increase Cy and, in turn, C to insure that the constant C1 in the
last inequality in (3.28)) is larger that the constant C' in (2.72). Henceforth, assume that such

a choice has been made. Then a combination of (3.26)), (3.28)) and (2.73)) yields (3.25).

Next, we choose 0 < ¢ < ﬁ < 1, which ensures that 8 := v —e(d + ) > 0, and use

(3.21)), (3.25) and the d-ADR property to estimate

dl o —(k+ko—1
L<o2da b, ey(2),  VzeE (3.29)
To estimate the contribution of I; in (3.18]), based on (3.29)) and (3.17)), we obtain

/ Llg(2)] do(z) < C?““’“‘”ﬁl][ 9(2)| do(z) < C27 W18 Mpg(w), (3.30)
E 2€E, py (z,w)<C27!

uniformly for all w € Q.

Next, we turn our attention to Iy from . Note that since we are currently assuming
that k + ko > I, the condition py(y,zg) > Co2*+ko=De(Q) forces y & c¢1Q for some finite
positive constant ¢;, which may be further increased as desired by suitably increasing the value
of Cp. Thus, assuming that Cj is sufficiently large to guarantee ¢; > 1, we obtain 1g(y) = 0
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if y € E and py(y,zq) > Co2+tko=0e¢(Q). In turn, this implies that ®(z,y) = g () 0(z,y)
on the domain of integration in Is. Thus, for each z € E, we have

I < 02k / 18(2, )] 1hi(y, 2)| do(y) (3.31)
YEE, py(y,2q)>Co2hHro—Deg(Q)

+ CQ—kv\hl(w, z)| |0(x,y)|do(y) =: I3 + I.
yek, p#(vaQ)>C()2(k+k0—l)ee(Q)

We also remark that the design of Uy and the fact that k + kg — [ > 0 ensure that

(k—‘rko—l)e P#(37a y) ~ p#('ll), y) ~ p#(xQ7 y)7
Y EE, pyy,2q) > Co2 ‘Q) = { uniformly for z € Ug and w € Q. (3:32)

Using (3.2 - the comparability dp(x) ~ £(Q) for x € Uy, and (2.72)), we have

B B(r)""
Is<C2 kv/ —’hl(:% )|d0(y)

—(ktko—1)e(v—a) odl e
S C2 ( o—0)e( )2 /yEE p#(y ) Cr W 1{p#(y7,)§02—l}(2') dU(y), (333)

for all z € E, where 1 := 2(btko=0e=k Then, by (3.13) and (3.17), we obtain

/E Blg()]do(z) < 2ot f %(Mw)(w do(y)

YEE, py(y,w)>Cr P# (y7 w
< ¢ 27 Ik=lle=a) (A2 0)(w),  uniformly for all w € Q. (3.34)

Similarly, we have

v—a

= do(y) (3.35)

r

Iy < ¢ (bthomhelvma)gdly 0 oot <Z)/
{pg(w,-)<C271} YEE, pu(y,2q)>Cr p#(y’ LQ

for all z € E. Then, by (3.13) and (3.17]), we obtain
/ Iilg(2)|do(z) < € 271F=lew=a) (Afpg) (w),  uniformly for all w € Q. (3.36)
E

If r € [1,00), then Lebesgue’s Differentiation Theorem, which holds since o is Borel semiregular
(see [2]), combined with the monotonicity of Mg, and Hélder’s inequality, implies that

1
p

1
Mgg < [Mg(lg|")]" and Mgg < [Mz(lg]")] pointwise in E. (3.37)

Thus, in Case I, (3.30)), (3.34), (3.36]) prove (3.16) with g given by B2 := min{5;,e(v—a)} > 0.

Case II: k 4+ kg < I. In this case, we write

dr(x)’'O(Dg)(z) = /E\Il(m, 2) g(2) do(z2), Vo e Uy, (3.38)
where

U(z,2) = 5E(:c)“/EH(x,y)hl(y,z) do(y), Vze 2 \E, ¥YzcE. (339
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To proceed, fix x € Ug arbitrary. Based on (2.74)) and (2.72)), we have

| U (z,2)| < 5E(x)“/ |0(z,y) — 0(z, 2)| |y, 2)| do(y), Vze E. (3.40)
YEE, py (y,2)<C271

As a consequence of (3.3)), we have

(ya Z)adE (l,)—a—a
p(:L', y)d+’07a

10(z,y) — 0(z,2)| < C 2 it gz B, py,2) < ip(a,y).  (341)

Observe that, since here k + ko < [, if the points y, z € E are such that p4(y, z) < C27!, then
py,2) < Cpyly,z) < C27L < C27h27F < 027 hogp(x) < C27Mp(2,y) < to(z,y), (3.42)

where the last inequality follows by choosing kg large. We henceforth fix such a ky € Ny. Then
(3.41)) holds for all y in (3.40). For w € @ arbitrary, we claim that

3C’ > 0 such that Vz,y e £ | . p(z,y) > C'27% + pyu(w, 2)],
satisfying p(y, z) < C27 } it holds that { uniformly for x € Ug, w € Q. (3.43)

Indeed, if y, z are as in the left side of (3.43)), then p(z,y) > Cop(z) ~ £(Q) ~ 27% and

pp(w,z) < Op(w,2) < C(27" + p(z,y) +27') < Cp(x,y). (3.44)
This proves (3.43). Combining (3.43)), (3.41)), (2.72)) and (3.40), we obtain
2k(a+a)2—la
Wz, 2)| < 2k / _ 94 gu(y)
yeE, py(y,2)<C2~! (2 k4t p#(wvz))d+v “
i 9—k(v—a)
< 027 k=l VzeE, (3.45)

@+ pplw, 2o

where the second inequality uses the d-ADR property and that k& < [. Thus, using (3.13)) and
(3.37)), for each r € [1,00), we obtain
1

05(2)"0O(Dyg) ()| < 27U ME(|g[")(w)] 7,  uniformly for all w € Q. (3.46)

To estimate |0g(z)"(01)(z)Ag(D;g)|, first note that (3.23) holds in this case, so we have

|0 ()" (O1)(2)AQ(Dig)| < C

1
/E 5 /Q Wiy, ) do(y) g(2)do(z)| . (3.47)

To continue, for some fixed e € (0, 1), define
Sg = {r€Q: dist,(z,E\ Q) <C27"FyQ)} and Fp:=Q)\ So. (3.48)

Also, consider a function g : E — R such that suppng € @, 0 <ng <1, 19 =1 on Fg, and

i9(e) ~mow)| < C(fiins) s Yae B Yy, (3.49)
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for some 7 € (0,1). That such a function exists is a consequence of Lemma Hence,

‘]éhz(y,z) da(y)' < () ‘/E(lQ — oY) hu(y, 2) dg(y)‘

+

U(lQ) /EHQ(y)hz(y,Z)dU(y)‘=1”1(Z)+U2(Z)’ VzeE. (3.50)

Fix z € E. To estimate [15(z), use (2.74), (2.72)), (3.49) and the d-ADR property to obtain

1 1 2—l Y
o(Q) /yeE,p#(y,z)<02—l|nQ(y) —ne()luly, 2)ldo(y) < o(Q) |:2_k—l|€2—k:| . (3.51)

In addition, since whenever y € suppng C Q and py(y,z) < C27! < C¢(Q) one necessarily
has pu(w, z) < CUQ), for all w € Q, it follows that one may strengthen (3.51)) to

II1(2) < B (175)71{p#(w7.)§05(Q)}(2), for all w € Q. (3.52)
Hence, by recalling (3.37)), for each r € [1,00) and for all w € @), we further obtain
/ IIy(2)|g(2)|do(z) < C2~F10=1 (M) (w) < C27 0= [0 (g (w)] 7. (3.53)
E

To estimate I1(z), fix r € (1,00) and set 2 + & = 1. Property (8) of Proposition m
implies that there exists ¢ > 0 and 7 € (0,1) such that ¢(Sg) < 27 *75(Q). Therefore,
since supp (1g —ng) C S, by applying (2.72), Hoélder’s inequality and (3.37), we obtain

[E [1(2)|g(2)| do(z) < C 24|g(2)| do(z) do(y)

Sq J2€E, py(y,2)<C27!

< ca(l@ /Q 150 (4) (Mig)(y) do(y)

<e[5@) [fomre]

< C27 =TI (g™ ) (w)] 7, for all w € Q. (3.54)

Thus, in Case II, (3.53)) and (3.54) prove (3.16)) with 3 given by 3 := min{(1—¢)v, 57, a} > 0.
This completes Step I, since Case I and Case II prove (3.16) with 8 := min{fs, 83} > 0.

S =

Step II. We claim that there exists C € (0,00) such that, for all f € L*(E,0), we have

> > /}5E )_(@1)($)AQf)|2ml_C/|f]2d0 (3.55)

k€Z, k>kp QEDy (E

To prove this claim, fix r € (1,2) and 8 > 0 such that (3.16) holds. Then, by (2.62)), we have

U NLE (91)($)AQ)(JC)($)|2(% (5.50
k€Z,k>rkE QeDy(E E
5 2 dp(x)
keZ%nEQG% /Q‘lezzz;@ el ~ (OD@)40) (DiDf) )‘ op(z)ym=d

k€Z,k>rkE QeD(E)
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Pick now € € (0, 8) arbitrary and proceed to estimate A; as follows:

Ay =2 Z Z / ‘ ng\kfl|€2|k7l|€5E(x)U(@ — (@1)($)AQ)(Dlﬁlf)(x)‘2%

k‘>l€E QGDk UQ ZZ,‘@E

SCY S Y 2] faste)(0 - OB 5
I>kp k>kE QED(E) E(z)

€YY S Bl i R (Dufr)(w)] [ 2 dp
Uq

1>k k>KkE QE]D)k(E)

<C>y 2—2|k_z<ﬂ—s>/E[Mg(\5lf| } do<C Y / 1D, f|? do < c/ /|2 do,

I>kg k>kE I>kE

IN

(3.57)

where the first inequality uses the Cauchy-Schwarz inequality and supycz > ;7 22kl < oo,
the second inequality uses (3.16), and the final line uses u(Up) < C27%™ and 27% < Co(Q)

for all Q € Dy(E), supyez, > ey 27 2F U= < o0, the L%(E, o) boundedness of My and(2.61)).

To estimate Ao, note that if F is unbounded, then kg = —o0, so Ay = 0 (recall S_, :=0).
Now assume that F is bounded, hence kg € Z. In Case I above, we may replace D; with &;
in the proof of , since only the regularity of the kernel is used. Therefore, if r € (1, c0),
then there exist C, 8 € (0,00) such that for all integers k > > kg and all Q € Dg(FE), we have

1

sup [65(2)" (B(19) () ~ (O1)(x) Aq(Sig))| < C2717 inf [ME(glN(w)| ", (359)
TeUQ

for all locally integrable g : E — R. Applying (3.58|) with [ := kg and g := Rf then yields

2
Ay < C Z Z 9—2lk—rg|B mf [M2 (‘Rf’ )( )}T/ ok(m—d) du
k>kp QEDL(E) Uq
2

<cy Y 2 “EW/ (MR (RS do (3.59)

k>kg QEDy(E)

<c [ [wi(rsm) o < c [ IPas,

since R is a bounded on L?(E,0). Now (3.57) and (3.59) imply (3.55)), as required.

Step III. The end-game in the proof of the implication “.:>.” Fix € € (0,1) as in
Lemma- (here we need C, € [4C5 A, 00)). Then (2.98) and (2.115) imply

/ (©)(@)*55(2)> = dy(z)
{z€Z\E: 0 (z)<ediam,(E)}

<C) Z (0f)(x) - (O1)(2) Agf| 35 (x)> ="~ dy(z)

k>rp QeDy(E) U@
+C ) Z / [(©1)(2)Ag f[*0m ()~ ™D du(z).  (3.60)
k>K,EQ€]D)k
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If we set Bg := fu |(©1)(2)|?6(x)?"~(m=9) du(x), then (2.97), (2.115) and (3.5) imply

Bo < c/ 2)265(2)20 "D du(z) < Co(Q), VQ € D(E). (3.61)
Q’GD(E) Q'CQ

Thus, the sequence {Bg}qen(r) satisfies (3.8)), and so Lemma implies

> / (01)(2)Ag f| 08 ()2~ "D dy(x) <c/ Mgf) da<c/m2da (3.62)

QeD(E
By comblmng (3.60), (3.55)) and (|3.62)), we obtain

(©1) (@) Pop(a)> ™" du(x) < C/Elflzdff- (3.63)

/{(EG%‘\E: dp(z)<ediam,(E)}

(
This proves when diam,(F) = co. Now assume that E is bounded and fix R := diam,(E),
O:={re Z\E: eR<dég(r)} and z9 € E. For each x € O, there exists y € E such that
pu(x,y) < 20p(x), and so p(x,z0) < Chpy(x,x0) < Chmax{2, 116 (x). This implies that
p(x,z0) =~ 0g(x) for all z € O, so by we have [(Of)(z )\2 < CRY||f|12, Eg)p(a: ) ~20dHY),
Thus, for some sufficiently small ¢ > 0 and some C € (0, ), independent of f and R, we have

j/ 1(O1) (@) 26(2)> "D dpu(a)
© (3.64)
< CRYf s | pap (i 20) () < O f s
9 \Bp# (zo,cR)

Now (3.6 follows by combining (3.63|) and (3.64)).

Step IV. The proof of the converse implication “:>”. We no longer assume
and suppose that holds for some 1 € (0,00). We may assume, without loss of generality,
that 7 is as large as desired. This is trivial in the case diam,(E) = oo, whilst in the case
diam,(F) < oo, if 0 <7 < 1, < 00, then

\@ﬁw%mﬁwwwwmscémwm<%m

/{IE%\E: ndiam,(E)<dg(x)<n, diam,(F)}
since ([3.2)) shows that |(©f)(x)|? < CHfH%Q(E o) [diam,(E)] =42 for all x in the integral above.

For all Q € D(F) and some large finite positive constant C,, we have

1/ O1(2) 26 ()~ D dp(x)

o(Q) Jru(q)
§0(2Q)/TE(Q |(@1EmB,,#(xQ con@))) (@ | g ()2~ qu(z) (3.66)
i 0(262) /TE(Q) |(O1m\5,,, (o cutien) (@) 05(@)™* ™" dyu(x) = T1 + L.
By choosing 7 sufficiently large, , and the doubling property of o, we have
h= 0(262) /{xe%:0<6E(x)<77diamp(E)}‘ (O15n8, , (sg.Cott@) ()| S ()~ du(z)
G(CQ) /E‘lEmBP# (waCott@) ()| do(x) < C. (3.67)
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Next, by (3.2)), (3.13) and the choice of C, (cf. (3.32))), there exists C' € (0, 00) such that

op(z) "
o1 20,Co z)| <C —————do(y
|(O15\5,, (wo.coti@)) (7)] P\ (r0at(@) P )P (v)
<CUQ)" U Yp(x), Ve Te(Q). (3.68)
Consequently, applying , (recall that v — a > 0) and o (Q) ~ £(Q)?, we obtain
Iy < (%)e(cg)—?(v—‘ﬂ / 5p(z)2v=a=(m=d) q,(z) < C. (3.69)
o

By, (20.04(Q))

Estimates (3.67)) and (3.69)) together prove (3.5]), which completes the proof of the theorem. []

3.2 An arbitrary codimension local 7'(b) theorem for square functions

The main result in this subsection is the following local T'(b) theorem for square functions.

Theorem 3.6. Let 0 < d < m < co. Assume that (2, p, ) is an m-dimensional ADR space,
E is a closed subset of (2°,7,), and o is a Borel semiregular measure on (E,1,,) with the
property that (E, p T o) is a d-dimensional ADR space.

Suppose that © is an integral operator with kernel 0 satisfying —. Let D(E) denote
a dyadic cube structure on E, consider a Whitney covering Wx(Z\ E) of Z'\E and a constant
Cy as in Lemma with the corresponding dyadic Carleson tents from . If there exist
Co € [1,00), cg € (0,1] and for each @ € D(E) a o-measurable function bg : E — C such that

(i) [ |bal? do < Coo(Q),

(ii) there exists Q € D(E), Q C Q, L(Q) > col(Q), and ‘f@ bg da‘ > CLOU(@),

(1) Jr,y gy (©80)(@) P (="~ dp() < Coo (@),

then there exists C' € (0,00), depending only on Cy, Cy, the ADR constants of E and 2", and
(when E is bounded) diam,(FE), such that

/ (©F) ()[265(2)2 ") du(z) < © / f@)Pdo(z), VfeIXEo).  (3.70)
Z\E E

We will use the following stopping-time construction to prove Theorem

Lemma 3.7. Let (E, p,0) be a space of homogeneous type. If there exist Co € [1,00), co € (0,1]
and, for each Q € D(E), a o-measurable function bg : E — C and a cube Q € D(E) such that

1
> Go@. B

0

[ o do < 0@, Q@ 1=l | [ g do
B Q

then there exists a number n € (0,1) such that, for each cube Q € D(E) and corresponding
cube Q in (3.71), there exists a sequence {Q] }jeJ C D(E) of pairwise disjoint cubes such that

(1) Qj - @ fOT everyj € J; U(@\Uje] Q]) > 770(@);
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(2) ‘fQ/ bg da‘ > % for every Q' € {Q’ eDE): Q C @ and Q' N (UjeJ QJ) = (0} =: Fq.
Proof. Tt follows from (3) and (9) in Proposition that
a(Q \Uorco, oren, (E)Q’) =0, VQeDy(E), Vk,l€Z with >k > rp. (3.72)
We use (3.71]) to normalize each bg so that fgbgdo = 1, thus [ lbg|? do < C3o(Q). Also
o(Q) < C10(Q) for some Cy € [1,00) independent of Q, Q. (3.73)

Fix @ and @ as in (3.71]). We perform a stopping-time argument for @ by successively dividing
it into dyadic sub-cubes Q' C @ and stopping whenever Re fQ/ bg do < % This is possible by
(3.72) and the normalization of bg. We obtain a family of cubes { Qj}j c; € D(E) such that:

(a) Q; C Q C Q for each j € J and Q; N Qj = 0 whenever j,j' € J, j # j'.

(b) Re fQj bg do < 3 for each j € J.

(c) the family in}jeJ is maximal with respect to (a) and (b) above, i.e., if Q' € D(E) is such
that Q' C @, then either there exists jo € J such that Q' C Q;,, or Re fQ/ bg do > %

We combine the above results to obtain
a(@)_/J)cha_Re/~ deU—i—ZRe/ bo do
Q Q (UjeJ Qj) jeJ Qj
L. 1
< ([ olio) a(@\UesQ))* + 4 X (@)
jeJ

o (Q\Ujes@))? + 5o(Q). (3.74)

S

13
<CiCia(Q)
Hence, 0(@ \UjesQj) > no(Q) with 7 := ﬁ, which proves (1), whilst (¢) implies (2). O
0
We are now ready to present the proof of Theorem [3.6]

Proof of Theorem [3.6, By Theoremﬂ7 it suffices to show that |®1|252U7(m7d) dy is a Carleson
measure in 2\ E relative to E, that is, that (3.5) holds. We first show that (3.5 holds for ©
replaced by some truncated operators. More precisely, for each i € N consider the kernel

ez(xay) = 1{1/i<5E<i}(x)0(x,y)7 Vz € %\Ev VZJ € Ev (375)

and introduce the integral operator

(©0:1)(x) = /E 0:(z,9)f(y) do(y), VoeZ\E. (3.76)
Clearly,
(©if)() =11 )icsp<iy(@)(Of)(2), VYee X \E, Viel, (3.77)
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and, with Cy as in (3.2), for all 2 € 2"\ E, y € E and j € E with p(y,7) < 2p(z,y), we have

Op(x)”"
Oi(x,y)| < Cy , 3.78
i) < Com B (3.78)
ply,y)*op ()" """
02‘ ) - 91 ) S . .
10i(z,y) (z,9)| < Cp p(xz, y)dtv—a (3.79)
For each i € Nand z € 2"\ E, by (3.76), (3.78) and Lemma [3.4] (since v — a > 0), we have

5E($)_a —v
[(©:1)(z)| < Clyyjicsp<iy(@) /E P e do(y) < Clyyjicsp<iy()[0p ()]
< Ci"11icsp<iy(2). (3.80)

Using ([2.108) and Lemma for all Q € D(E), with zg denoting the center of (), we obtain

/ (©11) () P8 (2)2~ "D dp(a)
Tr(Q)

(3.81)
< O / 5p(x)?' =D du(z) < Ci%e(Q),
z€By, (2,CUQ)),0p(x)<i
where C' € (0, 00) does not depend on () nor on i. Hence, if we now define
1
¢ii= sup —— / 1(0,1)(2))?0p(x)?~ =D du(z),  VieN, (3.82)
Qen(r) 0(Q) J1,(Q)

then 0 < ¢; < Ci'" < oo for all i € N. We must now show that sup;cy ¢; < 0o. Fix Q € D(E)
and the corresponding cube Q satisfying (ii) in Theorem [3.6 . with ¢o € (0, 1]. We have

dp, ¢ € Z satisfying 0 <p—q <logy(1/cy) such that Qe Dy (E), Q € Dy(E). (3.83)

Next, recall the notation in Lemma to define Ef, := UQ'e Fo Ug'. Then by (2.97) we have

TE(Q)gEaLJ(]LEJJTE(Qj))U( U ) (U U u) (3.84)

Q" eDy(E) €L Q"ED(
Q'CQ.Q"#Q EENT R

Consequently, for each ¢ € N we may write
[ @@ duto) (3.85)
Tr(Q)
S/E (©:1)(2)*6p(x)* =" dy(w +Z/ )26 (2)* =" du(x)

Z? jeJ E(QJ

_ @zl 25 2v—(m—d) d
+ZQ,,€DP Y RN CUCIA (o)

+ Z ZQ,,EDT(E) orco / 1(0:1)() 26 ()2~ ("= dpu().

N
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To estimate the first integral on the right in (3.85)), we combine (2.115)), (3.71) and (2) in
Lemma [3.7] with the fact, implied by (3.77), that |©;1] < [©1] for all i € N, to obtain

/ 10:1(2)20p(2)> " D dpz) < ¢ Y / (2)Agbg |0k (x)? =D du(x)
Q’E]'-Q uQ/
<C (©bg) ()25 () >~ ("= du(x)+0/ bo|* do < Ca(Q), (3.86)
Tr(Q) E

where the final line uses (2.97)), (3.55) with f := bg, and assumptions (i) and (%) of Theo-
rem For the first sum in (3.85]), we use (3.82)) and Lemma [3.7| to obtain

Z/T @) |(@@'1)(m)|25}3($>2v—(m—d) du(z) < cjo U QJ < ci(l—n)o (Q) (3.87)

jedJ jeJ

For the second sum in (3.85]), we use (3.82) to obtain

_ ) ()20 (x)2 - (m=D g <e 0). .
ZQ”GDP(EW"@Q,Q"#Q /TE(Q//) O @I ox(z) pr) <co(@\Q).  (3.88)

For the final two sums in (3.85)), we use (3.80), (2.106]), (2.108) and (3.83]) to obtain

p—1
SN oo, ©D@FE@H D du(w) < Clogy(1/) 7(@). (359
r=q - QY

Combining (3.85))-(3.89) and (3.73)), there exists C' € (0, 00) such that for all i € N, we have

/ [ < e (=)o@ + 0@\ Q) + Co(@
Te(Q
< (1=nCrho(Q) +Co(Q),

for all Q € D(E). Tt follows that ¢; < ¢; (1 — nC; 1) + O, hence sup;ey ¢; < 771010 < 0.
We may now apply (3.77)) and Lebesgue’s Monotone Convergence Theorem to obtain

(3.90)

/ (©1)(@)[*5p (@)~ du(x) = lim (©:1)(@)[*35(2)* ="~ du(x)
Te(Q) "0 JTE(Q) (3.91)

< (sup;enci) 0(Q) < Co(Q),
for all @ € D(E). This completes the proof of (3.5)) and finishes the proof of Theorem O

4 An Inductive Scheme for Square Function Estimates

We now apply the local T'(b) Theorem from the previous section to establish an inductive
scheme for square function estimates. We show that an integral operator O, associated with
an Ahlfors-David regular set E as in , satisfies square function estimates whenever the set
E contains (uniformly, at all scales and locations) so-called big pieces of sets on which square
function estimates for © hold. In short, we say that big pieces of square function estimates
(BPSFE) imply square function estimates (SFE). We emphasize that this “big pieces functor”
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is applied to square function estimates for a fixed operator ©. Thus, the result in this section
is not a consequence of the stability of UR sets under the so-called big pieces functor, as our
particular square function bounds may not be equivalent to the property that F is UR.

We work in the context introduced at the beginning of Section [3| except we must assume
in addition that the integral kernel 6 is not adapted to a fixed set E. In particular, fix two real
numbers 0 < d < m and an m-dimensional ADR space (27, p, ). Suppose that

0: (2 x )\ {(z,z): 2€e Z} —R

. . 4.1
is Borel measurable with respect to the product topology 7, X 7, (4.1)

and has the property that there exist Cy, a, v € (0,00) such that for all z, y, y € 2~ with
x#y, z#7yand p(y,y) < %p(x,y), the following hold:

pla, y) ot

For a closed subset E of (27,7,) and a Borel semiregular measure o on (E,7,,) such that
(E,p‘E,a) is a d-dimensional ADR space, define the operator Op for all f € LP(F,0), 1 <
p < o0, by

0(z,y)| < p(;ye)dw, (4.2)
6z, ) — 0(z,7)] < Co— 200" (4.3)

(Opf)(x) = /E 0w, 0)f(y)do(y), Voe 2 \E. (4.4)

We then say that E has Square Function Estimates (SFE) relative to 6 if
| leefPdist, (- BV <C [ |5Pde, Ve B0 (5)
I\E E

We now define what it means for a set to have big pieces of square function estimates.

Definition 4.1. Let 0 < d < m < oo denote real numbers, suppose that (Z,p,un) is an
m-dimensional ADR space and assume that 0 satisfies (4.1)-(4.3). A set E C 2 is said to
have Big Pieces of Square Function Estimate (BPSFE) relative to 0 if it is closed in (2, 7,),

there exist a Borel semiregular measure o on (E, Tp|E), such that (E, p‘E, a) 1$ a d-dimensional

ADR space, and constants n,C1,Cy € (0,00), referred to as the BPSFE character of E, with
the following property: for each x € E and eachr € (0,diam,,, (E)], there exists a closed subset

Ey, of (Z',7,) such that (ELT,;)‘E ,axv,,), where 0, 1= ,%”% pu | Bz, is given by ([2.15)), is
a d-dimensional ADR space, with ADR constant at most equal to C1, satisfying

0(Eer NENB,,(z,r)) = nrt (4.6)

and

/m 1O, (=) dist, (2, Eop )" dpu(z) < Gy / fPdow,, (A7)

x,r

forall f € Lz(Emn, Oer), where O, . is the operator associated with Ey . as in (4.4).
For each integer k > 2, a set E C 2 is said to have (BP)*1SFE relative to 0 if the above
properties hold but with (4.7)) replaced by the requirement that

E,. has (BP)*SFE relative to 0, with (BP)XSFE character controlled by Ca, (4.8)

where (BP)1SFE denotes BPSFE.
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Remark 4.2. This property may be discretized with respect to a dyadic cube structure D(E).
In particular, it follows from (2.30) and (2.34) that BPSFE is equivalent to the property that
for each Q € D(E), there exists a set Eq with the properties required of E, , in Definition .

We now state and prove the main result in this section.

Theorem 4.3. Let 0 < d < m < oo denote real numbers, suppose that (Z ', p, ) is an m-
dimensional ADR space, and assume that 0 is as in —. If the set E C 2 has BPSFE
relative to 0 then there exists a finite constant C' > 0, depending only on p, m, d, v, Cy, the
BPSFE character of E, and the ADR constants of E and 2, such that

/ 0pf(2)? 0p(x)?~ "D du(z) < C / \fl?do, ¥V feL*E,o), (4.9)
Z\E E

where o 1= Y- pu | E is given by (12.15).

Proof. Suppose that E has BPSFE relative to 6, so by Remark for each @ € D(F) there
exists Eg such (4.6)-(4.7) hold with E, , replaced by Eg, and define by : E — R by setting

bo(y) = lgney(y) for all y € E. We will prove (4.9) by applying Theorem so we only
need to prove that (i)-(%i) in Theorem hold for {bg}gen(r)- Condition (i) is immediate

whilst condition (), with Q := Q, is a consequence of (@.6). To verify condition (iii), let
Q € D(F), fix Cy € (1,00) to be specified later, and recall the notation in (2.4) to write

/ ’@EbQ($)|25E(x)2“_(m—d) dp(z)
Te(Q)
_/T ©) ’@EbQ(x)|21{ZE%:5EQ(2)>C15E(Z)}($) 5E(.’L')2U_(m—d) d,U(.CL‘)
E
(4.10)

v—(m—d
+/TE(Q) ’@EbQ(x”zl{zE%':C;léE(z)gégQ(z)§C16E(z)}(x) Sp(x)* =D dp(x)

v—(m—d
+/TE(Q) ’@EbQ(x)|21{ze%':5EQ(z)<C;15E(z)}(:U) 35 ()2~ M= g (z)

=:10 + 1)+ I3
To estimate I7, we obtain a pointwise bound for © gbg. To this end, first observe that

O := {Z S A 5EQ(Z) > Cl(SE(z)} — OﬂEQ =0. (4.11)

Hence, by (4.2)) and (3.12) in Lemma [3.4] we have

C
Osbo@)| < [ 16 yldol) < 5. VYaeO. (4.12)
EQ 5EQ ($)U

We fix zo € QN Eg, since QN Eg # 0 by (4.6), so by (2.108]), there exists ¢ € (0, 00) such that
L<C S5 (x) 2 0p ()2~ "D du(x). (4.13)

B,., (20.c£(Q))NO

Now fix M € (C3, 0], choose Cy € (M, 00), and observe that if 2 € O then g, (x) > Mop(x),
hence By, (z,0p,(x)/M) N E # 0, so by Lemmam there exists C' € (0, 00) such that

5, (2)? 0Eg (2)
2 gC%gép#<Bp#<x,Cp o )mE) Veo. (4.14)
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Using this in (4.13)) we obtain

L<C / LdAY ,, (2) Opg ()~ 6 p(2) = "D du(x).
Bp#(:co,cf(Q))ﬂ(’) Bp#(a:,CPEEQ(:v)/M)ﬁE
(4.15)
We make the claim that for each ¥ € (0, 1)
ifee 27\ Eg and z € Z are 1-9
such that pg(z,z) < C%‘SEQ (z) } = G, — 05, () < 0y (2) < Cpor, (). (4.16)

Indeed, for each n > 1 close to 1, there exists y € Eq satisfying p4(y,z) < ndg,(z), thus
0ro(2) < pp(y,2) < Cmép,(x), and 6p,(2) < Cpdp,(x) follows. Also, if w € Eg, then
0Eq (%) < pg(z,w) < Vop,(7) + Cppy (2, w), which implies 0, () < %5,3@ (z), as required.

Going further, fix x € B, (x0,cl(Q))NO and z € B, (x,CydE, (x)/M) N E and make two
observations. First, an application of with ¢ := C}/M € (0,1) yields

M —C2 c, cs
MG, Lopo(x) < 0Ey(2) < Cpdp,(z) and pu(z,z) < M(SEQ( z) < m

Smo(2), (4.17)

2
hence x € B,,, (z, Mcf”CQO‘EQ(z)). Second, since zg € Eg, M > Cg and C, > 1, we obtain
P

py(z0,2) < Cpmax{py (o, z), pg(z,2)} < Cpmax{cl(Q ,%&EQ( )} (4.18)
< Cpmax{cﬁ(Q),cipéEQ(x)} < Cpmax{cl(Q) ,C pu(z0,2)} = Cpoel(Q),

thus z € By, (w0, C,cl(Q)). Setting Cry := C3 /(M — C?), by ([£.17) and (4.11)), we now have

L <C 0pq (2 — d/ 55 ()2~ m=D dy () d,%?g’p#(z)
By, (w0,Cpct(Q))N(E\EqQ) By, (2,005, (2))\Eq
<C 6EQ (Z)_Qv_d5EQ (Z)2U+d d%;é, oy (Z)
By, (20,Cpct(Q))N(E\EqQ)
< CHY. ,, (Bpy (0, Cocl(Q)) N E) < CUQ)? < Ca(Q), (4.19)

where we used Lemma and the fact that (E, p’E, %”Qdf pi LE) is d-ADR and that zg € FE.
To estimate I3, we first note that since Tp(Q) N E = (), then (4.2) and (3.12) imply that

|Opbg(z)| = ‘/ z,y) bg(y) do(y ‘ / |0(x,y)|do(y) < ( o Ve eTp(Q). (4.20)

Also, we have [Opbg(7)| < Cdp,(x) " for each v € Tp(Q) \ Eq (cf. (4.12)). Next, fix a, 3 >0
such that a4+ 8 = v. A logarithmic convex combination of these inequalities then yields

Opbo(z)| < Cog,(x) “0p(z) ™" VaeTr(Q)\ Eg. (4.21)
By Lemma we have p(Eg) = 0, so using (4.21) in place of (4.12)), we obtain (cf. (4.13))
I <C Sp(z)~2AT2o=m=d)5, ()72 du(z), (4.22)

B, (0,c(Q)N(O\Eq)
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where we set O := {z € 2 : 6p(z) > C10g,(2)}. The same reasoning leading up to (4.19),
applied with E' and Eg interchanged, then gives

I;<C 5E(Z)_2ﬂ+2v_m/ op(x) "> dp(x) dAy- pp(?)
By, (20,Cpcl(Q))N(EQ\E) By, (5Cn0p(2)\E
<C 5E(z)—2ﬁ+2v—m5E(Z)—2a+m d:%?% o (2)
By, (20,Cpel(Q))N(EQ\E)
< 0y, (Bpy (w0, Cpel(Q)) N Eq) < CLQ)? < Co(Q) (4.23)

by applying Lemma provided we choose 0 < a < (m — d)/2, and the fact that both
(E, p‘E, %{% pu LE) and (EQ, p‘EQ,%g‘é pu LEQ) are d-ADR spaces and that g € EN Eg.

To estimate Io, by (4.4]), (6) in Proposition and (4.7)), with og := jfg&df’ pu | Eq, we have
_ 2 2v—(m—d)
I, = /TE(Q)\EQ |@EQbQ(5E)| 1{26%:CJISE(z)SdEQ(Z)SCléE(z)}(‘T) de(x) du(z)

<cC 1©5b0(2)|? 05 ()~ "D dp(a) (4.24)
2 \Eq

<C [ Pofdog <Ct,, (@NE) < Co(@Q)
Eq

which combined with (4.19)) and (4.23)) shows that (i) in Theorem (3.6 holds, as required. [

The refinement of Theorem [4.3|below follows as a corollary by a simple induction argument.

Theorem 4.4. Let 0 < d < m < oo denote real numbers, suppose that (2 ,p, ) is an m-
dimensional ADR. space, and assume that 0 is as in —. If E is a closed in (27, 7,)
and has the property that there exists a Borel semiregular measure o on (E,Tp|E) such that
(E, p‘E7 U) is a d-dimensional ADR space, then the following properties are equivalent:

(1) E has (BP)*SFE relative to 6 for some k € N.
(2) E has (BP)*SFE relative to 6 for every k € N.

(3) E has (BP)SFE relative to 6.

5 Square Function Estimates on Uniformly Rectifiable Sets

Given an n-dimensional Ahlfors-David regular set ¥ in R™*! that has so-called big pieces
of Lipschitz graphs (BPLG), the inductive scheme established in the previous section allows
us to deduce square function estimates for an integral operator Oy, as in , whenever
square function estimates are satisfied by Or for all Lipschitz graphs I" in R"*!. Furthermore,
induction allows us to prove the same result when the set ¥ only has (BP)*LG for any k € N.
The definition of (BP)*LG is given in Deﬁnition A recent result by J. Azzam and R. Schul
(cf. [9, Corollary 1.7]) proves that uniformly rectifiable sets have (BP)2LG (the converse
implication also holds and can be found in [27, p.16]), and this allows us to obtain square
function estimates on uniformly rectifiable sets.
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We work in the Euclidean codimension one setting throughout this section. In particular,
fix n € N and let R"*! be the ambient space, so that in the notation of Section |4} we would
have d = n, m = n+1 and (2, p, p) is R"*! with the Euclidean metric and Lebesgue measure.
We also restrict our attention to the following class of kernels in order to obtain square function
estimates on Lipschitz graphs. Suppose that K : R"*1\ {0} — R satisfies

K e C?(R"\ {0}), K(\z)=A"T"K(z) forall A >0, z € R"™\ {0}, Kisodd. (5.1)

In particular, the first two properties above imply that if Cx := Jnax V7 K || o0 (gn-1) then
<<

|VIK(2)] < Cglz|™ 7, VaeR"™\ {0}, Vje{0,1,2}. (5.2)

For a closed subset ¥ of R"*!, let ¢ := %‘ﬁzﬂ |3 denote the surface measure induced by the
n-dimensional Hausdorff measure on ¥ from ([2.15)), and define the integral operator 7 for all
functions f € LP(X,0), 1 < p < oo, by

Tf(z) = /ZK(:C — ) fW)doly), Vo e R\ 3. (5.3)

In the notation of Section [4] we have {E,0g,0} = {3, VT,VK}. We begin by proving
square function estimates for V7T in the case when X is a Lipschitz graph. The inductive
scheme from the previous section then allows us to extend that result to the case when ¥ has
(BP)*LG for any k € N, and hence when ¥ is uniformly rectifiable.

5.1 Square function estimates on Lipschitz graphs

The main result in this subsection is the square function estimate for Lipschitz graphs contained
in the theorem below. A parabolic variant of this result appears in [43], and the present proof
is based on the arguments given there, and in [3§].

Theorem 5.1. Let A : R® — R be a Lipschitz function and set % := {(z, A(z)) : v € R"}.
Moreover, assume that K s as in and consider the operator T as in . Then there
ezists a finite constant C > 0 depending only on ||0“K || e (gny for |a| < 2, and the Lipschitz
constant of A such that for each function f € L*(X,0) it holds that

/ (VT f)()|2 dist(z, 5) d < c/ 12 do (5.4)
RrA1\S >

As a preamble to the proof of Theorem [5.1] we state and prove a couple of technical lemmas.
The first has essentially appeared previously in [I4], and is based upon ideas of [55].

Lemma 5.2. Assume that A : R"™ — R is a locally integrable function such that VA € L*(R™).
Pick a smooth, real-valued, nonnegative, compactly supported function ¢ defined in R™ with
Jgn @(x) dz =1 and for each t > 0 set ¢ (x) :=t~"¢(x/t) for x € R". Finally, define

Eat,z,y) = Alz) = A(y) = (Val¢r x A)(z), (z —y)),  Va,ycRY, Vi>0.  (5.5)

Then, for some finite positive constant C = C(¢,n),

/ t—”—Q/ / |Ea(t,z,y)|* dydz % < C)\”+3||VAH%2(RH), VA>T (5.6)
0 m |lz—y| <At
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Proof. Applying the changes of variables t = A~'7, y = 2 +h and then employing Plancherel’s
theorem in the variable z, we may write (with ‘hat’ denoting the Fourier transform)

o dt
[ / [Ba(t,z,y)?dyde (57)
0 n |x y| <At

:wz/ H/n/m <h+z<<h>¢<wo\2‘vfg,2 andc

__y\n+2 ‘1_6 7(¢,w) +ZT<C,’UJ>($(/\_17-€)‘2 - ) ir

where the last equality in (5.7 is based on the change of variables h = Tw.
Next we observe that for every ¢ € R" and w € R” with |w| <1 it holds that

|1 — e (Gw) 47 (¢ w) gA 70|
7[¢|

for some C' > 0 depending only on ¢. To see why (|5.8) is true, consider the following two cases.

<C mln{T|C| |C’} (5.8)

Case I: If TKL < VA, then using Taylor expansions about zero for the complex exponential
function and ¢, and since ¢(0) =1, A > 1 and |w| < 1, we obtain

11— e C0) ir (¢ w) + it (¢, w) (PATH7¢) — 1)| < C72(¢f (5.9)

Case II: Tf 7|¢| > /A, then since ¢ is a Schwartz function, A > 1 and |w| < 1, we have
11— ™6 4 (¢ w) AT < 24+ Tl (L + AT )T < O (5.10)

These prove (j5.8]), and integrating in 7 € (0, co) with respect to the Haar measure then implies

I L= e tir(Cw) SO dr _ | min{1e
0 ' ’

72I¢[?

d
2|<|2} T<on 1)

A combination of (5.7)), (5.11)) and Plancherel’s theorem now yields (5.6)), as required. O
The second lemma needed here has essentially appeared previously in [64].

Lemma 5.3. Let F : R""1\ {0} — R be a continuous function which is even and positive
homogeneous of degree —n — 1. Then for any a € R™ and any t > 0 it holds that

/ F(y,a-y+t)d / / (w,s dsdw—/ F(y,t) dy. (5.12)
n Sn— 1 n

In particular, if F' is some first-order partial derivative, say F = 0;G, j € {1,..,n+ 1}, of a
function G € CH(R*F1\ {0}) which is odd and homogeneous of degree —n, then

/ F(y,a-y+t)dy=0 for any a € R™ and t > 0. (5.13)
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After this preamble, we are ready to present the proof of Theorem

Proof of Theorem[5.1. A moment’s reflection shows that it suffices to establish (5.4) with the
domain of integration R"*!\ ¥ in the left-hand side replaced by

Q:={(z,t) e R"™ . ¢t > A(x)}. (5.14)

Assume that this is the case and note that by making the bi-Lipschitz change of variables
R™ x (0,00) 3 (x,t) — (z,A(x) +t) € Q, with Jacobian equivalent to a finite constant, the
estimate (5.4) follows from the boundedness of 77 : L?(R",dx) — L2(R'M, %daz) defined by

Tfat) = | Ki(@y)i)dy (5.15)

for j =1,...,n+ 1, where the family of kernels {Kg (x,y) }+>0 is given by
Kl (z,y) =t (0;K)(z —y, A(x) — A(y) +1), x,yeR"t>0,j=1,....,n+1. (516)

The approach we present utilizes ideas developed in [16] and [38]. Based on . ) it is
not difficult to check that the family {K7(x,y)}:>0 is standard, i.e., there hold

K] (z,9)| < Ct(t + |z —y[)~ D (5.17)
VoK (2, y)| + |V K (2, y)] < Ct(t+ |z —y[) =", (5.18)

As such, a particular version of Theorem gives that the operators in ([5.15]) are bounded as
soon as we show that for each j =1,...,n+1,

177 (1)(z,t)|* ©dz is a Carleson measure in R/ (5.19)

To this end, fix j € {1,...,n+ 1} and select a real-valued, nonnegative function ¢ € C°(R"),
vanishing for || > 1, with [,, ¢(x) dz = 1 and, as usual, for every ¢t > 0, set ¢(z) := t " p(z/t)
for 2 € R". We write T9(1) = (T9(1) — T7(1)) + T9(1) where

T f(x,t) == . Kl (z,9)f(y) dy, xeR™ ¢t >0, (5.20)
with
K{(z,y) ==t (0;K)(x —y, (Va(de x A)(x),x —y) +1t),  x,y €R", ¢ >0. (5.21)
To prove that |(T9 — T9)(1)(z, t)[2 dm% is a Carleson measure, fix o in R", r > 0, and split
(T9 = T7)(1) = (T7 = T7) (A p(ug,100r)) + (T9 = T7) (Agm\ B(ag,100r) )+ (5.22)
Using and the fact that a similar estimate holds for IN(g (z,y), we may write

/ / (79— T9) (L s gams00m) (@ 1) i 2
0 B(zo,r)

T t 2
<c / / LR
0 B(mo,r)< R™\ B(z0,100r) T — Y[ ) ¢

T t 9
S R = e P T
0 B(mo,r)( Re\B(0,99r) |2[" 11 ) t (5.23)
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It remains to show that
T ~ .
/ / (19— T9)(Lp(ag 1000, )P di & < O, (5.24)
0 Zo,

We now use Lemma with the following adjustment. Fix a function ® € C°°(R) such that
0<®<1,supp® C [~1507,150r], & =1 on [~125r,1257], and [|®'|| oo (r) < ¢/r. If we now
set A(z) := ®(|z — 20|)(A(x) — A(x0)) for every x € R™, it follows that

Alw) = A(y) = A(x) — A(y) and V(¢ A)(z) = V(e * A)() (5.25)
whenever x € B(xg,r), y € B(xo,100r), t € (0,7).

Hence, the expression (77 _fj)(lB(zo,l()Or))(xa t) does not change for z € B(xg,r) and ¢t € (0,r)
if we replace A by A. In addition, since ||V Al eo@n) < C[|V A poo(rny, taking into account
the support of A we have HVAVHL2(RH) < CT”/QHVAHLoo(Rn) for some C' > 0 independent of 7.
Hence, there is no loss of generality in assuming that the original Lipschitz function A satisfies

IVA| L2y < Cr™2(|V Al oo ). (5.26)

Under this assumption we now return to the task of proving ((5.24]). To get started, recall (5.5)).
We claim that there exists C' = C(A4, ¢) > 0 such that

K] (2,9) — K{(2,9)| < Ct(t + |z —y))" " D|Eat,z,y)l, Yo,y R, V>0,  (5.27)

Indeed, by making use of the Mean-Value Theorem and (j5.2)), the claim will follow if we show
that there exists C' = C(A, ¢) > 0 with the property that

supgey [[€] + |z —yl)~" D < Oft + o — 7"+, (5.28)

where I denotes the interval with endpoints t + A(x) — A(y) and ¢t + (V. (¢ x A)(z), (x — v)).

From the properties of A and ¢ we see that £ =t + O(|z — y|), with constants depending only

on A and ¢. In particular, there exists some small € = £(A, ¢) > 0 such that if |z —y| < et then

t < ClE] < C(|€] + |z —y|). On the other hand, if |x — y| > et then clearly t < C(|¢| + |x —y]).

Thus, there exists C' > 0 such that ¢t < C(|¢{| + |« — y|) for { € I, which implies that for some

C = C(A, ¢) > 0 it holds that ¢ + |z — y| < C(|¢| + |z — y|) whenever & € I, proving (5.28).
Next, making use of , we may write

' T dt

0 JB(zo,r)
: av
_C/ /n /R |z — g2 |EA(t7$7y)|dy) dz 5

2
<o [T[ ([ i) e
" B(z,t)
t Lo
+C/ / / —— |Ea(t,z,y)|dy | dx—
n (Z B(x 2[+1t)\B $2£t |£B— |n+2 | ( )| :
) ’ dt
SC/ / 226(%)”1/ |Ea(t,z,y)ldy | de—.  (5.29)
0 n /=0 B(I,2e+1t) t
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Now, we apply Minkowski’s inequality in order to obtain

2
o0 > dt
(e | Balt,e,p)ldy | dr
o Jen \ B(z,26411)
oo 0o 2 2 2
(X[ Lo imatala) o)) 630
— Lo Jre B(z,2¢+11) ¢

By the Cauchy-Schwarz inequality, the last expression above is dominated by

00 o0 1/2\ 2
> 2@("4)/ / t”2/ \EA(t,a;,y)dedx@ : (5.31)
0 n B(z7gz+lt) t

=0

Invoking now Lemma [5.2] with A := 261 > 1 for £ € NU{0}, each inner triple integral in (5.31))
is dominated by C2¢n+3 HVAH%Q(R”) with C' > 0 finite constant independent of ¢. Thus, the

entire expression in ([5.31)) is

0o 2

—n— n 1/2 n

<C (§ [21 Y 2 VA gy ] / ) = C||VA|32gn) < Cr™, (5.32)
=0

where for the last inequality in (5.32)) we have used (5.26]). This finishes the proof of (5.24)).
In turn, when ([5.24)) is combined with ([5.23|), we obtain

(T —T7)(1)(z, t)|? 44z is a Carleson measure in R’ (5.33)

At this stage, there remains to observe that, thanks to Lemma 5.3, we have

TI(1)(x, t) = / t(0;K)(z —y, (Va(pr * A)(2), (x — y)) +t) dy =0, Vo € R", Vi > 0.
(5.34)
The proof of Theorem [5.1] is thus completed. O

5.2 Square function estimates on (BP)*LG sets

We continue to work in the context of R™! introduced at the beginning of Section |5, and
abbreviate the n-dimensional Hausdorfl outer measure from Definition as H" 1= Hynp-
We prove that square function estimates are stable under the so-called big pieces functor.
Square function estimates on uniformly rectifiable sets then follow as a simple corollary. Let
us begin by reviewing the concept of uniform rectifiability. In particular, following G. David
and S. Semmes [20], we make the following definition.

Definition 5.4. A closed set ¥ C R"*! is called uniformly rectifiable if it is n-dimensional
Abhlfors-David regular and the following holds: There exist e, M € (0,00), referred to as the UR
constants of ¥, such that for each x € ¥ and r > 0, there is a Lipschitz map ¢ : B* — R""1,
where Bl is a ball of radius r in R™, with Lipschitz constant at most equal to M, such that

H" (SN B(z,r)N@(Bl)) > er’. (5.35)

If ¥ is compact, then this is only required for r € (0,diam (X)].
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There are a variety of equivalent characterizations of uniform rectifiability (cf., e.g., [27,
Theorem 1.1.5.7, p. 22]); the version above is often specified by saying that ¥ has Big Pieces
of Lipschitz Images (BPLI). Another version, in which Lipschitz maps are replaced with
Bi-Lipschitz maps, is specified by saying that > has Big Pieces of Bi-Lipschitz Images
(BPBI). The equivalence between BPLI and BPBI can be found in [27, p.22]. We also require
the following notion of sets having big pieces of Lipschitz graphs.

Definition 5.5. A set ¥ C R"*! is said to have Big Pieces of Lipschitz Graphs (BPLG) if
it is n-dimensional Ahlfors-David regular and the following holds: There exist e, M € (0, 00),
referred to as the BPLG constants of X3, such that for each x € ¥ and r > 0, there is an
n-dimensional Lipschitz graph T' C R™ 1 with Lipschitz constant at most equal to M, such that

H" (SN B(z,r)NT) > er™. (5.36)

If ¥ is compact, then this is only required for r € (0,diam (X)].

Let (BP)'LG denote BPLG. For each k € N, a set ¥ C R"! is said to have Big Pieces
of (BP)*LG ((BP)**ILG) if it is n-dimensional Ahlfors-David regular and the following holds:
There exist 6, €, M € (0,00), referred to as the (BP)*LG constants of ¥, such that for each
x €Y andr > 0, there is a set  C R that has (BP)FLG with ADR constant at most equal
to M, and (BP)kLG constants €, M, such that

H" (SN B(z,r)NQ) > 6. (5.37)
If ¥ is compact, then this is only required for r € (0, diam (X)].

We now combine the inductive scheme from Section [4] with the square function estimates
for Lipschitz graphs from Subsection to prove that square function estimates are stable
under the so-called big pieces functor.

Theorem 5.6. Let k € N and suppose that ¥ C R"*! has (BP)*LG. Let K be a real-valued
kernel satisfying , and let T denote the integral operator associated with ¥ as in .
Then there exists a constant C' € (0,00) depending only on n, the (BP)*LG constants of 3,
and |0 K||poo(sny for |a] < 2, such that

Q/ |v7f@gﬁdmuxgndx<(7/ﬂfﬁd@ VfelL*%0), (5.38)
Rr+1\X2 )

where o := F™| X is the measure induced by the n-dimensional Hausdorff measure on 3.

Proof. The proof proceeds by induction on N. For k = 1, suppose that ¥ C R"*! has BPLG
with BPLG constants ¢y, Cy € (0,00). For each x € ¥ and r > 0, there is an n-dimensional
Lipschitz graph I' C R"*! with Lipschitz constant at most equal to Cp, such that

H' (SN Bz, r) NT) > eor™ (5.39)

It follows from Theorem that ¥ has BPSFE with BPSFE character depending only on
the BPLG constants of ¥, and [[0“K || fec(gn) for [a| < 2. It then follows from Theorem
that holds for some C € (0,00) depending only on n and the constants just mentioned.

Now let j € N and assume that the statement of the theorem holds in the case & = j.
Suppose that ¥ C R*™! has (BP)/*!LG with (BP)’T!LG constants €1, 2, C1 € (0,00). For
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each x € ¥ and r > 0, there is a set Q2 C R"*! that has (BP)’LG with ADR constant at most
equal to O, and (BP)/LG constants €1, Cy, such that

H" (SN B(z,r)NQ) > ear™ (5.40)

It follows by the inductive assumption that ¥ has BPSFE with BPSFE character depending
only on the constants specified in the theorem in the case k = j. Applying again Theorem [£.3]
we obtain that holds for some C' € (0, 00) depending only on n, the (BP)/T1LG constants
of ¥, and [[0“K || oo (sny for [a| < 2. This completes the proof. O

The recent result by J. Azzam and R. Schul (cf. [9, Corollary 1.7]) that uniformly rectifiable
sets have (BP)2LG allows us to obtain the following as an immediate corollary of Theorem

Corollary 5.7. Suppose that ¥ C Rt is a uniformly rectifiable set. Let K be a real-valued
kernel satisfying , and let T denote the integral operator associated with ¥ as in (5.3)).
Then there exists a constant C' € (0,00), depending only on n, the UR constants of ¥, and
0K || oo (sny for |a| <2, such that

/ VT f(z)[* dist(z, 2) dz < c/ |fl?do, VY feL*%,0), (5.41)
Rn+HI\D b
where o := F™| X is the measure induced by the n-dimensional Hausdorff measure on 3.

5.3 Square function estimates for integral operators with variable kernels

The square function estimates from Theorem [5.6] and Corollary [5.7 have been formulated for
convolution type integral operators and our goal in this subsection is to prove some versions of
these results which apply to integral operators with variable coefficient kernels. A first result
in this regard reads as follows.

Theorem 5.8. Let k € N and suppose that ¥ C R"! is compact and has (BP)*LG. Then
there exists a positive integer M = M (n) with the following significance. Assume that U is a
bounded, open neighborhood of ¥ in R™! and consider a function

U x (R"+1 \{0}) > (z,2) — b(z,2) €R (5.42)

which is odd and (positively) homogeneous of degree —n in the variable z € R"T1\ {0}, and
which has the property that

Gfag‘b(a:,z) is continuous and bounded on U x S™ for |a] < M and |5] < 1. (5.43)
Finally, define the variable kernel integral operator

Bf(z) = /Zb(x,a; W) doly),  weU\s, (5.44)

where o := F™| X is the measure induced by the n-dimensional Hausdorff measure on 3.
Then there exists a constant C € (0,00) depending only on n, the (BP)*LG constants of
Y., the diameter of U, and ||6£a?b||Loo(uXSn) for o] <2, |B] <1, such that

/ |VBf(z)|* dist(z, ¥) do < c/ \fI?do, VY feL*%,0). (5.45)
u\x b))

In particular, (5.45) holds whenever X is uniformly rectifiable (while retaining the other
background assumptions).
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The following two geometric lemmas from [62] will be used to prove Theorem

Lemma 5.9. Let (27, p) be a geometrically doubling quasi-metric space and let ¥ C 2 be a
set such that (E,p‘z,?‘-{iﬁg pLE) 1s a d-dimensional ADR, space for some d > 0. Assume that p
is a Borel measure on 2 satisfying

N(BP# (.’E, T))

sup ————F= < 400 5.46
ze€Z,r>0 rm ( )

for some m > 0. Fiz a constant ¢ > 0 and real numbers o < m —d and N < m — max{«,0}.
Then there exists C' € (0,00), depending on the supremum in (5.46)), the geometric doubling
constant of (2", p), the ADR constant of ¥, as well as on N, «, and ¢, such that

dist,,, (y, %)~ Y
— = du(y), < Crm¢ Yee Z, Vr>dist,(z, F)/c 5.47

/ B p#(l',y)N ( ) P#( )/ ( )
BP#(mvr)\Z

Lemma 5.10. Let (27, p) be a quasi-metric space. Suppose E C 2 is nonempty and o is
a measure on E such that (E,p‘E,J) is a d-dimensional ADR space for some d > 0. Fix a
real number 0 < N < d. Then there exists C € (0,00) depending only on N, p, and the ADR
constant of E, such that

1
———do(y) < Cri N, Vee Z, Vr>dist,(z, F). 5.48

[ g p@ B (543)
EﬂBp#(I,T)

We are now ready to present the proof of Theorem [5.8

Proof of Theorem[5.8 Set

¢ (=9
Hy:=1, Hy:=n+1, and HZ::<”‘;>—<"'£2) it ¢>2, (5.49)

and, for each £ € Ny, let {\I’M}l <i<H, be an orthonormal basis for the space of spherical
harmonics of degree £ on the n-dimensional sphere S™. In particular,

H<{+1)-+2)---(n+Ll—1)-(n+L) <Cpt" for £>2 (5.50)

and, if Agn denotes the Laplace-Beltrami operator on S™, then for each £ € Ny and 1 <1¢ < Hy,

AgnVWyp=—l(n+¢—1)¥;y on S™, and \I/ig<£> = Pu(z) (5.51)

2l) = T
for some homogeneous harmonic polynomial Pj, of degree ¢ in R™*1. Also,
{\Ij”}éeNo,lsigHg is an orthonormal basis for L?*(S™), (5.52)
hence,
[Wiellp2(sny = 1 for each £ € Ng and 1 < < Hy. (5.53)

More details on these matters may be found in, e.g., [73], pp. 137-152] and [72], pp. 68-75].
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Next, fix an even integer d > (n/2) + 2. Sobolev’s embedding theorem then gives that for
each ¢ € Ny and 1 < i < Hy (with I standing for the identity on S™)

Wil c2(smy < Cnl|(T — Asn)d/%ymup(sn) < C, 0, (5.54)

where the last inequality is a consequence of (5.51f)-(5.53]).
Fix £ € Ny and 1 <1 < Hy arbitrary. If we now define

aio(z) ::/ b(x,w)¥y(w)dw, foreach x €U, (5.55)

it follows from the last formula in (5.51]) and the assumptions on b(zx, z) that
a;¢ is identically zero whenever ¢ is even. (5.56)

Also, for each N € N with 2V < M and each multiindex 5 of length at most 1 we have

sup| (0 + £~ 1)) (0ai0) ()] = sup| [ (020)(,0) (A, i) () ]
relU zel n

= sup’/ (angnb) (,w)¥(w) dw’
el n

< gsﬁtelgH (0728:0) (@) 12 sm)

<C, sup ‘(858?1)) (z,2)| = Cp < . (5.57)
(z,2)EUXS™
la|<M

Hence, for each number N € N with 2N < M, there exists a constant C,, x such that

sup }(86612-@)(36)‘ < C’mNCbE_QN, feNy, 1<i<H,. (5.58)
zeU, |B|<1

For each fixed x € U, expand the function b(z,-) € L?(S™) with respect to the orthonormal

basis {\Ilif}éeNo, \<i<p, 0 order to obtain (in the sense of L?(S™) in the variable z/|z| € S™)
z dl z
bar2) = (e, )l = 30 S e ()4l (5.59)
0€2N+1 i=1

where the last equality is a consequence of (5.56)). For each ¢ € 2N + 1 let us now set

z

kie(2) = qfw( >|z|_", 2 e R {0, (5.60)

]
so that, if d is as in (5.54)), then for each |a| < 2 we have
10%Kiel| oo (5ny < Conl| Wil c2(sny < Crl. (5.61)

Also, given any f € L?(%,0), set

Buf(x) = /E k(e — 1) () do(y), = €U\, (5.62)

59



and note that for any compact subset O of ¢ \ ¥ and any multiindex a with |a| < 1,
sup| (0“Bief) (z)| < C(n, O, %)%, (5.63)
z€O

by (5.61). On the other hand, if N > (d+1)/2 (a condition which we shall assume from now

on) then (5.54) and ([5.58)) imply that the last series in ([5.59|) converges to b(z, z) uniformly for
r € U and z in compact subsets of R"*1\ {0}. As such, it follows from (5.60)) and (5.62) that

Bf( Z Z aio(x)Bigf(x), uniformly on compact subsets of U \ X. (5.64)
0e2N+1 =1

Using this, (5.63) and (5.58)), we may differentiate term-by-term to obtain

(VBf)(z)= > Zaw (VBief)(x)+ > wa )Bicf (@), (5.65)

LE2N+1 =1 Le2N+1 i=1

uniformly for all z in compact subsets of U \ X.
Moving on, observe that for each ¢ € 2N + 1 and 1 < i < Hy, Theorem gives

/ \VBiof(x)|? dist(z, ) de < CM/ \f?de, Y feL*%,0), (5.66)
Uu\x b))

where C' € (0,00) depends only on n and the (BP)*LG constants of ¥, and where

Ci = C|m‘8<b>§ 10%Kse| oo (5my < CLY, (5.67)

by (5.54). If M € N is odd and satisfies M > d + 1, then we may choose N € N such that
d+1 < 2N < M, in which case (5.58)) and (5.67) imply that for all f € L*(3, o), we have

Z Z / laie(z | IVBiof(x )]2dlst(ac Z)dac> 1/2

Le2N+1 i=1
1/2
<CunC Y Ze-W( / VB () dist(z, 3) dr
0e2N+1 =1
1/2
<G Y ZW ) /nyda :C’</ 7Pdo) " (s68)
Le2N+1 =1 b

Next, if €N, 1 <i< Hyand f € L?(%,0), then

1/2 1/2
(/L{\E |Vai|?|Biof ()| dist(z, ) da:) / < CunCyt™2V (/ ‘dlst (2, 2)2Byy f ( ‘ dm)

U\S

_ n,NchN(/ |Toof ()] dx) 2 (5.69)

where Ty : L?(3,0) — L?(U \ ¥) is the integral operator with integral kernel

Ki(z,y) == dist(z, ) 2kiyp(x —y), zelU\X, ye. (5.70)
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Note that
dist(z, ¥)1/2

sup [ [Kule,) do(y) < | Willisry sup [ " do(y)
zeU\L J % z€U\Z J % lz — 9l
1
< ¢ sup /”da(y)
va\s Iy |z =y
< ¢ diam(U)*/?, (5.71)

by (5.54) and Lemma and that

dist(z, ©)Y/2
sup [ [Kilas) do < @il 50y s [ dist(e, )77,
U\S U\S

yes yeD |z —y|™
< ¢t diam(U)3/?, (5.72)
by (5.54) and Lemma From (5.71)-(5.72)) and Schur’s Lemma we deduce that
d 1
||7;ZHL2(E,J)—>L2(Z/{\E) < Cr* diam(U). (5.73)
Combining (5.73]) and (5.69) we conclude that
1/2 1/2
(/ Va2 |Bief (2) ]2 dist(z, %) daz) < oW (/ I£]2 do) , (5.74)
U\s b
for all f € L3(3,0), whenever £ € N and 1 <4 < Hy. Thus, there exists C' € (0, 00) such that
He 1/2 1/2
3 Z(/ Ve | (2)? dist(z, 5) ) < c(/ 7P do) ", (5.75)
teaN+1 i=1 U\ )

for all f € L3(%,0).
Fix now an arbitrary compact subset O of U \ X. Then (5.65)), (5.68]) and (5.75)) imply

1/2 1/2
(/ \VBf(z)[? dist(z, T) d:z:) < C(/ If]2 da) , (5.76)
(@] b
where the constant C'is independent of O and f € L?(%, ). Upon letting O A~ U\ X in (5.76)),

Lebesgue’s Monotone Convergence Theorem then yields ([5.45)). Finally, the last claim in the
statement of Theorem [5.8]is justified in a similar manner, based on Corollary O

It is also useful to treat the following variant of (|5.44)):

Bf(z) = / bz —9)f(y)doly), z U\, (5.77)

2

The same analysis works with x replaced by y in the spherical harmonic expansion (5.59)) (the
argument is simpler since then a;; acts as a multiplier in the y variable) to prove the following.

Theorem 5.11. In the setting of Theorem with B given by (5.77) and assuming, instead
of (5.43), that 02b(x, z) is continuous and bounded on U x S™ for all |a| < M, it holds that

/ IVBf(z)? dist(z, 2) do < 0/ \fI?do, VY feL*%,0). (5.78)
u\x b))
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Theorem and Theorem also apply to the Schwartz kernels of certain pseudodif-
ferential operators. Recall that a pseudodifferential operator Q(x, D) with symbol ¢(x,§) in
Hormander’s class ST}, is given by the oscillatory integral

Q(z, D)u = (2m)~ (/2 / q(z, €)a(€)e’™ O de = (2r) () // q(z,€)e v Du(y)dyde. (5.79)

We define a smaller class of symbols SI}' by requiring that the (matrix-valued) function ¢(z, &)
has an asymptotic expansion of the form

Q(wvf) qu(l',f)—qu,l(l‘,f)-i-"' ) (5'80)

with ¢; smooth in 2 and £ and homogeneous of degree j in £ (for [£] > 1). We call g, (2, &), i.e.
the leading term in , the principal symbol of q(z, D). In fact, we shall find it convenient
to work with classes of symbols which only exhibit a limited amount of regularity in the spatial
variable (while still C*° in the Fourier variable). Specifically, for each r > 0 we define

CSTy = {a(X,€) : |Dqa(-,&)llcor < Call+ (€)™ Val. (5.81)

Denote by OPC" ST, the class of pseudodifferential operators associated with such symbols.
We write OPC"S{}' for the subclass of classical pseudodifferential operators in OPC" ST, whose

symbols can be expanded as in , where g;(z,€) € C’”STO_ T s homogeneous of degree j in
§for || > 1, j=m,m—1,.... Finally, we set OPC"S]} for the space of all formal adjoints of
operators in OPC"S7}.

Given a classical pseudodifferential operator Q(x, D) € OPC"S 1 we denote by ko(z,y)

and Symg,(z,&) its Schwartz kernel and its principal symbol, respectively. Next, if the sets
¥ CU C R*! are as in Theorem [5.8, we can introduce the integral operator

Bof(x) = /E hola.9)f(y)do(y), = eU\S. (5.82)

In this context, Theorem [5.8] and Theorem yield the following result.

Theorem 5.12. Let ¥ C R™" be compact and uniformly rectifiable, and assume that U is a
bounded, open neighborhood of ¥ in R"*1. Let Q(z, D) € OPC’ISCI1 be such that Symg(z,§)
is odd in &. Then the operator (5.82) satisfies

/ VB f(2)|? dist(z, X) de < c/ \f?do, Y feL*%0). (5.83)
U\ b

Moreover, a similar result is valid for a pseudodifferential operator Q(z, D) € @PCOSC_II.

In fact, since the main claims in Theorem [5.12] are local in nature and given the invariance
of the class of domains and pseudodifferential operators (along with their Schwartz kernels and
principal symbols) under smooth diffeomorphisms, these results extend naturally to domains
on manifolds and pseudodifferential operators acting between vector bundles, and as such,
extend results proved in [64] for Lipschitz subdomains of Riemannian manifolds.
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6 L? Square Function Estimates

We have so far only considered L? square function estimates. We now consider L? versions for
p € (0,00]. The natural setting for the consideration of these estimates is in term of mixed norm
spaces L9 (2| E), originally introduced in [60] (cf. also [I0] for related matters). We begin
by using the tools developed in Section [2| to analyze these spaces in the context of an ambient
quasi-metric space 2~ and a closed subset E. In the case 2" = R"! and F = 8]1%1‘“ ~ R"™,
the mixed norm spaces correspond to the tent spaces introduced by R. Coifman, Y. Meyer
and E.M. Stein in [I7]. The preliminary analysis in Subsections and is based on the
techniques developed in that paper, although we need to overcome a variety of geometric
obstructions that arise outside of the Euclidean setting. We build on this in Subsection [6.3
where we prove that L? square function estimates associated with integral operators Op,
as defined in Section [3] follow from weak LP square function estimates for any p € (0, 00).
This is achieved by combining the T'(1) theorem from Subsection with a weak type John-
Nirenberg lemma for Carleson measures, the Euclidean version of which appears in [5]. The
theory culminates in Subsection [6.4, where we prove an extrapolation theorem for estimates
associated with integral operators O, as defined in Section [3| In particular, we prove that a
weak L7 square function estimate for any ¢ € (0, co) implies that square functions are bounded
from H? into L? for all p € (%, 00), where H? is a Hardy space, d is the the dimension of E,

d+v°
and ~ is a finite positive constant depending on the ambient space 2 and the operator Og.

6.1 Mixed norm spaces

We begin by considering the mixed norm spaces L9 from [60] (cf. also [I0]) and then,
following the theory of tent spaces in [I7], record some extensive preliminaries that are used
throughout Section [6] In particular, Theorem contains an equivalence for the quasi-norms
of the mixed norm spaces that is essential in the next subsection.

Let (£, p) be a quasi-metric space, E a nonempty subset of 2", and p a Borel measure on
(2, 71,). Recall the regularized version p4 of the quasi-distance p discussed in Theorem [2.1
and recall that we employ the notation 6g(y) = dist,, (y, E) for each y € 2. Next, let x > 0
be arbitrary, fixed, and consider the nontangential approach regions

Du(z) :={y e Z\E: pg(z,y) < (1+k)ds(y)}, VzekFE. (6.1)

Occasionally, we shall refer to x as the aperture of the nontangential approach region T, (x).
Since both p4(-,-) and ég(-) are continuous (cf. Theorem it follows that I',(x) is an open
subset of (27, 7,), for each x € E, and that 2"\ E' = (J,cp ['x(2), where E denotes the closure
of E in 7,. If, in addition, E is a proper closed subset of (27, 7,), then for any p-measurable
function u : 2"\ E — [0,00], both F': E — [0, 00] and G : E — [0, o0] defined by

F(z) ::/ u(y)du(y) and G(x):= sup |u(y)l, Ve ek, (6.2)
Te(z) yelk(x)

are lower semi-continuous relative to the topology induced by 7, on E. For each ¢ € (0,00)
and £ € (0,00), then define the L9-based Lusin operator, or area operator, <, for all
p-measurable functions u: 2"\ E — R := [—00, 00| by

1

@)= ([ )’ vaep (63)
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The lower semi-continuity of F' in (6.2) implies that 7% ,u is lower semi-continuous, hence
{z € E: (du)(z) > A} isan open subset of (E,7,) for each A > 0, (6.4)

and 7 su : E' — [0, 00] is o-measurable for any Borel measure o on (£, 7, ). Also, define the
nontangential maximal operator N for all functions u: 2"\ E — R by

(Neu)(z) := sup |u(y)l, Vz e FE. (6.5)
Y€l (x)

The lower semi-continuity of G in (6.2)) implies that N,u is lower semi-continuous. We now
follow [60, [10] to define the mixed norm space of type (p,q). If p € (0,00] and ¢ € (0, 00), set

L)Y B u,0;k) :={u: Z\ E—=R: u is y-measurable and o7, ,u € LP(E,0)} (6.6)

with the quasi-norm ||ull Lw.0 (2 g ) = [ ZgrullLe(Eo)- I p € (0,00) and g = oo, set

MO K
L(p7m)(%)E7H)J; K) = {’LL : ’% \ E— ﬁ: |’uHL<P,OO)(,%”7E,p,J;/§) = ”NNUHLP(E,O') < OO} (67)

Also, set L) E, p,0;k) := L®(2 \ E, iu). These spaces generalize the tent spaces 7
on R developed in [17], since T} = L) (R+L OR'H, 1R7+z+1 %, dz) for all p,q € (0,00).
In Theorem we clarify the dependence of the quasi-norm || - [/ m.0 (2 o) o0 the
parameter k. The proof requires the following preliminaries. For each A C E and k > 0, define
the fan (or saw-tooth) region F,(A) above A, and the tent region 7,(A) above A, by

Fu(A) = U Do(z) and  Ti(A):=(Z\E)\ (fK(E\A)). (6.8)

€A

Also, let A and A° denote, respectively, the closure and interior of A in (E, Ty|). Finally, for
each y € 27\ E, define the (reverse) conical projection ny:={zx € E: ye Tx(z)}.

Lemma 6.1. Let (2, p) be a quasi-metric space and E a proper, nonempty, closed subset of
(2, 71,). If k € (0,00), then the following properties hold for all A C E:

(1) Fiu(A) = Fu(A), To(A%) = Tu(A) and To(A) C Fi(A).
(2) If A is a nonempty subset of E, then
Fu(A)={ye Z\E: disty, (y,A) < (1 +£)dp(y)}. (6.9)
If A is a nonempty proper subset of E, then
Te(A) = {z € 2\ E: distp, (z,A) < (1+r) " dist,, (z, E\ A)} (6.10)
={ye Z\E: m; C A} (6.11)

(3) Fu(E) =Te(E) =2 \ E, and moreover, for any family (A;)jes of subsets of E:

U 7e(4)) = Fu(Ujesdy), () Te(A)) = Te(Njes4;), and (6.12)
jedJ jeJ
Al - AQ CF = .F,.i(Al) - fH(AQ) and 7;(_41) - 7;(/12) (613)
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(4) Fu(A) is open and T.(A) is relatively closed in the topology induced by T,,.
(5) Ify € 2"\ E, then ; is relatively open in the topology induced by 7,.
(6) By, (x,C;'r)\ E C To(EN By, (x,7)) for allr € (0,00) and all x € E.

(7) If (E p!E ) is geometrically doubling, then there exists a constant C, € (0,00) such that
the following property holds: If O is a nonempty, open, proper subset of (E, T, , ) with a
Whitney decomposition {Aj}jer, where Aj := ENB,(xj,75), as in Proposztwnm then

0) € | Bu(=), Cory). (6.14)
jed
Moreover, there exists C € (0,00) such that if t € E, r >0 and E \ By(x,7) # 0, then
T<(ENBy(z,7)) C By(z,Cr) \ E. (6.15)

(8) If E is bounded, then there exists C € (0,00) such that if xo, x € E and A is a proper
subset of E, then 2"\ B, (zo,C diam,(E)) C Ix(z) and Tx(A) C By, (xo, C diam,(E)).

Proof. Except for , the above properties follow from definitions and the continuity of
p#(-,+) and 6g(-). To prove (6.14), let = € T.(O) C 2\ E, and since E is closed in (2, 7,),
this means that = does not belong to O and that dist,, (z,O) > 0. Thus, choose ¢ > 0 and
y € O so that py(z,y) < (1 +¢)dist,, (v, 0). Then there exists j € J such that y € A;. We
claim that € and C, can be chosen so x € B,(z;,Cor;), which will complete the proof. To
prove the claim, select 8 € (0, (logy C,)~1] and use in combination with Theorem
and the fact that y belongs to A; = B,(z;,r;) N E, to write

p(e)]” < (1+ ) [disty, (2,0))° < (1) [aisty, (2. £, 0)]

1+k
(6.16)
L+ey? 8 8
< ).
< <1+5) ([ﬂ#(w,y)] +C7“]>
Thus, setting ¢ := /2 and C, := C,C,, g, we have

z,y) < C? T,y) < c2cl/p 1+n/2 r; =: Cpgrj, 6.17
p(a,y) < Cppy(z,y) < G, ([(1+n>ﬁ—(1+a/2)ﬁ}1/ﬁ> j BT (6.17)

so p(zj,x) < C, max{p(x;,y), p(y,x)} < C,Cy gr; implies x € B,(xj,Corj), as required. O

Lemma 6.2. Let (27,p) be a quasi-metric space, E a proper, nonempty, closed subset of
(Z',7p), it a Borel measure on (£, 7,) and o a Borel measure on (E,7,,). If K >0,y € Z'\E,

Y« € E such that p4(y,y«) < (1 +1)0p(y) for somen € (0,k), and (6.18)
0<e<[1+r)—1+n)] 18 for some finite B € (0, (logy C,) 71, '
then
EN By, (ys,€05(y)) C 7y S ENB,, (yx, Cp(1+ k)op(y)). (6.19)
In particular, if (E, p|E, o) is a space of homogeneous type, and k, k" > 0, then
colo(rl) <o(nl) < coo(nl), Vye X \E, (6.20)

where ¢, == Cg(Cg/e)D”(l +min{x, '})P7, with C, and D, the constants defined in (2.19).
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Proof. Let >0,y € 27\ E and assume that (6.18) holds. If z € E'N By, (y«, €6r(y)), then

pa(@,9)" < pur(,y2)" + pa(ys,y)? < 65(y)° + (L+n)’0p(y)’ < 1+ k)’ op(y)’  (6.21)

by Theorem thus = € . Next, if z € mj}, then py(v,y) < (1+ k)dr(y), hence

P, ys) < Cp max{pg(,y), p (Y, yx)} < Cp,(1 +£)0E(y) < Cp(1+ K)0p(y).  (6.22)

We have now proved ([6.19)).
Now suppose that (F, p‘ 5 0) is a space of homogeneous type. If k' >k > 0 and (6.18))

holds, then (6.19) holds both as written and with x replaced by «/, so by (2.19)) we have
erto(mh) < o(xl) < cro(nh), (6.23)

where ¢1 := Cop, (Cp(1+ k)/€)P7. In particular, since Cy,, = C’U(C’p#@,#)Dfr < C,(C,)P7,
we have ¢; < Cg(Cg/e)D”(l +r)Po. If 0 < k' < K, then the same reasoning implies (6.23)) with
¢1 replaced by ¢z := Co,, (Cp(1 4 ') /€)P7 < Co(C2/€)Po (1 + £/)P, so (6.20) holds. O

We now assume that (E,p, o) is a space of homogeneous type. For a o-measurable set
A C E and v € (0,1), define the set of 7-density points relative to A by

. ) O'(Bp#(l’,’l”) ﬁA)
= : > .
A7 {x € 71’I>1f(; O'(Bp# (x,r)) - ’7}

(6.24)

The basic properties of such sets in spaces of homogeneous type are collected below.

Proposition 6.3. Let (E,p,0) be a space of homogeneous type, py the regularization of p as
in Theorem . If v € (0,1) and A C E is o-measurable, then the following properties hold:

(1) E\A: ={z € E: Mp(1pa)(z) >1—~}.

(2) A% is closed in .

(3) o(E\ A1) < {So(E\ A).

(4) If A is closed in 7,, then A* C A and o(E \ A%) ~ o(E\ A).

(5) For each A > 0 there exist y(\) € (0,1) and c(\) > 0 such that if y(\) <~ < 1, then

B Ar)nA
inf [ inf U( P# (z, Ar) )
el r>dist,,, (z,A%) O'(Bp# ({L’,T‘))

] > ¢(\). (6.25)
(6) If o is Borel semiregular, then o(A%\ A) = 0.

(7) Ifﬁ is a o-measurable set such that A C A C E, then A§ - (K)ff
Proof. If v € (0,1) and A C E is o-measurable, then (1) follows by the definition of A%, since

0(By,(z,7)NA) }
O‘(Bp#({L‘,T‘))

= {:n SO O<T§dsi;1£p# (E)<][Bp#(1‘,'r) 1p\4 da) >1-— 7}. (6.26)

E\Afy:{meE: d7 > 0 such that
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Thus, to prove (2), it suffices to note that the function Mg(1g\4) : (E,7,) — [0,00] is lower
semi-continuous. Indeed, this is a consequence of the continuity of p4(-,-) from Theorem [2.1
Fatou’s Lemma, and the fact that the pointwise supremum of any family of real-valued, lower
semi-continuous functions defined on F is itself lower semi-continuous. Also, we prove (3) by
combining (1) with the weak-(1,1) boundedness of Mg to obtain

C
1—

. C
U(E \ A'y) < EH:LE\A”U(E,U) = ’YU(E \ 4). (6.27)

Next, if A is closed in 7, and z € E'\ A, then there exists 7 > 0 such that B,,(z,r) C £\ A,
which implies o(B,,(z,7) N A)) = 0, and so z ¢ AJ. This shows that A} C A, hence
o(E\A) <o(E\ A}), and (4) follows by combining these facts with (3).

To prove (5), let A > 0 and x € E, and select r > 0 such that dist,, (z, A%) < r. Then
there exists z9 € A% such that py(x,x) < r, which forces

By, (z,Ar) C By, (70,Cp, (1 + A7) C By, (, Cg#(l + A)r). (6.28)
Consequently, since zg € A7, we obtain

v (By, (20, Cp, (1 + N)7)) < 0(By, (20,Cp, (1 + A7) N A) (6.29)
<0 (By, (w0, Cp, (1 4+ X))\ By, (2, X)) + 0 (B, (z, Ar) N A),

which further implies that

G(Bp#(:v, )\r)) —(1- ’Y)O'(BP#(ZC(), C’p#(l + )\)r)) < U(Bp# (z, Ar) N A). (6.30)
Recalling the second inclusion in (6.28)) and (2.19)), we obtain
7 (Bpy (10, Cpy (1 +X)7)) < Co s (Co, (1 4+ X) /NP7 0 (B, (, Ar)), (6.31)
where Cy ,,,, Do are associated with o, px as in (2.19). Together, (6.30) and (6.31)) yield
0 (Byy (2, X0)) [1 = Cop (1= N(CZ, (14 N/ NP7 | < 0(By, (2,2r) N1 A). (6.32)

Also, by (2.19), if X € (0,1), then o (B, (z,7)) < Cyp, A P70 (B, (x,Ar)), thus

Do
o(By, (z,Ar)) > min{l, p}a(Bp# (z,7)), V> 0. (6.33)
4

We now complete the proof of (5) by setting

1 A
A)i=1-—
" 2Cy 1, (cg#u A

since then (6.32)-(6.33) imply that o (B,, (x,\r) N A) > c(A)o (B,, (x,r)) for all v € [y(X),1).

If o is Borel semiregular, then by Lebesgue’s Differentiation Theorem (see [2]), there exists
F C E such that o(F) = 0 and lim,_,g+ pr#(x,'r) 1lado/o(Bp,(z,7)) = 1a(z) forallz € B\ F.
In particular, if x € A%\ F, then 14(x) = lim, o+ 0(B,,(z,7) N A)/o(B,,(z,7)) > v > 0,
which implies that A3\ F' C A, thus A%\ A C F. Then, since A} \ A is o-measurable, we
must have (A% \ A) = 0, which proves (6). Finally, property (7)is a direct consequence of
(6.24). N

Dg 1 . )\DU
)> €(0,1) and c()) .:2mm{1,%} >0, (6.34)
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The lemma below contains the final auxiliary results required for Theorem

Lemma 6.4. Let (27, p) be a quasi-metric space, i a Borel measure on (Z°,7,), E a proper,
nonempty, closed subset of (Z°,7,) and o a Borel measure on (E,T,,) such that ( o)
is a space of homogeneous type. The following properties hold for all p-measurable functions
u: Z\E — [0,00], all oc-measurable sets A C E and all o-measurable functions f : E — [0, 00]:

(1) If Kk > 0, then

/A</F,€(q;) u(y) d#(ﬂ))da(x) —/%\E u(y)o (Anmy)du(y) = /N(A) u(y)o (Anmyy)du(y). (6.35)

(2) For each k, k' > 0, there exist v € (0,1) and C € (0,00) such that

/ | /F W) du(y)) do(z) < C /A ( /F ) du(y)) do(z).  (6.36)

(8) For each k,k' >0, there exists C € (0,00) such that

/E ( /F N(x)u(y)du(y))f 2) do(z) < C / / e ) du(v)) (Mpf)(x) do(z).  (6.37)

Proof. The identities in (6.35]) follow by Fubini’s Theorem and the fact that if y € 2™\ F and
Anmy # 0, then y € F(A). To prove (6.36), we recall the notation in (2.4)) and claim that
for each k, k" > 0, there exist v € (0,1) and ¢ > 0 such that

c(ANT) > co(ALN7l),  Vye Fu(AD). (6.38)

If (6.38) holds, then by (6.35)) and the fact that F,;(A%) C 2\ E, we have

[ sz [t nmyao = [ [ it

(6.39)
Hence, to prove 1) it suffices to prove ([6.38)).
To prove , let kK, k" > 0 and fix v € (0,1) to be chosen later. Fix n € (0, min {x, x'}),

and for each y 6 f (A*), choose y, € E and € > 0 such that - holds (for the chosen
value of n). Lemma6.2] then implies that the inclusions in (6.19) hold for both x and x’. Also,
the fact that y € F,(A}) entails m; N A% # (), which when comblned with (6.19), implies that
By, (Y4, Co(1 + k)Op(y )) NAS # Q) and so dist,,, (ys, A3) < Cp(1 + K)dp(y). Property (5) in
Proposition [6.3| with A := e/( (1 +K)), x:=y, and r := C,(14+K)Ip(y), then guarantees the
existence of 7o = 70(A) € (0,1) and ¢ = ¢(k) > 0 such that

0By (4erc05(1)) 1 A)
(B, (Z*,Cp(l Cesw)) - T E (%0, 1). (6.40)

Hence, if we initially select v € (70,1), then (6.40) and (6.19) imply that

0(By, (ys, €66(y)) NA) > co(By,, (y«, Co(1+ £)dE(y))) > ca(w;) > ca(Af/ N W;) (6.41)
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Since ([6.19) also holds with x replaced by &', we also obtain
O’(A N 71'5/) > U(Bp# (s, €0E(y)) N A) > CO’(A: N WZ),

which proves ((6.38]) and thus completes the proof of ((6.36)).
To prove ((6.37)), since

L(] 1) () 1 (@) o) = /W o (w5) (o) duty),

Yy

it suffices to show that there exists C; € (0, 00) such that

][ fdJSCl][ Mpgf do, VyGUGLV\E.
5 oy

(6.42)

(6.43)

(6.44)

To this end, fix y € 2\ F, y« € E and € > 0 such that (6.18]) holds for some 1 € (0, min{x, £'}),
hence (6.19) holds for x and «'. In particular, if z € 7}, then py(2,y«) < Cp(1+ £")0E(y), so

By, (y*, Cy(1+ /i)éE(y)) C By, (z, Cg(l + max{k, ﬁ’})éE(y))
C By, (ys, Cg(l + max{x, '})0p(y)), Vze W;,.

Using (6.19)), (6.45)) and (2.19), we obtain

1
fdo < /
]{rg 0(Bpy (4 €08(Y))) B, , (y..Co(140)05())

< Copy (C’ge*l(l + max{x, R/}))DU ][ fdo
By, (2,03 (14+max{r,x'})dp(y))

(C2e™' (1 + max{x, KJ/}))DUMEf(Z), Vzent.

fdo

S Co-7p#

Thus, setting C1 := Gy p,, (C’g’e*l(l + max{k, m’}))D”, we have

][ de'SCl inf/[MEf(z)]gle /MEde',

K
ZEﬂ'y

which proves (/6.44]) and finishes the proof of the lemma.

(6.45)

(6.46)

(6.47)

O]

We now turn to the following equivalence for the quasi-norms of the mixed norm spaces.

Theorem 6.5. Let (27, p) be a quasi-metric space, u a Borel measure on (Z°,7,), E a proper,
nonempty, closed subset of (2°,7,), and o a Borel measure on (E, 7, ,) such that (E,p‘E,a)
is a space of homogeneous type. If k,k' > 0, and (p,q) € (0,00) x (0,00] or p =q = o0, then

lellzwa 2. mpom = el Lo b pom

for all p-measurable functions v : 2 \ E — R.
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Proof. Let k,x" > 0. There is nothing to prove when p = ¢ = oo, so now suppose that
(p,q) € (0,00) x (0,00]. It suffices to find some C' = C(k, k") € (0,00) such that

HUHL(RG)(J’Z',E,H,J;H’) < CHUHL(%‘D(&’Z',E,H,J;H) (649)
for all y-measurable functions u : 2°\ E — R. We prove this below by considering four cases.

C’ase L0<p<g<oo Let A>0andset A:={z € E: (dgu)(z) < A}. It follows from
and (4) in Proposition [6.3| that A is closed in (£, 7,,) and A% C A for all v € (0,1). Let
v = fy(m k') € (0,1) be such that (6-36) holds, so then by (3) in Proposition we have

o({x € E: (gpu)(x) > N}) <o(E\AY) +o({x e AL : (Fypu)(z) > A})

c 1 .
<o o(E\A)+ / (A prtt) ()9 do ()

’Y

< ol e B: (o) > W) + 1 [ (@)@ o) (650)

Multiplying by pAP~! and integrating in A € (0, 00), we then obtain

H%WUHLP(E U) - 1- H% ,Qu” (e T C/() )\p_q_1</{

() da) dr.  (6.51)
Ay wu<A}

By Fubini’s Theorem, and since we are assuming that 0 < p < ¢ < oo, we further have

/ AP—a-1 ( / (g ru)? da) d\ = / ( / AP—a—1 dA) () (2)? do(x)
0 { g, rusA} E N (dg,nu)(z)
=(qg—p)” 1”52{ HuHLp E,o) (6'52)
In concert, (6.51) and (6.52) now yield (6.49) when 0 < p < ¢ < oc.
Case II: p = q € (0,00). We obtain 9) by combining (6.35)) with - to write
Iyl 5y = /m u(y)Po(rs) duly) ~ /m [w()Po(r) diuty) = 1 Fpstlp s
(6.53)
Case III: 0 < g < p < oo. Let ¢/p+1/r =1, s0 r € (1,00), thus duality and (6.37)) imply that

e Y
Fﬁ/(z)

LY Y(E,0)

= SUD| f]|, (5.0)=1 /}3(/%@) lu(y)|? dﬂ(y)>f(x) do(x) (6.54)
< Csuvygy e [ (] [ ) (M) @) do )

< Csupy gy, .oy =1 1 Fantill Lo (B.0) [MES | Lr(B,0) < CllZgrullr(E.0)

which proves ((6.49) when 0 < ¢ < p < oc.
Case IV: 0 < p < o0, g =00. Let A > 0 and set

O i={z € E: (Nou)(z) > A}, Ow :={z € E: (Nyu)(z) > A}. (6.55)
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To prove (6.49), it suffices to show that 0(O,) < Co(O,), thus by (3) in Proposition it
suffices to find v € (0,1) such that O C E'\ (E'\ Ok);. To this end, let x € O, so there
exists y € I'y/(z) with |u(y)| > A. Fix € (0, min {x, x’'}) and select y, € F and € € (0,1) such
that holds. In particular, p4(y,y«) < (14+1)dg(y). Observe from (6.19) and (6.55) that

EN By, (ys, €d5(y)) €y C O. (6.56)

We also claim that
ENBy, (y,€05(y)) € ENDB,, (z,Co(1+ £)oe(y)). (6.57)
To see this, recall that € € (0,1) and note that if z € E satisfies py(z,y+) < dg(y), then
p#(2,2) < Cp max {py(z,y), py(y, 2)}
< G max {(1+ ~)3(y). Gy max {(1+m)or(y)., 05 ()} }

=C,(1+K)oE(y), (6.58)
which proves . In concert, (6.56]) and (6.57) yield
ENB,, (y*, 5E(y)) COxNBy, (z, C,(1+ m’)&E(y)). (6.59)
Let us also observe that
p(x,yx) < Cp max {(1+ £)dp(y), (1 +n)dp(y)} = Cp(1 + K)dp(y). (6.60)

Setting 7 := C,(1 + £)0r(y), then by (6.59), and the fact that (F, p‘E, o) is a space of
homogeneous type, there exists ¢ € (0,1), depending only on «, <’ and geometry, such that

o(Ox N By, (x,7)) = 0(EN By, (Y, €0p(y))) = co(EN By, (x,7)). (6.61)
In particular, we have o((E'\ Ox)N B, (%,7))/0(ENB,, (7,7)) < 1—c. Thus, selecting v such
that 1 — ¢ < < 1 implies that z ¢ (£ \ Ok)3, hence O,y C E'\ (E'\ Oy)3, as required. O

Remark 6.6. We expand on the comment at the bottom of page 183 in [72], and present an
example where (6.48)) fails in the limiting case p = oo, q € (0,00), i.e. where

([ rtan) " ([ i) (6.62)

fails. In particular, consider when Z :=R?, E:=R = ORi, k:=+v2—1 and ’il € (0,v2-1).
Also, without loss of generality, assume that ¢ =1 and consider u: 2\ E — R given by

2 ifr>0andx <y < 2w,
ulz,y) = { 0 otherwise. (6.63)
Then
[e) 2x
sup (/ lu(z,y)| dxdy) > / lu(z,y)|dedy = / m_Q(/ 1 dy) dr =00, (6.64)
2€R T (2) lz]<y 0 z

whereas, for all z € (0,00), elementary geometry implies that

/ lu(x,y)| dedy < Cz~2 - Area{(z,y) €Tw(z): 0 <z <y <2z} <C, (6.65)
./ (2)

K

where C' only depends on k', hence sup,cp (/ lu(z,y)| da:dy) < 00, and (6.62)) fails.

! \Z
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6.2 Estimates relating the Lusin and Carleson operators

We now introduce a Carleson operator € to provide an equivalent quasi-norm for the mixed
norm spaces. This is essential in Subsection [6.4] and it is achieved by combining Theorem
with a good-A inequality originating in [17]. In particular, the theorem below extends the
result on R ! obtained in [I7, Theorem 3]. We first dispense with the following preliminaries.

Let (27, p) be a quasi-metric space, 1 a Borel measure on (£, 7,), E a nonempty, proper,
closed subset of (£, 7,), and o a measure on E such that (E, p| 5> 0) is a space of homogeneous
type. We say that u is locally finite relative to (£, E, p) provided

1({y € By(x,R)°: dp(y) >r}) < +oo forall z € .2 and R,r € (0,00), (6.66)

where the interior is taken in the topology 7,.
For ¢ € (0,00) and k € (0,00), define the Li-based Carleson operator &, for all u-
measurable functions u : 2"\ E — R := [~00, +00] by

1

(€qt)() = ) /T . u(w)lo(xf) du())’,  Vr€E, (6.67)

sup <
ACE,zeA
where the supremum is taken over all surface balls A containing x and defined by
A= A(y,r) == ENDB,,(y,7), yeE, r>0, (6.68)

and where the conical projection 7 and the tent 7,;(A) over A are from (6-8).
For p € (0,00) and r € (0, 00|, let LP"(E, o) denote the Lorentz space with quasi-norm

A
1o i=sup| Ao ({2 € B |f(@)] > AN)"7). (6.70)
A>0

o0 vy A\ T
||f||Lp,T(E7O-) = </0 )\TO'({I‘ eEE: |f(x)] > )\}) /p ) , if 7 < oo, (6.69)

Note that LPP(E,0) = LP(E, o) for each p € (0, 00).

Theorem 6.7. Let (2, p) be a quasi-metric space, E a proper, nonempty, closed subset of
(Z',71,), 1 a Borel measure on (2 ,7,) that is locally finite relative to (Z,E,p), and o a
measure on E such that (E,p}E,U) is a space of homogeneous type. If kK > 0 and q € (0,00),

then following estimates hold for every p-measurable function u: 2\ E — R:
(1) If p € (0,00), then ||y wullr(p,0) < Cll€qrullLr(E,0)-
(2) Ifp € (4.00) and r € (0,00], then |€g et o (5.0) < Cllymtllnr (i)
(3) If p=q or p= o0 in (2), then

1€ xtull Lace (o) < CllFgnullLope) and |[€qpullLoo(po) < CllgnullLe(p0)- (6.71)

(4) If p € (g, 00), then ||y vl Lo (p.0) = [|€qnttl| o (2.0)-

In each case, the comparability constants depend only on k, q, p, v and geometric constants.
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Proof. Suppose that u: 2"\ E — R is u-measurable. Fix q € (0,00) and define ¢, := 2(1/9)~1
if ¢ € (0,1), and ¢, := 1, if ¢ > 1. To prove (1), we will prove the following good-\ inequality:

VK >0,3k" >k and ¢ € (0,00) such that Vv € (0,1] and VX € (0,00), it holds that
o({z € E: (dgru)(x) > 2¢4), (€qpu)(z) <AA}) < cvlo({z € E: (g u)(z) > A}). (6.72)

Assume for now that this holds. Fix &, " and ¢ as in (6.72). If v € (0,1] and A > 0, then
oc({z € E: (Hynu)(z) > 2¢c4\})
<o({z € E: (€guu)(x) > YA}) + crlo({z € E: (g wu)(z) > A}). (6.73)
Multiplying by pAP~!, integrating in A € (0, 00) and applying Theorem we obtain
(260) gt 15y < ¥ N Ctll gy + € CP A Fgtlly e V€ (O,1). (6.74)
To justify subtracting the last term above, fix o € E and, for each j € N, set
wj i=min{[ul, j} -1, (2o )\{zeB:6p@)<1/sy o0 2\ E. (6.75)
The support of o7, cu; and the assumption that x is locally finite relative to (2, E, p) imply
| Fgoxtijll o .07 < 5 - 1(Bpye (w0, 1)) "0 (B0 By (w0, Cpl1 + 1)1) 7 < 0. (6.76)

Thus, choosing v € (0, 1] so that (2¢4) 7P >2c¢ CP 44, we have ||.27, NUJHLP B.o) <é|’¢‘1»ffuj”ip(E,a)

for all 5 € N and some C € (0,00) independent of j. We then use Lebesgue’s Monotone
Convergence Theorem and Fatou’s Lemma to conclude that (1) holds.
To prove (1), it remains to establish (6.72)). To this end, fix ' > x > 0, v € (0, 1] and set

Or:={z € E: (uu)(z) >N}, VYA>0, (6.77)

which is open in (E, T by (6.4). Also, since o7, ,-u > 7 ,u pointwise in E, we have

’ P\E
{r e E: (o xu)(x) > 2cq A} C Oy (6.78)
If Oy =0, then the second line of (6.72) is trivially satisfied. Now assume that Oy # () and

the p-measurable function u : 2°\ E — R is such that

O, from (6.77)) is a proper subset of E for each A > 0. (6.79)

The assumption in (6.79)) will be eliminated a posteriori. For a fixed, suitably chosen A, > 1, we
have a Whitney covering of O, by balls, relative to (£, p|g), of the form B; := ENDB,,, (x;,7;),
j € N, satisfying (1)-(4) in Proposition for some A > A,. It then suffices to prove that

Jk’ > Kk and ¢ € (0,00) such that Vv € (0,1] and VX € (0,00), it holds that
o({z € Bj : (dgu)(x) > 2c4\, (€quu)(x) <YA}) < crio(B;) for every j € N, (6.80)

since combining (/6.80) with (6.78]) and properties (1)-(2) in Proposition we obtain
(o € Bn)@) > 2e), (o)) <)

< Z ({z € B : (Hypu)(x) > 2ce), (Cqru)(x) <A} < C10(0y),  (6.81)
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which implies (6.72]).
We now turn to the proof of (6.80). Fix j € N and assume, without loss of generality, that

{z € Bj: (dgnu)(x) > 2¢e\, (€qpu)(z) <AA} #0, (6.82)

since otherwise there is nothing to prove. Write u = ulfs, >y + ulfs, <) = w1 + ug and
choose z; € E'\ Oy such that px(z;,2;) < Ar; by (3) in Proposition We claim that

there exists x’ > x independent of j € N with the property that

if x € Bj and y € I'x(x) is such that dg(y) > r; then y € I'y/(2). (6.83)
Indeed, if € By, y € I'x(z) and 0g(y) > r;, then
p#(y, 2j) < Cp, max{py(y, z), p(z, 2;)} < Cpmax{(1 + k), CoA}p(y). (6.84)

Choosing x' > C,max{(1 + k),C,A} —1 > K, so £’ is independent of j, we obtain ([6.83) and

(gnur) () < /F - u()|? du(y) = (Fgwu)(zj)? <X, Ve Bj. (6.85)

Next, we use (6.35)) to obtain

J,

J

ha@do < [ i) ) (6.56)

In order to complete the proof of (6.80]), we now prove, using the notation in (6.68)), that

there exists a finite constant ¢, > 0 such that for every r > 0 and every xg € F

if y e Fu(A(zo,r)) and dp(y) < r then y € ’7;(E N By, (w,cor)) Vw € A(zg,r). (6.87)

Let y € Fiu(A(zo,7)) with 0g(y) < 7, so there exists x € A(xo,r) with pu(y,z) < (1 +
k)or(y) < (14 K)r. Let ¢, > C), be arbitrary. If w € A(wxo,r), then z € EN B, (w, c,r) and

dist,, (v, £ N By, (w, cor)) < puly, ) < (1+ £)0p(y). (6.88)
Also, if w € A(xo,7) and 2z € E'\ By, (w, cor), since px(y,w) < C, max{C), 1+ x}r, we have
cor < Cpmax{py(z,y), C, max{C,,1+ r}r} = C, py(z,y), (6.89)

where the last equality holds by now restricting ¢, > Cg max{C),1 + x}. This implies that
Copp(y, 2) = cor > co0p(y) for all z € E\ By, (w, c,r), so restricting ¢, > Cy(1+ £)?, we have

dist,, (y, £\ By, (w,cor)) > (1+ k)25 (y). (6.90)
Finally, choosing ¢, > max{C,(1 + k)2, CS’, Cg(l + k) }, we obtain from (6.88) and that
dist,,, (v, £ N By, (w, cor)) < (14 n)*ldistp# (y, E\ By, (w, cor)), (6.91)

which, by (6.10]), implies that y € ’7;(E N By, (w, cor)) and proves ((6.87)).
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We can now complete the proof of (6.80]). Combining (6.86|) with (6.87]), we obtain

: Ydo(x ¢ w(y)|lo(nl
Sy |, @@ < s | e ety
© Io(mwh
= O'(E N Bp# (w, Co’l"j)) /7}(EF‘IBP# (w,corj)) ‘U(y)‘ ( y) dﬂ(y)
< C infyeg, [(Cqnu)(w)]? < CyINY, (6.92)

where we used the equivalence o(B;) ~ o(ENB,,, (w, corj)) for all j € N and w € B;, implied
by (2.19)), and assumption (6.82]). Tschebyshev’s inequality then implies that

o({z € Bj: (Fgnu2)(x) > A}) < Cyl0(By), (6.93)
for some C' € (0,00) independent of v € (0,1] and j € N. Also, in view of (6.85]), we obtain
{z € Bj: (Fyu)(z) > 2c,A} C {z € Bj: (dyruz)(x) > A}, (6.94)

since pointwise on F we have &7, .u < ¢, (., cu1 + 4, -u2), where ¢, is from above. Combined
q, q q, q, ’ q

with (6.93)), this proves (6.80) and thus completes the proof of (1) when (6.79)) holds.
We now complete the proof of (1) by removing assumption (6.79) in the following two cases:

Case I: diam,(E) = co. An inspection of the proof reveals that (6.74) has only been utilized
with u; (from (6.75)) in place of u. Thus, it suffices to show that {z € E : (& vu;)(z) > A} is
a proper subset of F for each j € N and each A > 0. This follows by observing that o(E) = oo

by (2.20), whilst o ({z € E : (# wu;)(z) > A}) < oo by (6.76) and Tschebyshev’s inequality.

Case II: diam,(E) < co. We note that o(FE) < oo by (2.20). Set R := diam,,, (E), let ¢, > 0
to be specified later, and write [u| = |u15,()<c,ry + [U[1{5,()>e,ry =t @ +u”. Note that
u',u” are p-measurable with 0 </, u” < |u] and for each z € E, we have

(Care ()2 (a<1E> /%\E o(y) o (n5) du(w))

1/
=2 @) du)) " > oy @), (695)
YEXZ\E,0E(y)>eoR

by taking 7 > R in (6.68)), recalling (3) in Lemmal6.1] and noting that there exists C € (0, 00)
such that for each y € 2"\ E (with y, and € as in Lemma [6.2)), we have

o(my) > o(EN By, (ys, €56(y))) > o(EN By, (ys, e6oR)) > Co(E) (6.96)
by the doubling property of . The monotonicity of the Carleson operator then implies that
|t 205y < Cl€qntl |in(0) < CllCqutilinizon. (6.97)
To proceed, set €, := 1/4C,(1 + £’) and fix 1, x9 € E satisfying py(x1,x2) > R/2. Then
Fw(z1) NT(ze) C{z € Z\ E: ép(z) > coR}. (6.98)

Indeed, if y € Ty (z1) N Ty (x2) then R/2 < py(x1,x2) < Cp(1 + k' )0E(y) = 0r(y)/4e,. Next,
write u' = u'lp |, (4,) + u'(1— lpﬂ/(zl)) =: u} + uh. By (6.98)) and the fact that u; is supported

75



in {0g(-) < e,R}, we have ( u))(x2) = 0 and (7 uh)(x1) = 0. Thus, hypothesis (6.79)
holds for u)} and u), so the first part of the proof applies to u} and u}, which implies that
| x| Lo (B,0) < Cl gttt | Lr(B,0) + Cll g wtiy || Lo (E.0) (6.99)
< C||¢q,mul1||Lp(E,a) + C||¢q,nul2||Lp(E,a) < CHQ(LHUHLP(E,J)-
Together with (6.97)), this proves (1) for u in Case II. The proof of (1) is thus complete.

To prove (2), first note that the pointwise estimate

(€gntt) (20) < C[Mp(lywu)!(xo)]7, Vo€ E, (6.100)

holds for some C € (0,00) depending only on k,p, q and geometric constants. Indeed, if A is

a ball in (E, (p|g)4), then (6.35), (1) in Lemma [6.1) and imply
| (Hayao@) = [ (A0 ) duty) > | Jue() dutw) - (6.100)

Te(A)

and (6.100)) follows. Next, if p € (g,00) and 7 € (0, 00|, then M is bounded on LP/%7/4(E, 5),
so by the general fact that ||[f|*||rrr (o) = C(p, T, a)HfH%pam(E ») for all a > 0, we have

1
€0l 2.0 < CIMp(Aq ) N} 0.y < Clltastll o .0y (6.102)

as required to prove (2). This also proves (4), since it is a combination of (1) and (2). To prove
(8), we use a computation similar to (6.102]) based on (6.100)), the weak-(1,1) boundedness of
Mg, and the boundedness of Mg on L*°(FE, o). This finishes the proof of the theorem. O

Remark 6.8. The case p = q = r of part (2) of Theorem which corresponds to the
estimate || €, sl o (po) < Clpwtllir(g,0), fails in general. A counterexzample in Euclidean
space when p = 2 is given in the remarks stated below Theorem 3 of [17].

6.3 Weak L? square function estimates imply L? square function estimates

We are now in a position to consider L? versions of the L? square function estimates considered
in Section |3| for integral operators ©p. The main result, stated in Theorem is that L?
square function estimates follow from weak LP square function estimates for any p € (0, 00).
The result is proved by combining the 7'(1) theorem in Theorem with a weak type John-
Nirenberg lemma for Carleson measures based on Lemma 2.14 in [5] (cf. [27, Lemma IV.1.12]).

Theorem 6.9. Let 0 < d < m < co. Assume that (2, p, i) is an m-dimensional ADR space,
E is a closed subset of (27,7,), and o is a Borel semiregular measure on (E,7,,) such that
(E,p‘E,O') is a d-dimensional ADR space. Suppose that © is an integral operator with kernel

0 satisfying (3.1))-(3.4). If there exist k, p, C, € (0,00) such that
o({rek: / (O1a) (W) () ™ duly) > X*}) < CAPo(A), YA>0, (6.103)
Tk(z)

for all surface balls A C E, as in (6.68]), then there exists C € (0,00), depending only on k, p,
C, and finite positive geometric constants (including diam,(E) when E is bounded), such that

/ (OF) ()26 ()2 ") du(z) < C / f@Pdo(z),  VfeL(E.o). (6.104)
P\E E
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Proof. We set ¢ = 2 in Proposition below to obtain the Carleson measure estimate in
(6.107) and then apply the T'(1) theorem for square functions in Theorem (3.1 O

Remark 6.10. The requirement in (6.103)) s less restrictive than a weak LP square function
estimate. In particular, it is satisfied whenever the weak LP square function estimate

m 1/p
sup [A o({zek: / (©N)W)IPop(y)* ™ duly) > X*}) } < Collflir(my  (6.105)
A>0 Tr(x)

holds for all f € LP(E, o), since then (6.103) follows by setting f = 1a.

The remainder of this subsection concerns the proposition below used to prove Theorem [6.9]

Proposition 6.11. Assume the hypotheses of Theorem . Let D(E) denote a dyadic cube
structure on E and consider a Whitney covering Wy(2 \ E) of Z \ E as in Lemma[2.17 with
corresponding dyadic Carleson tents from (2.97). If there exists K, p, q, C, € (0,00) such that

o({re: /F | OLW)35)* " duty) > x1) < CAPo(A), YAS 0, (6.106)

for all surface balls A C E, as in (6.68), then there exists C € (0,00), depending only on
K, P, q, Co and finite positive geometric constants such that

1
sup
oen(r) 0(Q)

/ 1(01) ()96 g (2)™~ "D du(z) < C. (6.107)
Tr(Q)

We require the following auxiliary results to prove Proposition The first such result
is a variation of the Whitney decomposition in Proposition

Lemma 6.12. Let (E,p,0) be a space of homogeneous type with a Borel measure o and a
dyadic cube structure D(E). Suppose that O is an open subset of (E,T,) such that (O, p‘o, UL(’))
is a space of homogeneous type. If X € (1,00) and Q is an open, proper, non-empty subset
of O, then there exist ¢ € (0,1), N € N, A € (\,00) and a subset W C D(E) such that the
following properties hold:

(1) o(Q\ Ugew @) = 0.

(2) IfQ,Q €W and Q # Q', then QN Q' = 0.

(3) Ifx €, then #{Q € W: B, (z,edist,(z,0\ Q) NQ #0} <N.
(4) IfQ €W, then \Q C Q and AQN[O\ Q] # 0.

(5) £(Q) = £(Q") uniformly for all Q, Q' € W such that \Q N AQ’ # 0.
(6) 20ewIrg < N.

Proof. Given A € (1,00) and an open, proper, non-empty subset  of the space of homogeneous
type (O,p‘o,aL(’)), we obtain € € (0,1), N € N, A € (A, 00) and a covering of 2 with balls
such that Q = UJEN ((’) N B,(xj, rj)) by applying Proposition . For each j € N, set

I; :={Q e D(E) : Q) ~r; and Q N B,(zj,r;) #0}. (6.108)

Then (1)-(6) hold for any maximal disjoint subcollection W of J;cy I by the properties of the
dyadic cube structure D(E) and the covering {B,(z;,r;)}jen in Propositions and O
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We now state the aforementioned weak type John-Nirenberg lemma for Carleson measures,
cf. [B, Lemma 2.14] for a result similar in spirit in the Euclidean setting.

Lemma 6.13. Assume the hypotheses of Proposition|6.11. Let k, ¢, N € (0,00) and 8 € (0,1).
There exists 1, € (0,00), depending only on geometric constants, such that if n € [n,,00) and

c{re@Q: Sg(x) > N}) < (1—-p)o(Q), VQ e D(E), (6.109)

1/q
where Sg(x) := (/ |(@1)(y)|q5E(y)q”_md,u(y)> , forallx € E, then there
YET s (2): pse (,y) <nt(Q)

exists C € (0,00), depending only on K, n, finite positive geometric constants and the constants

in the kernel estimates for 6 in (3.1)-(3.4)), such that

owp o [ @@ dua) < C57 1+ ) (6.110)
gen(r) 7(Q) J1u(Q)

Proof. Fix ng € (0,00), to be specified, and suppose that (6.109)) holds for some 1 € [ng, c0),
k,q, N € (0,00) and 8 € (0,1). For each i € N, let ©; be as in (3.77) and associate the
function Ség to ©; in the sense that Sg is associated to ©. We fix k € (0, k), to be specified,

and use the notation Séﬂ for the function defined similarly to Ség but with k in place of k.
The set Qg’ ={req: Sb(m) > N} is an open, proper subset of @ by (6.109)), the pointwise
inequality S¢, < Sg, and since Sp, is lower semi-continuous by (6.4). We also define

1

i._ - i 9 do ) . .
A= s U(Q)/Q(SQ,H(QC» do(z), VieN (6.111)

To show that A® < oo, let g denote the center of @ and apply (6.35) to obtain
[ Sza)ranto < [ (O)(W)3(w)™ ™0 (@ N 75) du(y)
Q YeFx(Q): distp, (y,Q)<cl(Q)

<C 1(©:1) ()90 (y) ™0~ "D du(y), (6.112)
By (#q,ct(Q))

for some ¢ € (0,00) depending on 1 and geometry, where we used o(Q N wg) < Cop(y)d,
which follows from Lemma the fact that (E,p|,,0) is d-dimensional ADR, and that
op(y) < disty, (y, Q) < Cdiam,(E) when y € By, (zq,cl(Q)). Also, as in (3.81]), we have

/ (©:1) ()0 (y)™~ "D du(y) < CPUQ)" < CP70(Q), (6.113)
BP# ("EchZ(Q))

for all Q € D(E), hence A® < oo for each i € N.

We claim that there exists C' € (0,00), with the dependency stated in the theorem, such
that sup;cy A < 871(C + N9). To prove this, let i € N and Q € D(E). It suffices to consider
when le # (), since otherwise St 7 < 522 < N < B7'N% on Q. We noted above that ng is
an open proper subset of ) whilst (Q, plos ULQ) is a space of homogeneous type with doubling
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constant mdependent of Q by Proposition 2.11] Thus, by Lemma e have a Whitney
decomposition of QN relative to @, of dyadic cubes {Q} keIl Let F L= Q\Qg” to write

/Q(Sé,%(x))q do(z) = /FN,i(SéQvE(x))q do(z) + Zkelg'i /Qk(Ség,E(x))q do(z)=:1+11I.

Q
(6.114)
Since k € (0, k), we have S - < SQ < N on F " so I < Nio(Q). To estimate I1, we write

1T = degﬂ. /Q k(SéQkﬁ(:r))qu(x) (6.115)

e [ (©61)(9)1#5(y)™ " dyu(y)do () = TTT + IV.
€lQ" J Qi Jyerx (@): nt(Qr) <py (.y)<nt(Q)

To estimate 11, recall (6.111]), the fact that the family {Q} e consists of pairwise disjoint
. Q
cubes from D(E) contained in Qg’l, and assumption (6.109)), to obtain

111 < Zkelg,i Alo(Qr) < Al (Qy") < A1 = B)o(Q). (6.116)

To estimate IV, fix Cy > 0, to be specified later, and note that |(0;1)(y)| < C/dr(y)" for
ally € 2\ E by (3:2) and (3.12). Thus, if k € I)" and = € Qy, then

/ (©:1) ()16 ()™ ™ dpy)
y€elz (2): nl(Qr)<px(z,y) <Col(Qy)
< CUQk) "y € Tr(z) : nl(Qr) < pg(z,y) < Col(Qr)}) < C, (6.117)

and similarly

/ (OMWIBp)™ ™ duly) <, (6118)
VETR():1C, Q) <py (z.y) <nt(Q)

for some C' € (0,00) mdependent of x, k, Q and 1. Next by the properties of the Whitney
decomposition, for each k € I " there exists zy € FQ such that dist,,, (z,7) < cl(Qy) for
all z € Q and some ¢ € (0, oo) 1ndependent of k, Q and i. We claim that there exits ¥ € (0, k),
depending only on x, Cy and geometric constants, but independent of k, @ and ¢, such that

r€Qp yelxz(r) and Col(Qr) < pu(x,y) = y € Te(xy). (6.119)
Indeed, if K € (0,k), * € Qk, y € T'z(x) and Col(Qy) < dist,,, (y,Q), then
Col(Qr) < p(y,z) < (1+K)IE(y) < (1+K)ox(y), (6.120)

so choosing ¥ € (0, (logy C,) 1] such that (p4)” is a genuine distance by Theorem we have

P (y21)” < py(y,2) + o) < (L+7)"0p(y)” + (1 +8)0p(y)" /CY, (6.121)

and (6.119) holds by choosing Co > ¢[1 —(1+#)"Y]"Y? and 0 < & < (1+&)[1—(c/Cp)?]*/? —1.
Next, we restrict 9 € [cC)p,00), so that py(xk,y) < nl(Q) when pu(z,y) < nCp_lf(Q) and
T € Q. In combination with (6.119)), if k£ € Ig’i and x € @)y, we then have

/ IO W) ()™ duly) < (Sh(z))? < N (6122)
Y€z (2): Col(Qr)<py(z,y)<nC, " 4(Q)
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We complete the estimate for IV by combining (6.117)), (6.118) and (6.122) to obtain

IV < (C+ N pe o(Qr) < (C+ N)o(Q). (6.123)

ke

We now combine ((6.123) with (6.114])-(6.116|) to conclude that

/Q(Ség,z(fc))qda < AY(1-B)o(Q) + (C + N)o(Q), V@ eDE), (6.124)

hence A < A%(1 — ) + C + N1 for each i € N, and sup;cy A* < f71(C + NY), as required.
Now deﬁn@ S, as Sg but with k instead of . Since lim; o, Sé)ﬁ = 5@ pointwise in F
and sup;ey A* < B7H(C + NY), Lebesgue’s Monotone Convergence Theorem implies that

1
sup ———
oen(r) o(Q)

Next, since px(x y ) <nl(Q) for all z,y € B, (xQ nC, 16(@)) based on , property (1)
in Lemma 6 and the fact that (E ,0| B 0') is a d dimensional ADR space, we have

/Q(SQ,g(a:))q do(x) < B~H(C + N9). (6.125)

[ (Se)dola)
A(zgnCy 4(Q))

> 1 - y) [(©1)(y) |90 (y)?" " du(y)do (x
A%MwwAmBm@m%wW“)“‘ﬂ> (y)do()

(xQ,nC,;le(Q))(Z/) ‘(91)(y)’q5E(Z/)qU7ma(7r5) du(y)

(6.126)

> / 1p
Te(A(zgmCy'u@))) —°#

~
~

1 x ot (v) \(91)(y)]qéE(y)qv*(mfd) du(y),
/T,;(A(meCple(Q))) By (z@mC, 4(Q))

for all @ € D(E). Also, there exists M € N, depending only on geometric constants, such that
for every Q € D(E), the ball A(zg, T]Cp_lE(Q)) is covered by at most M cubes ) € D(E) with

((Q) = £(Q) and Sz = Sq. Therefore, by (6125), (-126) and (6) in Lemma we obtain

1
sup ——

/ 1(01)(2)]|%6p(2) =D du(z) < CAH(1 + N9).  (6.127)
Qen(e) 7(Q) JB,, (2q.nC; 2 U@)\E

Then (6.110]) follows by using (2.108)) to choose 1y € [cC)p, 00) large enough, depending only
on geometric constants, so that Tr(Q) C B, (7q, nCp_QE(Q)) \ E for all Q € D(E). O

The result below is a geometric estimate on nontangential approach regions from [62].

Lemma 6.14. Let 0 < d < m < oo. Assume that (2, p, ) is an m-dimensional ADR space,

E is a closed subset of (Z°,7,), and there exists a Borel measure o on (E,7,,) such that

( E,a) is a d-dimensional ADR space. For each k > 0, 8 < m and M > m — (3, there
exists C € (0,00), depending on k, M, B, and the ADR constants of 2~ and E, such that
op(x)~" —B-M -
22 du(z) < Cply,2)™ PM for all z,y € E with z # y. 6.128
/r () P, y)M ) (v.2) ( )
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Now we are ready to proceed with the proof of Proposition [6.11

Proof of Proposition[6.11. Assume the hypotheses of Proposition Lemma [6.13] shows
that it suffices to find some N € (0,00), 8 € (0,1) and 7 € [n,, 00) such that (6.109)) holds. To
this end, fix N, c € (0,00), to be specified, and 7 € [,, 00). For each @ € D(E), we have

o({z €Q: Solz)> N} (6.129)

<o({ze@: (©10)()|"0p(y)™ ™ du(y) > (N/2)7})
T (2)N By (2.14(Q))

val{req: [ (O ) IS5 (y) ™™ duly) > (N/2)7}) =: I + 11,
P (@)N By, (21(Q))

where cQ) 1= ENB,, (7q,c{(Q)). Assumption (6.106) and doubling imply that I < CNPo(Q).
To estimate 11, we fix a finite constant ¢, > supgep(p) (diamp# (Q)/4(Q")) and let z € Q.

Ify € By, (z,n(Q)) and 2z € E'\ cQ, then
p#(Z,$Q) < Cpp#(z7y) + Cp max {77,60} K(Q) (6 130)
< Copy(2,y) + ¢ Co max {n, co} pp (2, 2q),

so restricting ¢ € (0,00) such that cing max {1, ¢, } < 1/2, we have px(z,2q) < 2C,px(2,y),

and then by (3.2) and (3.13]), we obtain

(©1p0)y)| < C do(z)  _ 0u(y) "

2€E: py(z,xQ)>cl(Q) p#('z?xQ)d—H}_a - K(Q)v—a'

(6.131)

Moreover, since (E, p|g,0) is ADR, we now choose ¢ € (0,00) as above and such that there

exists w € c2Q \ c1Q for some 1 < ¢; < ¢ < ¢. Then py(z,w) = ¢(Q) and we claim that
p#(y,w) = £(Q), uniformly for all y € T'x(z) N B,,, (2, n4(Q)). (6.132)

Indeed, if p#(y>$) < UE(Q)a then p#(y,’IU) < Cp max{p#(y, x),p#(:v,w)} < CE(Q)a and if in
addition y € T'y(x), then py(y,z) < (1 + k)0E(y) < (14 K)px(y,w), hence

CUQ) < pa(a.w) < Cyl1 + R)py(y,w) < CUQ). (6.133)
Now choosing M > g(v — a), and using (6.131)), (6.132]) and Lemma we obtain

/ [(O1p\c@)W)76r(y)™ ™ du(y)
Y€l (z): pp (x,y)<nl(Q)

< CpQ)M-av-a) /F o

o (y)Im—a(v=a)]
)M

du(y) < C, Vre@. (6.134)

Applying Tschebyshev’s inequality, we then obtain

C/(/ du(y) "
IT< — (O1lp\ @)W v~ do(z)
N Jo\Jyern(@): pu (@) <nt(@) \ee op(y)m=1

Now combining (6.129) and ((6.135|), we have
o({r € Q: Sg(x) > N}) < ON~—mnlPly(Q), VQ € D(E), (6.136)
so (6.109) holds for any 3 € (0,1) by choosing N € (0, 00) such that CN—™»{Lr} < 1 -5 [

IA
= Q

o(Q).  (6.135)
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6.4 Extrapolating square function estimates

We now use Theorems [6.7] and to prove the extrapolation results in Theorem below for
square function estimates associated with integral operators © p, as defined in Section[3] Let us
first digress to clarify terminology and background results concerning the scale of Hardy spaces
HP(E, p,0) for p € (0,00) in the context of a d-dimensional ADR space (F, p, o). In particular,
we record an atomic characterization for these spaces based on the work of R.R. Coifman and
G. Weiss in [20], and a maximal function characterization based on the work of R.A. Macias
and C. Segovia in [58]. The theory of Hardy spaces in this context has also been developed by
D. Mitrea, I. Mitrea, M. Mitrea and S. Monniaux in [61] and subsequetly refined by R. Alvarado
and M. Mitrea in [2].
We begin by defining, for each 8 € (0,00), the homogeneous Holder space

e M@=
EO(E.p) z,yeE, x#y p(x7 y)ﬂ

¢’ (E,p) ={f:E—R:||f < 0o} (6.137)

Let €/ (E, p) denote the subspace of functions in €°(E, p) that vanish identically outside a
bounded set. The class of test functions Z(E, p) := (o< gind(s,p) Cﬁ'f(E, p), with ind(FE, p)
defined as in , is then equipped with the topology 74, defined as follows: Fix a nested
family { K, }nen of p-bounded subsets of E such that every p-ball is contained some K,,. For
each n € N, let 7, (F, p) denote the collection of functions in Z(F, p) that vanish on £\ K,
which becomes a Frechét space when equipped with the topology 7, induced by the family of
norms

{Il oo + I -l () * B is & rational number such that 0 < 8 < ind(E, p)}. (6.138)

For each n € N, the topology induced by 7,41 on %, (F, p) coincides with 7, so we define 7¢
as the the associated strict inductive limit topology on Z(E,p). We then define the space
of distributions 2'(E,p) on E as the (topological) dual of Z(E, p) and let (-,-) denote the
natural duality pairing between distributions in 2'(E, p) and test functions in Z(E, p).

For each v € (0,ind(F, p)), define the grand maximal function of f € Z'(E, p) by

f;'y(x) = SudeEB:(z) } <f7 ¢> y Ve Ea (6139)

where B, (z) is the set of all (p,y)-normalized bump-functions supported near z, that is,
¥ € 9(E, p) such that 1) = 0 on E'\ By(z,7) and [[$]lec + 17 [[¥]l4n 5 ,) < r~¢ for some r > 0.
For d/(d +ind(E, p)) < p < oo, define the Hardy space

HY(E,p,0) :={f € 2'(E,p) € LP(E,0) for all d(; — 1) <~ < ind(E, p)}  (6.140)

. *
: fp# Y

and the closely related space

HP(E,p,0):={f € Z'(E,p): [, € L’(E,o0) for some d(;; — 1) <v < ind(E,p)}. (6.141)

For d/(d+ind(F,p)) < p <1, a function a € L>*(F,0) is called a p-atom if there exist zg € F
and a real number r > 0 such that

suppa C EN By(wo,7), |allr=pe) < rdp / ado =0, (6.142)
E
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(when E is bounded, the constant function o(E)~!/? is also called a p-atom), and we define

HY.(E,p,0):={f¢€ (‘fd(l/p_l)(E,p))* . there exist {)\;}jen € #(N) and p-atoms {a;} en
such that » .y Aja; converges to f in (‘fd(l/pfl)(E,p))*}, (6.143)

: 1 :
with the quasi-norm || f{|gr (g, = inf {(Zj€N|/\j\p) v f = >jenAja; asin 6.143) }.
The following characterizations of these spaces from [2] extend work in [58] and [61].

Theorem 6.15. Let d > 0. Assume that (E,p, o) is d-dimensional ADR. If p € (1,00), then
HP(E,p,0) = HP(E, p,0) = LP(E, o). (6.144)

Ifd/(d+ind(E,p)) <p <1 and d(% —1) <~y <ind(E,p), then

||f||H£t(E,p,a) ~ H(f );#,y Lr(E,0)> Vfe Hapt(Eapv U)a (6145)
where fe 9'(E, p) denotes the restriction of f to 2(FE,p). Moreover, the assignment f — f
provides an injective linear mapping from HY,.(E, p,o) onto ﬁp(E,p,J), and thus provides
a natural identification of HP(E, p,o) and HP(E,p,o) with HP.(E,p,0). Furthermore, there
exists C' € (0,00), depending on p, p, v, such that if f € .@’(E p) and p#v € LP(FE, o),
then there exist {\;}jen € (P(N) and p-atoms {a;}jen such that 3 ;- Aja; converges to f in
P(B,p) with {0 }yenller < ClT%y ooy Conversely, for s }sexs € CP(N) and p-atoms

{aj}jen, if 30 enAja; converges to some fin D'(E, p), then ||, \llro(z0) < Cl{A; }ienller-
We will also need the following estimate from [62] for a Marcinkiewicz-type integral.

Lemma 6.16. Let d > 0. Assume that (E,p, o) is d-dimensional ADR. If a > 0, then there
exists C € (0,00) such that for all nonempty closed subsets F' of (E,7,), it holds that

dist,, (y,
do(y)d <Co(E\F). 6.146
[ e 0 oty dote) < ot ) (6.146)

We will consider an integral operator © with kernel 6 as in - ) for which, instead
of (3.3), there exists a € (0,00) such that for all z € 2\ E y € F and y € E with
o(y,y) < %p(:c,y), the following holds:

p(y,y)*  disty(z, E)\—a
0(x,y) — 0(z,y)| < C : 6.147
() — O 7)) < Co P (205 (6.147)
In particular, setting v := min{«,ind(E, p|g)}, for kK > 0, ¢ € (1,00) and p € (d-i-'y’ o0), the
(p,q)-Square Function Estimate (SFE),, is said to hold when
dp(y) )p/q ]l/p
ONWI s~ sn=w | do(@)|  <C , 6.148
(] Jeneir ) o) < Ol (6.148)

holds for all f € HP(FE, p|g, o), or equivalently, when 62:m/q@ :HP(E, p|p,0) — L<p’q)(3{, E)
is a well-defined bounded linear operator, where

||f||Lp(E o) lfp € (1700)7
= : 6.149
||f||HP(Eyﬂ|E7 ) {Hf|’Hgt(E7p|E7o-) lfp c (#’1] ( )
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Also, for p € (0,00), the weak (p, ¢)-Square Function Estimate (wSFE),, is said to hold when

sup [A o({zeB: /mx) (CHIOR (% > Aq})l/p] <COlflmws  (6.150)

holds for all f € LP(FE, o). We now present the extrapolation result.

Theorem 6.17. Let 0 < d < m < co. Assume that (2", p, 1) is an m-dimensional ADR space,
E is a closed subset of (27, 7,), and o is a Borel measure on (E,7,,) such that ( o) isa
d-dimensional ADR space. Suppose that © is an integral operator with kernel 0 satisfying (3.1)),

(13.2), (3.4) and (6.147) for some o € (0,00). Let k > 0 and set v := min{«,ind(E, p|g)}. The
following properties hold:

(1) Ifq € (1,00), po € (1,00) and (WSFE),, 4 holds, then (WSFE); , holds and (SFE), , holds
for each p € (1 po)

(2) If g € (1,00) and either (SFE)qq holds or (wSFE),, 4 holds for some p, € (q,00), then
(SFE),,q holds for each p € (d+w 00).
(8) If o is a Borel semiregular measure on (E,7,,); po € (0,00) and (WSFE),, o holds, then

(SFE),.2 holds for each p € (7%, 00).

d+v’
Proof. We successively prove (1), (2) and (8) below. The proof of (2) is split into Parts (a)-(e).

Proof of (1). Let ¢ € [1,00), p, € (1,00) and suppose that (wSFE), , holds. It suffices to
prove that Ay o (0p, m/q@) is weak type (1,1), that is, there exists C' € (0, 00) such that

c({z e E: Apu(65™1O1))(2) > A}) < CAX M fllpige), YA>0, VfeLY(E,0), (6.151)

since this is the statement that (wSFE); 4 holds, and then since A, ;0 (5%_7”/ 10) is subadditive
and weak type (po, po) by the (WSFE),, , assumption, the Marcinkiewicz interpolation theorem

implies that A, o (6%_"1/(1@) is strong type (p,p), hence (SFE), 4 holds, for each p € (1,p,).
To prove (6.151), let f € LY(E,0). If0<X < || fllp1(p,0)/0(E) <oo, then E is bounded and

o({z € B: A8y O1)) () > A}) < 0(B) < X fllis (o), (6.152)

o) holds. Now assume that A > || f||;1(g ) /0 (F) and, without loss of generality, that f
has bounded support. We now introduce a Calderén-Zygmund decomposition of f at level .
More precisely (cf., e.g., [19]), there exist C' € (0,00), N € N, depending only on geometry,
balls Q; := B,(z;,rj), j € J €N, and functions g,b: E — R such that f = g +b on E with

g e Ll(E>G) N LOO(Eaa)a ”g”Ll(E,a) < CHfHLl(E,U)v |g(.%')| <C\ Vz€E, (6153)
b= Zje] ij supp bj - Qj, /Eb] do =0, ][], |bJ’dO' <CM\ Vjed, (6154)

and setting O := UjeJ Q; € E and F := E\ O, it holds that
Zje] 19, <N, 0(0) <ON Y flloi (o), distp(Q), F) ~rj, Vi€ J. (6.155)
The series in (6.154) converges absolutely in L!(E, o), since > jea bl ze) < ClfllLy(E,0)-
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To prove (6.151)), since (wSFE),, 4 holds and p, > 1, we first use (6.153) to obtain
o({a € Bt Aye(05™109)) (@) > A/2}) < CX (gl ) < CX Ml () (6:156)
We then use (6.155]) to obtain
O'({ZE €0: Aqy,ﬁ(éjé_m/q(@b))(x) > )\/2}) <0(0) < C’/\_lﬂpr(Eﬁ) (6.157)

whilst it is immediate that

o({z e F: Ay (65900))(x) > A/2}) < A~ /F Agr (657 ™(01)) do. (6.158)

Thus, to prove , since Ay © ((5};:m/ 10) is quasi-subadditive, it remains to prove that
[ Aanl5715(00) do < Cl L (6.159)
To prove , let j € J, Q; = By(xj,rj), x € F and y € I'x(x). We use (6.154) to write

(0 ()] < /Q 169, 2) = 6, )| |bs ()] dor(=) = Iy + Do, (6.160)

where I; and I are the integrals over B, (7, epx(y, z;)) and Q;\ By, (z;, epy(y, x;)) for some
€ > 0. We choose 0 < € < 2_15';10/)_2 so that by Theorem if py(z, ;) < epy(y,x;), then

p(z,z5) < Cﬁp#(z,xj) < eC’ip#(y,xj) < eéng,o#(y, zj) < 5p(y, ;). (6.161)
It then follows from assumption (6.147) and (6.154]) that
riou(y) " o(Q;)

. 045 —a
L<c | &) 1b;(2)| dor(z) < CA

. 6.162
Q; P# (y7 mj)d-&-v—i—oz—a P (y, xj)d+v+a_a ( )

To estimate I, let 2 € Q; \ By, (7, ep4(y, v;)). We have
1y 2 disty (@5, F) < Copl,25) < C(1+ R)3s(y) + Coly,2) < Cplyzy),  (6.163)

whilst p(z,z;) < r; implies that p(y,z;) < Ce lr;, hence r; ~ p(y,z;) uniformly for all
jeJ,yeTl'y(r) and z € F. Also, replacing z; with z in shows that r; < Cp(y, 2),
hence p(y,z;) < Cp(y,z) + Cr; < Cp(y, z) uniformly for all j € J, y € T'x(x), 2 € F and
2 € Qj\ By, (x,eps(y,x;)). Together with (3.2), on the domain of integration in I, we have

Cop(y)™ Cop(y)~ Criép(y) =
‘H(yvz) - 0(y7$j)‘ < ( d)—l—v—a ( 2“"1)—11 = ’ Nd+vta—a” (6'164)
p# (Y, 2) Py, ;) p# (Y, ;)
Together with (6.154]), this allows us to estimate
réd o (Q;
L<oni B(y) "o(Q)) (6.165)

py(y, zj)Horese
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Cumulatively, (6.160]), (6.162)) and (6.165]) prove that

5E (y)q(u—a)—m
o(o) P (y, x;)1dtvta—a

1/q
Ao (357 1(08))) (2) < CATE0(Q)) ( / ) du(y)) (6.166)

uniformly for all j € J and = € F.
For all j € J and x € F, using (6.166) and Lemma (recall that v —a > 0), we obtain

o o —dea dist,, (z, F)*
A (55/1(00,)) (2) < OA P @)ty < O disty, (=, F)"

o, pala, 2y do(z), (6.167)
j )

where in the last inequality we used that dist,,, (2, F) = r;, uniformly for all z € @Q);, and that
p(z,z) < Cp(x,xj) + Cr; < Cp(x,x;) + Cdist,(Q4, F) < Cp(x,x;), VzeQ;. (6.168)

Summing over j € J and using the sublinearity of A, . ((5};”1/ q@(-)) (recall that ¢ > 1), and
the finite overlap property in (6.155]), we obtain

_ dist,,, (z, F)*
Ag (557900 x<C)\/p#’
a0 O S OF J 7 a2y

Consequently, from (6.169), Lemma [6.16] and (6.155), we deduce that
/ Aqﬁ(ég_m/q(@b))(x) dr < CAa(E\ F)=CAo(O) <C|fllri (0 (6.170)
F

do(z), Vaxe€F. (6.169)

This proves (6.159)), which in turn proves (6.151]) and property (1) in the theorem.
Proof of (2). The proof of (2) is divided into Parts (a)-(e) below.

Part (a): Let ¢ € (1,00), p € (1,q] and assume that (SFE),, holds in order to prove that
(SFE), 4 holds. If p = ¢, then there is nothing to prove. If p € (1,q), then since property (1)
implies that (SFE), , holds for each r € (1, g), it follows that (SFE), , holds.

Part (b): Let ¢ € (1,00), p € (¢,00) and assume that (SFE),, holds in order to prove that
(SFE),, 4 holds. In particular, by the equivalence in Theorem it suffices to show that
1€ (05 ™ O | o0y < Cllf lLr(E0): (6.171)

Moreover, by the boundedness of the Hardy-Littlewood maximal operator on LP(E, o) and
Lp/q(E, o), since p > max{q, 1}, it suffices to show, for all f € LP(F, o), that

€y (0 " UO1)) (20) < CL(M(|f17)(20)) " + (M(Mp(f)))(20)], Vo€ B (6172)

To this end, let r > 0 and zp € E. Fix ¢ € (0,00), to be specified, set A := E'N B, (wo,7),

cA := EN B,,(vg,cr), and write f = flean + flp\ca =: f1 + f2. Using (6.35), Lemma
the fact that (E, p|g, o) is d-dimensional ADR, and (SFE), 4, we obtain

1 98w (2)90=(m=d) 1, (1
78 1 (ORI o
c q qu—m oz
<o J (L eI sst) = dutw)) doto
< U(CA) [ 1100 < Mg (e0) (6.173)
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To treat the contribution from fs, we now choose ¢ > C,. If y € E\ cA and w € A,
then cr < pu(y,x0) < Cpmax{px(y,w), px(w,z0)} < Cppx(y,w), hence E\ cA C {y € E :
p#(y,w) > r} and py(y,z0) = pu(y,w). Therefore if z € To(A), then since py(y,zo) <
Cpmax{px(y,z), (1 + k)dp(2)} < Cpy(y, 2), by (3.2) and (3.13), we have

5E(Z)_a C’(SE( )

[(Of2)(2)] < C E\AWM( y)|do(y) < W(MEfxw)a VweA. (6.174)

Thus, in concert with (6.15) and Lemma (which uses v — a > 0), we obtain
1 ( d) 1/q
(©f2)(2)|*0k(2)" du(Z))
(0 (A) /7;(A)

< in A
rvTe weA g U(A) By (z0,CT)\E )

< C inf (Mgf)(w) §C][ Mpgfdo < CMg(Mgf)(zo)- (6.175)
weEA A

Now ([6.172)), and thus (SFE),, 4, follows from (6.173)) and (6.175) in view of (6.67)) and the fact

that €, o (62_7”/ q@) is sub-linear in the current context.

Part (c): Let g € (1,00), p € (#, 1] and assume that (SFE), , holds in order to prove that
sup {[| Ag.x (657 m/q(@a))HLp(E tais a p-atom} < C. (6.176)

To do this, let a denote a p-atom with 29 € E and 7 > 0 asin (6.142)), so suppa C B,,, (2o, 6’pr).
Fix ¢ € (1,00), to be specified, and set A := E'N B, (o, cr) to write

p/q
a5 ™ O sy = [ ([, OB ) o)

p/q
+/E\A (/mx) (©a)(y) |10k (y)* d,u(y)) do(x) =: 1) + Ir. (6.177)

Using Holder’s inequality, the fact that (E, p|g, o) is d-ADR, (SFE),, and (6.142)), we obtain

p/q
= C( / / )|(9a)(y)!q5E(y)q“*m Cl,u,(y)da(g;)) A(1—p/a)
< O (8% ™ UOD) 5.0y 710D < Cllal gy 701 < € (6.178)

for some C' € (0,00) independent of a. _
It remains to estimate I. Let # € E\ A and y € ['x(x). If 2 € EN B, (w0, Cyr), then

| Q

p(0,2) < Cpr < —py(x,20) < gmaX{p#(x Y), p#(y,20)} < (L4 K)pg(y, z0), (6.179)

o

so now choosing ¢ € (1, 00) sufficiently large, depending only on geometry, we have

p(z,20) < 5p(y,m0), V2 € ENB,, (o, épr). (6.180)
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Thus, using (6.147), (6.142)) and that suppa C B,,, (zo, épr) and (E, p|g, o) is d-ADR, we have

(©a)(y)| < / 00y, 2) — 0(y, 7o) |a(z)| do(2)

ENBp, (zo ,Cor)

p#(2,20)*0p(y) "
ENBp, (z0,Cpr) P# (y7 x0>d+v+a—a

<C la(z)|do(2)

B - p#(z7x0)7
=2 only a/ a(z)| do(z
E( ) EﬁBp#(xO,épr) p#(y7x0)d+v—a+ry ‘ ( )’ ( )

Sp (y)far'y+d(171/p)

<cC , Vyelk(x), Ve e E\ A. 6.181
= O wo) Y () \ (6.181)
Furthermore, applying Lemma [6.14] we obtain
d qv+qd(1-1/p)
/ (©a)(y)|1—W)__ o " veeB\A (6.182)
() op(y)m—a p4 (0, x0)9dTa

Finally, applying (3.13)) (with f = 1) and noting that p(d + v) > d, we obtain

B do(x) ypY+pd(1-1/p)
py+pd(1—1/p) _
I, <Cr /E & P 20 <C— e =C (6.183)

The uniform bound on p-atoms in (6.176)) now follows from (|6.177)), (6.178) and (6.183|).

Part (d): Let g € (1,00), p € (ﬁ, 1] and assume that (SFE),, holds in order to prove that

(SFE), 4 holds. We begin by defining the sets

CKIZO(E,;)\E) .= {f € €(E, p|g) : f has bounded support and [z fdo =0} (6.184)

F(E) = ‘{%O(E,p]E) ?f E ?s unbounded; (6.185)
(B, plp) U{1lg} if E is bounded.

Dy(E) := the finite linear span of functions in F(E). (6.186)

We now prove that Dy(E) is dense in HP(FE, p|g, o). First, recall the approximation to the
identity {S;}iez, 1>k, of order v from Proposition It follows from Definition that
Sia € Dy(E) for every p-atom a and each [ € N. Also, it is proved in [49] Lemma 3.2(iii), p. 108],
that {S;}ien is uniformly bounded from HP(E, p|g,0) to HP(E, p|g,0) and that S;f — f in
HP(E,p|g,0) asl — +oo for all f € HP(E, p|g,0). Together, these facts prove that individual
p-atoms may be approximated in HP(E, p|g, o) with functions from Dy(F), and since finite
linear spans of p-atoms are dense in HP(FE, p|g, o) by Theorem it follows that Dy(E) is
dense in HP(E, p|g,0).
To prove that (SFE), 4 holds, it now suffices to find C € (0, 00) such that

||5Z7—m/q@fHL(P#Z)(Q’,E,;L,U;/@) < C”fHHp(E,p|E,O')7 Ve DO(E)7 (6'187)

since then the density of Dy(E) in HP(E, p|g,0) and the fact that the mixed-norm spaces
L(p"I)(% ,E,u,0;k) are quasi-Banach spaces (see [63, [10]), imply that the bounded linear

operator 5E_m/q® : Do(E) = LD (2 E, i, 0; k) extends to a bounded linear operator from
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HP(E, p|g, o) into LPD (2 E, u,0; k), as required. In particular, since the mixed-norm spaces
are only quasi-normed, the fact that the linear extension is bounded relies on the following
property of a general quasi-normed vector space (X, || - ||) (see [61, Theorem 1.5(6)]): There
exists C' € [1,00) such that for any sequence z; — = in X as j — oo in the topology induced
by the quasi—norm, it holds that C~Y|z|| < liminf; o [|z;]] < limsup;_, [|z;]| < C|lz]|.

To prove (6.187), let f € CKJO(E plg), so by [49] Proposition 3.1, p.112], there exist
(Aj)jen € 7 and a sequence of p-atoms (a;);jen such that Z ey Ajaj converges to f in both
HP(E,p|p,0) and LY(E,0), and >y [ AP < C’||f||Hp (Eoplm.0) for some C € (0,00) indepen-

dent of f. The (SFE),, assumption implies that dp, mlag LIY(E,0) — L\9D(Z  E, p,0;k)
is a bounded linear operator, hence limy_, ZN N6 m/q@a] converges to 0p m/q@f in

LD (2 E, u,o0;k). We may then apply [63, Theorem 1.5] to obtain a subsequence of these
partial sums, corresponding to an increasing sequence (Ng)ren C N, such that

. . . sv—m/q v—m/q ~
klg](r)loFk(:n) : kILIEOZAjéE (©aj)(x) = b (Of)(x), for prae. ze 2\ E. (6.188)

Since we are assuming that 0 < p <1 < ¢ < 00, it holds that |- [}, ,, (2B poiw) is subadditive,
so for each k € N, by the uniform estimate on p-atoms from (6.176)) in Part ( ¢), we have

p

Ng
[Pyl S op "0
=1

< CZ‘)\ |p < C||f||HF (Eplg,0)"
L®D (2 B u,0;k) =1

L) (2 ,E,u,0; n)

(6.189)
We now combine the general fact that [|ull w02 540w = Il Ul |Le.0 (2 B e With Fatou’s

Lemma in L9 (2 E, pu,0;k), (6.188) and (6.189) to obtain

H(S;]_m/q@fHL(p’Q)(%',E,,u,,o;n) = H h’glolgf ‘Fk’HL(p’Q)(,%',E,;L,U;H)
< h]glol.}f |’Fk||L(PvQ)(%7E,M,O’;H) < OHfHHP(E,p\E,U)‘ (6190)
We established (6.190]) for any f € CKJO(E,/)\E), which proves (6.187)) for all f € Dy(FE)

except in the case when E is bounded and f = 1g. In that case, since E is d-ADR, it holds
that o(E) < oo, so by Holder’s inequality and the (SFE), , assumption, we have

v—m 1_1 v—m 1
H(SE‘ /q@]'EHL(P»Q)(%,E,u,U;n) < O'(E)P 1 H%ﬁ (5E /qG)]'E) ||Lq(E,U) < CO’(E)P =C. (6191)

Now ((6.187) follows by (6.190) and (6.191)), which completes the proof that (SFE), , holds.

Part (e): Let ¢ € (1,00), p € (dJW, 00) and assume that (wSFE),, , holds for some p, € (g, o)
in order to prove that (SFE),, holds. In this case, property (1) implies that (SFE), , holds
for each r € (1, p,), hence (SFE), 4 holds and (SFE),, , follows by Parts (a), (b) and (d).

Proof of (3). Now suppose that o is a Borel semiregular measure on (£, 7,,,). If p, € (0,00)
and (WSFE),, 2 holds, then Theorem implies that (SFE)s2 holds, so then property (2)

implies that (SFE), 2 holds for each p € (%, 00). O
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7 Conclusion

Theorem[I.T]asserts the equivalence of a number of the properties encountered in the manuscript.

Proof of Theorem[1.1]. The fact that (1) = (2) is a consequence of Theorem It is easy to
see that if (2) holds, then (7) holds by taking bg := 1¢ for each @ € D(E), hence (2) = (7).
The implication (7) = (1) is proved in Theorem The implication (9) = (1) is proved in
Theorem Moreover, (1) < (9) < (10) by Theorem The implication (11) = (12) is
proved in Theorem Clearly (12) = (11), while (11) = (1) is contained in Theorem
To show that (1) = (11), suppose that (1) holds, let f € L?(E, o) and A > 0, and estimate

2oo(1x : dpy) 2 QM o(x
ealfeens [ IOnwi gt > ) < [ [ (@D g iidsta)
©NHWE .
< /y\EWowy)du(y)
< c/ (W) 20E(y)* "D du(y)
< C1f B, (7.1)

Where the first inequality uses Tschebyshev’s inequality, the second uses ([6.35)), the third uses

in Lemma |6.2[ and the fact that (E, p‘E,a) is d-ADR, and the last uses (L.25). Thus,
(1) = (11) as desu“ed Since is a rewriting of (L.34)), it is immediate that (12) & (13).

In summary, so far we have shown that (1), (2), (7) and (9)-(13) are equivalent.

The implication (6) = (4) is trivial and, based on (2.108), we have that (4) = (2). We
focus next on (1) = (6). Suppose (1) holds and fix f € L>®(E,0), x € E, and r € (0,00)
arbitrary. Then, using the notation B, := B, (z,cr) for ¢ > 0, we may write

/ o' [P~ dp < / (10U Loz, )+ O 1p\Bye, )05 "V dp = I+11.
' ' (7.2)
To estimate I we apply (1.25) and the property of E being d-dimensional ADR to obtain

I<c |f? do < Cll I} (.00 (B N By)- (7.3)
EmBQrC

As regards 11, we first note that if = € B, \ £ and y € I\ Ba,.c, are arbitrary points then
p(2,y) < Cplpp(,2) + pu(2,9)) < Cor +Copp(2,y) < $p4(x,y) + Cppy (2, y) which implies
p#(2,y) > pu(x,y)/(2C,). This fact, in combination with (1.22) and (3.13)), yields

1
o(f1 2| < C|lf|l oo U/ ———do(y) < C|fllpeipa Y, (T4
O(f 11\ Byre, ) (2)] < Cllf oo (,0) P\, PG 9P (1) < CllfllzoeB0) (7.4)

z,y)
for all z € B, \ E, so applying (3.15)) (with R :=r and v := m — d — 2v) we obtain
11 < Ol f B 212 < O oy (E 11 By). (75)

At this point, (1.30) follows from (7.2), (7.3), and (7.5, completing the proof of (1) = (6).
Based on (2.108|) we have that (6) = (3) while (3) = (2) is trivial.
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Next, we show that (8) = (7). Suppose that (8) holds and set ¢, := min{e, ap}, where ¢ is
as in Lemmaf2.18and ag is as in (2.30)). Let Q@ € D(E) and set Aq = B, (1,&./(Q)/2Cp)NE.
Then (2.30)), (2.109) and the fact that E is d-dimensional ADR imply

AQCQ, By, (10,5lQ)\ECTr(Q), o(Aq)=0o(Q)=CUQ)". (7.6)

Hence, if we now define bg := ba,, where ba, is the function associated to Ag as in (8),
then ba, satisfies (1.32)) which, when combined with the support condition of ba, and the last

condition in ([7.6)), implies that bg satisfies the first two conditions in (1.31) (with Q=0Q). In
order to show that by also verifies the last condition in (1.31]), we write

/ (0 bo) (@) 26 ()2 D dpu(zr) = / (0 bo) (2)[26(x) =™ dy(z)
Tu(Q) TE(Q)\By  (20.204(Q)

v (©bg) (&) Pop(2) "D du(z) = I + I, (7.7)
BP# (IEQ,&OZ(Q))

To estimate I1, note that if © € Tp(Q)\ By, (1@, £,0(Q)) and y € Ag, then pu(x,y) > QECOPE(Q),
so (1.22), (1.31) and (7.6) imply that [(©bg)(z)| < C¢(Q)™", and with (2.108) we have

L < CHQ) / 51(2)2 =" dp(z)
T (Q)\BP# (mQ 750“@))

< onQ) > / 5 ()2 "D ()
BP# (IchZ(Q))\E
< CUQ)TUQ)T < Co(Q), (7.8)

where the third inequality uses (with R =r =/(Q) and v := m — d — 2v). To estimate
I, first note that by and (7.6)), it is immediate that I, < Coo(Ag) < Co(Q). This fact,
and show that bg also satisfies the last condition in , since the constants in
our estimates are independent of (). This completes the proof of (8) = (7).

To see that (1) = (8), set ba := 1 for each surface ball A. The first two estimates in
are immediate while the third is a consequence of with f := ba.

It is trivial that (2) = (5). Now assume that (5) holds. If we set by := bl for each
Q € D(E), then (L.31) holds for the family {bq}qgen(r), by and the fact that b is
para-accretive. This shows that (5) = (7), and so the proof of Theorem [1.1|is complete. [

We conclude the manuscript with the proof of Theorem

Proof of Theorem[1.2. The idea is to apply Theorem in the setting 2" := E x [0, 00) and
E = FE x {0} (i.e., we identify (y,0) =y for every y € E). Moreover, we set

p((z, ), (y,s)) := max{|z — yl|, |t — s|} for every (z,t),(y,s) € E x [0,00), (7.9)

and set p := c®L!, where L is the one-dimensional Lebesgue measure on [0, 00), and consider
the integral operator © in (3.4]) with integral kernel 6 : (2" \ E) x E — R defined by

O((z,t),y) =2 p(x —y) ifz,yc E,t>0and k € Z, 28 <t < 2k, (7.10)
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It is not difficult to verify that (27, p, i) is a (d + 1)-ADR space, that a, = 1, that 6 satisfies
(13-1)-(3.3) for @ :== 0, a:=1, v :=1, and that dg(x,t) =t for every z € E and t € [0,00). In
particular, v defined in Theorem [6.17] now equals 1. Fix some k > 0 and observe that

Du(z) = {(y,t) € Ex (0,00) : |z —y| < (1 +r)t}, Vzek. (7.11)

If f € L*(E,0), then by Fubini’s Theorem, the fact that E is d-ADR, and (7.10]), we have

/ / (©1)(w. 1) 55(‘;@ 0=/ / (@) (w, 1) 1 Udp(y, t)do (x)

- /E o (@D DR (BB, (14 ) duty. 1

NC/ /\@f y, t)|* tdo(y) dt

9k+1
27"y — 2) f(2) do(2)

2
do(y). (7.12)

2
do(y)tdt

kEZ

2k

y —2)f(z)do(2)

keZ [ g

It was proved in [26, Theorem, p. 10] that there exists C' € (0,00) such that

2
do(z) < C/ |f|?do, Y feL*E,o0). (7.13)
E

/ iz — ) f(y) do(y)
E

keZ |

Therefore, the (SFE)22 estimate from (6.148]) holds, so Theorem implies that (SFE)p, 2
holds for each p € ( I oo), which by reasoning as in (7.12)), is equivalent to the estimate

/E (Zkez ][A(x,(pm)zk)

for all f € HP(E, o), which implies (1.37). In fact, estimate is equivalent to (|1.37).
To prove the nontrivial implication, choose N € N sufficiently large and consider with
Y(z) = (x/2N) in place of ¢, and note that if 1 € C§°(R"*!) is odd, then () is also odd,
smooth and compactly supported, and satisfies sz = 2N v for every k € Z. ]

2 p/2
i0(1)) do(2) < C e (110

/ iz — 1) [ (2) do(2)
FE
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