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Abstract 

 

Carotid body (CB) stimulation by hypercapnia causes a reflex increase in ventilation and, along with the 

central chemoreceptors, this prevents a potentially lethal systemic acidosis. Control over the CB 

chemoafferent output during normocapnia and hypercapnia most likely involves multiple 

neurotransmitters and neuromodulators including ATP, acetylcholine, dopamine, serotonin and 

adenosine, but the precise role of each is yet to be fully established. In the present study, recordings of 

chemoafferent discharge frequency were made from the isolated in vitro CB in order to determine the 

contribution of adenosine, derived specifically from extracellular catabolism of ATP, in mediating basal 

chemoafferent activity and responses to hypercapnia. Pharmacological inhibition of ecto-5’-nucleotidase 

(CD73), a key enzyme required for extracellular generation of adenosine from ATP, using α,β-methylene 

ADP, virtually abolished the basal normocapnic single fibre discharge frequency (superfusate 

PO2~300 mmHg, PCO2~40 mmHg) and diminished the chemoafferent response to hypercapnia 

(PCO2~80 mmHg). These effects were mimicked by the blockade of adenosine receptors with 8-(p-

sulfophenyl) theophylline. The excitatory impact of adenosinergic signalling on CB hypercapnic 

sensitivity is most likely to be conferred through changes in cAMP. Here, inhibition of transmembrane, 

but not soluble, adenylate cyclases, by SQ22536 and KH7 respectively, produced a rapid reduction in 

normocapnic single fibre activity and inhibited the elevation evoked by hypercapnia by approximately 

50%. These data therefore identify a functional role for CD73 derived adenosine and transmembrane 

adenylate cyclases, in modulating the basal chemoafferent discharge frequency and in priming the CB to 

hypercapnic stimulation. 
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1 Introduction 

 

The mammalian carotid bodies (CBs) are the primary peripheral chemoreceptors that respond to acute 

hypoxia, and stimulation drives the reflex hyperventilation that acts to preserve O2 delivery and 

metabolism in the brain and vital organs (Kumar, 2009). However, the importance of the CB in the 

regulation of breathing is not limited to hypoxia. Continuous chemoafferent input from CB into the central 

nervous system (CNS) is thought to account for up to 60% of eupneic ventilation (Blain et al., 2009). 

Furthermore, the CBs are activated by other blood stimuli including hypercapnia and acidosis, both of 

which are potentially lethal if not adequately countered.  

 

It was originally proposed that approximately 30-50% of the reflex ventilatory response to arterial 

hypercapnia was mediated through direct stimulation of the CB (Heeringa et al., 1979; Rodman et al., 

2001), with the remaining contribution arising from chemoreceptors located in the CNS (Nattie, 1999). 

However, a more recent investigation has shown that a complete silencing of the CB chemoafferent 

output significantly depresses the central CO2 chemoreceptor sensitivity (Blain et al., 2010). Therefore, 

in addition to direct hypercapnic CB excitation, maintenance of a tonic CB chemoafferent signal into the 

CNS seems to have an important role in establishing the hypercapnic sensitivity of the central 

chemoreceptors and further emphasises the importance of the CB in blood CO2 and pH homeostasis.    

 

Control over the CB chemoafferent output in basal conditions and during hypercapnia most likely 

involves multiple neurotransmitters and neuromodulators including ATP, acetylcholine, dopamine, 

serotonin and adenosine (Nurse, 2010), but the contribution of each is yet to be fully characterised. 

Despite adenosine being an established neuromodulatory substance in the central nervous system 

(Cunha, 2001), its source and physiological role in the CB remains somewhat unresolved. Up to now the 

majority of investigations have focused on the action of adenosine in mediating the CB response to 

acute changes in O2 tension (McQueen & Ribeiro, 1986; Conde et al., 2006; Conde et al., 2012) or the 

adaptations following chronic hypoxia (Livermore & Nurse, 2013). However, the physiological 

importance and source of endogenous adenosine in establishing basal CB chemoafferent activity and 

responses to hypercapnia is unclear. 

 

Physiologically active concentrations of adenosine, present in the synapse between the CB type I cell 

and the adjacent chemoafferent neurone, may originate from multiple sources. First, adenosine may be 

generated via extracellular catabolism of ATP; an excitatory neurotransmitter that is secreted from type I 

and type II cells (Zhang et al., 2012; Piskuric & Nurse, 2013). This conversion requires two key 

enzymes; ectonucleoside triphosphate diphosphohydrolyase 1 (CD39) and ecto-5’-nucleotidase (CD73) 

(Bianchi & Spychala, 2003). Second, adenosine may be formed in the type I cell and then released into 

the synapse through the bidirectional equilibrative nucleotide transporter (ENT) (Cass et al., 1998). 

Measurements of whole organ adenosine suggest a possible contribution of both sources to the total 

‘pool’ of available adenosine and this may be subject to variation depending on the ambient level of O2 

(Conde & Monteiro, 2004; Conde et al., 2012). This current study aims to more clearly define the 
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functional importance of endogenous adenosine specifically generated from extracellular catabolism of 

ATP in modulating the sensory neuronal output of the CB, both under basal conditions and during 

hypercapnia.   

 

The four G-protein coupled adenosine receptors cloned to data (A1, A2A, A2B and A3) all exert their 

actions through inhibition or excitation of transmembrane adenylyl cyclases (tmACs) and production of 

cAMP (reviewed in (Ribeiro & Sebastiao, 2010)). Thus any functional role of adenosine is likely to be 

conferred through modifications in cAMP accumulation. We have previously reported that the CB 

expresses numerous different tmAC mRNA transcripts (Nunes et al., 2013) as well as the soluble AC 

(sAC) isoform (Nunes et al., 2009). CB cAMP is elevated during hypercapnia (Perez-Garcia et al., 1990) 

and, in isolated type I cells, cAMP analogues potentiate inward Ca2+ current in a manner that is 

quantitatively similar to hypercapnia (Summers et al., 2002). Here we investigate whether direct 

targeting of tmAC or sAC impairs the CB chemoafferent outflow in normocapnia and/or hypercapnia.    

 

2 Methods 

 

2.1 Ethical approval 

All surgical procedures were performed in accordance with project and personal licences issued under 

the UK Animals (Scientific Procedures) Act 1986 and were approved by the Biomedical Services Unit at 

the University of Birmingham. 

 

2.2 Extracellular recordings of single and few-fibre chemoafferent neurones 

The whole carotid bifurcation along with the attached carotid sinus nerve (CSN) and CB were isolated 

from adult male Wistar rats (50–200 g) under inhalation anaesthesia (2-4% isoflurane in O2). Following 

tissue removal, animals were immediately killed by exsanguination. The bifurcations were rapidly 

transferred into an ice cold bicarbonate buffered extracellular Krebs solution containing, in mM: 115 

NaCl, 4.5 KCl, 1.25 NaH2PO4, 5 Na2SO4, 1.3 MgSO4, 24 NaHCO3, 2.4 CaCl2, 11 D-glucose, equilibrated 

with 95% O2 and 5% CO2.  

 

Extracellular recordings of single or few-fibre chemoafferent activity were made from the cut end of the 

CSN using glass suction electrodes pulled from GC150-10 capillary glass (Harvard Apparatus, 

Edenbridge, UK). The chemoafferent derived voltage was recorded using a CED micro1401 and 

visualised on a PC with Spike2 software (Cambridge Electronic Design, Cambridge, UK). The 

chemoafferent voltage signal was sampled at 15000 Hz. Using the in-built wavemark analysis in the 

Spike2 software, electrical activity originating from a single chemoafferent fibre was determined by its 

unique ‘wavemark’ signature based on frequency, shape and amplitude.  

 

2.3 Experimental solutions and drugs.  

During experimentation, whole CBs were continuously superfused with a standard bicarbonate buffered 

Krebs solution containing, in mM: 115 NaCl, 4.5 KCl, 1.25 NaH2PO4, 5 Na2SO4, 1.3 MgSO4, 24 NaHCO3, 
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2.4 CaCl2 and 11 D-glucose. All solutions were heated to 37ºC using a water bath (Grant W14; Grant 

Instruments, Cambridge, UK) and had a pH of 7.4 except during hypercapnic acidosis. 

 

Chemoafferent responses to hypercapnia acidosis were induced by raising the superfusate PCO2 from 

approximately 40 mmHg (pH 7.4) to 80 mmHg (pH 7.15) at a constant PO2 (300 mmHg), as has been 

previously reported (Bin-Jaliah et al., 2005). Since the chemoafferent response to hypercapnia is 

thought to peak initially and then adapt to a lower sustained frequency (Black et al., 1971), 

measurements of chemoafferent activity were taken from the fifth minute of the hypercapnic stimulus, 

after a relatively steady state frequency had been achieved. CO2 sensitivity was subsequently calculated 

as the increase in single fibre discharge frequency per mmHg increase in superfusate PCO2 (ΔHz / 

mmHg PCO2), given that the rise in discharge frequency is linear over this PCO2 range (Biscoe et al., 

1970; Fitzgerald & Parks, 1971; Pepper et al., 1995; Vidruk et al., 2001).   

 

2.4 Analysis of data 

Values are expressed as mean ± standard error of mean unless otherwise stated. Statistical analysis 

was performed using i) a paired 2-tailed student’s t-test or ii) repeated measures one way Analysis of 

Variance (ANOVA) with Bonferroni or Dunnett’s post hoc analysis where appropriate (Prism v5; 

GraphPad Software, La Jolle, CA, USA). Significance was taken as p<0.05.  

 

3 Results 

 

3.1 Basal chemoafferent outflow is dependent on ecto-5’-nucleotidase (CD73) activity and 

adenosinergic signalling.  

Basal chemoafferent output from the CB provides the peripheral component of the drive to breathe. 

Initial experiments sought to determine whether or not adenosine generated from extracellular ATP 

catabolism has any part in establishing this sensory neuronal activity of the CB. Pharmacological 

targeting of ecto-5’-nucleotidase (CD73; a key membrane bound enzyme involved in the formation of 

adenosine from extracellular ATP) using the inhibitor α,β-methylene ADP (AOPCP; 100 µM; Conde & 

Monteiro, 2004) had a striking effect on basal single fibre activity, diminishing the discharge frequency 

by 91.2 ± 3.8% (Fig. 1a upper & 1b). A similar (93.9 ± 1.9%) reduction in basal frequency was observed 

in the presence of the adenosine receptor antagonist 8-(p-sulfophenyl) theophylline (8-SPT, 300 µM; 

Wyatt et al., 2007) (Fig. 1a middle & 1b). The four G-protein coupled adenosine receptors cloned to date 

(A1, A2A, A2B and A3) all exert their actions through inhibition or excitation of transmembrane adenylyl 

cyclases (tmACs) and modification of cAMP production. In the current investigation, the presence of 9-

(Tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536; a tmAC inhibitor; 200 µM, IC50 = 20µM; Rocher et 

al., 2009) caused a 70.2 ±16.0% decrease in basal single fibre frequency (Fig. 1a lower & 1b). This is 

consistent with the idea that tonic generation of adenosine from ATP modulates basal CB neuronal 

outflow through production of cAMP.  
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3.2 Chemoafferent responses to hypercapnia are dependent on ecto-5’-nucleotidase (CD73) 

activity, adenosinergic receptor stimulation and transmembrane adenylyl cyclase production of 

cAMP.  

Experiments were designed to establish or rule out a potential role for endogenous adenosine in 

mediating the heightened sensory neuronal activity of the CB in hypercapnia. Selective inhibition of 

CD73 with AOPCP (100 µM) diminished the single fibre discharge frequency recorded in both 

normocapnic (40 mmHg PCO2) and hypercapnic (80 mmHg PCO2) conditions (Fig. 2a & b). Furthermore, 

AOPCP caused a dramatic (98.0 ± 1.8%) reduction in CB CO2 sensitivity (Fig. 2c). This inhibitory effect 

was rapidly reversed once the drug was removed from the superfusate as demonstrated in the raw trace 

example in Fig. 2a. Similar observations were made in the presence of 8-SPT (300 µM). 8-SPT 

significantly attenuated chemoafferent activity in both normocapnia and hypercapnia (Fig. 2d) and 

markedly decreased the CB CO2 sensitivity by 81.5 ± 5.8% (Fig. 2e).  

 

As with the basal discharge, the excitatory impact of adenosinergic signalling on CB hypercapnic 

sensitivity is most likely to be conferred through activation of tmACs coupled to the adenosine receptors. 

Here, addition of the tmAC inhibitor SQ22536 (200 µM), produced a rapid reduction in normocapnic 

single fibre activity and inhibited the elevation evoked by hypercapnia (Fig. 3a & b). In every fibre tested 

the absolute increase in hypercapnic discharge was reduced in the presence of SQ22536. Accordingly, 

further analysis showed that SQ22536 (200 µM) produced a 47.1 ± 9.4% decline in CB CO2 sensitivity 

(Fig. 3c). Normal hypercapnic responses were readily restored following removal of the agent from the 

superfusate, as exemplified in Fig. 3a. In contrast, the soluble adenylyl cyclase (sAC) antagonist, 2-(1H-

Benzo[d]imidazol-2-ylthio)-N′-(5-bromo-2-hydroxybenzylidene)propanehydrazide (KH7; 10 µM; Nunes et 

al., 2013), failed to impact on basal chemoafferent activity or the response to hypercapnia (Fig. 3d & e). 

KH7 (10 µM) did not alter CB CO2 sensitivity even after prolonged incubation (Fig. 3d & f). These data 

therefore suggest that cAMP production mediates a component of the functional chemoafferent 

response to hypercapnia and that this is selectively dependent on tmAC rather than sAC activation.  

 

4 Discussion 

 

4.1 CD73, adenosine and tmAC signalling mediate basal CB activity and the sensitivity to 

hypercapnia.  

The findings presented in this study indicate that extracellular adenosine formed selectively through 

catabolism of ATP, in the presence of ecto-5’-nucleotidase (CD73), has an important neuromodulatory 

role in mediating the CB sensory neuronal discharge, both under basal conditions and during stimulation 

by hypercapnia. In addition we show that tmAC but not sAC activity is necessary for full expression of 

CB hypercapnic sensitivity.   

  

It has been previously reported that inhibition of ATP metabolism in normoxia by AOPCP decreases CB 

adenosine content (Conde & Monteiro, 2004). Our observations suggest that this source of adenosine is 

functionally required in order to generate the basal chemoafferent outflow. The impact of adenosine is 
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most likely to be conferred through modifications in cAMP, given that the A2A and A2B adenosine receptor 

subtypes expressed in the CB (Gauda et al., 2000; Kobayashi et al., 2000; Conde et al., 2006) are 

coupled to tmACs (Ribeiro & Sebastiao, 2010). Accordingly, in this investigation pharmacological 

inhibition of tmACs by SQ22536 caused a significant reduction in basal chemoafferent activity.  

 

The basal sensory output from the CB accounts for up to 60% of the drive to breath at rest (Blain et al., 

2009) and may contribute to the resting sympathetic outflow to the vasculature (Kumar & Prabhakar, 

2012). Furthermore, it is the chronic rise in basal CB activity following CIH that is thought to drive the 

hypertension in patients with OSA (Narkiewicz et al., 1998; Peng et al., 2003). It is probable that overall 

chemoafferent output in normoxia is dependent on both spontaneous pre-synaptic (type I cell) 

depolarisation and neurotransmitter release, along with subsequent post-synaptic receptor activation. 

Chemoafferent neurones may also generate a degree of spontaneous activity. In large clusters of type I 

cells, spontaneous cellular depolarisation is reported to be a consequence of an attenuation of the 

background K+ current, which is itself regulated by local 5-HT and PKC activation (Zhang & Nurse, 2000; 

Zhang et al., 2003). The observations presented here suggest an additional signalling mechanism that is 

dependent on adenosine formation and tmAC mediated cAMP production.  

 

It is becoming more apparent that the CB has a principal role in countering rises in arterial CO2. As well 

as direct stimulation of the CB accounting for approximately 30-50% of the reflex hypercapnic ventilatory 

response (Heeringa et al., 1979; Rodman et al., 2001), it has been recently shown that the CB 

chemoafferent outflow is necessary in establishing the CO2 sensitivity of the central medullary 

chemoreceptors (Blain et al., 2010). Despite these important findings, the full transduction mechanisms 

that lead to an increase in CB discharge frequency during hypercapnia are still elusive. The results 

described here provide evidence that the heightened chemoafferent activity in hypercapnia is dependent 

on CD73 mediated catabolism of ATP to form adenosine. The principal origin of the synaptic ATP is 

most likely to be the type I cell given that ATP is secreted as a neurotransmitter in both normocapnic 

(Conde et al., 2012) and hypercapnic conditions (Zhang & Nurse, 2004). Interestingly, in chemosensitive 

regions of the brainstem, hypercapnia-evoked ATP release occurs through the gap junctional protein, 

connexin26 (Cx26) (Huckstepp et al., 2010b). Direct binding of CO2 prevents pore occlusion and 

effectively ‘traps’ Cx26 in an open conformation (Huckstepp et al., 2010a; Meigh et al., 2013). In the CB, 

recent evidence has identified a mechanism of ATP induced ATP release through pannexin channels in 

type II cells (Zhang et al., 2012). Whether ATP is released from type II cells in normoxia and/or 

hypercapnia, thus acting as a substrate for additional adenosine formation, could be an interesting area 

for future investigating.   

 

We also demonstrate that inhibitory targeting of tmACs also reduced the CO2 sensitivity of the CB. This 

is in agreement with the idea that adenosine partially establishes the chemoafferent sensitivity of the CB 

to hypercapnia through tmAC dependent cAMP production. In the later instance however, a 

considerable proportion of the response to hypercapnia is preserved, which was in contrast to the results 

described using 8-SPT and AOPCP. This may have been due to incomplete run-down in tmAC function 
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using SQ22536 or, more likely, that adenosine has additional actions that are independent of cAMP. 

These alternative downstream signalling pathways possibly involve activation of PKC or phospholipase 

C, as has been proposed for a component of the excitatory adenosine neuromodulation in the CNS 

(Cunha, 2001).  

 

The finding that SQ22536 but not KH7 reduces chemoafferent excitation in hypercapnia, suggests that 

cAMP regulation of CB CO2 sensitivity is itself determined by tmAC and not sAC enzymatic activity. 

Although sAC is present in the CB (Nunes et al., 2009) and is directly stimulated by binding of CO2 or 

HCO3
- (Townsend et al., 2009), it appears to have no functional contribution in moderating the 

chemoafferent frequency in hypercapnia. This is in accordance with our previous findings where KH7 

failed to modify CB cAMP content when the organ was exposed to isohydric hypercapnia (Nunes et al., 

2013). Thus we propose that rises in CO2 or intracellular HCO3
- alone are insufficient to stimulate sAC 

enough to have functional effects on chemoafferent discharge in hypercapnia.   

 

4.3 Conclusions 

Endogenous adenosine produced from extracellular catabolism of ATP in the presence of ecto-5’-

nucleotidase (CD73) is necessary for the generation of a basal chemoafferent discharge frequency. This 

basal discharge may be of clinical significance in a number of cardiorespiratory disorders where 

enhanced CB activity is associated with increased sympathetic outflow and thus with potential increase 

in patient morbidity and mortality. In addition this source of adenosine and tmAC generation of cAMP, 

acting downstream of adenosine receptors, are required for the full expression of the CB sensitivity to 

hypercapnia. 



! 9!

References  

 

Bianchi V & Spychala J. (2003). Mammalian 5'-nucleotidases. J Biol Chem 278, 46195-46198. 
 
Bin-Jaliah I, Maskell PD & Kumar P. (2005). Carbon dioxide sensitivity during hypoglycaemia-induced, 

elevated metabolism in the anaesthetized rat. J Physiol 563, 883-893. 
 
Biscoe TJ, Purves MJ & Sampson SR. (1970). The frequency of nerve impulses in single carotid body 

chemoreceptor afferent fibres recorded in vivo with intact circulation. J Physiol 208, 121-131. 
 
Black AM, McCloskey DI & Torrance RW. (1971). The responses of carotid body chemoreceptors in the 

cat to sudden changes of hypercapnic and hypoxic stimuli. Respir Physiol 13, 36-49. 
 
Blain GM, Smith CA, Henderson KS & Dempsey JA. (2009). Contribution of the carotid body 

chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol 106, 
1564-1573. 

 
Blain GM, Smith CA, Henderson KS & Dempsey JA. (2010). Peripheral chemoreceptors determine the 

respiratory sensitivity of central chemoreceptors to CO(2). J Physiol 588, 2455-2471. 
 
Cass CE, Young JD & Baldwin SA. (1998). Recent advances in the molecular biology of nucleoside 

transporters of mammalian cells. Biochem Cell Biol 76, 761-770. 
 
Conde SV & Monteiro EC. (2004). Hypoxia induces adenosine release from the rat carotid body. J 

Neurochem 89, 1148-1156. 
 
Conde SV, Monteiro EC, Rigual R, Obeso A & Gonzalez C. (2012). Hypoxic intensity: a determinant for 

the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity. J 
Appl Physiol 112, 2002-2010. 

 
Conde SV, Obeso A, Vicario I, Rigual R, Rocher A & Gonzalez C. (2006). Caffeine inhibition of rat 

carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors. J Neurochem 
98, 616-628. 

 
Cunha RA. (2001). Adenosine as a neuromodulator and as a homeostatic regulator in the nervous 

system: different roles, different sources and different receptors. Neurochem Int 38, 107-125. 
 
Fitzgerald RS & Parks DC. (1971). Effect of hypoxia on carotid chemoreceptor response to carbon 

dioxide in cats. Respir Physiol 12, 218-229. 
 
Gauda EB, Northington FJ, Linden J & Rosin DL. (2000). Differential expression of a(2a), A(1)-

adenosine and D(2)-dopamine receptor genes in rat peripheral arterial chemoreceptors during 
postnatal development. Brain Res 872, 1-10. 

 
Heeringa J, Berkenbosch A, de Goede J & Olievier CN. (1979). Relative contribution of central and 

peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia. Respir Physiol 
37, 365-379. 

 
Huckstepp RT, Eason R, Sachdev A & Dale N. (2010a). CO2-dependent opening of connexin 26 and 

related beta connexins. J Physiol 588, 3921-3931. 
 
Huckstepp RT, id Bihi R, Eason R, Spyer KM, Dicke N, Willecke K, Marina N, Gourine AV & Dale N. 

(2010b). Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla 
oblongata contributes to central respiratory chemosensitivity. J Physiol 588, 3901-3920. 

 
Kobayashi S, Conforti L & Millhorn DE. (2000). Gene expression and function of adenosine A(2A) 

receptor in the rat carotid body. Am J Physiol Lung Cell Mol Physiol 279, L273-282. 
 



! 10!

Kumar P. (2009). Systemic effects resulting from carotid body stimulation-invited article. Adv Exp Med 
Biol 648, 223-233. 

 
Kumar P & Prabhakar NR. (2012). Peripheral Chemoreceptors: Function and Plasticity of the Carotid 

Body. Comprehensive Physiology, 141–219. 
 
Livermore S & Nurse CA. (2013). Enhanced adenosine A2b receptor signaling facilitates stimulus-

induced catecholamine secretion in chronically hypoxic carotid body type I cells. Am J Physiol 
Cell Physiol 305, C739-750. 

 
McQueen DS & Ribeiro JA. (1986). Pharmacological characterization of the receptor involved in 

chemoexcitation induced by adenosine. Br J Pharmacol 88, 615-620. 
 
Meigh L, Greenhalgh SA, Rodgers TL, Cann MJ, Roper DI & Dale N. (2013). CO2 directly modulates 

connexin 26 by formation of carbamate bridges between subunits. Elife 2. 
 
Narkiewicz K, van de Borne PJH, Montano N, Dyken ME, Phillips BG & Somers VK. (1998). Contribution 

of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with 
obstructive sleep apnea. Circulation 97, 943-945. 

 
Nattie E. (1999). CO2, brainstem chemoreceptors and breathing. Prog Neurobiol 59, 299-331. 
 
Nunes AR, Holmes AP, Sample V, Kumar P, Cann MJ, Monteiro EC, Zhang J & Gauda EB. (2013). 

Bicarbonate-sensitive soluble and transmembrane adenylyl cyclases in peripheral 
chemoreceptors. Respir Physiol Neurobiol 188, 83-93. 

 
Nunes AR, Monteiro EC, Johnson SM & Gauda EB. (2009). Bicarbonate-regulated soluble adenylyl 

cyclase (sAC) mRNA expression and activity in peripheral chemoreceptors. Adv Exp Med Biol 
648, 235-241. 

 
Nurse CA. (2010). Neurotransmitter and neuromodulatory mechanisms at peripheral arterial 

chemoreceptors. Exp Physiol 95, 657-667. 
 
Peng YJ, Overholt JL, Kline D, Kumar GK & Prabhakar NR. (2003). Induction of sensory long-term 

facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc 
Natl Acad Sci U S A 100, 10073-10078. 

 
Pepper DR, Landauer RC & Kumar P. (1995). Postnatal development of CO2-O2 interaction in the rat 

carotid body in vitro. J Physiol 485 ( Pt 2), 531-541. 
 
Perez-Garcia MT, Almaraz L & Gonzalez C. (1990). Effects of different types of stimulation on cyclic 

AMP content in the rabbit carotid body: functional significance. J Neurochem 55, 1287-1293. 
 
Piskuric NA & Nurse CA. (2013). Expanding role of ATP as a versatile messenger at carotid and aortic 

body chemoreceptors. J Physiol 591, 415-422. 
 
Ribeiro JA & Sebastiao AM. (2010). Modulation and metamodulation of synapses by adenosine. Acta 

Physiol (Oxf) 199, 161-169. 
 
Rocher A, Caceres AI, Almaraz L & Gonzalez C. (2009). EPAC signalling pathways are involved in low 

PO2 chemoreception in carotid body chemoreceptor cells. J Physiol 587, 4015-4027. 
 
Rodman JR, Curran AK, Henderson KS, Dempsey JA & Smith CA. (2001). Carotid body denervation in 

dogs: eupnea and the ventilatory response to hyperoxic hypercapnia. J Appl Physiol 91, 328-
335. 

 
Summers BA, Overholt JL & Prabhakar NR. (2002). CO(2) and pH independently modulate L-type 

Ca(2+) current in rabbit carotid body glomus cells. J Neurophysiol 88, 604-612. 
 



! 11!

Townsend PD, Holliday PM, Fenyk S, Hess KC, Gray MA, Hodgson DRW & Cann MJ. (2009). 
Stimulation of Mammalian G-protein-responsive Adenylyl Cyclases by Carbon Dioxide. J Biol 
Chem 284, 784-791. 

 
Vidruk EH, Olson EB, Jr., Ling L & Mitchell GS. (2001). Responses of single-unit carotid body 

chemoreceptors in adult rats. J Physiol 531, 165-170. 
 
Wyatt CN, Mustard KJ, Pearson SA, Dallas ML, Atkinson L, Kumar P, Peers C, Hardie DG & Evans AM. 

(2007). AMP-activated protein kinase mediates carotid body excitation by hypoxia. J Biol Chem 
282, 8092-8098. 

 
Zhang M, Fearon IM, Zhong H & Nurse CA. (2003). Presynaptic modulation of rat arterial chemoreceptor 

function by 5-HT: role of K+ channel inhibition via protein kinase C. J Physiol 551, 825-842. 
 
Zhang M & Nurse CA. (2000). Does endogenous 5-HT mediate spontaneous rhythmic activity in 

chemoreceptor clusters of rat carotid body? Brain Res 872, 199-203. 
 
Zhang M & Nurse CA. (2004). CO2/pH chemosensory signaling in co-cultures of rat carotid body 

receptors and petrosal neurons: role of ATP and ACh. J Neurophysiol 92, 3433-3445. 
 
Zhang M, Piskuric NA, Vollmer C & Nurse CA. (2012). P2Y2 receptor activation opens pannexin-1 

channels in rat carotid body type II cells: potential role in amplifying the neurotransmitter ATP. J 
Physiol 590, 4335-4350.!

!
 
  



! 12!

 

 

Figure legends 

 

Fig. 1 The basal chemoafferent discharge frequency of the carotid body (CB) is critically dependent on 

ecto-5’-nucleotidase (CD73) mediated formation of adenosine. (a) Example raw neuronal traces 

demonstrating the inhibitory impact of three different compounds on basal chemoafferent outflow: 

AOPCP (100 µM; inhibitor of CD73), 8-SPT (300 µM; non-selective adenosine receptor antagonist) and 

SQ22536 (200 µM; inhibitor of transmembrane adenylate cyclases). For each trace, overdrawn action 

potentials are shown inset to exhibit single fibre discrimination. (b) Mean single fibre basal frequencies in 

the presence and absence of each pharmacological agent. Data presented is from 6 fibres (n=6) from 4 

CB preparations (AOPCP), 6 fibres (n=6) from 4 CB preparations (8-SPT) and 5 fibres (n=5) from 4 CB 

preparations (SQ22536). Error bars indicate + S.E.M. * denotes P<0.05 compared with control basal 

discharge frequency; paired Student’s t-test.  

 

Fig. 2 Carotid body (CB) responses to hypercapnia are mediated by adenosine generated from ecto-5’-

nucleotidase (CD73). (a) An example electrophysiological recording of the CB response to 5 minutes of 

hypercapnia (PCO2 = 80 mmHg) in the presence and absence of the CD73 inhibitor AOPCP. Raw 

discharge is shown (upper) along with frequency histograms (lower). Overdrawn action potentials are 

shown inset to demonstrate the single fibre discrimination used to measure frequency. The inhibitory 

action of AOPCP was readily reversible. (b) Mean discharge frequencies recorded in normocapnia 

(PCO2 = 40 mmHg) and hypercapnia (PCO2 = 80 mmHg), in control conditions and following addition of 

AOPCP. Error bars indicate ± S.E.M. * denotes P<0.05 compared with control group; one way repeated 

measures ANOVA with Bonferroni post hoc analysis. (c) Calculated mean CO2 sensitivity (Δ Hz / mmHg 

PCO2) in control conditions and following AOPCP drug application. Error bars indicate + S.E.M. * 

denotes P<0.05 compared with control group; paired Student’s t-test. For B) and C) data is from 6 fibres 

(n=6) from 5 CB preparations. (d) Mean discharge frequencies recorded in normocapnia and 

hypercapnia, in control conditions and in the presence of 8-SPT (300 µM), the non-selective adenosine 

receptor antagonist. Error bars indicate ± S.E.M. * denotes P<0.05 compared with control group; one 

way repeated measures ANOVA with Bonferroni post hoc analysis. (e) Calculated mean CO2 sensitivity 

(Δ Hz / mmHg PCO2) for control and 8-SPT groups. Error bars indicate + S.E.M. * denotes P<0.05 

compared with control group; paired Student’s t-test. For D) and E) data is from 7 fibres (n=7) from 3 CB 

preparations. 

 

Fig. 3 Rises in chemoafferent activity in hypercapnia are dependent on transmembrane (tmAC) but not 

soluble adenylate cyclase (sAC) activity. (a) Characteristic example recording of the response to 

hypercapnia (PCO2 = 80 mmHg) in the presence and absence of the tmAC inhibitor SQ22536 (200 µM). 

Raw discharge is shown (upper) along with frequency histograms (lower). Overdrawn action potentials 

are shown inset to demonstrate the single fibre discrimination. The inhibitory impact of SQ22536 was 

fully reversible. (b) Mean single fibre discharge frequencies recorded in normocapnia (PCO2 = 40 
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mmHg) and hypercapnia (PCO2 = 80 mmHg), in control conditions and following addition of SQ22536 to 

the superfusate. Error bars indicate ± S.E.M. * denotes P<0.05 compared with control group; one way 

repeated measures ANOVA with Bonferroni post hoc analysis. (c) Calculated mean CO2 sensitivity (Δ 

Hz / mmHg PCO2) in control conditions during SQ22536 drug application. Error bars indicate + S.E.M. * 

denotes P<0.05 compared with control group; paired Student’s t-test. For (b) and (c) the data presented 

is from 7 fibres (n=7) from 4 CB preparations. (d) As for (a) but in the presence of the sAC inhibitor KH7 

(10 µM). KH7 was applied for ~ 30 minutes to maximise delivery and uptake into the CB before 

exposure to hypercapnia. (e) Mean single fibre discharge frequencies recorded in normocapnia (PCO2 = 

40 mmHg) and hypercapnia (PCO2 = 80 mmHg), for control and during application of KH7. Error bars 

indicate ± S.E.M. (f) Calculated CO2 sensitivities (Δ Hz / mmHg PCO2) for control and KH7 groups. Error 

bars indicate + S.E.M. For E) and F) data is from 5 fibres (n=5) from 4 CB preparations.  

 

 

 

 

 








