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Statistical efficiency and optimal design
for stepped cluster studies under linear
mixed effects models
Alan J. Girling*† and Karla Hemming

In stepped cluster designs the intervention is introduced into some (or all) clusters at different times and persists
until the end of the study. Instances include traditional parallel cluster designs and the more recent stepped-
wedge designs. We consider the precision offered by such designs under mixed-effects models with fixed time
and random subject and cluster effects (including interactions with time), and explore the optimal choice of up-
take times. The results apply both to cross-sectional studies where new subjects are observed at each time-point,
and longitudinal studies with repeat observations on the same subjects.

The efficiency of the design is expressed in terms of a ‘cluster-mean correlation’ which carries information
about the dependency-structure of the data, and two design coefficients which reflect the pattern of uptake-
times. In cross-sectional studies the cluster-mean correlation combines information about the cluster-size and
the intra-cluster correlation coefficient. A formula is given for the ‘design effect’ in both cross-sectional and
longitudinal studies.

An algorithm for optimising the choice of uptake times is described and specific results obtained for the best
balanced stepped designs. In large studies we show that the best design is a hybrid mixture of parallel and
stepped-wedge components, with the proportion of stepped wedge clusters equal to the cluster-mean correlation.
The impact of prior uncertainty in the cluster-mean correlation is considered by simulation. Some specific hybrid
designs are proposed for consideration when the cluster-mean correlation cannot be reliably estimated, using a
minimax principle to ensure acceptable performance across the whole range of unknown values. © 2016TheAuthors.
Statistics in Medicine published by John Wiley & Sons Ltd.

Keywords: cluster studies; stepped-wedge designs; intra-cluster correlation; optimal design

1. Introduction

In a ‘stepped’ cluster design, an intervention is introduced into some or all of the clusters at (possibly)
different uptake-times during the study. Once introduced into a cluster, the intervention persists until the
end of the study. We assume that outcome-data is collected in all clusters throughout the duration of
study and that interest centres on the contrast between the treated (post-intervention) and control
(pre-intervention) conditions. This class of study design includes some traditional parallel cluster de-
signs [1] with ongoing patient recruitment (where one group of clusters receives the intervention at
the start, and the remainder at the end, or not at all) as well as the recent ‘stepped-wedge’ designs in
which the intervention is introduced into all clusters but at staggered (often regularly spaced) time-points
[2–5]. Some other examples feature in Figure 1. Stepped-wedge designs offer a potential advantage over
parallel designs in that each cluster functions as its own control. This can be useful when a high propor-
tion of the variation occurs at the cluster level, but it must be set against the temporal confounding that
may arise because the number of clusters exposed to the intervention increases over the course of the
study. The tension between cluster-level effects and temporal confounding is a critical factor for the
performance of stepped designs [6].

We suppose that a study for a cluster-level intervention is planned to take place in K clusters and that
each cluster contributes m outcome measurements (observations) at each of T regularly-spaced time-
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Figure 1. Schematic for some designs with eight clusters. The horizontal direction represents time and the total
duration of the study (which is the same for each design) is equally divided between the columns. The rows rep-
resent clusters. So each cell represents the observation-times in a single cluster over one fixed time period.

Treated cells are denoted by 1, and Controls by 0.
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points. The discussion here applies to two main types of cluster study: (i) longitudinal (cohort) studies
where Km subjects are recruited at the beginning of the study, with repeat observations at each time-
point; and (ii) cross-sectional studies where KTm different subjects are recruited during the course of
the study, and each contributes a single observation on the main outcome measure. We exclude ‘open’
cohort designs – i.e. longitudinal studies with significant drop-out and/or ongoing recruitment. Instances
of these two types are provided by two paradigms: (i) studies of a health intervention in a closed popu-
lation (such as a care-home) where the same subjects are monitored over a period of time [7,8]; and (ii)
service-delivery studies in hospital in-patient or emergency departments where a single outcome mea-
sure is obtained from each member of a continuously changing patient population [9,10]. Further
instances of each type are enumerated in a recent review [4]. In either case we assume that the
frequency and timing of data-collection are already settled, and focus on the choice of intervention
uptake-times: specifically the impact of this choice on the statistical performance of the intervention
effect estimate.

The observations are described by a linear mixed effects model with fixed time and random
cluster effects due to Hussey and Hughes [11], with the addition of random cluster-specific time
components and subject-level components for longitudinal studies [12]. Even without these addi-
tions, the Hussey and Hughes model has been found useful for the design of stepped studies
[13,14]. It is directly applicable when the outcome is continuous, and approximately for binary
outcomes when m is large [11]. It was used also in a recent paper that addresses the optimal design
of stepped-wedge studies [15], although under conditions that exclude most of the optimal designs
in the present study.

Some designs using eight clusters are illustrated in Figure 1. In each particular design the number of
observation-times in each cell is constant, with treatment status coded as 1 if exposed and 0 if unexposed
to the intervention. The total number of observations in each cluster (mT=M) is the same for all designs.
This means that the cell-sizes may differ between designs. Thus a cell in Figure 1b – the parallel design –
contains twice as many observations as a cell in Figure 1a.

In most of these examples the number of treated clusters grows over the course of the study. An ex-
ception is the cross-over design in Figure 1(a). This design is often not practical because the intervention
is withdrawn in some clusters halfway through the study. However it is useful as a reference design
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2149–2166
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against which the relative efficiency of other designs can be calibrated. The ‘Delay-Control Design’ – a
terminology suggested by an anonymous referee – in Figure 1c is an elaboration of the parallel design in
which all clusters contribute baseline control observations and all receive the intervention towards the
end of the study. A stepped-wedge design arises if all clusters receive the intervention with uptake times
evenly spaced throughout the study. The stepped-wedge in Figure 1d has eight clusters but only g=4
uptake times. Alternatives with g=2 or 8 are also available. The final design (Figure 1e) is motivated
by an optimality result described later. It represents a 50:50 hybrid combination of a parallel design in
the top and bottom two clusters with a stepped-wedge-type layout in the middle four clusters, although
with reduced time before the first and after the last uptake point.

The paper contains two main sections. In section 2 a generic expression for the precision of the treat-
ment effect estimate is obtained. This leads to a simple graphical method for comparing the efficiency of
designs. Section 3 is concerned with the optimal choice of uptake times when the numbers of clusters
and observation time-points are both fixed, and includes some suggestions for practical design choices.

2. The precision of the effect estimate under a linear mixed effects model

2.1. The model

Each cluster i (i=1,…,K) generates m measurements at every time-point j (j=1,…,T) according to the
following model:

Y ′
ijl ¼ ci þ tj þ θJij þ ctð Þij þ sl ið Þ þ stð Þl ið Þj: (1)

Here Y ′
ijl has variance σ

2
1 and is the outcome for the lth observation (l=1,…,m) at time j in cluster i; c1,

…,cK are mutually independent random cluster effects (variance¼ ηCσ
2
1); t1,…,tT are fixed time-effects;

sl(i) and (st)l(i)j are within-cluster random effects with variances ηSσ
2
1 and ηSTσ

2
1 respectively; (ct)ij repre-

sents cluster-level fluctuations of the time-effect with variance ηCTσ
2
1 so that ηCT=1�ηC�ηS� ηST; θ is

the intervention effect whose estimation is the purpose of the analysis; and Jij is a binary variable (as in
Figure 1) which indicates whether or not the intervention is present at time j in cluster i. The random
components in this model are as in Teerenstra et al. [12]. Note that we use M=Tm to denote the total
number of observations in each cluster. The number of time parameters is dictated by the number of
observation times (T), and this may be greater than the number of columns in the representation used
in Figure 1. However, the main precision formula below applies also for models with a single time-
parameter for each column.

This formulation covers two important cases:

1. Cross-sectional study with no within-cluster time effects: ηS=0, ηCT=0. At each time-point m (new)
subjects are observed within each cluster. The (st) component combines variation between subjects
(within clusters) and within-subject measurement error. Here ηC is the conventional intra-cluster
correlation coefficient (ICC).

2. Longitudinal/Cohort study: ηS>0. Within each cluster, the same group of m subjects is measured at
every time-point. The s-component describes variation between subjects (within clusters); the (st)-
component describes variation within-subjects (including measurement error); the (ct)-component
describes cluster-level time effects.

In this work we consider the performance of the best linear unbiased estimate of θ in model 1. This

can depend only on the means of the observations at each time-point in each cluster, i.e. on Yij ¼ Y ′
ij• ¼

1
m ∑

m

l¼1
Y ′
ijl. The Yijs obey a model 2 of the form proposed by Hussey and Hughes [11] and which is the

basis of our development. This is:

Yij ¼ γi þ tj þ θJij þ εij; 1 ≤ i ≤ K; 1 ≤ j ≤ T ; (2)

where γi ¼ ci þ s• ið Þ, with variance ηC þ ηS
m

� �
σ21, and εij ¼ ctð Þij þ stð Þ• ið Þj, with variance ηCT þ ηST

m

� �
σ21,

are independent random components. The variance of Yij can be partitioned as
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2149–2166



A. J. GIRLING AND K. HEMMING

2152
varYij ¼ σ2 ¼ ηC þ ηS
m

þ ηCT þ ηST
m

� �
σ21 ¼ varγi þ varεij ¼ ρσ2 þ 1� ρð Þσ2

with ρ
1�ρ ¼ mηCþηS

mηCTþηST
. The quantity ρ is the correlation between Yij-values obtained in the same cluster at

different times, and corresponds to the ICC for the Yijs. Unlike ICCs for the individual observations Y ′
ijl,

ρ can easily be large (i.e. close to 1), particularly if ηCT=0.
2.2. The cluster-mean correlation

The efficiency of a stepped cluster design turns on the quantity R, defined byR T; ρð Þ ¼ Tρ
1þ T�1ð Þρ , from

which R
1�R ¼ T ρ

1�ρ ¼ T mηCþηS
mηCTþηST

. The value of R has a simple interpretation in terms of the Yij as the pro-

portion of the variance of a cluster-mean Yi• ¼ t• þ γi þ εi•ð Þ that comes from random effects that are
independent of time (i.e. from the ci and sl(i)). In many circumstances this definition is aligned with that
for the correlation between the means of two replicate sets of observations – sayY 1ð Þ

i• ; Y
2ð Þ
i• – from the same

cluster i, although the nature of the replication must be carefully considered. For a cross-sectional study
with ηS=0, ηCT=0 the replicate set simply entails the recruitment of a new set of subjects in the same
cluster. Moreover, in this case, R T ; ρð Þ ¼ R M; ηCð Þ ¼ MηC

1þ M�1ð ÞηC , furnishing a direct connection with

ηC, the ICC for the individual observations. A similar interpretation in longitudinal studies is possible
if the ‘replicate set’ is taken to require new observations at the same times on the same subjects rather
than a set of measurements on new subjects.

In all cases we refer to R as the cluster-mean correlation (CMC). In general 0≤R≤1 and large values
of R (i.e. close to 1) are possible even in cross-sectional studies with a small ICC (ηC) for the individual
observations. This feature is illustrated in Figure 2.
2.3. A precision formula

The performance of the design can be identified with the precision of the best linear unbiased estimate
(BLUE) of the treatment effect θ in model 1, with known variances. The BLUE under model 1 is also the
BLUE under the Hussey and Hughes model 2, so that the following result can be applied:

(Precision of the effect estimate) Under the model in 2 the BLUE of θ has precision given by:

Π ¼ var θ̂
� ��1

¼ KT

σ2 1� ρð Þ� aD � bDR T; ρð Þð Þ (3)
Figure 2. The cluster-mean correlation (R) as a function of cluster-size (M=Tm) in cross-sectional studies with
individual-observation ICC (ηC) = 0.001, 0.01, 0.05, 0.10, 0.20.

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2149–2166
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whereR T; ρð Þ ≡ Tρ
1þ T�1ð Þρ is the CMC and aD and bD are constants, specific to the particular design D, that

depend on the distribution of the treatment indicator Jij over the units in the study.
Specifically we have

aD ¼ 1
TK

∑
T

j¼1
∑
K

i¼1
Jij � J•j
� �2

and

bD ¼ 1
K

XK
i¼1

Ji• � J••
� �2

;

making use of the ‘dot-bar’ notation, so that Ji• means 1
T

XT
j¼1

Jij and J•• means 1
TK ∑

T

j¼1
∑
K

i¼1
Jij.

In the language of the analysis of variance, aD is the ‘within-columns’ variance of the binary variable
Jij, and bD is the ‘between-rows’ variance of Jij, under a probability model in which equal weight is
assigned to each point of the (i,j) lattice. The result 3 is established in Appendix A under the conditions
of model 2, and provides a straightforward method to calculate the precision for any configuration of Jijs.

The argument in appendix also shows that the precision expression 3 holds for a model with linear
constraints on the tj parameters, provided that the resulting model is rich enough to represent an initial
level, together with a separate time-effect for each uptake point. If the design is represented as in Figure
1, the minimum requirement is a separate time parameter for each column.

(Extension to fixed cluster effects). If the cluster effects (γi) are treated as fixed, the precision of the
estimate of θ is recovered by setting R(T,ρ) = 1 in expression 3.

The result 3 is formally equivalent to an expression given by Hussey and Hughes [11]. However,
these authors do not expose the important relationship with the CMC.

2.4. Precision for some particular designs

The design coefficients aD and bD in 3 are presented for some particular designs in Table I below. The
calculations are outlined in Appendix B. In some cases these expressions apply strictly only if certain
divisibility conditions on T and K are met. For example, the results for the g-step stepped-wedge design
require that T be a multiple of (g+1), and K a multiple of g. Where a required condition does not hold,
the results may be regarded as approximations whose validity improves in larger studies.

Cluster Cross-Over design (CXO): For this design it is assumed that both K and T are even. Initially
there are K/2 intervention clusters and K/2 control clusters. Halfway through the study each cluster
crosses over to the alternative condition.

Parallel Design (PD): This is a classic design for a cluster-randomised trial. An even number of
clusters is assumed, equally divided between treated and control conditions.

Delay-Control Design (DCDp,q,r): A parallel layout runs only for a proportion q of the study duration,
preceded by a period (proportion p) in which all clusters remain in the control condition, and followed by
a period (proportion r) in which the treatment is present in all clusters (p+q+ r=1). The PD (= DCD0,1,0)
Table I. Design coefficients for some selected designs. These determine the precision using equation 3 and
the design effect using equation 5. The final column represents the asymptotic relative efficiency (ARE) of the
design (compared to CXO) when the number of observations is large.

Design (D) Example 4aD 4bD ARE (T→∞) = 4aD� 4bD

Cross-Over (CXO) Figure 1a 1 0 1
Parallel Design (PD) Figure 1b 1 1 0
Delay-Control Design
(DCDp,q,r)

Figure 1c q q2 q(1� q)

Stepped-Wedge (SWg) Figure 1d 2
3 1� 1

g

� �
1
3 1� 2

gþ1

� �
1
3 1� 2

g gþ1ð Þ
� �

Modified Stepped-Wedge
(MSWg)

Figure 1e
(middle 4 clusters)

2
3 1� 1

g2

� �
1
3 1� 1

g2

� �
1
3 1� 1

g2

� �
Hybrid (βHg) Figure 1e 1� β2

3 1þ 2
g2

� �
1� β

3 2þ 1
g2

� �
β
3 2þ 1

g2 � β 1þ 2
g2

� �n o

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2149–2166

2153



A. J. GIRLING AND K. HEMMING

2154
and the ANCOVA design [12] (= DCD0.5,0.5,0) are covered as special cases. The design coefficients (aD,
bD) depend only on the proportion of time (q) occupied by the parallel layout.

For both the PD and the DCD it is possible to vary the proportion of control clusters within the
parallel layout from the 50% assumed here. The effect would be to reduce both design coefficients –
and hence the precision – by the factor 4s(1� s)≤1 where s is the (new) proportion of control clusters.

Stepped-Wedge design with g steps (SWg): This is the ‘standard’ stepped-wedge design. The clusters
are divided into g equal groups. Initially all clusters are untreated. The uptake time is the same for all
clusters in any one group. In the first group this occurs when a fraction of the total study time equal
to 1/(g+1) has elapsed and T/(g+1) observation time-points have passed. The uptake times in the
remaining groups occur at time-fractions 2/(g+1), 3/(g+1),…, etc. until all clusters are exposed. During
the final part of the study (from time-fraction g/(g + 1) to the end) all clusters are exposed to the
intervention.

Modified SW design (MSWg): In this modification of the SWg design the time period before the first
(and after the last) uptake point is equal to one half of the time between consecutive uptake points – as in
the middle four clusters in Figure 1e. Because aMSW�bMSWR>aSW�bSWR for all values of R, the
MSWg design generates greater precision than the conventional SWg design, although the relative
advantage diminishes as g increases.

Stepped-Wedge/Parallel Hybrid designs (βHg): These designs achieve the maximum precision over
stepped designs with overall balance between treated and control observations, a result established
below in section 3. In the βHg hybrid, Kβ clusters are assigned to a modified stepped-wedge layout with
g uptake points, and the remaining K(1�β) clusters to a concurrent parallel layout.

2.5. Precision-ratio plots

Using the CXO as a reference design, the efficiency of any stepped design, D, may be defined as a
precision ratio from 3:

Relative Efficiency of design D;
ΠD

ΠCXO
¼ 4 aD � bDR T; ρð Þð Þ: (4)

The performance of the design when T is large is captured by the asymptotic relative efficiency (ARE)
as R→1 (= 4aD�4bD) as given in the final column of Table I. The fact that this is zero for the PD
reflects the generally poor performance of parallel cluster trials with large cluster sizes [16]. The other
designs all have non-zero AREs so that there is no upper limit to the precision that can be obtained
by increasing the number of observations in each cluster.

Figure 3 shows the precision-ratio as a function of the CMC, R, for the designs in Figure 1. When R is
small, the PD outperforms the other designs, but is the worst design when R=1. The SW4 design per-
forms relatively well for large R but is dominated by MSW4. Similarly DCD with q=2/3 is dominated
by 0.5H4. Over the range 3

11 ≤R≤ 9
11=

�
the 0.5H4 design gives the best precision among these designs.

Outside this range PD (for smaller R) or MSW4 (larger R) are best. If the value of R is uncertain the 0.5H4

design might be preferred as a compromise design, at least on statistical grounds, because it performs
reasonably well throughout the range.

This approach can inform the choice between any two candidate designs: for example, that between a
stepped-wedge and parallel design [14,16–22]. From 4 the stepped-wedge is the more efficient only if
R> r0 where the threshold r0 satisfies

aSW � bSWr0 ¼ aPD � bPDr0:

This implies that r0 ¼ 1
2 1þ 1

g

� �
for a standard SWg design, and r0 ¼ 1

2 1þ 3
1þ2g2

� �
if an MSWg is

used. In general, a SW design – of either type – can be better than a PD only if the cluster-mean
correlation R exceeds ½. In a cross-sectional study, where the ICC of a single observation (i.e. ηC) is
generally small, this translates into a useful rule of thumb: to prefer the SW option only if the ICC is
greater than 1/M.
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2149–2166



Figure 3. Precision–ratio plots. The relative precision of some stepped designs compared to the cross-over
design is plotted against the cluster-mean correlation parameter R. Designs 1a to 1e are those illustrated for eight
clusters in Figure 1. The Modified SW design corresponds to two copies of the middle four clusters in Figure 1e.
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2.6. Design effects

A design effect is the ratio of the precision of the treatment effect estimate in an individually randomised
trial (RCT) to that in the cluster trial, and is convenient for sample size calculations. For a CXO design
under model 1 the components ci and sl(i) cancel out in the treatment-effect estimate and the design effect
is just mηCT+ ηST. It follows that the design effect for a general design D is given by

Design Effect ¼ mηCT þ ηSTð Þ�ΠCXO

ΠD
¼ mηCT þ ηST

4 aD � bDRð Þ : (5)

For a parallel cross-sectional (PD) design with M observations per cluster and no cluster-level time
effects (ηS= ηCT=0) the formula 5 becomes (1� ηC)/(1�R) and yields the well-known design effect
[1+ (M�1)ηC] [1]. Published stepped-wedge design effects [14] can also be obtained in this way.

3. Finding the best design

In many traditional designs the intervention is introduced (into some of the clusters) at a single time-
point in the study. This is not true of stepped-wedge designs for which a number (g) of different uptake
times will be required. Normally these are equally spaced in time, yet they can be chosen so as to opti-
mise the performance of the design. To this end, we assume that the study will involve T observation
times within each of K clusters with observations Yij generated by the model 2. The problem is to choose
a configuration of uptake times in the clusters to achieve the best possible precision for the treatment
effect estimate. Note that it is possible for an uptake time to occur before the start of the study (in a pure
‘treated’ cluster), or, notionally, after it has finished (in a pure ‘control’ cluster).

Mathematically we must find the values of the Jijs (= 0 or 1) that maximise the expression for Π in 3,
subject to the irreversibility constraint that j> j′⇒ Jij≥ Jij′ for all i. First suppose that the clusters have
been numbered according to the order in which their uptake times occur (so that i< i′⇒ Jij≥ Ji′j for all j).
This ordering has been implicitly assumed in the examples in Figure 1 above, with the cluster index i
taken as increasing in the upwards direction and the time index j as increasing from left to right. Also
it is convenient to map the design points (i,j) on to a lattice in the x-y plane by setting

xj ¼ 1
T

j� T þ 1
2

� �
; j ¼ 1; 2;…; T; yi ¼

1
K

i� K þ 1
2

� �
; i ¼ 1; 2;…;K:

The x–y design lattice is contained in a unit square centred on the origin (see Figure 4).
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2149–2166



Figure 4. A best balanced design. The boundary line (of slope R) divides the treated (●) from the untreated (○)
points, and contains the uptake points in the ‘stepped-wedge’ clusters. If T/(K� 2P) is an even integer, the design

is a Hybrid design as defined above in section 2.
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With these definitions an alternative expression to 3 for the precision is given by

Π ¼ var θ̂
� ��1

¼ 1
σ2 1� ρð Þ 2∑

i;j
Rxj � yi
� �

Jij � R J•• � 1
TK

J2••

� �( )
; (6)

a result derived in Appendix C. Unlike 3 (which holds for any configuration of the Jijs) the expression 6
is valid in the presence of the irreversibility constraint, and where the clusters follow the suggested
ordering.

3.1. An algorithm for optimal designs

Suppose that J• • (the total number of treated time-points over all clusters) is fixed. Then, in view of 6, the
precision is maximised by nominating treated points one by one, beginning with (i, j) = (1,T) and in
decreasing order of the quantity (Rxj – yi), until exactly J• • are included in the treated set. Any ambiguity
in the ordering caused by tied values can be resolved arbitrarily because tied points contribute the same
amount to the expression in 6. In geometrical terms this is achieved by moving a straight line of slope R
upwards until exactly J• • points lie on or beneath it (as, for example, in Figure 4). In this way designs
with the best precision are determined for each of the (TK�1) possible values of J• •. The overall
optimum can then be obtained by maximising the best precision over J• •, using 6. This algorithm is
easily implemented in a spreadsheet programme and can assist with the design of practical studies.

3.2. Best balanced designs

Practical experience with this algorithm shows: (i) that the optimal design is not always unique; and (ii)
that when the number of design points is an even number there may still be no optimal design with over-
all balance between the treatment arms – i.e. for which J•• ¼ 1

2TK. Notwithstanding (ii) it turns out that
the design with greatest precision among those that satisfy the balance condition (the best balanced
design, or BBD) is often approximately optimal, especially when both T and K are large.

The BBD can be determined from the algorithm above by setting J•• ¼ 1
2TK.

(Best Balanced Design) Suppose that the number of design points, TK, is even. A design in which
the treated points consist of those for which yi<Rxj together with half of the points (if there are
any) for which yi=Rxj is a best balanced design.
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In such a design, the boundary between the treated and untreated lattice-points is a straight line
through the origin with slope R. An example is shown in Figure 4. The first group of P clusters receive
the intervention at the start of the study (i.e. they are ‘Treated’ clusters) where P is the label of the last
cluster for which the point (x1,yP) lies on, or just below, the boundary line y=Rx. This condition trans-
lates into the inequalities:

KR 1� 1
T

� �
� 1≤K � 2P≤KR 1� 1

T

� �
þ 1:

The last P clusters are ‘control clusters’ and do not receive the intervention at all. The K�2P clusters
in the middle participate in a genuine stepped study with equal intervals of time between the uptake
points. In some cases the design for these middle clusters corresponds exactly to a MSW(K� 2P) design,
though this requires that T=2(K�2P)l for some integer l, where l is the number of time-points in each
cluster before the first uptake time (and 2l is the number between two successive uptake times). In the
general case, the correspondence to the MSW design is only approximate.

This result shows that the best balanced design when T is large approximates to a hybrid design RHRK

in which a stepped-wedge layout is followed in a proportion of the clusters equal to the CMC, R, and a
parallel layout in the remaining clusters.

3.3. Examples of optimal design

Consider the design of a study in 10 clusters over six observation times. The design lattice contains 60
(=10 × 6) points. The observations within each cluster are either unique measurements on 6m separate
subjects, or they could be six repeat measurements on the same m subjects. The value of m need not
be separately specified because the statistical design issues depend only on the CMC, R.

Best balanced designs for this problem are shown in Figure 5 for the full range of R-values from 0 to 1.
For each design the range of validity includes both end-points, so that, for instance, design (a) – a parallel
layout – and design (b) are both BBDs when R=0.12. The BBDs are unique except at these isolated
end-points. In a majority of cases the BBD is also an optimal design. Exceptions include design (b) for
R=0.2, and design (h) for R=1. In each case conversion to optimality is achieved by modifying the
treated set either to exclude the circled point or to include the boxed point. By repeated application of
the optimality algorithm with R=0(0.001)1 it was found that the BBD is optimal in 77.5% of cases,
and achieved a relative efficiency of at least 98.83% for all values of R, with the worst case at
R=0.6. The mean relative efficiency of the BBDs was 99.92% – a minimal loss of efficiency compared
to the true optimum.

The case with R=0.6 is complex: designs (d), (e), and (g) are just three out of 20 possible BBDs in
this case. The other seventeen BBDs are obtained by choosing different sets of three treated points from
the six design points along the diagonal indicated in Figure 5(g), whose slope (=0.6) exactly matches the
value of R. Design (g) has been singled out here because it is an example of an exact hybrid design
(0.6H3). However, none of these 20 BBDs is fully optimal when R=0.6. An optimal design in this case
omits all six diagonal points from the treated set.

All the examples shown include pure ‘control’ clusters and pure ‘treated’ clusters as part of the
optimal design. This is a common feature of optimal stepped designs as defined here, but is specifically
excluded in recent work by Lawrie et al. [15].

3.4. Admissible designs for large studies

When T and K are large, the precision for the best balanced design approximates to that of the overall
optimal design, with an error of small order in the quantity min(T,K). This is shown in Appendix D–
by means of an integral approximation to 6. It follows that the efficiency (relative to the CXO) of the
overall optimal design for a large study is that of a hybrid design in which g is large (i.e. RH∞). From
Table I this is

1� Rþ 1
3
R2: (7)

This quadratic is plotted in Figure 6 and represents the boundary of the feasible region for stepped
designs. The admissible designs (i.e. those that are not dominated by any other stepped design) are
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Figure 5. BBDs for 10 clusters over six time-points. The boxed and circled points in (b) and (f) relate to overall
optimal designs for particular R-values as discussed in the text.
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the hybrid designs, and generate tangents to the boundary curve. The parallel (R=0) and stepped-wedge
(R=1) designs are both admissible. The region of the unit square in Figure 6 above the quadratic curve is
not attainable by any stepped design.

Hybrid designs do not appear to have been widely used in practice. We are aware of only one example
[23]. However they offer an appealing compromise between the parallel and stepped-wedge designs
given that these can offer optimal precision only at the extreme ends of the range for the cluster-mean
correlation (i.e. when R=0 and 1, respectively). An appropriate hybrid design can improve the precision
of the treatment estimate in all other cases.

3.5. Minimax designs

Where reliable information about the CMC is not available it makes sense to choose an admissible
design that minimises the maximum possible loss of precision relative to the optimal design. For large

studies this is a hybrid design eβH∞ (the ‘minimax hybrid’) where eβ, the proportion of SW clusters, is
given by

eβ ¼ argmin
β

max
R

1� 1� 1
3β

2 � R 1� 2
3β

� �
1� Rþ 1

3R
2

( )
:

At the minimax solution the relative loss of precision is the same at both ends of the range for R (i.e. at

R=0 and R=1) because of the convexity of the quadratic boundary curve in Figure 6. So eβ satisfies
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Figure 6. The relative efficiency of cluster designs for large studies as a function of the cluster-mean correlation
R. Three feasible (and admissible) stepped designs are shown: PD, SW (solid lines) and Minimax – i.e. 0.634H∞ –
(broken line). The shaded region is prohibited by the irreversibility constraint and bounded by the quadratic curve

1� Rþ 1
3R

2.
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1�1
3
eβ 2

1 ¼ 1�1
3
eβ 2

� 1�2
3
eβ� �

1�1þ1
3

, from which eβ ¼ 1
2 3� ffiffiffi

3
p� � ¼ 0:634…. The precision of the minimax design is at

least 1� 1
3
eβ2 ¼ 1

2

ffiffiffi
3

p
(≈86.6%) of the available precision at all values of R.

In practice a near-minimax design can be constructed if about 63.4% of the clusters are allocated to a
stepped-wedge layout with the remainder in a parallel layout. The extent to which this can be achieved
depends on the number of clusters in the study. Ideally, 63.4% of K should be close to a whole number
of clusters (the SW component), with the residue equal to an even number (for the Parallel component).
Some possible near-minimax designs are shown in Table II.
Table II. Performance of some near-minimax hybrid designs alongside minimax (0.634H∞), PD and SW∞ for
comparison. The relative precisions are computed with reference to the best possible designs in large studies.
When R= 0 this is a parallel design (PD), when R= 1 it is a MSW with a notionally infinite value of g.

Design label No. of
parallel
clusters

No. of
SW

clusters

Total no.
of clusters

Proportion of
SW clusters (β)

No. of
SW uptake
points (g)

Relative
precision
at R = 0

Relative
precision
at R= 1

Worst relative
precision
(WRP)

1 2 3 5 0.600 3 85.3 82.7 82.7
2 2 4 6 0.667 4 83.3 87.5 83.3
3 4 6 10 0.600 6 87.3 83.7 83.7
4 4 7 11 0.636 7 86.0 86.4 86.0
5 4 8 12 0.667 8 84.7 88.5 84.7
6 6 9 15 0.600 9 87.7 83.9 83.9
7 6 10 16 0.625 5 85.9 85.3 85.3
8 6 10 16 0.625 10 86.7 85.8 85.8
9 6 12 18 0.667 6 84.4 88.3 84.4
Minimax 0.634 ∞ 86.6 86.6 86.6
PD 0 100.0 0.0 0.0
SW∞ 1 ∞ 66.7 100.0 66.7
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Any of the designs in Table II can be ‘scaled up’ to larger numbers of clusters (rows) and observation
periods (columns) without the affecting the precision relative to the CXO design, which can depend only
on β and g. The best performance in the table is achieved by design 4, illustrated in Figure 7. Note that
the 50:50 Hybrid in Figure 1e achieves a worst-case relative precision (WRP) of 75%. Even the simplest
five-cluster design in the table (design 1) achieves a WRP of nearly 83%. This design was encountered
above (Figure 5(g)) as a BBD for the case K=10, T=6.

3.6. Design performance when R is uncertain – a simulation study

In practice the likely performance of a chosen design depends on the degree of uncertainty in the prior
estimate of the CMC. This was investigated using a class of prior distributions for R of the form:

log
R

1� R eN log
R0

1� R0
; τ2

� �

where R0 is the median CMC value, and prior uncertainty is characterised by the variance parameter τ2.
Values of τ2 were chosen to correspond to three different coefficients of variation of the quantity
R/(1�R): 0.25 (low uncertainty); 0.5 (medium uncertainty); and 1.0 (high uncertainty). In view of the

relation log R
1�R ¼ logT þ log ρ

1�ρ ¼ logM þ log ηC
1�ηC

for a cross-sectional study
h i

the prior is consis-

tent with a similar level of uncertainty for ρ (or ηC). In particular, this analysis applies directly to the
case of a cross-sectional study with uncertain ICC.

Table III shows the results of a simulation study for the distribution of the relative precision of some
particular design-choices compared to the BBD at the true value of R. Centiles from the distribution are
displayed, alongside the WRP. The designs considered are: (i) BB0 – the best balanced design at the
median-estimate, R0; the near-minimax hybrid design 6H3; (iii) Mmx – the true-minimax design for large
studies (= 0.634H∞). Two cases are shown: (i) a ‘small’ study with 10 clusters and six observation times
(for which the BBDs are shown in Figure 5); and (ii) the limiting case of large studies (T, K→∞), for
which the BBDs are hybrid designs.

The BB0 designs show excellent relative precision for medium or low uncertainty about R: the median
(cent50) relative precision is at least 99% and the 5th centile as least 95% in all cases. Under higher levels
of uncertainty there is some deterioration in performance, even in large studies. Even so the 5th centile
still exceeds 90% in all tabulated cases. In general, performance is somewhat better for values of R0

towards the ends rather than the middle of the range.
Nevertheless the low values of the WRP for many of the BB0 designs (it can be as low as 0 when R0 is

small) highlight the need for caution if the prior information is unreliable. In this case a more robust
choice is the near-minimax design .6H3. In the small study its WRP of 85.3% guarantees acceptable per-
formance even when the CMC is very low. In large studies, it is inferior to the true minimax design
Figure 7. A near-Minimax design with 11 (groups of) clusters (row 4 from Table II). It achieves at least 99.25%
of the precision of the large-study minimax design (0.634H∞) for any value of R.
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Table III. Performance of best balanced and near-minimax designs under prior uncertainty for the CMC, R,
(a) for 10 clusters with six observation times and (b) in the limiting case of large studies. The prior median is
denoted by R0, and CV is the coefficient of variation of the quantity R/(1�R). the designs considered are: BB0

– the BBD at R0;
.6H3 – a near-minimax hybrid design (design 1 in Table II); Mmx (= .634H∞) – the minimax

design in large studies. Entries are the centiles (from 9999 simulations) of the relative precision of the stated
design compared to the BBD at the true value of R. WRP is the relative precision at the least favourable value
of R (=0 or 1 in all cases).

(a) K = 10, T = 6 (b) Limiting case: T, K→∞

CV= 0.25 CV= 0.5 CV = 1.0 CV = 0.25 CV= 0.5 CV = 1.0

BB0
.6H3 BB0

.6H3 BB0
.6H3 BB0

.6H3 Mmx BB0
.6H3 Mmx BB0

.6H3 Mmx

R0 = 0.1 cent50 1.000 0.884 1.000 0.884 1.000 0.884 1.000 0.881 0.895 1.000 0.881 0.895 0.999 0.881 0.895
cent25 1.000 0.879 0.998 0.876 0.994 0.871 1.000 0.877 0.891 0.999 0.874 0.888 0.998 0.870 0.883
cent10 0.998 0.876 0.993 0.870 0.978 0.864 1.000 0.874 0.888 0.998 0.869 0.883 0.991 0.864 0.877
cent5 0.997 0.874 0.990 0.868 0.962 0.861 0.999 0.872 0.886 0.996 0.867 0.880 0.981 0.861 0.874
cent1 0.994 0.871 0.978 0.864 0.910 0.858 0.998 0.870 0.883 0.991 0.863 0.877 0.944 0.858 0.871
WRP 0.000 0.853 0.000 0.853 0.000 0.853 0.190 0.827 0.866 0.190 0.827 0.866 0.190 0.827 0.866

R0 = 0.3 cent50 1.000 0.936 1.000 0.936 0.997 0.936 0.999 0.931 0.949 0.998 0.931 0.949 0.994 0.931 0.949
cent25 1.000 0.927 0.996 0.921 0.985 0.912 0.998 0.924 0.941 0.994 0.917 0.933 0.985 0.907 0.922
cent10 0.998 0.921 0.985 0.910 0.959 0.893 0.997 0.917 0.933 0.988 0.905 0.920 0.959 0.889 0.903
cent5 0.995 0.917 0.977 0.903 0.928 0.884 0.995 0.913 0.929 0.981 0.899 0.914 0.928 0.881 0.895
cent1 0.988 0.911 0.959 0.893 0.837 0.871 0.991 0.906 0.922 0.960 0.888 0.902 0.853 0.870 0.883
WRP 0.472 0.853 0.472 0.853 0.472 0.853 0.510 0.827 0.866 0.510 0.827 0.866 0.510 0.827 0.866

R0 = 0.5 cent50 1.000 0.977 1.000 0.977 0.997 0.971 0.999 0.968 0.990 0.997 0.967 0.989 0.990 0.961 0.984
cent25 1.000 0.969 0.997 0.963 0.975 0.952 0.997 0.962 0.983 0.990 0.956 0.977 0.973 0.941 0.962
cent10 1.000 0.963 0.979 0.951 0.932 0.925 0.994 0.956 0.977 0.980 0.944 0.962 0.949 0.919 0.938
cent5 0.998 0.959 0.963 0.941 0.902 0.913 0.992 0.953 0.973 0.973 0.936 0.954 0.928 0.907 0.925
cent1 0.985 0.953 0.932 0.924 0.846 0.893 0.987 0.945 0.964 0.954 0.920 0.937 0.881 0.888 0.903
WRP 0.694 0.853 0.694 0.853 0.694 0.853 0.750 0.827 0.866 0.750 0.827 0.866 0.750 0.827 0.866

R0 = 0.7 cent50 1.000 0.985 1.000 0.983 1.000 0.975 0.999 0.969 0.997 0.997 0.968 0.995 0.991 0.961 0.988
cent25 1.000 0.980 1.000 0.973 0.980 0.960 0.998 0.963 0.993 0.991 0.957 0.986 0.976 0.940 0.969
cent10 1.000 0.974 0.985 0.964 0.951 0.935 0.995 0.957 0.987 0.983 0.942 0.974 0.957 0.914 0.946
cent5 1.000 0.971 0.972 0.959 0.934 0.921 0.993 0.953 0.984 0.977 0.933 0.965 0.944 0.899 0.932
cent1 0.989 0.966 0.949 0.941 0.895 0.901 0.989 0.945 0.977 0.963 0.916 0.950 0.915 0.875 0.911
WRP 0.813 0.853 0.813 0.853 0.813 0.853 0.837 0.827 0.866 0.837 0.827 0.866 0.837 0.827 0.866

R0 = 0.9 cent50 1.000 0.926 1.000 0.926 1.000 0.926 1.000 0.901 0.936 0.999 0.901 0.936 0.998 0.901 0.936
cent25 1.000 0.918 1.000 0.911 1.000 0.901 0.999 0.892 0.928 0.998 0.885 0.921 0.995 0.875 0.912
cent10 1.000 0.911 0.998 0.900 0.979 0.887 0.999 0.885 0.921 0.996 0.873 0.910 0.985 0.857 0.895
cent5 1.000 0.907 0.991 0.894 0.966 0.880 0.998 0.881 0.918 0.993 0.867 0.904 0.972 0.850 0.888
cent1 0.999 0.902 0.978 0.887 0.933 0.873 0.997 0.875 0.912 0.984 0.857 0.895 0.933 0.841 0.880
WRP 0.720 0.853 0.720 0.853 0.720 0.853 0.730 0.827 0.866 0.730 0.827 0.866 0.730 0.827 0.866
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(0.634H∞) by less than 4 percentage points (i.e. 0.04) at every centile of the distribution of relative
precision. Improved near-minimax designs are available in Table II.

4. Comments

The mixed effects model 1 is a vehicle to express a certain correlation-structure with additive fixed ef-
fects for time and treatment, including subject-level effects and variation within clusters over time. This
structure could be further enriched – for example by using time series models for the development of
subject and cluster effects over time, or by using cluster by treatment interaction terms to model varia-
tion in treatment effects across clusters. In its current form the model expresses the tension between
cluster-effects and time-effects for the design of cluster studies in a form susceptible to exact analysis.
At the design stage, the correlations are assumed known and, following the strategy of Hussey and
Hughes [11], we use the model to compute the precision of unbiased linear estimates of a fixed treatment
effect. This approach is moment-based and makes no explicit distributional assumption, although it is
clearly justifiable when the data are normally distributed with the prescribed correlation-structure. In
some other cases, where central limiting arguments can be deployed, it approximates to the best
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2149–2166



A. J. GIRLING AND K. HEMMING

2162
approach – for example, for binary outcomes when m is large. The additivity requirement in the model
can be relaxed within a generalised linear mixed model, with fixed and random effects on a transformed
scale. Then our results may still apply approximately if these effects are relatively small, permitting a
linear approximation on the natural scale.

Several aspects of this work offer potential applications in the design of both cross-sectional cluster stud-
ies (where each subject provides a single outcome measurement) and of cohort designs (where repeated
measures are taken on the same subjects). First, the expression for precision in terms of the CMC leads
to a convenient graphical tool for comparing the performance of competing study designs, and provides
a simple approach to the computation of design effects which are useful in sample size calculations. Second,
the class of hybrid designs emerge as admissible designs, at least in large studies, in the sense that any de-
sign not of this form is (weakly) dominated by at least one design that is. Cross-sectional studies can often
be conceptualised as a series of observations taken over a large number of weeks or months, in which case
the hybrid results may be directly applicable. Third, a simple search algorithm is proposed for finding op-
timal designs when the ‘large-study’ results are inapplicable. This is often the case in cohort studies, where
the number of observation times is limited to the (usually small) number of repeat measures on each subject.

The precise nature of the optimal design depends on the value of the CMC which, in common with the
traditional ICC, may be difficult to predict with certainty. An alternative strategy is to look for a design
that reduces the possible loss of precision because of an unknown CMC. For this purpose the near-
minimax hybrids of section 3.5 are offered as practical alternatives to more traditional designs.

Appendix A: The precision of the treatment effect estimate (equation 3)

We outline a derivation for the precision of the BLUE for θ in model 2. Without loss of generality, take
σ2 = 1.

Consider a transformation of the observation matrix Y (with elements Yij) given by

UT ¼ HYT

where H is a T×T orthogonal matrix (i.e. HTH=IT) with first row given by 1ffiffiffi
T

p 1; 1;…; 1ð Þ. (Throughout
we use the conventional notation that the superscript T denotes matrix transposition. This is not to be
confused with T, the time-dimension in the model.) Also define the K×T matrices Z and η by
ZT=HJT, ηT=HεT. Then a model for the transformed observations corresponding to 2 is

Ui1 ¼
ffiffiffiffi
T

p
γi þ Htð Þ1 þ θZi1 þ ηi1; i ¼ 1;…K:

Uij ¼ Htð Þj þ θZij þ ηij; i ¼ 1;…K; j ¼ 2;…; T
(A1)

where {ηij; 1≤ i≤K, 1≤ j≤T} is a set of uncorrelated random variables with mean zero and variance
(1� ρ). The orthogonality of H implies that the elements of the matrix U are uncorrelated with one
another. Thus, as j varies from 1 to T, the expressions in A1 represent a series of T linear regression
models for Uij on Zij, with intercepts (Ht)j and common slope θ. For j = 1, the error variance is
var

ffiffiffiffi
T

p
γi þ ηi1

� � ¼ Tρþ 1� ρ; for 2≤ j≤T, the error variance is (1� ρ). The estimation problem for
θ reduces to that of finding the common slope in a set of uncorrelated regressions. The precision of
the pooled estimate for θ is just the sum of the precisions of the BLUEs in the separate models. In a
simple linear regression model with explanatory variables xi the precision of the slope estimate is
∑ xi � xð Þ2÷ Error Varianceð Þ. Hence the precision of the pooled estimate is given by:

1
Tρþ 1� ρ

∑
K

i¼1
Zi1 � Z•1
� �2 þ 1

1� ρ
∑
T

j¼2
∑
K

i¼1
Zij � Z•j

� �2
¼ 1

1� ρ



� Tρ
Tρþ 1� ρ

∑
K

i¼1
Zi1 � Z•1
� �2 þ ∑

T

j¼1
∑
K

i¼1
Zij � Z•j

� �2�
¼ 1

1� ρ



∑
T

j¼1
∑
K

i¼1
Zij � Z•j

� �2 � R∑
K

i¼1
Zi1 � Z•1
� �2�

¼ 1
1� ρ

∑
T

j¼1
∑
K

i¼1
Jij � J•j
� �2 � R∑

K

i¼1
T Ji• � J••
� �2�

; A2ð Þ
"
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from which 3 follows. The last equality holds because Zi1 ¼
ffiffiffiffi
T

p
Ji•, and

∑
T

j¼1
∑
K

i¼1
Zij � Z•j

� �2 ¼ tr ZT IK � 1
K
1K1

T
K

� �
Z

h i
¼ tr HJT IK � 1

K
1K1

T
K

� �
JHT

h i
¼ tr HTHJT IK � 1

K
1K1

T
K

� �
J

h i
¼ tr JT IK � 1

K
1K1

T
K

� �
J

h i
¼ ∑

T

j¼1
∑
K

i¼1
Jij � J•j
� �2

:

Fixed cluster effects

If the cluster effects γi are treated as fixed, the regression model for Ui1 in A1 is not identifiable and does
not yield an estimate for θ. Its contribution to the precision of the pooled estimate is zero, which is
tantamount to setting R=1 in the expression (A2).
Time-effects modelling

The model in 1 has one parameter for each of the T observation times in the study. However, the argu-
ment can be extended to show that the expression (A2) holds under more restrictive time-effects models.
To be precise, if the T×1 vector of time effects is modelled as t=Xβ for some design matrix X, where β
is a vector of unknown parameters, the result (A2) holds provided that the vector JT1K (whose jth
element is J• j) lies in the column-space of X. In a stepped design this amounts to the requirement that
the model is rich enough to include a separate time parameter for any period in which no cluster expe-
riences an uptake event. For the designs in Figure 1, it means that (A2) remains true provided the model
includes at least one time-parameter for each of the columns depicted in the corresponding figure.

Appendix B: Design coefficients for standard designs (Table I)

As indicated in section 2, the design coefficients, aD and bD may be interpreted in terms of variances
generated by a uniform probability measure on the lattice points {(i, j); 1≤ i≤K, 1≤ j≤T}.
Under this probability measure we have aD=Ej vari(Jij|j)≡ varijJij�varjEi(Jij|j) and bD ¼ variJi• ¼
variEj Jij iÞ ≡ varijJij � Ei varj Jij iÞj

����
.

CXO: The row (i.e. cluster) mean Ji• ¼ 1
2, a constant for all i, and, under the uniform measure on the

lattice points, the conditional distribution of Jij for fixed j is Binomial(1, ½). So, for this design, aBCO ¼ 1
4

and bBCO=0.
PD: Here the distribution of Ji• is Binomial(1, ½), as is the conditional distribution of Jij for fixed j.

Hence aPD ¼ bPD ¼ 1
4.

The following result is useful for calculating coefficients for stepped-wedge and DCD-designs.
2163
Lemma

Suppose that aD and bD are the design coefficients for a design D with layout matrix J containing nJ
columns. Let D′ be the design obtained when J is augmented to include n0 additional columns of zeros
and n1 additional columns of 1 s. This amounts to adding baseline observations and post-implementation
observations in all clusters. Then the design coefficients for D′ are given by aD′=qaD, bD′=q

2bD where
q ¼ nJ

nJþn0þn1
is the proportion of the columns in the new layout occupied by the original matrix J.

To prove this, note that the row means under D′ are given by J′i• ¼ n1þnJJi•
nJþn0þn1

, with variance q2 variJi• ¼
q2bD . Also the variances within the added columns are zero, so that aD′=Ejvari(J′ ij|j) = (1�q) × 0
+qEjvari(Jij|j) =qaD as required.

DCDp,q,r: A straightforward application of the lemma to the case where the (unaugmented) base

design is parallel (PD) shows that aDCD ¼ q
4 ; bDCD ¼ q2

4 .
An important consequence of the lemma is that the design coefficients for any design are unaffected

when initial baseline observation periods are exchanged for post-implementation periods and vice
versa. In either case they depend only on the proportion, q, of time-points devoted to the central part
of the design.
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MSWg: Consider a truncated version of the SWg design in which the first column of control observations
is absent. If there is just one cluster in each group, the corresponding J-matrix is square. For example,

when g=4, J ¼

0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

26664
37775 . In this layout the proportion of post-implementation periods is 1

g

and there are no baseline periods. Hence, from the lemma, the design coefficients will be the same as
those for the corresponding MSW design in which the baseline and post-implementation proportions
are both equal to 1

2g. In the truncated layout, the row and column means are identical, and uniformly dis-

tributed on the set 1
g ;

2
g ;…; g�1

g ; 1
n o

. This distribution has variance 1
12 1� 1

g2

� �
¼ bMSW. The proportion

of 1s in J is 12 1þ 1
g

� �
so that varijJij ¼ 1

4 1� 1
g2

� �
. HenceaMSW ¼ 1

4 1� 1
g2

� �
� 1

12 1� 1
g2

� �
¼ 1

6 1� 1
g2

� �
.

SW: The coefficients for SWg can be obtained in a similar way. Here an extra baseline period is added
to the truncated design. Using the lemma, the design coefficients are given by:

aSW ¼ g

gþ 1
aMSW ¼ g

gþ 1
� 1
6

1� 1
g2

� �
¼ 1

6
1� 1

g

� �
and

bSW ¼ g

gþ 1

� �2

bMSW ¼ g

gþ 1

� �2

� 1
12

1� 1
g2

� �
¼ 1

12
1� 2

gþ 1

� �
:

Transposed layouts and hybrid designs

Consider the design layout JT obtained by interchanging the rows and columns of J. The design coeffi-
cients for the transposed layout can be expressed as aDT ¼ π 1� πð Þ � bD and bDT ¼ π 1� πð Þ � aD
where π is the proportion of 1 s in the layout, using the fact that var Jij=π(1�π).

The layout for a hybrid design, βHg, can be written as
Here O and U represent matrices of 0 s and 1 s respectively, and JMSW is the layout for a MSWg

design. Using the MSW coefficients (in conjunction with the result of the lemma) the hybrid design

coefficients are obtained as aH ¼ 1
4 � β2

12 1þ 2
g2

� �
and bH ¼ 1

4 � β
12 2þ 1

g2

� �
.

Appendix C: Derivation of equation 6

First note that the quantities aD and bD that feature in 3 can be expressed as:

TKaD ¼ ∑
K

i¼1
∑
T

j¼1
J2ij �

1
K
∑
T

j¼1
J2•j ¼ J•• � 1

K
∑
T

j¼1
J2•j; since J2ij ≡Jij

� �
;

TKbD ¼ 1
T
∑
K

i¼1
J2i• �

1
TK

J2••

Now assume that the clusters are labelled according to the order in which they receive the intervention.

Then, for any value of j, we have Jij=1 only for the first J•j clusters, whereJ•j ¼ ∑
K

i¼1
Jij is the total number of

clusters that have received the intervention by time j. Similarly, for each value of i, we have Jij=1 only for
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the last Ji• time-points. It follows that ∑
K

i¼1
iJij ¼ ∑

J•j

i¼0
i ¼ 1

2 J•j J•j þ 1
� �

and ∑
T

j¼1
jJij ¼ ∑

T

j¼T�Ji•þ1
i ¼

1
2 Ji• 2T � Ji• þ 1ð Þ. (For the second expression we observe the convention that a sum is null if the lower
limit exceeds the upper limit. This delivers the correct result when Ji•=0.)

Using these expressions we find that

2∑
K

i¼1
∑
T

j¼1
yiJij ¼

2
K
∑
K

i¼1
∑
T

j¼1
i� K þ 1

2

� �
Jij ¼ 1

K
∑
T

j¼1
J•j J•j þ 1
� �� 1þ 1

K

� �
J•• ¼ 1

K
∑
T

j¼1
J2•j � J•• ¼ �TKaD;

and

2∑
K

i¼1
∑
T

j¼1
xjJij ¼ 2

T
∑
K

i¼1
∑
T

j¼1
j� T þ 1

2

� �
Jij ¼ 1

T
∑
K

i¼1
Ji• 2T � Ji• þ 1ð Þ � 1þ 1

T

� �
J•• ¼ J•• � 1

T
∑
K

i¼1
J2i•

¼ TKbD þ J•• � 1
TK

J2••:

Thus TK aD � RbDð Þ ¼ 2∑
i;j

Rxj � yi
� �

Jij � R J•• � 1
TK J

2
••

� �
which, on substituting in 3, gives the

desired result.

Appendix D: Unconstrained optimal design of large stepped studies

It is shown in section 3.1 that the optimal uptake boundary corresponds to a line segment of slope R in
the x–y plane of the form y – Rx= η, for some value of η. Let A(η) be the area of the region in the unit
square below the line segment – i.e. the region occupied by the treated units. Then J• •~TKA(η) and

TKð Þ�1 2∑
i;j

Rxj � yi
� �

Jij � R J•• � 1
TK

J2••

� �( )
þ O

�
min T ;Kð Þ�1Þ ¼ �2∫η�1

2 1þRð Þη′dA η′ð Þ � RA ηð Þ 1� A ηð Þð Þ:

The right-hand side has a turning value when the derivative with respect to η is zero. I.e. when�
2ηA′ (η)�RA′ (η) + 2RA(η)A′ (η) = 0, where A′ ηð Þ ¼ dA ηð Þ

dη > 0.

Dividing through by A′(η) we find that the maximum precision is obtained when

η ¼ A ηð Þ � 1
2

� �
R:

This equation is clearly satisfied when η=0 because A(0) =½, and the solution corresponds to a
balanced design. Detailed consideration of the functional form of A(η) – which is straightforward but
not given here – reveals that the equation has no other root. Thus the optimal design is approximately
balanced when T and K are large, as claimed in section 3.4.
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