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Abstract  

Hexabromocyclododecanes (HBCDs) are a class of brominated flame retardant that 

have found extensive application in consumer products used widely in indoor 

environments. Although uncertainty remains about the human health impacts of 

HBCDs, ingestion of HBCD-contaminated indoor dust has been shown to be a 

particularly significant exposure pathway for young children. Despite this, 

understanding of the mechanisms via which HBCDs transfer from products to indoor 

dust remains incomplete. In this study, an in-house test chamber was used to 

investigate transfer of HBCDs from a treated textile sample to indoor dust via direct 

textile:dust contact. Results were compared with previous data using the same test 

chamber to examine other pathways via which HBCDs transfer from products to dust, 

and highlighted HBCD transfer via direct source:dust contact as being particularly 

important. This novel finding was corroborated by complementary experiments that 

examined HBCD transfer via direct contact, from other treated textiles to three major 

components of indoor dust: artificial indoor dust, soil particles, and cotton linters.  
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Highlights 

Transfer of HBCDs via direct contact between a curtain and dust studied. 

Direct curtain:dust contact led to substantial transfer. 

Transfer is rapid yet source:dust equilibrium not reached after 1 week of contact. 

Results imply regular cleaning of source surfaces may reduce contamination of dust. 

 

*Highlights (for review)
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Introduction 

Hexabromocyclododecanes (HBCDs) are one of the most widely produced classes of 

brominated flame retardants (BFRs) used to flame retard polystyrene foams for 

building insulation, fabrics like furniture covers and curtains, and high impact 

polystyrene casings for electronic equipment (Harrad et al, 2010; Weil and Levchik, 

2007). They are incorporated into products via an   “additive”   process   where   the  

HBCD formulation is physically rather than chemically bound to the 

product/polymer. Consequently, their release into the surrounding environment is 

relatively facile, leading to their ubiquitous presence in indoor air and dust (Harrad et 

al, 2010; Covaci et al, 2006). Concentrations in dust can vary by orders of magnitude 

(Abdallah et al, 2008b) up to 1.1 mg HBCDs g-1 (Allen et al, 2013). Such elevated 

concentrations are of concern, given dust ingestion contributes an estimated 63% of 

the exposure of UK toddlers to HBCDs (Abdallah et al, 2008a). 

 

Currently hypothesized pathways of BFR transfer from products to dust include: (1) 

volatilization of BFRs from products with subsequent partitioning to dust; (2) 

abrasion via physical wear and tear of products, resulting in transfer of particles or 

fibers of the product directly to dust and (3) transfer via direct contact between 

product and dust (Suzuki et al, 2009; Takigami et al, 2008; Wagner et al, 2013; 

Webster et al, 2009). Test chambers constitute a potentially important tool for 

investigating source-to-dust transfer of BFRs. While test chamber studies to date have 

focused largely on contaminant emissions to air to determine specific emission rates 

(SERs) (Rauert et al, 2014a), the mass transfer to dust of phthalates from wall paint 

and vinyl flooring has been investigated in modified test chambers (Clausen et al, 

2004; Schripp et al, 2010). These studies demonstrated phthalate transfer from source 
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to dust occurred via volatilization with subsequent partitioning to dust, and via direct 

source:dust contact. More recently, a test chamber study by two of the current authors 

demonstrated rapid and substantial transfer of PBDEs from a TV casing sample to 

dust (Rauert and Harrad, 2015). 

 

We have reported previously test chamber experiments simulating source-to-dust 

transfer of HBCD via partitioning post volatilization and via abrasion (Rauert et al, 

2014b, 2015). However, to our knowledge, transfer of HBCD via direct source:dust 

contact has hitherto not been investigated.  

 

This study is the first experimental investigation of HBCD transfer to dust through 

direct source:dust contact, using a test chamber and a HBCD-treated curtain as the 

source. Results are compared to previous data reporting HBCD transfer to dust via 

transfer pathways (1) and (2). Moreover, given the lack of previous data concerning 

transfer of HBCDs via direct source:dust contact; we report a series of 

complementary, more detailed follow-up experiments that examine HBCD transfer 

via direct contact, from four different treated textiles to three major components of 

indoor dust: artificial indoor dust, soil particles, and cotton linters.  

 

Materials and Methods 

Experimental Design 

Initial Test Chamber Experiments 

The cylindrical stainless steel test chamber employed to investigate HBCD migration 

from the test curtain to dust is illustrated in Figure 1a. With dimensions of 10 cm 

diameter and 20 cm height, volume of 1570 cm3, and internal surface area of 785 cm2, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Rauert et al 2015 Page 6 of 28 

chamber internal temperature was monitored by a LogTag TRIX-8 temperature data 

logger. An aluminium mesh shelf was placed half way down the chamber. A HBCD 

treated curtain (7 cm x 3 cm rectangle) was placed on a clean glass fiber filter situated 

on the shelf, and a thin layer of previously characterised house dust (Rauert et al, 

2015) placed evenly on top of the curtain (~500 mg). Concentrations of HBCD 

diastereomers in the curtains used in test chamber experiments were 18,000,000 ng g-1 

for α-HBCD, 7,500,000 ng g-1 for   β-HBCD, and 17,000,000 ng g-1 for   γ-HBCD 

(Kajiwara et al, 2013). Dust utilized in test chamber experiments contained low 

concentrations of HBCDs and PBDEs (ΣHBCDs  =  110  ng  g-1 and  ΣPBDEs  =  280  ng  

g-1). The percentage carbon and nitrogen content of this dust was determined, with 

results supplied as supplementary data (Table SD-1). 

 

The chamber was sealed and left at room temperature (22 ± 1 C) for either 24 hours 

or 1 week. Post-experiment dust was gently removed from the source by gentle 

tapping, and homogenized via vortex mixing, ready for analysis. Each time period 

was studied in quadruplicate with duplicate dust subsamples (200 mg) from each 

experiment analyzed for HBCDs. 

  

Follow-up experiments 

Figure 1b illustrates the experimental configuration employed in follow-up 

experiments. Four different kinds of HBCD-treated fabrics including 2 curtains 

(Curtain-1 and -2) and 2 vehicle seat fabrics (Seat fabric-1 and -2) were used. These 

materials  were  manufactured  in  Japan  prior  to  HBCD’s  listing  as  a  persistent  organic  

pollutant (POP) under the Stockholm Convention (Annex A). HBCD concentrations 

in these fabrics ranged from 8,400,000 ng g-1 to 21,000,000 ng g-1 (Table 3). Each 
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fabric material tested was fixed within a rectangular aluminium frame (outer 

dimensions 115 mm x 150 mm) with two windows each 53 mm x 83 mm. Prior to 

each experiment, the test fabric surface was vacuumed to remove small abraded fibers 

to minimize their inadvertent incorporation in the test dust. Three different types of 

test particles were used in follow-up experiments. These were: (1) artificial indoor 

dust (JIS Z 8901 Class 15, see below); (2) fine soil particle (calcined Kanto loam at 

800 ˚C, JIS Z 8901 Class 8, median diameter 6.6–8.6 µm, density 2.9–3.1 g/cm3, 

ignition loss 0–4%); and (3) cotton linters (<1.5 µm in diameter, <1 mm in length) 

(JIS, 2006). The artificial indoor dust was a mixture of test particles, containing 72% 

fine soil particles (JIS Z 8901 Class 8), 23% carbon black (JIS Z 8901 Class 12, 0.03–

0.20 µm, 1.7–1.9 g/cm3) and 5% cotton linters. The fine soil particles used are 

primarily inorganic, with negligible organic matter since they were prepared by 

calcination of loam soil at 800 ˚C. Initial concentrations of HBCDs in the three test 

dust types were all below detection limits.  

 

Approximately 20-50 mg of test dust, soil or lint were placed within a 25 mm 

diameter circle on the surface of the HBCD-treated fabric material in the upper 

window (Figure 1b) using a glass cylinder. Excessive dust was removed by gently 

tapping the reverse side of the aluminium frame. The exposed fabric surface in the 

lower window (Figure 1b) was used as a control without dust. An additional blank 

using dust applied to aluminium foil, instead of a HBCD treated fabric, was also 

conducted. Each frame was then shielded from light with aluminium foil and 

maintained at 28˚C   and   50%   relative   humidity   in   a   thermohygrostat test chamber 

(IG400, Yamato Scientific, Tokyo, Japan). Three experimental durations were 

examined: 1, 4, and 7 days. Transfer of HBCDs to artificial indoor dust was examined 
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for each of the 4 HBCD-treated fabric materials over three experimental durations. In 

contrast, transfer to the fine soil particle and cotton linter samples were examined over 

a single 4 day period for curtains only. Duplicate tests were conducted for Curtain-1 

(all dust types) and Seat fabric-1 (artificial indoor dust only). Following each 

experiment, dust was collected from the surface of each fabric window (with or 

without dust) and from the aluminium foil by a low volume vacuum pump equipped 

with a stainless steel filter holder (KS-25, ADVANTEC, Tokyo, Japan) containing a 

glass fiber filter (GB-100R,  25  cm  diameter,  0.6  μm  pore  size, ADVANTEC, Tokyo, 

Japan). Dust collected was weighed and analyzed for HBCDs.  

 

Determination of concentrations of HBCDs 

Test chamber experiment samples 

Dust from test chamber experiments was analyzed using modified in-house methods 

(Rauert et al, 2015). A detailed description is provided as supplementary data. Method 

blanks run with each batch of samples were conducted by extracting a pre-cleaned 66 

mL cell filled with hydromatrix. For 13C--, -, and -HBCDs, average recoveries 

ranged from 71 to 85%. Accuracy and precision was assessed via replicate analyses 

(n=15) of NIST SRM 2585. Results were compared with indicative values 

(supplementary information, Table SD-2) (Keller et al, 2007). Statistical analysis was 

conducted using SPSS Version 22 with significance levels set at 0.05. 

 

Follow-up experiment samples 

A full description of the methods used to determine HBCDs in follow-up experiments 

is supplied as supplementary data. Method blanks in follow-up experiments were 

conducted in parallel via two types of blank test: (1) a dust blank using aluminium foil 
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instead of HBCD treated fabric to examine cross contamination between test samples; 

and (2) a fabric blank test whereby the fabric was vacuumed in the absence of dust to 

evaluate possible co-removal onto the glass fiber filter of small fabric fibers during 

vacuuming. Concentrations of HBCDs in the dust blank were below detection limits. 

In fabric blank samples, concentrations of HBCDs were about 100 times lower than 

those obtained in the presence of dust.  

 

Results and Discussion 

Test chamber experiments examining HBCD transfer via direct contact between 

source:dust 

Average concentrations of HBCDs in dust (ng g-1) from pre- and post-chamber 

experiments are given in Table 1. Regardless of duration, a clear increase in HBCD 

dust concentrations was observed post-experiment. However, no statistically 

significant difference (p>0.1, independent samples t-test) was observed between 

concentrations after 24 hours (1,500-14,000 ng g-1 ΣHBCDs) and 1 week’s   contact 

(5,200-9,300 ng g-1 ΣHBCDs).  

 

However, replicate chamber experiments conducted over the same experimental 

duration displayed substantial (up to an order of magnitude) differences in 

concentrations of HBCDs in dust post-experiment. Moreover, HBCD concentrations 

varied considerably between sub-samples of dust taken at the end of the same 

experiment. This sizeable intra-experimental variation in HBCD concentrations in 

post-experiment dust made any increase in HBCD transfer between the 24 hour and 1 

week experiments difficult to discern. Hence, these experiments could not evaluate 

reliably whether source-to-dust transfer occurred rapidly and whether equilibrium was 
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reached within 1 week. We believe the variable HBCD concentrations in these initial 

experiments most likely arose from uneven transfer of abraded curtain fibers into dust 

when sampled post-experiment. At the end of each experiment, dust was collected by 

gently brushing/tapping the fabric. This may have caused transfer of friable curtain 

fibers, which if heterogeneously distributed within the dust will cause an 

inhomogeneous distribution of HBCD throughout the dust. This hypothesis is 

supported by Clausen et al (2004) who investigated direct transfer of di(2-ethylhexyl) 

phthalate (DEHP) via contact between treated polyvinylchloride (PVC) pieces and 

dust. The authors suggested vacuuming the dust from the source surface affected the 

transfer of abraded PVC particles treated with DEHP into the dust.  

 

Coupled with this, it is possible dust in contact with the curtain will display a 

heterogeneous distribution of organic carbon. HBCDs sorb more strongly to matrices 

with higher organic carbon content (Abdallah et al, 2012). In the context of source-to-

dust transfer of organic contaminants, a weak correlation between uptake of di-n-butyl 

phthalate and the organic content of the receiving matrix was reported (Schripp et al, 

2010). Consequently, variations in organic carbon distribution throughout the 

receiving dust could partly account for variable HBCD concentrations in dust post-

experiment. To examine this further, the organic carbon content of test chamber 

experiment dust was determined in quadruplicate, revealing an average organic 

carbon concentration of 12.7% with a standard deviation of 2.5% (Table SD-1), 

consistent with a heterogeneous distribution. 

 

Source-to-dust transfer is a function of the fugacity gradient of HBCD in the textile 

surface and dust, if the source:air interface boundary layer is partially absent (Clausen 
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et al, 2004). A fugacity gradient will promote HBCD transfer from the material in 

which HBCD fugacity is high to the material in which its fugacity is lower, and the 

stronger this fugacity gradient, the more rapid the mass transfer. The fugacity is a 

product of the fugacity capacity of the material and the HBCD concentration in the 

material. Hence, the fugacity gradient between the two materials is driven largely by 

the HBCD concentration gradient. Given HBCD concentrations in the curtain exceed 

substantially those in pre-experiment dust, transfer should be substantial and rapid, 

with both observations consistent with those seen here.  

 

While this study is only the second to address source-to-dust transfer of BFRs, others 

have investigated uptake of phthalates to dust via direct contact, successfully 

replicating this migration pathway in test cell experiments (Clausen et al, 2004; 

Schripp et al, 2010). Schripp et al (2010) hypothesized such mass transfer results from 

contact between the dust mass and the boundary layer of the source:air interface. 

HBCD concentrations in the boundary layer will exceed substantially those in the 

well-mixed air above, providing increased contact with and rapid transfer to dust, due 

to the greater gradient between HBCD concentrations in boundary layer air and the 

dust. However, Clausen et al (2004) suggested direct contact between dust and source 

partially eliminates the boundary layer, allowing dust particles to act as a sorbent 

accumulating the contaminant directly from the source surface. In this scenario, dust 

uptake will be less dependent on contaminant volatility and more on its availability at 

the source surface.  

 

Comparison of direct source:dust contact with other source-to-dust transfer pathways 
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We have reported previously experiments using different configurations of the test 

chamber used here, that demonstrated migration of HBCDs from the same curtain 

fabric to dust via partitioning post-volatilization and abrasion (Rauert et al, 2014b, 

2015). Table 2 compares concentrations of HBCDs in dust following these earlier test 

chamber experiments with those arising via direct source:dust contact. 

 

Table 2 shows migration via direct contact between the HBCD source and dust was 

rapid and yielded higher HBCD concentrations in dust (1,500-14,000 ng g-1 ΣHBCDs) 

than the volatilization experiments. Consistent with this, Clausen et al (2004) reported 

increased mass (up to four times) of DEHP transferred to dust via direct contact than 

emitted to air from the source over the same experimental duration. Similarly rapid 

transfer via direct source:dust contact was observed for BDE-209 (Rauert and Harrad, 

2015). Moreover, while Table 2 shows the longer duration abrasion experiments 

afforded higher HBCD concentrations in receiving dust; concentrations in 2 h and 3 h 

abrasion experiments were very similar to those from our direct source:dust contact 

experiments. This is important, given Rauert et al (2014b) reported the experimental 

durations of the abrasion experiments, likely exceed realistic wear and tear of 

domestic soft furnishings and curtains. While it is recognised that abrasion of the 

source is possible in these direct contact experiments and may contribute some mass 

transfer (and explain heterogeneity of HBCDs in the dust); we do not believe it can 

entirely account for the large concentration increase observed, due to the gentle 

handling of the source material (and the absence of any visible fibres in the sampled 

dust). Table 2 highlights the importance of direct source:dust contact as a pathway via 

which HBCDs (and by extrapolation, similar contaminants) transfer from source 

materials to dust. 
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Results of Follow-up Experiments 

Figure 2 gives concentrations of HBCDs in the artificial indoor dust samples 

analysed, with concentrations of individual HBCD diastereomers supplied as Table 

4). While initial concentrations in dust (pre-contact with fabrics) were below detection 

limits,   concentrations   after   just   1   day’s   contact   exceeded   2,000   ng   g-1 and reached 

23,000 ng g-1 in artificial dust in contact with Seat fabric-2 for 7 days. This 

demonstrates substantial HBCD transfer following direct contact between fabrics and 

dust, and confirms the findings of the test chamber experiments, that this pathway is a 

highly effective vector via which HBCDs transfer from treated fabrics to dust. 

 

In test chamber experiments, HBCD concentrations in dust in contact with the curtain 

for 1 week were not significantly different to those after 24 hours of contact, likely 

due to between-dust sample variations in inadvertent transfer of curtain fibers during 

dust sample collection and the organic carbon content of the dust. In follow-up 

experiments, inadvertent transfer of fabric fibers to dust was minimized via careful 

vacuuming of the test fabric pre-experiment. Moreover, the organic carbon content of 

dust was homogeneously distributed (see Table SD-1). Consequently, Figure 2 

illustrates the clear increase in concentrations of HBCDs in dust with increasing 

contact   time.   This   confirms   transfer   is   rapid   but   that   even   after   1   week’s   contact,  

source:dust equilibrium is not reached. This is consistent with our findings in a recent 

test chamber study examining the transfer of BDE-209 from plastic TV casing to dust 

via direct source-to-dust contact (Rauert and Harrad, 2015). 
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Figure 3 compares HBCD diastereomer profiles in the 4 fabrics studied with those 

detected in artificial dust samples contacted with the fabrics for 4 days. In each case, 

there is a demonstrable shift from the pattern in the fabrics, where -HBCD 

predominates, to one where -HBCD is far more abundant in the dust. This profile 

shift provides strong evidence that the elevated concentrations in dust in these 

experiments have not arisen via transfer to dust of abraded fabric fibers. Instead, this 

pattern shift is consistent with the scenario outlined elsewhere, whereby HBCD 

uptake by dust occurs via contact with the boundary layer of the source:air interface 

(Schripp et al, 2010). The reported higher vapor pressure of -HBCD compared to -

HBCD (Kuramochi et al, 2010), would yield a boundary layer diastereomer pattern 

enriched in -HBCD relative to that in the fabric. In contrast, the similar diastereomer 

profiles in curtains and post-experiment dust in our test chamber experiments, may be 

influenced from transferred abraded fabric fibers to the dust. However, our tentative 

findings of direct HBCD transfer from fabrics to dust, contrast with our earlier 

findings for PBDE transfer to dust via direct contact with plastic TV casing (Rauert 

and Harrad, 2015). In this earlier study, we found PBDE congener ratios in dust 

matched those observed in that of the TV casing, an observation that is more 

consistent with the hypothesis of Clausen et al (2004), where a dust layer disrupts the 

boundary layer surrounding the source, allowing direct uptake to dust particles of a 

chemical from the source surface. Further detailed study of the mechanisms governing 

BFR transfer from a source to dust therefore appears a research priority to clarify 

results. 

 

To evaluate the effect of organic carbon content on HBCD transfer from treated 

fabrics to dust, follow-up experiments were conducted with three different types of 
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JIS test particles: artificial indoor dust, fine soil particles, and cotton linters. Figure 4 

shows that HBCDs in the fabrics transfer to all three dust sample types after 4 days 

contact time, indicating HBCD transfer is not dominated solely by dust organic 

carbon content, since the soil particles used contained negligible organic matter. The 

relative abundance of α-HBCD post-experiment in all the three dust types  (Figure 4) 

exceeded that in the fabrics (Figure 3). Concentrations of HBCDs in dust post-contact 

Curtain-1, were broadly similar regardless of dust type. In contrast, post-contact 

Curtain-2, HBCD concentrations in cotton linters were lower than those in other dust 

types. We cannot explain the different transfer patterns observed for the two curtain 

samples, but it may be attributable to differences in texture and/or manufacturing 

process of the two test fabrics.  

 

This study presents substantial evidence that direct contact between HBCD-treated 

fabrics and dust constitutes an effective transfer mechanism. Comparison with 

previous test chamber experiments with the same fabric and dust, suggests under real-

world conditions, direct source:dust contact may represent the most important transfer 

pathway for HBCDs. This is consistent with our recent parallel test chamber study in 

which substantial transfer of PBDEs from plastic TV casing to dust was demonstrated 

(Rauert and Harrad, 2015). To confirm this novel and important finding, further 

experiments are recommended to evaluate in more detail the importance of and the 

mechanisms governing direct source:dust contact as a pathway via which HBCDs and 

other BFRs undergo transfer from source materials to indoor dust. A particular focus 

should include studies to elucidate the role of the source:dust boundary layer in 

effecting contaminant transfer. Our findings have practical implications for reducing 
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contamination of indoor dust with contaminants like HBCDs, as they imply regular 

removal of dust from source surfaces will reduce contamination. 
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Figure 1: Schematic of experimental configurations used in: (a) test chamber 
(top) and (b) follow-up experiments (bottom) investigating uptake via direct 
contact between source and dust 

 

(a)  

(b)  

Pre characterised dust 
layered on top of BFR 
source material 

25 mm 

83 mm 

53 mm 

Fabric with test dust 

Fabric without dust 
(corresponding blank test) 
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Figure 2. Temporal changes in HBCD concentrations (µg/g)* in JIS artificial 
dust after the follow-up experiments.  

 
*After subtracting HBCD concentrations detected in the corresponding blank test. 
Values for Curtain-1 and Seat fabric-1 are the average of duplicate analyses.  
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Figure 3. HBCD diastereomer profiles in the original fabrics and the artificial 
dust samples placed in direct contact with the fabrics in the follow-up 
experiments. 
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Figure 4. Differences in HBCD diastereomer concentrations transferred to the 
three different types of JIS test particles during 4 days of contact with treated 
curtains. 
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Table 1: Mean and (min, max) concentrations (ng g-1) of HBCDs in dust from direct contact test chamber experiments conducted for 24 
hours and 1 week 

 α-HBCD β-HBCD γ-HBCD ΣHBCDs 
Pre experiment dust (ng g-1) 46 ± 18 13 ± 10 50 ± 39 110 

24 hours 
 

Experiment 1 
(n=2) 

600 
(580, 630) 

200 
(190, 210) 

730 
(730, 740) 

1500 
(1500, 1600) 

Experiment 2 
(n=2) 

1800 
(1500, 2000) 

530 
(430, 630) 

2000 
(1700, 2400) 

4300 
(3600, 5000) 

Experiment 3 
(n=2) 

5400 
(2600, 8200) 

1700 
(860, 2500) 

6400 
(3500, 9400) 

14 000 
(6900, 20 000) 

Experiment 4 
(n=2) 

2500 
(2200, 2700) 

800 
(750, 860) 

3200 
(2900, 3500) 

6500 
(5900, 7000) 

1 week Experiment 1 
(n=2) 

3700 
(3600, 3800) 

1300 
(1200, 1400) 

4300 
(4000, 4600) 

9300 
(8800, 9800) 

Experiment 2  
(n=1) 3000 910 3400 7300 

Experiment 3 
(n=2) 

3000 
(1900, 4100) 

920 
(500, 1400) 

3500 
(2000, 4900) 

7400 
(4400, 10 000) 

Experiment 4 
(n=2) 

2300 
(2100, 2400) 

590 
(560, 620) 

2300 
(2100, 2600) 

5200 
(4700, 5600) 
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Table 2: Mean ± standard deviation concentrations (ng g-1) of HBCDs in dust 
post-test chamber experiments simulating three different migration pathways of 
HBCDs to dust from HBCD treated curtains 

 α-HBCD β-HBCD γ-HBCD 
Volatilization with subsequent 
partitioning to dusta    

24 hours @ 60 oC (n=4) 180 ± 52 63 ± 3.8 370 ± 85 
1 week @ 22 ± 1 oC (n=3) 160 ± 100 72 ± 60 270 ± 180 
Abrasion of fibers directly to dusta    
2 hours (n=1) 2500 720 3300 
3 hours (n=1) 1400 700 2000 
21 hours (n=1) 3200 1700 13 000 
48 hours (n=1) 23 000 4900 26 000 
Direct transfer from source to dust 
(this study) 

   

24 hours (n=4) 2600 ± 2000 800 ± 620 2900 ± 2400 
1 week (n=4) 3000 ± 600 930 ± 280 3400 ± 790 
aData reported in Rauert et al (2014b) 
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Table 3: Initial concentrations (mg/kg) of HBCD diastereomers in the fabric 
used in the follow-up experiments 
ID Material α-HBCD β-HBCD γ-HBCD ΣHBCDs 

Curtain-1 polyester  7,100  4,300  10,000  21,000  
Curtain-2 polyester 3,800  2,300  8,500  15,000  
Seat fabric-1 polyester 2,300  810  5,400  8,400  
Seat fabric-2 polyester 4,300  1,500  9,200  15,000  
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Table 4: HBCD concentrations (µg/g)* in JIS test dust after the follow-up experiments   

JIS test dust Test fabric Experimental duration (days) α-HBCD β-HBCD γ-HBCD ΣHBCDs 
Artificial dust Curtain-1** 1 1.4 1.1 0.53 3.0 
  4 2.4 1.7 0.68 4.7 
  7 4.1 2.7 0.76 7.5 
       
 Curtain-2 1 3.4 2.1 4.3 9.8 
  4 5.4 3.6 6.4 15 
  7 8.7 5.3 7.0 21 
       
 Seat fabric-1** 1 3.7 0.70 0.50 4.9 
  4 7.1 1.3 0.69 9.1 
  7 12 2.2 1.2 15 
       
 Seat fabric-2 1 6.3 2.2 0.18 8.6 
  4 10 3.4 0.13 14 
  7 17 5.6 0.29 23 
       
Cotton linter Curtain-1** 4 3.3 2.0 2.5 7.8 
 Curtain-2 4 2.4 1.1 3.5 6.9 
       
Fine soil particle Curtain-1** 4 2.6 2.3 1.4 6.3 
  Curtain-2 4 4.7 3.4 6.3 14 
* After subtracting HBCD concentrations in the corresponding blank test.    
** Values are averaged from duplicate analyses.     
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