

A multi-objective memetic algorithm based on
locality-sensitive hashing for one-to-many-to-one
dynamic pickup-and-delivery problem
Zhu, Zexuan; Xiao, Jun; He, Shan; Ji, Zhen; Sun, Yiwen

DOI:
10.1016/j.ins.2015.09.006

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Zhu, Z, Xiao, J, He, S, Ji, Z & Sun, Y 2016, 'A multi-objective memetic algorithm based on locality-sensitive
hashing for one-to-many-to-one dynamic pickup-and-delivery problem', Information Sciences, vol. 329, pp. 73-
89. https://doi.org/10.1016/j.ins.2015.09.006

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
After an embargo period this document is subject to the terms of a Creative Commons Attribution Non-Commercial No Derivatives license

Checked Jan 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1016/j.ins.2015.09.006
https://research.birmingham.ac.uk/portal/en/publications/a-multiobjective-memetic-algorithm-based-on-localitysensitive-hashing-for-onetomanytoone-dynamic-pickupanddelivery-problem(0e2c956d-7373-48ca-814a-44286c64e26d).html

Accepted Manuscript

A multi-objective memetic algorithm based on locality-sensitive
hashing for one-to-many-to-one dynamic pickup-and-delivery
problem

Zexuan Zhu, Jun Xiao, Shan He, Zhen Ji, Yiwen Sun

PII: S0020-0255(15)00660-X
DOI: 10.1016/j.ins.2015.09.006
Reference: INS 11769

To appear in: Information Sciences

Received date: 31 March 2015
Revised date: 10 August 2015
Accepted date: 9 September 2015

Please cite this article as: Zexuan Zhu, Jun Xiao, Shan He, Zhen Ji, Yiwen Sun, A multi-objective
memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-
delivery problem, Information Sciences (2015), doi: 10.1016/j.ins.2015.09.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ins.2015.09.006
http://dx.doi.org/10.1016/j.ins.2015.09.006

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A multi-objective memetic algorithm based on locality-sensitive hashing for
one-to-many-to-one dynamic pickup-and-delivery problem

Zexuan Zhua, Jun Xiaoa, Shan Heb, Zhen Jia, Yiwen Sunc,∗

aCollege of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
bSchool of Computer Science, University of Birmingham, B15 2TT, UK

cDepartment of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

This paper presents an early attempt to solve one-to-many-to-one dynamic pickup-and-delivery problem (DPDP) by

proposing a multi-objective memetic algorithm called LSH-MOMA, which is a synergy of multi-objective evolution-

ary algorithm and locality-sensitive hashing (LSH) based local search. Three objectives namely route length, response

time, and workload are optimized simultaneously in an evolutionary framework. In each generation of LSH-MOMA,

LSH-based rectification and local search are imposed to repair and improve the individual solutions. LSH-MOMA

is evaluated on four benchmark DPDPs and the experimental results show that LSH-MOMA is efficient in obtaining

optimal tradeoff solutions of the three objectives.

Keywords: Memetic Algorithm, Multi-objective Evolutionary Algorithm, Dynamic Pickup and Delivery Problem,

Locality-Sensitive Hashing.

1. Introduction

Pickup-and-delivery problems (PDPs) [47, 5, 3] constitute a subset of vehicle routing problem (VRP) [13] wherein

objects or people have to be transported from an origin to a destination. They are fundamental problems of transporta-

tion and logistic distribution aiming to find an optimal vehicle route to serve customers associated with pickup and/or

delivery requests under transportation capacity constraints. The route optimization in PDPs can lead to significant

economic savings, e.g., the reduction of operating cost, traffic congestion, and pollution emission, and thus increase

the sustainability of city development.

The majority of PDPs are optimized using a static model, i.e., all input data of the problems are known in advance

and fixed during the route planning, however the increasing competitive pressures and expectations of high customer

satisfaction have forced the logistic service providers to respond to dynamic requests over time. The development of

communication technologies, geographic information systems and computer technologies also have greatly motivated

the study of dynamic PDPs (DPDPs), where vehicle routes can be re-planned according to actual travel times, new

∗Corresponding author. E-mail addresses: ywsun@szu.edu.cn

Preprint submitted to Information Sciences September 16, 2015

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

requests, and unexpected events [6, 51, 8, 45]. This kind of problem is also called online or real-time routing problem

in other work [28]. PDPs have been proved to be NP-hard [5] and DPDPs represent the harder cases.

Evolutionary computation techniques such as Genetic Algorithm (GA) [26], Ant Colony Optimization (ACO)

[17], and Particle Swarm Optimization (PSO) [30] have been widely used to solve DPDPs due to their ability to

obtain satisfactory results in tractable time cost [40]. For instance, Cheung et al. [10] studied a mathematical model

for dynamic fleet management taking into account the real-time vehicle locations, travel time, and incoming pickup

and delivery requests. A GA based solution was proposed to determine a route plan through solving a static vehicle

routing problem before daily operation, and then the route is re-optimized as dynamic information arrives. Haghani

and Jung [25] presented a GA to solve DPDP with soft time windows where multiple vehicles with different capacities,

real-time service requests, and time-dependent travel times are considered. Benyahia and Potvin [4] proposed a genetic

programming to model the decision process of a human vehicle dispatcher in DPDP. In [43], a GA embedded in a

rolling horizon framework was put forward to solve DPDP with time windows for long-distance freight forwarding

with newly arriving requests. Cortés et al. [12] proposed a PSO-based approach to solve a DPDP formulated under

a hybrid predictive control (HPC) scheme. Sáez et al. [46] extended [12] by developing more efficient solution

algorithms based on GA and fuzzy clustering for the multi-vehicle DPDP. The same group in [38] further generalized

their approaches based on generic evolutionary algorithms and HPC scheme to support the dispatcher of a real-time

dial-a-ride service. Euchi et al. [19] presented an artificial ACO with 2-opt local search to solve dynamic VRP with

pickup and delivery.

Most of the aforementioned approaches for DPDP were proposed for single-objective problem, where the main

objective namely traveling cost (in terms of time/distance) is optimized. However, the dynamic nature of DPDP

introduces new conflicting objectives such as response time (or latency) and service workload. Multi-objective opti-

mization methods such as multi-objective evolutionary algorithms (MOEAs) [23, 15, 53, 11, 44, 34, 49] are greatly

desirable because of their capability of obtaining multiple trade-off solutions. Many MOEAs have been proposed

for static VRPs/PDPs [20, 21, 29, 52, 18, 24, 66] and a few for general dynamic VRPs [55, 22]. Yet, there is very

limited work on multi-objective DPDP. The work of Núnez et al. [41] represents one of the very few attempts to use

multi-objective optimization model for DPDP. In [41], the authors proposed a multiobjective-model-based predictive

control framework implemented with GA to solve the dial-a-ride problem, i.e., a one-to-one DPDP, considering two

opposing goals namely user and operator costs.

This paper proposes a multi-objective memetic algorithm [37, 31, 9, 42, 39] namely LSH-MOMA to solve DPDP

by optimizing the route length, response time, and service workload, simultaneously. We focus on the single-vehicle

one-to-many-to-one (1-M-1) DPDP, one of the most typical routing problems in city courier. In 1-M-1 DPDP, some

commodities are initially available at the depot and delivered to the customers in the course of operation. At the

same time, some other commodities either requested in advance or dynamically are collected from the customers and

destined to the depot. New customer pickup requests are received through a call center and forward to the vehicle

during the operation. The vehicle route is dynamically changed in response to new requests. Many other types of

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

DPDPs, especially one-to-one DPDPs, have been extensively studied and overviews can be found in [6] and [45].

However, efficient solutions for 1-M-1 DPDP are still lacking to provide practical trade-off decisions that can satisfy

the multiple conflicting objectives in real-world express courier service.

This work presents an early attempt to solve the 1-M-1 DPDP by proposing LSH-MOMA as a synergy of MOEA

and locality-sensitive hashing (LSH) [1] based local search. Memetic algorithms, taking advantage of both population-

based global search and local search, have been shown to obtain better performance than their conventional counter-

parts in various complex real-world problems [63, 64, 59, 27, 50, 7, 32, 60, 2, 33, 57, 62] including VRPs [56, 35]

and PDPs [58]. In LSH-MOMA, a vehicle is arranged to start from a depot and follow an initially scheduled Hamil-

tonian route to serve static requests. Afterward, the route is re-planned in response to new requests, so that the three

objectives are optimized subject to transportation capacity constraint. The static requests must be served in the solu-

tion route whereas the dynamic requests could be selectively responded. A population of candidate routes is evolved

using a MOEA framework where LSH-based rectification and local search are introduced to repair and improve the

candidate solutions respectively in each generation. LSH-MOMA is tested on four benchmark 1-M-1 DPDPs with

different scales of customer nodes. The experimental results demonstrate the superiority of LSH-MOMA to the other

counterpart algorithms in identifying reasonable tradeoff solutions.

The main contributions of this study are threefold: 1) a three-objective 1-M-1 DPDP is formulated and benchmark

problems based on both Euclidean plane and real map are studied; 2) an LSH-based method is proposed for fast

identification of geometrically nearest neighbors, which enables route planning algorithms to handle problems in

large environments; 3) a new memetic algorithm namely LSH-MOMA is put forward to solve the formulated 1-M-1

DPDP, which is expected to inspire the design of new MOEA-based approaches for DPDPs.

The rest of this paper is organized as follows. Section 2 provides the formulation of the three-objective 1-M-1

DPDP. Section 3 introduces the LSH-based nearest neighbors identification method. Section 4 presents the details of

the proposed LSH-MOMA. Section 5 provides the experimental design and results on benchmark problems. Finally,

Section 6 concludes this study.

2. Problem formulation

This section formulates the single-vehicle 1-M-1 DPDP. As shown in Fig. 1, to solve a 1-M-1 DPDP is to find an

optimal closed-loop vehicle route that starts from a depot, then accesses the customer nodes in the course and finally

ends up at the same depot. The vehicle carries delivery commodities on off-line requests away from the depot, and

then serves delivery and pickup requests following a planned route. Once new dynamic requests arrive, the vehicle

could choose to respond the requests by re-planning the route or just ignore them. The optimality of the route is

defined in terms of three objectives namely route length, response time, and service workload in this study.

Without loss of generality, we confine the routing of a 1-M-1 DPDP in a rectangle R = Rx × Ry. The definitions

of customer node, depot, service route, vehicle capacity constraint, real-time load, route length, response time and

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: An illustration of single-vehicle 1-M-1 DPDP

workload are provided as follows:

Customer Node: a customer is represented as a node in the environment R. Let O = {1, 2, . . .} index all customer

nodes located in R, S (⊆ O) index the set of static nodes of which the requests are known before the vehicle set off,

and D(⊆ O) index the set of dynamic nodes whose requests arise during the execution of the transportation, i.e.,

O = S
⋃

D. The sizes of O and D will increase as new requests arrive. A customer node i is associated with four

attributes (xi, yi, ui, vi), where xi and yi are the coordinates of the node in R, while ui and vi indicate the amounts of

pickup and delivery commodities requested at this node, respectively. Dynamic nodes make merely pickup requests.

i.e., vi = 0 if i ∈ D. All static nodes must be served whereas the dynamic ones are selectively responded subject to the

vehicle capacity constraint. Those unserved dynamic nodes will automatically become static nodes in next round of

route planning.

Depot: the depot is a special customer node indexed with 0. It is the source and destination of a service route.

The delivery commodities of all static nodes must be loaded to the vehicle at the depot before departure, and then

distributed to the corresponding customers in the serving course. Meanwhile, all commodities picked up in the route

should be carried to the same depot in the end.

Service Route: a cyclic service route is represented as a sequence of customer nodes accessed by the vehicle.

Particularly, a route is denoted as P = {p0, p1, . . . , pl}, where p0 = pl = 0, pi ∈ {1, 2, . . . , |O|} (0 < i < l), pi , p j

(i , j), and S ⊆ P ⊆ O. A node accessed in a route is also referred to as a route node.

Vehicle Capacity Constraint: the vehicle is subject to a maximum capacity C. A feasible route contains no

violation of the constraint at any route node.

Real-Time Load: given a candidate route P, the real-time load of the vehicle at node pi is calculated as follows:

Ω(pi) =

i∑

j=0

(up j − vp j) (1)

where Ω(pi) accumulates the load changes as the vehicle goes along the route from the depot, i.e., p0, to node

pi. A capacity constraint violation occurs if Ω(pi) > C is detected at any route node. In the following text, we

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

assume that neither the total pickup nor delivery commodities of all static nodes exceeds the vehicle capacity, i.e.,

max{∑i∈S ui,
∑

i∈S vi} < C, as such feasible routes to serve all static nodes are guaranteed to exist. Any dynamic node

with a pickup request greater than C −∑
i∈S ui must be rejected.

Route Length: the length of a route P, denoted as L(P), is calculated by summing up the distance of every two

adjacent nodes in P, i.e.,

L(P) =

l−1∑

i=0

d(pi, pi+1) (2)

where d(pi, pi+1) indicates the distance between customer nodes pi and pi+1. Similarly, the length of a route segment

from node pm to node pn (0 ≤ m < n ≤ l) can be defined as follows:

L(pm, pn) =

n−1∑

i=m

d(pi, pi+1) (3)

Response Time: the response time of a route P is the total amount of time all customer nodes wait to get served:

T (P) =

|O|∑

i=1

ti (4)

ti =

L(p0, p j)/V if ∃p j ∈ P : p j == i and i ∈ S ;

L
(
q(oi), p j

)
/V if ∃p j ∈ P : p j == i and i ∈ D;

L
(
q(oi), pl

)
/V otherwise @p j ∈ P : p j == i.

(5)

where ti indicates the waiting time of customer node i, V is the average speed of the vehicle (set to 1 for simplicity),

and q(oi)(∈ P) denotes the route node the vehicle is accessing when node i submits its request. If node i is static, it

must be included in the route, say ∃p j ∈ P : p j == i, so ti is the traveling time of the vehicle from the depot to node

p j. If node i is dynamic and included in the route, ti is the traveling time of the vehicle from node q(oi) to node i.

Otherwise, ti is the traveling time of the vehicle from node q(oi) to the depot, i.e., the customer has to wait till the

whole journey ends.

Workload: the service workload of a route P is calculated by summing up the pickup and delivery commodities

over all route nodes, i.e.,

W(P) =

l−1∑

i=1

(upi + vpi) (6)

where upi and vpi indicate the amount of pickup and delivery commodities at node pi, respectively.

To solve the above 1-M-1 DPDP is to find an optimal cyclic route that simultaneously minimizes L(P) and T (P)

but maximizes W(P). The objective function F(P) of a route can be formulated as follows:

min F(P) =
(
L(P),T (P),−W(P)

)
(7)

subject to ∀pi ∈ P : Ω(pi) ≤ C

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Note that minimizing −W(P), i.e., maximizing W(P), demands for serving more dynamic nodes, which inevitably

increases the path length L(P). Conversely, fewer route nodes should be involved to minimize L(P), which will

reduce the workload W(P), i.e., increase −W(P). So the minimizations of L(P) and −W(P) conflict with each other.

The response time T (P) correlates with both L(P) and W(P) to some extent. On one hand, lower L(P), i.e., shorter

route, means lower response time of the static nodes. On the other hand, larger workload W(P), achieved by serving

more dynamic nodes, results in lower response time of the dynamic nodes. Due to the conflicting nature of the three

objectives, there is no single solution can minimize them simultaneously without tradeoff.

The idea of Pareto-optimality [16] is applied here to solve this three-objective optimization problem such that

multiple tradeoff solutions can be obtained in a single run, from which appropriate ones can be selected according to

different preferences in real-world practices. Given two feasible routes P1 and P2, F(P1) is said to dominate F(P2) if

and only if L(P1) ≤ L(P2), T (P1) ≤ T (P2), −W(P1) ≤ −W(P2), and in at least one objective P1 is smaller than P2.

A feasible route P∗ is Pareto optimal to Eq. (7) if there is no other solution P such that F(P) dominates F(P∗). F(P∗)

is called a Pareto optimal vector. All Pareto optimal routes form the Pareto optimal set and the set of corresponding

Pareto optimal vectors is referred to as the Pareto front [36].

3. LSH based nearest neighbors identification

Before introducing LSH-MOMA, an LSH [1] based nearest neighbor identification method, which is a key com-

ponent in route rectification and local search, is proposed in this section. The basic idea of LSH is to hash customer

nodes according to their locations so that nearby nodes are mapped to the same hash value with a high probability. The

problem of searching the nearest neighbors of a node is then transformed as a problem of identifying the nodes of the

same hash values. Therefore, using LSH is able to quickly identify the approximated nearest neighbors of a customer

node without the time-consuming pairwise distance calculation. This is particularly useful for distance calculation on

a real map where the distance of two nodes is subject to the availability of physical connections.

Figure 2: LSH based nearest neighbors identification

The key issue of implementing LSH is the design of the hash function. In this study, the search region R is divided

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

into n × n equal lattices as shown in Fig. 2. The hash function of a customer node i is defined by mapping the node to

the corresponding lattice that contains the node:

H(i) =
(⌈nxi

Rx

⌉
,
⌈nyi

Ry

⌉)
(8)

where the ceiling function d·e returns the smallest integer greater than the input value. Based on this hash function,

the search of the nearest neighbors of a node i can be confined in a small region, i.e., one or a handful of lattices, thus

avoiding searching the whole region. We define S k
i as the set of layer-k nearest neighbors of node i:

S k
i =

{
j
∣∣∣
∣∣∣∣
⌈nx j

Rx

⌉
−

⌈nxi

Rx

⌉∣∣∣∣ ≤ k,
∣∣∣∣
⌈ny j

Ry

⌉
−

⌈nyi

Ry

⌉∣∣∣∣ ≤ k
}

(9)

The detailed procedure of LSH-based nearest neighbors identification is provided in Algorithm 1. Given a queried

node i and the layer k, the algorithm first calculates the hashed values (A, B) of node i based on Eq. (8). And then

the algorithm scans from lattice row max(A − k, 1) (i.e., takes 1 if A − k < 1) to row min(A + k, n) (i.e., takes n if

A + k > n), and meanwhile from column max(B − k, 1) (i.e., takes 1 if B − k < 1) to column min(B + k, n) (i.e., takes

n if B + k > n), to find out all nodes within the scope to form the set of layer-k nearest neighbors S k
i of node i. For

example, a target node denoted as the blue dot in Fig. 2 is mapped to lattice (3,3) by the hash function. The layer-0

nearest neighbors of this node are located in the same lattice, while the layer-1 nearest neighbors spread to involve the

nodes in the outer surrounding eight lattices.

Algorithm 1 The procedure of LSH based nearest neighbors identification
INPUT: the hash values of all customer nodes (calculated off-line), a queried node i, and layer k;

OUTPUT: the set of layer-k nearest neighbors of node i, i.e., S k
i ;

BEGIN

1: (A, B) = H(i); {//A and B are the coordinates of the mapped lattice of node i}
2: S k

i = {};
3: For a = max(A−k, 1) to min(A+k, n) do {//Scan from row A−k (or 1 if A−k < 1) to row A+k (or n if A+k > n)}
4: For b = max(B − k, 1) to min(B + k, n) do {//Scan from column B − k (or 1 if B − k < 1) to column B + k (or n

if B + k > n)}
5: Identify S tmp = { j |H(j) == (a, b)};
6: S k

i = S k
i

⋃
S tmp;

7: End For

8: End For

END

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 3: The flowchart of LSH-MOMA

4. LSH-MOMA for 1-M-1 DPDP

This section presents the details of the proposed LSH-MOMA. The flowchart of the algorithm is shown in Fig. 3.

Before the vehicle leaving the depot, a population of candidate routes (or called individuals) are initially scheduled

for all static nodes only. In the course of serving, dynamic requests are received and buffered in a request pool. The

pool is checked by LSH-MOMA in a fixed time slice (a.k.a decision epoch) say Γ generations, and dynamic nodes

are inserted into the candidate routes using the mutation operator and local search. In each time slice, the vehicle also

completes service of the first unserved node in each candidate route, i.e., one node is fixed in each candidate route

through the ongoing evolution. In other words, the changeable part in each route is becoming shorter as the population

evolves. The candidate routes are evolved with evolutionary operators including selection, crossover, and mutation.

In each generation of LSH-MOMA, LSH-based rectification and local search are applied to repair and refine each

individual. The outline of LSH-MOMA is provided in Algorithm 2. Details of the key components of LSH-MOMA

are provided in the following subsections.

4.1. Chromosome encoding scheme and initialization

In LSH-MOMA, a variable-length chromosome, represented as an integer string, is used to encode a candidate

route. As shown in Fig. 4, the chromosome starts and ends at the same depot, i.e., p0 = pl = 0, and the intermediate

part is a sequence of customer node indexes accessed in the route. Because p0 and pl are always fixed, they can be

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 2 LSH-MOMA for DPDP
BEGIN

1: i = 1;

2: Randomly initialize a population Qi of candidate routes considering the static nodes only;

3: Apply LSH-based rectification to each individual in Qi;

4: Evaluate the fitness of each individual based on Eq. (7);

5: While the maximum number of generations is not reached do

6: If (i mod Γ) == 0 then {//Update the request pool in a fixed time slice}
7: Fix the first unserved node in each individual route;

8: If new dynamic requests arise then

9: Add new requests to the request pool;

10: End If

11: End If

12: Generate an offspring population Q′i with selection, crossover, and mutation;

13: Apply LSH-based rectification on each offspring;

14: Evaluate the fitness of each offspring based on Eq. (7);

15: Apply LSH-based local search on each offspring;

16: Generate new population Qi+1 from Qi
⋃

Q′i based on Pareto optimality;

17: i = i + 1;

18: End While

END

omitted in the encoding for the sake of simplicity. At the beginning of LSH-MOMA, a population of chromosomes

is randomly generated to encode candidate routes consisting of all static nodes, i.e., each chromosome is a random

permutation of all static nodes’ indexes.

4.2. LSH-based rectification

Once a new route is generated by initialization or evolutionary operation, the feasibility of the route should be

verified and capacity constraint violations are forbidden. An LSH-based rectification is proposed to detect and repair

capacity constraint violations occurring in a route. The procedure of LSH-based rectification is provided in Algorithm

3.

Figure 4: The chromosome encoding scheme

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 3 The procedure of LSH-based rectification
INPUT: a candidate route P = {p0, p1, . . . , pl};
BEGIN

1: Identified the first unserved node say pm in P;

2: For i = m to l − 1 do

3: k = 0;

4: While Ω(pi) > C do

5: Identify S k
pi

based on Algorithm 1;

6: S = S k
pi

⋂{pi+1, pi+2, . . . , pl}; {//Identify descendant route nodes that fall within the layer-k nearest neighbor-

hood of pi}
7: If ∃p j : p j ∈ S and ∀s ∈ S : max(vs−us, 0) < vp j−up j then {//p j possesses the largest positive deliver-pickup

residual in S }
8: Reorder node p j right before node pi in P;

9: i = i + 1;

10: Else

11: k = k + 1;

12: End If

13: End While

14: End For

END

Given a candidate path P = {p0, p1, . . . , pl}, the rectification sequentially checks the real-time load Ω(pi) at each

unserved (unfixed) node pi. If Ω(pi) > C holds, a violation is detected and then LSH-based rectification operator is

executed. More specifically, a descendant route node p j (j > i) that falls within S k
pi

(i.e., the set of layer-k nearest

neighbors of pi) and possesses the largest positive deliver-pickup residual (i.e., vp j − up j) is first identified, and then

node p j is rearranged to the position right before node pi in P, as such the real-time load can be reduced by vp j − up j .

The rectification operation is repeated until the real-time load falls below C. If no suitable node can be found in S k
pi

,

the operation increases k to enlarge the search scope. Since we assume the total amount of pickup commodities of all

static nodes is smaller than the vehicle capacity, i.e.,
∑

i∈S vi ≤ C and no dynamic pickup request exceeding C−∑
i∈S vi

is involved, the rectification is guaranteed to reach a feasible path with sufficiently large k.

A simple example is given in Fig. 5 to illustrate the procedure of LSH-based rectification. In Fig. 5(a), the

first violation is detected at node pi where the real-time load Ω(pi) = 25 exceeds the vehicle capacity C = 20, so

the rectification operator searches the layer-k nearest neighbors of node pi and identifies node pi+2 as the one of the

largest deliver-pickup residual (vpi+2 − upi+2 = 8) in the neighborhood. Afterward, node pi+2 is reordered right before

node pi in P and the orders of the other nodes are changed accordingly. After the rectification, the violation is avoided

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

as the corresponding real-time load Ω(pi+1) reduces to 17.

(a) Before rectification (b) After rectification

Figure 5: An example of route rectification

4.3. Evolutionary operators

After fitness evaluation, evolutionary operators including selection, crossover, and mutation are applied to the

population Qi to generate an offspring population Q′i . More specifically, the binary tournament selection is first

applied to select parent individuals to undergo order-based crossover [54], and then the generated offspring are mutated

by randomly adding/deleting a dynamic node, swapping two nodes, or segment reversion. In segment reversion, a

subsequence of a route is randomly selected and the order of the corresponding route nodes is reversed. For example,

given a route P = {0, 1, 5, 3, 2, 4, 0}, assume that the segment ranging from the second node to the fifth one is selected,

then the segment reversion converts the route to P = {0, 2, 3, 5, 1, 4, 0}. The procedure of mutation is provided in

Algorithm 4.

Note that crossover and mutation do not affect the nodes that have already been served in each chromosome. After

crossover and mutation, LSH-based rectification and local search are used to fix the capacity constraint violations and

improve the quality of the offspring routes. A new population Qi+1 is generated from the combination of the offspring

population Q′i and the original population Qi based on non-domination rank and crowding distance following NSGA-II

[16].

4.4. LSH-based local search

To improve the quality of candidate routes, an LSH-based local search is introduced to fine-tune the offspring

generated by evolutionary operators. Particularly, given a candidate route P, the LSH-based local search randomly

selects an unserved node pi in P, and then locally changes the order of the node in P or adds a nearest neighbor of pi

to the route. If the resulting new route dominates the original one, it replaces the original one. Conversely, if the new

one is dominated by the original one, the new route is abandoned. If no dominance can be found in either way, the

new route is added to the offspring population. The details of the LSH-based local search are given in Algorithm 5.

Examples of LSH-based local search are provided in Fig. 6. Suppose route node pi is selected to undergo local

search, there could be two ways to improve it: 1) select another route node say pi+2 which is also within the layer-k

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 4 The procedure of mutation
INPUT: a candidate route P = {p0, p1, . . . , pl};
BEGIN

1: Generate a random number r in [0, 1];

2: If 0 ≤ r < 0.25 then

3: Randomly select a new dynamic node and insert it to P in a randomly selected position.

4: Else If 0.25 ≤ r < 0.5 then

5: Randomly remove a dynamic node from P.

6: Else If 0.5 ≤ r < 0.75 then

7: Randomly swap the orders of two nodes in P.

8: Else

9: Randomly select a segment in P and reverse it.

10: End If

END

neighborhood of pi, and reorder it to pi+1 (as shown in the left branch), such that both route length L(P) and response

time T (P) are reduced; 2) select a dynamic node excluded in P from the neighbors of node pi, and insert the new

node to the route right before pi (as shown in the right branch). As such, the workload W(P) is increased and the

response time T (P) is very likely reduced. The improvement of T (P) mainly comes from the substantial reduction of

the dynamic node’s response time that could overwhelm the small extra waiting time caused to the other route nodes.

5. Experimental studies

5.1. Experimental design

In this section, we use four benchmark 1-M-1 DPDPs of different scales to test the performance of LSH-MOMA.

In the first two DPDPs, 30 and 50 static nodes are first randomly sampled on a Euclidean plane, and then another 50

dynamic nodes are added to each DPDP. The dynamic nodes are sequentially visible to LSH-MOMA by one in a time

slice. Note that because the dynamic nodes are selectively responded, increasing the number of dynamic nodes does

not necessarily increase the complexity of the problem. Here we fix the number of dynamic nodes to a large enough

value for the sake of simplicity. The distance of every two nodes in the first two DPDPs is measured with Euclidean

distance. The last two DPDPs are generated similarly, except that they are planted on a real map of downtown

Shenzhen and the distance of every two nodes on the map is calculated using Google Distance Matrix API. The data of

customer nodes, including coordinates, pickup commodities, and delivery commodities of the four DPDPs are publicly

available in [61]. The maximum vehicle capacity C in each DPDP is configured as max(
∑

i∈S vi,
∑

i∈S ui)/0.7, such

that the existence of feasible route(s) to serve all static nodes is guaranteed. The information of the four benchmarks

is summarized in Table 1 and the distributions of customer nodes are plotted in Fig. 7.

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 6: Examples of LSH-based local search

Table 1: Information of the four benchmark DPDPs

Environment C |S | |D| Distance Measure

DPDP1 Euclidean plane 875 30 50 Euclidean distance

DPDP2 Euclidean plane 1338 50 50 Euclidean distance

DPDP3 Real Map (Shenzhen) 1021 30 50 Google Distance Matrix API

DPDP4 Real Map (Shenzhen) 1774 50 50 Google Distance Matrix API

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 5 The procedure of LSH-based local search
INPUT: a candidate route P = {p0, p1, . . . , pl} and k;

BEGIN

1: Randomly select an unserved node pi in P;

2: Identified S k
pi

based on Algorithm 1;

3: Randomly select an unserved node j in S k
pi

; {//If j ∈ D, u j < C −∑
i∈S vi should hold true}

4: If j ∈ P then

5: Reorder j to right before or after pi with equal possibility; {//Illustrated in Fig. 6 (left branch)}
6: Else

7: Insert j to P right before or after pi with equal possibility; {//Illustrated in Fig. 6 (right branch)}
8: End If

9: Apply LSH-based rectification to the new route P′.

10: Evaluate the fitness of P′ based on Eq. (7);

11: If P′ dominates P then

12: Replace P with P′;

13: Else If P′ is better that P in terms of any one objective then

14: Add P′ to the offspring population;

15: Else {//P dominates P′}
16: Abandon P′;

17: End If

END

LSH-MOGA, i.e., LSH-MOMA without LSH-based local search, and MOGA, i.e., LSH-MOMA without LSH-

based rectification nor local search, are considered in the comparison studies to test the effects of LSH-based rectifica-

tion and local search. LSH-MOMA, LSH-MOGA, and MOGA are run with the same parameter setting of population

size=200, crossover probability=0.6, mutation rate=0.09, and time slice Γ = 10. LSH-MOMA is terminated when the

generation number exceeds 500. To ensure a fair comparison, LSH-MOGA and MOGA are configured to terminate

when the computational effort incurred exceeds that of the LSH-MOMA. The three algorithms are independently run

for 25 times on each DPDP, and the average results are reported. All algorithms are implemented in C++ and run on

a PC with Intel Pentium 4 2.4 GHz with 2GB memory.

5.2. Evaluation criteria

The performances of the algorithms are evaluated in terms of the following six criteria:

• Best route length L∗(P) : the best route length obtained in a single run.

• Best response time T ∗(P) : the best response time obtained in a single run.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) DPDP1 (b) DPDP2

(c) DPDP3 (d) DPDP4

Figure 7: The node distributions of the four DPDPs with static and dynamic nodes in blue and red spots respectively (The load change at each

node, i.e., ui − vi, is also labeled in the first two DPDPs)

• Best workload W∗(P) : the best workload obtained over in a single run.

• Convergence metric (C-Metric) [14]: this metric is introduced to evaluate the distance between the final set of

non-dominant solutions and the true Pareto-optimal set. Let P and Q∗ indicate the true Pareto-optimal set and

the set of non-dominant solutions obtained by an MOEA, respectively. For each solution Q∗i in Q∗, the smallest

normalized distance to P is calculated as follows:

di =
|P|

min
j=1

√∑

m=1

fm(Q∗i) − fm(P j)

f max
m − f min

m
(10)

where fm(·) computes the m-th objective value. f max
m and f min

m represent the maximum and minimum values of

the m-th objective in P. The C-Metric of Q∗ is defined as the average normalized distance of all solutions in it:

MC(Q∗) =
1
|Q∗|

|Q∗ |∑

i=1

di (11)

The lower the C-Metric is, the better the convergence ability an algorithm processes. Since the true Pareto-

optimal set P is unknown a priori in this study, P is approximated by the overall non-dominant solutions

obtained by all algorithms in all experimental runs.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Spacing metric (S-Metric) [48]: this metric evaluates the variance of the distance of each member in the non-

dominant solutions to its closest neighbor. Let Q∗ be the non-dominant solutions obtained by a multi-objective

algorithm. For each solution Q∗i in Q∗, the smallest normalized distance to other solutions in Q∗ is defined as

follows:

di =
|Q∗ |
min

j=1, j,i

∑

m=1

∣∣∣∣∣ fm(Q∗i) − fm(Q∗j)
∣∣∣∣∣ (12)

where fm(·) calculates the m-th objective function value, and i , j. The S-Metric of Q∗ is defined as follows:

MS (Q∗) =

√√√
1

|Q∗| − 1

|Q∗ |∑

i=1

(
d − di

)2

(13)

where d is the average value of di. A set of non-dominant solutions that has the lower S-Metric has the better

uniformity. Note that a value of zero for S-Metric would mean that all members of Q∗ are equally spaced from

one another.

• Coverage-of-two-sets metric (C2S-Metric) [65]: this metric is adopted to compare two sets of non-dominant

solutions. Let Q∗A and Q∗B be two sets of non-dominant solutions obtained by two algorithms respectively. The

percentage of solutions in Q∗B dominated by that of Q∗A is calculated with I(Q∗A,Q
∗
B):

I(Q∗A,Q
∗
B) =

∣∣∣∣∣∣
{
b ∈ Q∗B

∣∣∣∃a ∈ Q∗A, a � b
}∣∣∣∣∣∣

∣∣∣Q∗B
∣∣∣

(14)

where a � b suggests that solution a dominates or equals to solution b. Similarly, I(Q∗B,Q
∗
A) computes the

percentage of solutions in Q∗A dominated by solutions in Q∗B. If I(Q∗A,Q
∗
B) ≥ I(Q∗B,Q

∗
A), then the solutions

in Q∗A are better than those in Q∗B. It is worth noting that both I(Q∗A,Q
∗
B) and I(Q∗B,Q

∗
A) fall within [0,1] and

I(Q∗A,Q
∗
B) + I(Q∗B,Q

∗
A) need not equal to 1.

5.3. Experimental results

The results in terms of average best route length, best response time, best workload, convergence metric, and

spacing metric of the three algorithms on the four benchmark DPDPs are summarized in Table 2. The results in terms

of coverage-of-two-sets metric of the three algorithms are reported in Table 3. The approximate Pareto fronts obtained

by the three algorithms from a single run are shown in Fig. 8. LSH-MOMA is shown to obtain better performance than

those of the other two algorithms. Figs. 9-12 each shows four representative non-dominant solutions of LSH-MOMA

in a single run in one DPDP. Among the four solutions, the first three are solutions of the best route length, the best

response time, and the best workload, respectively. The last one is a centroid non-dominant solution that possesses

the smallest sum of distance to all other non-dominant solutions. Detailed analysis and discussion of the results are

provided as follows.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: The results in terms of mean route length, response time, workload, convergence metric, and spacing metric of LSH-MOMA, LSH-MOGA,

and MOGA on the four benchmark DPDPs over 25 runs. (−/≈: the average performance of the corresponding method is significantly worse than

or similar to the highlighted best average performance at level α=0.05 in Welch’s t-test.)

LSH-MOMA LSH-MOGA MOGA

DPDP1

L∗(P)(×103) 4.73±0.05 5.02±0.25− 5.04±0.29−

T ∗(P)(×104) 13.66±0.47 18.18±1.22− 18.84±0.82−

W∗(P)(×103) 1.49±0.00 1.49±0.00 1.48±0.00−

MC(×103) 4.39±2.33 11.42±5.06− 20.39±9.13−

MS (×106) 0.30±0.10 0.55±0.11− 1.25±0.64−

DPDP2

L∗(P)(×103) 5.80±0.17 6.25±0.41− 6.74±0.36−

T ∗(P)(×104) 21.58±0.65 24.18±1.49− 25.09±2.66−

W∗(P)(×103) 2.28±0.00 2.28±0.00 2.27±0.00−

MC(×103) 5.31±1.49 23.90±10.41− 74.05±39.39−

MS (×106) 0.30±0.09 0.44±0.11− 3.32±2.19−

DPDP3

L∗(P)(×103) 66.96±1.62 68.04±1.84− 68.58±2.32−

T ∗(P)(×106) 1.37±0.09 1.48±0.08− 1.73±0.11−

W∗(P)(×103) 1.74±0.00 1.74±0.00 1.72±0.01−

MC(×103) 10.21±7.00 35.76±41.98− 912.37±323.21−

MS (×106) 3.60±1.13 3.64±1.17≈ 45.45±13.27−

DPDP4

L(P)(×103) 85.17±2.37 94.18±5.91− 94.43±5.43−

T (P)(×106) 2.36±0.18 2.76±0.19− 2.88±0.21−

W(P)(×103) 3.02±0.00 3.02±0.00 3.00±0.01−

MC(×104) 7.85±0.93 31.64±20.99− 189.19±43.57−

MS (×106) 3.97±0.93 4.99±1.80− 88.60±18.69−

Table 3: The results in terms of coverage-of-two-sets metric of LSH-MOMA (A), LSH-MOGA (B), and MOGA (C) on the four benchmark DPDPs

over 25 runs. (−/≈: the average performance of the corresponding method is significantly worse than or similar to the highlighted best average

performance at level α=0.05 in Welch’s t-test.)

LSH-MOMA vs. LSH-MOGA LSH-MOMA vs. MOGA LSH-MOGA vs. MOGA

I(A, B) I(B, A) I(A,C) I(C, A) I(B,C) I(C, B)

DPDP1 0.99±0.01 0.00±0.00− 0.98±0.02 0.00±0.00− 0.76±0.37 0.65±0.28≈

DPDP2 0.94±0.02 0.12±0.30− 0.96±0.08 0.12±0.29− 0.75±0.25 0.66±0.37≈

DPDP3 0.82±0.31 0.25±0.36− 0.98±0.02 0.13±0.26− 0.94±0.07 0.35±0.36−

DPDP4 0.93±0.18 0.23±0.31− 0.95±0.11 0.22±0.34− 0.84±0.20 0.66±0.35−

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.3.1. LSH-based methods vs. MOGA

As shown in Tables 2 and 3, LSH-MOMA significantly outperforms MOGA in terms of all the six criteria. LSH-

MOGA shows superiority to MOGA in the first five criteria. In terms of C2S-Metric, LSH-MOGA significantly

outperforms MOGA in DPDP3 and DPDP4, whereas the two algorithms are comparable in DPDP1 and DPDP2. The

final non-dominant solutions shown in Fig. 8 also indicate that MOGA fails to identify as many feasible solutions

as the other two algorithms. Moreover, many solutions obtained by MOGA are dominated by that of the other

two algorithms. The results suggest that the LSH-based rectification is capable of improving routing performance

by searching more extensively in feasible solution space. Without the assistant of LSH-based rectification, MOGA

wastes too much computational budge in searching unfeasible solutions, thus is inferior to the other two algorithms,

especially in real-map cases which are more complex.

5.3.2. LSH-MOMA vs. LSH-MOGA

LSH-MOGA is different from LSH-MOMA for not using LSH-based local search. From the results shown in

Tables 2-3 and Fig. 8, it is observed that LSH-MOMA significantly outperforms LSH-MOGA in terms of the evalua-

tion criteria expect the best workload, on which the two algorithms are competitive with each other. The observation

demonstrates that LSH-based local search is efficient in reducing route length and response time. LSH-MOMA and

LSH-MOGA achieve exactly the same maximum workloads in the four DPDPs over 25 independent runs (i.e., with

zero standard deviation). Explanation for this observation is that it is relatively easy for both algorithms to reach the

maximum workloads by keeping adding new dynamic nodes to the routes until the vehicle is filled to capacity. During

the course, the LSH-based rectification acts to prevent the routes from capacity violation. Since both LSH-MOMA

and LSH-MOGA manage to reach the extreme, LSH-MOMA does not show superiority to LSH-MOGA in terms of

workload in these four cases. Traditional nearest neighbor identification methods is also applicable to the proposed

routing framework, nevertheless, the LSH-based method has substantially reduced the computational time, which

enables LSH-MOMA to scale up to larger map and handle more dynamic requests.

5.3.3. Effects of different routing environments

PDDPs on both Euclidean plane and real map are investigated in this section. The only difference between these

two environments lies in the distance measure used. On Euclidean plane, the distance of two nodes is measured by

Euclidean distance, whereas on real map the distance depends on the length of the available physical path connecting

these two nodes. Two geographically near nodes could have a long distance in real map due to the lack of direct

connection between them. Nonetheless, LSH-MOMA outperforms the other two algorithms in both environments.

The LSH-based rectification and local search are efficient and robust in identifying nearest neighbors of a node in both

environments. As shown in Fig. 8, in the real-map cases namely DPDP3 and DPDP4, which are more complex than

the ones on Euclidean plane, LSH-based methods generate even better results than those of MOGA.

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.3.4. Preference of different objectives

Optimizing different objectives leads to different optimal solutions. The results plotted in Fig. 9-12 show that the

three extreme solutions of the best route length, response time, and workload involve different numbers of dynamic

nodes. Particularly, in DPDP1 and DPDP2, about 25%, 40% and 50% dynamic nodes are included in the extreme

solutions of the best route length, response time, and workload, respectively. In DPDP3 and DPDP4, the correspond-

ing percentages are about 5%, 20%, and 30%, respectively. The number of served dynamic nodes does not change as

the number of static nodes increases from 30 to 50, but it is affected by the preference of different objectives and the

vehicle capacity. In a decision epoch, a user can choose any one tradeoff solution in the current Pareto optimal set in

light of actual needs. LSH-MOMA responds more dynamic nodes on Euclidean plane than on real map. The reason

for this observation is that the amount of dynamic pickup commodities in real-map cases is larger than the Euclidean

plane cases. As a result, adding a dynamic node to a route in real-map cases is more likely to violate the vehicle

capacity constraint.

6. Conclusions

This paper formulates a one-to-many-to-one dynamic pickup-and-delivery problem (1-M-1 DPDP) as a multi-

objective optimization problem with three conflicting objectives, i.e., route length, response time, and workload. A

multi-objective memetic algorithm based on locality-sensitive hashing (LSH-MOMA) is proposed to solve the prob-

lem. LSH-MOMA introduces LSH-based rectification and local search to a MOEA framework to repair and fine-tune

the candidate solutions. The algorithm is tested and compared with the other two counterpart algorithms using four

benchmark 1-M-1 DPDPs that are based on both Euclidean plane and real map. The experimental results demonstrate

the efficiency of LSH-MOMA. As an early attempt to solve the problem, other factors like fleet management, time

window constraint, real-time traffic information, and occasional events are not included for the sake of simplicity.

However, our algorithm could be extended to incorporate more realistic objectives and constraints to make it more

applicable to solve real-world problems.

7. Acknowledgements

This work was supported in part by the National Natural Science Foundation of China, under grants 61471246,

61171125, and 61205092, the NSFC-RS joint project under grants IE111069, the Guangdong Foundation of Outstand-

ing Young Teachers in Higher Education Institutions under grant Yq2013141, Guangdong Special Support Program of

Top-notch Young Professionals under grant 2014TQ01X273, Shenzhen Scientific Research and Development Fund-

ing Program under grants JCYJ20130329115450637, KQC201108300045A, and ZYC201105170243A, Nanshan In-

novation Institution Construction Program under grants KC2014ZDZJ0026A and KC2013ZDZJ0011A, Guangdong

Natural Science Foundation under grant S2012010009545, and the Scientific Research Foundation for the Returned

Overseas Chinese Scholars, MOE of China, under grand 20111568.

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

[1] A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions, Communications of the ACM

15 (2008) 117–122.

[2] C.C. António, A memetic algorithm based on multiple learning procedures for global optimal design of composite structures, Memetic

Computing 6 (2014) 113–131.

[3] M. Battarra, J.F. Cordeau, M. Iori, Pickup-and-delivery problems for goods transportation, in: P. Toth, D. Vigo (Eds.), Vehicle Routing:

Problems, Methods, and Applications, SIAM, 2014, pp. 161–191.

[4] I. Benyahia, J.Y. Potvin, Decision support for vehicle dispatching using genetic programming, IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans 28 (1998) 306–314.

[5] G. Berbeglia, J.F. Cordeau, I. Gribkovskaia, G. Laporte, Static pickup and delivery problems: a classification scheme and survey, TOP 15

(2007) 1–31.

[6] G. Berbeglia, J.F. Cordeau, G. Laporte, Dynamic pickup and delivery problems, European Journal of Operational Research 202 (2010) 8–15.

[7] F. Caraffini, F. Neri, L. Picinali, An analysis on separability for memetic computing automatic design, Information Sciences 265 (2014) 1–22.

[8] D. Cattaruzza, N. Absi, D. Feillet, J. González-Feliu, Vehicle routing problems for city logistics, EURO Journal on Transportation and

Logistics (2015) 1–29.

[9] X. Chen, Y.S. Ong, M.H. Lim, K.C. Tan, A multi-facet survey on memetic computation, IEEE Transactions on Evolutionary Computation 15

(2011) 591–607.

[10] B.K.S. Cheung, K. Choy, C.L. Li, W. Shi, J. Tang, Dynamic routing model and solution methods for fleet management with mobile technolo-

gies, International Journal of Production Economics 113 (2008) 694–705.

[11] C.A.C. Coello, G.B. Lamont, D.A.V. Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary

Computation), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[12] C.E. Cortés, D. Sáez, A. Núñez, D. Muñoz-Carpintero, Hybrid adaptive predictive control for a dynamic pickup and delivery problem,

Transportation Science 43 (2009) 27–42.

[13] G.B. Dantzig, J.H. Ramser, The truck dispatching problem, Management Science 6 (1959) 80–91.

[14] K. Deb, S. Jain, Running performance metrics for evolutionary multi-objective optimizations, in: Proceedings of the Fourth Asia-Pacific

Conference on Simulated Evolution and Learning (SEAL’02), pp. 13–20.

[15] K. Deb, D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Inc., New York, NY, USA, 2001.

[16] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolution-

ary Computation 6 (2002) 182–197.

[17] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Computational Intelligence Magazine 1 (2006) 28–39.

[18] I.H. Dridi, R. Kammarti, M. Ksouri, P. Borne, et al., Multi-objective optimization for the m-pdptw: Aggregation method with use of genetic

algorithm and lower bounds, International Journal of Computers, Communications & Control 6 (2011) 246–257.

[19] J. Euchi, A. Yassine, H. Chabchoub, The dynamic vehicle routing problem: Solution with hybrid metaheuristic approach, Swarm and Evolu-

tionary Computation (2015).

[20] M. Farina, K. Deb, P. Amato, Dynamic multiobjective optimization problems: test cases, approximations, and applications, IEEE Transactions

on Evolutionary Computation 8 (2004) 425–442.

[21] A. Garcia-Najera, J.A. Bullinaria, An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows,

Computers & Operations Research 38 (2011) 287–300.

[22] S.F. Ghannadpour, S. Noori, R. Tavakkoli-Moghaddam, K. Ghoseiri, A multi-objective dynamic vehicle routing problem with fuzzy time

windows: Model, solution and application, Applied Soft Computing 14 (2014) 504–527.

[23] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1989.

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[24] L. Grandinetti, F. Guerriero, F. Pezzella, O. Pisacane, The multi-objective multi-vehicle pickup and delivery problem with time windows,

Procedia-Social and Behavioral Sciences 111 (2014) 203–212.

[25] A. Haghani, S. Jung, A dynamic vehicle routing problem with time-dependent travel times, Computers & operations research 32 (2005)

2959–2986.

[26] J.H. Holland, Adaptation in Natural Artificial Systems. 2nd ed., MIT Press, Cambridge MA, 1992.

[27] M.K. Islam, M. Chetty, Clustered memetic algorithm with local heuristics for ab initio protein structure prediction, IEEE Transactions on

Evolutionary Computation 17 (2013) 558–576.

[28] P. Jaillet, M.R. Wagner, Generalized online routing: New competitive ratios, resource augmentation, and asymptotic analyses, Operations

Research 56 (2008) 745–757.

[29] N. Jozefowiez, F. Semet, E.G. Talbi, Multi-objective vehicle routing problems, European Journal of Operational Research 189 (2008) 293–

309.

[30] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proc. IEEE International Conference on Neural Network (ICNN’95), pp. 1942–

1948.

[31] N. Krasnogor, Studies on the theory and design space of memetic algorithms, Ph.D. thesis, University of the West of England, Bristol, U.K.,

2002.

[32] B. Lacroix, D. Molina, F. Herrera, Region based memetic algorithm for real-parameter optimisation, Information Sciences 262 (2014) 15–31.

[33] J. Lee, D.W. Kim, Memetic feature selection algorithm for multi-label classification, Information Sciences 293 (2015) 80–96.

[34] K. Li, Q. Zhang, S. Kwong, M. Li, R. Wang, Stable matching-based selection in evolutionary multiobjective optimization, IEEE Transactions

on Evolutionary Computation 18 (2014) 909–923.

[35] Y. Mei, K. Tang, X. Yao, A memetic algorithm for periodic capacitated arc routing problem, IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics 41 (2011) 1654–1667.

[36] K. Miettinen, Nonlinear multiobjective optimization, volume 12, Springer Science & Business Media, 1999.

[37] P. Moscato, Memetic Algorithm: A Short Introduction. In New Ideas in Optimization, McGraw-Hill, London, 1999.

[38] D. Muñoz-Carpintero, D. Sáez, C.E. Cortés, A. Núñez, A methodology based on evolutionary algorithms to solve a dynamic pickup and

delivery problem under a hybrid predictive control approach, Transportation Science 49 (2015) 239–253.

[39] F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: A literature review, Swarm and Evolutionary Computation 2

(2012) 1–14.

[40] T.T. Nguyen, S. Yang, J. Branke, Evolutionary dynamic optimization: A survey of the state of the art, Swarm and Evolutionary Computation

6 (2012) 1–24.

[41] A. Núñez, C.E. Cortés, D. Sáez, B. De Schutter, M. Gendreau, Multiobjective model predictive control for dynamic pickup and delivery

problems, Control Engineering Practice 32 (2014) 73–86.

[42] Y.S. Ong, M.H. Lim, X.S. Chen, Research frontier: Memetic computation - past, present & future, IEEE Computational Intelligence Magazine

5 (2010) 24–31.

[43] G. Pankratz, Dynamic planning of pickup and delivery operations by means of genetic algorithms, Fernuniversität, 2004.

[44] L.R. Pedro, R.H. Takahashi, Inspm: An interactive evolutionary multi-objective algorithm with preference model, Information Sciences 268

(2014) 202–219.

[45] V. Pillac, M. Gendreau, C. Guéret, A.L. Medaglia, A review of dynamic vehicle routing problems, European Journal of Operational Research

225 (2013) 1–11.

[46] D. Sáez, C.E. Cortés, A. Núñez, Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on

genetic algorithms and fuzzy clustering, Computers & Operations Research 35 (2008) 3412–3438.

[47] M.W. Savelsbergh, M. Sol, The general pickup and delivery problem, Transportation Science 29 (1995) 17–29.

[48] J.R. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization., Technical Report, DTIC Document, 1995.

[49] X.N. Shen, X. Yao, Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

problems, Information Sciences 298 (2015) 198–224.

[50] A.G. Sutcliffe, D. Wang, Memetic evolution in the development of proto-language, Memetic Computing 6 (2014) 3–18.

[51] M.R. Swihart, J.D. Papastavrou, A stochastic and dynamic model for the single-vehicle pick-up and delivery problem, European Journal of

Operational Research 114 (1999) 447–464.

[52] K.C. Tan, C.Y. Cheong, C.K. Goh, Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation,

European Journal of Operational Research 177 (2007) 813–839.

[53] K.C. Tan, E.F. Khor, T.H. Lee, Multiobjective Evolutionary Algorithms and Applications, Springer-Verlag London, UK, 2005.

[54] K.C. Tan, L.H. Lee, Q. Zhu, K. Ou, Heuristic methods for vehicle routing problem with time windows, Artificial intelligence in Engineering

15 (2001) 281–295.

[55] H. Tang, M. Hu, Dynamic vehicle routing problem with multiple objectives: Solution framework and computational experiments, Journal of

the Transportation Research Board 1923 (2005) 199–207.

[56] K. Tang, Y. Mei, X. Yao, Memetic algorithm with extended neighborhood search for capacitated arc routing problems, IEEE Transactions on

Evolutionary Computation 13 (2009) 1151–1166.

[57] L. Tersi, S. Fantozzi, R. Stagni, Characterization of the performance of memetic algorithms for the automation of bone tracking with fluo-

roscopy, IEEE Transactions on Evolutionary Computation 19 (2015) 19–30.

[58] C.K. Ting, X.L. Liao, The selective pickup and delivery problem: Formulation and a memetic algorithm, International Journal of Production

Economics 141 (2013) 199–211.

[59] Y. Wang, B. Li, T. Weise, Two-stage ensemble memetic algorithm: Function optimization and digital iir filter design, Information Sciences

220 (2013) 408–424.

[60] B. Yuan, B. Li, T. Weise, X. Yao, A new memetic algorithm with fitness approximation for the defect-tolerant logic mapping in crossbar-based

nanoarchitectures, IEEE Transactions on Evolutionary Computation 18 (2014) 846–859.

[61] Z. Zhu, Benchmark data sets, Accessed June 4, 2015. URL: http://csse.szu.edu.cn/staff/zhuzx/dpdpdata.zip.

[62] Z. Zhu, S. Jia, S. He, Y. Sun, Z. Ji, L. Shen, Three-dimensional gabor feature extraction for hyperspectral imagery classification using a

memetic framework, Information Sciences 298 (2015) 274–287.

[63] Z. Zhu, Y.S. Ong, J.L. Kuo, Feature selection using single/multi-objective memetic frameworks, in: C.K. Goh, Y.S. Ong, K.C. Tan (Eds.),

Multi-Objective Memetic Algorithms, Springer, 2009, pp. 111–131.

[64] Z. Zhu, J. Zhou, Z. Ji, Y.H. Shi, DNA sequence compression using adaptive particle swarm optimization-based memetic algorithm, IEEE

Transactions on Evolutionary Computation 15 (2011) 643–658.

[65] E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithmsła comparative case study, in: Parallel Problem Solving from

Nature (PPSN V), Springer, pp. 292–301.

[66] S. Zou, J. Li, X. Li, A hybrid particle swarm optimization algorithm for multi-objective pickup and delivery problem with time windows,

Journal of Computers 8 (2013) 2583–2589.

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) DPDP1

(b) DPDP2

(c) DPDP3

(d) DPDP4

Figure 8: The final non-dominant solutions of the three algorithms in a single run. The solutions of LSH-MOMA, LSH-MOGA, and MOGA are

plotted with blue, green, and red spots, respectively.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) The non-dominate solution of minimum path length (b) The non-dominate solution of minimum response time

(c) The non-dominate solution of maximum workload (d) The centroid solution of all non-dominate solutions

Figure 9: Four representative non-dominant solutions of LSH-MOMA in DPDP1.

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) The non-dominate solution of minimum path length (b) The non-dominate solution of minimum response time

(c) The non-dominate solution of maximum workload (d) The centroid solution of all non-dominate solutions

Figure 10: Four representative non-dominant solutions of LSH-MOMA in DPDP2.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
(a) The non-dominate solution of minimum path length (b) The non-dominate solution of minimum response time

(c) The non-dominate solution of maximum workload (d) The centroid solution of all non-dominate solutions

Figure 11: Four representative non-dominant solutions of LSH-MOMA in DPDP3.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) The non-dominate solution of minimum path length (b) The non-dominate solution of minimum response time

(c) The non-dominate solution of maximum workload (d) The centroid solution of all non-dominate solutions

Figure 12: Four representative non-dominant solutions of LSH-MOMA in DPDP4.

27

