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Abstract 

 

A functional role for the mitochondria in acute O2 sensing in the carotid body (CB) remains 

undetermined. Whilst total inhibition of mitochondrial activity causes intense CB stimulation, it is unclear 

whether this response can be moderated such that graded impairment of oxidative phosphorylation 

might be a mechanism that sets and modifies the O2 sensitivity of the whole organ. We assessed NADH 

autofluorescence and [Ca2+]i in freshly dissociated CB type I cells and sensory chemoafferent discharge 

frequency in an intact CB preparation, in the presence of varying concentrations of nitrite (NO2
-); a 

mitochondrial nitric oxide (NO) donor and competitive inhibitor of mitochondrial complex IV. NO2
- 

increased CB type I cell NADH in a manner that was dose-dependent and rapidly reversible. Similar 

concentrations of NO2
- raised type I cell [Ca2+]i  and increased chemoafferent discharge frequency. 

Moderate inhibition of the CB mitochondria by NO2
- augmented chemoafferent discharge frequency 

during graded hypoxia, consistent with a heightened CB O2 sensitivity. Furthermore, NO2
- also 

exaggerated chemoafferent excitation during hypercapnia signifying an increase in CB CO2 sensitivity. 

These data therefore provide support for the hypothesis that mitochondria play a key role in setting the 

hypoxia-stimulus response coupling process in the CB and raise the possibility that NO, acting at the 

mitochondria, can modulate the CB sensitivity to both hypoxia and hypercapnia.  

 

Key Words: carotid body, mitochondria, hypoxia, nitrite, nitric oxide 
 

 

Abbreviations: CB – carotid body. NO2
- - nitrite. NO – nitric oxide. SDB – sleep disordered breathing. 

CHF – Chronic heart failure. CIH – chronic intermittent hypoxia. TASK – TWIK-related acid sensitive K+ 

channel. BKCa – large conductance Ca2+ activated K+ channel. SCG – superior cervical ganglion. PMT – 

photomultiplier tube. NOX-2 – NADPH oxidase 2. ROS – reactive oxygen species. H2S – hydrogen 

sulphide. NOS-3 – nitric oxide synthase 3.  
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Introduction 

 

The type I cell in the mammalian carotid body (CB) responds acutely to small, physiological reductions in 

arterial O2 tension. Activation of the CB type I cell leads to the release of stored neurotransmitters and 

excitation of the adjacent sensory neuronal fibres [37]. The functional consequence of CB stimulation by 

hypoxia is the induction of a series of well-characterised cardiovascular, respiratory and endocrine reflex 

responses [28]. Chronic up-regulation of these reflex pathways, secondary to pathological changes in 

CB function is implicated in a number of clinical conditions including sleep disordered breathing (SDB) 

[42] and chronic heart failure (CHF) [45]. This promotes neurogenic hypertension [36,39] and heightens 

cardiovascular related morbidity and mortality [46]. Recently, sensory neuronal output originating from 

the CB has also been identified as being the main driving force in eliciting spontaneous hypertension in 

rats [1,31] and in initiating insulin resistance and hypertension in animals fed on a high calorific diet [43].  

 

The development of clinical interventions for CB dysfunction in patients with SDB, CHF and insulin 

resistance has been restricted by a lack of fundamental knowledge of the mechanism(s) accounting for 

CB activation by hypoxia. Of the proposed O2 sensors, the type I cell mitochondria appear particularly 

sensitive to arterial O2 tensions (PaO2) within the physiological range at which the CB is stimulated 

[33,15,8]. In particular, the exceptionally low O2 affinity of complex IV causes mitochondrial electron flux 

to be more susceptible to small falls in O2 compared with other cell types [8]. Whether or not the 

mitochondria have a functional role in establishing the unique O2 sensitivity of the whole CB organ is the 

focus of the current investigation.  

 

In support of the mitochondrial hypothesis, all known inhibitors and uncouplers of the mitochondria 

excite the CB [53]. The degree of stimulation elicited by saturating concentrations of mitochondrial 

poisons is similar to that evoked by severe hypoxia or anoxia [15,16,53]. The effects of non-competitive 

inhibitors (azide and CN-) on chemoafferent activity also exhibit a degree of dependence on steady state 

PaO2 [35]. Furthermore, type I cell activation induced by mitochondrial poisons shares many of the same 

chemotransduction processes associated with CB O2 sensing including the inhibition of outward K+ 

currents, cellular depolarisation, Ca2+ influx and neurosecretion [29].   

 

If the mitochondria are functionally involved in CB O2 sensing, then competitive inhibitors of O2 binding 

at complex IV should heighten CB O2 sensitivity and exaggerate the increased chemoafferent discharge 

frequency in response to graded hypoxia. Nitric oxide (NO) acts as a competitive inhibitor of cytochrome 

oxidase through binding to the CuB/haem a3 binuclear centre in complex IV, in direct competition with O2 

[6]. In order to explore the effects of mitochondrial NO we have taken advantage of the observation that 

mM concentrations of exogenous nitrite (NO2
-) can be reduced by the mitochondria to release small 

quantities (nM/pM) of NO that subsequently inhibit mitochondrial complexes I and IV making electron 

transport more sensitive to reductions in O2 [27,9,2,48,47]. We therefore use NO2
- in this study to 

examine two key questions: 1) Does a competitive inhibitor of complex IV alter the CB O2 sensitivity and 

2) Can NO inhibit the CB mitochondria and modify type I cell and chemoafferent responses to hypoxia? 
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Materials and Methods 

 

Ethical approval 

All surgical procedures were performed in accordance with project and personal licences issued under 

the UK Animals (Scientific Procedures) Act 1986 and were approved by the Biomedical Services Unit at 

the University of Birmingham and University of Oxford. 

 

Cell isolation 

The carotid bifurcation, the superior cervical ganglion (SCG), vagus nerve and CB were all excised from 

rats aged 10-14 days under terminal inhalation anaesthesia (2-4% Isoflurane in O2). Bifurcations were 

immediately placed in a dissecting dish containing a phosphate buffered saline (PBS) solution. The SCG 

was removed along with the vagus nerve. The CBs were teased away from the adjacent arterial walls 

and then transferred to 2 ml of HAMS F-12 nutrient mixture pre-equilibrated with 11% O2, 5% CO2 and 

containing collagenase (Worthington: 0.6 mg/ml) and trypsin (Sigma: 0.4 mg/ml). CBs were incubated at 

37°C, 5% CO2 and 11% O2, for 25-30 minutes in this solution. To isolate cells, CBs were transferred to 

an enzyme free culture medium containing trypsin inhibitor (Sigma: 0.5 mg/ml) and triturated using fine 

bore glass pipettes (200, 100 and 50 µm internal diameter). 30 µl aliquots of the cell suspension were 

then transferred to individual poly-L-lysine coated 6 mm diameter coverslips. These coverslips were 

placed in the incubator at 37°C, 5% CO2 and 11% O2, for 2-4 hours before use. The enzyme free culture 

medium was composed of advanced DMEM F-12 nutrient mixture (Gibco), L-glutamine (2 mM), insulin 

(4 µg / ml) and foetal bovine serum (10% v/v).  

 

Measurement of NADH and [Ca2+]i 

Ca2+ and NADH fluorescence measurements were made using an inverted microscope (Nikon Diaphot 

200; Nikon) equipped with a 100 W xenon lamp that provided the fluorescence excitation light source. 

Photomultiplier tubes (PMT; Thorn EMI), cooled to minus 20°C, were used to detect the emitted 

fluorescence. The output signal was fed through a current-voltage converter and the voltage was 

recorded using a CED micro1401 (Cambridge Electronic Design) and visualised on a PC with Spike2 

(version 7.1) software (Cambridge Electronic Design) as an individual waveform. The voltage signal was 

sampled at 250 Hz and then averaged over 0.5 sec intervals.  

 

NADH autofluorescence was excited at 340 nm and the emission was measured at 450 ± 30 nm. A 

diaphragm placed in the image plane was used to select fluorescent light emanating from chosen cells. 

Raw traces showing NADH auto-fluorescence are presented without any correction or calibration. 

Baseline subtraction was achieved by applying a linear filter to account for fluorescence bleaching and 

data is presented as a proportion of the mean maximum hypoxic response performed before and after 

addition of NO2
-, thus normalising each response to NO2

-.  

 

[Ca2+]i was determined by using the fluorescent dye, Indo-1 [21]. Cells were initially loaded by incubation 

with the Indo-1 acetoxymethyl ester (Indo-1-AM; Invitrogen Molecular Probes) for 1 hour. After 



! 5!

transferring the cells to the recording chamber, cells were illuminated at 340 nm and emission was 

measured at 405 ± 16 nm (F405; Ca2+ bound Indo-1) and 495 ± 10 nm (F495; Ca2+ free Indo-1). In order to 

directly quantify the type I cell [Ca2+]i the constants Rmin, Rmax and F495 (max / min) were determined in 

separate recordings. To do this, type I cells loaded with Indo-1 were transferred into a HEPES buffered 

Krebs Ca2+ free solution containing 10 mM EGTA (Sigma-Aldrich) and 10 µM ionomycin for 1 hour at 

room temperature. This protocol was performed to deplete the cells of calcium as much as possible and 

de-saturate Indo-1. Cells were subsequently placed in a recording chamber and superfused with a 

similar solution but containing only 1 µM ionomycin whilst fluorescence measurements were made to 

determine the Rmin from a single type I cell. To determine Rmax, the superfusate was replaced with 

another HEPES buffered Krebs solution containing 2.5 mM Ca2+ and 1 µM ionomycin. Using this method 

the F495 (max / min) could also be calculated. The Kd (dissociation constant) of the reaction: 

[Ca2+-Indo-1] ⇔ [Ca2+] + [Indo-1] 

was assumed to be 250 nM as previously reported [21]. In subsequent experimental recordings [Ca2+]i 

was calculated from the fluorescence ratio R according to the equation described by Grynkiewicz and 

colleagues, as shown below. 

[Ca2+]i = Kd(((R – Rmin) / (Rmax – R)) / (F495 (max / min))). 

 

Extracellular recordings of single and few-fibre chemoafferent neurones 

The carotid bifurcation along with the SCG, vagus nerve, carotid sinus nerve (CSN) and CBs were 

isolated from adult male rats (50–200 g) under inhalation anaesthesia (2-4% isoflurane in O2). Following 

tissue procurement, animals were immediately killed by exsanguination. The tissue was transferred to a 

small volume (approximately 0.2 ml) dissecting chamber with a Sylgard 184 base (Dow Corning). The 

tissue was continuously superfused with a bicarbonate buffered extracellular Krebs solution containing, 

in mM: 115 NaCl, 4.5 KCl, 1.25 NaH2PO4, 5 Na2SO4, 1.3 MgSO4, 24 NaHCO3, 2.4 CaCl2, 11 D-glucose, 

equilibrated with 95% O2 and 5% CO2. Connective tissue was removed and the superior cervical 

ganglion, branches of the vagus nerve and the occipital artery were all individually excised. The CSN 

was sectioned exposing nerve fibres and axons. To facilitate the later extracellular neuronal recordings, 

the whole tissue was partially digested by incubation in a bicarbonate buffered enzyme Krebs solution 

(0.075 mg / ml collagenase type II, 0.0025 mg / ml dispase type I; Sigma Aldrich), equilibrated with 95% 

O2 and 5% CO2, at a temperature of 37ºC, for 20–30 minutes. 
 

Extracellular recordings of single or few-fibre chemoafferent activity were made from the cut end of the 

CSN using glass suction electrodes as described previously [40,24]. The recorded voltage was amplified 

using a NeuroLog NL104 AC pre-amplifier (Digitimer), and amplified further with an AC amplifier 

(NeuroLog 105; Digitimer). Total amplification was x4000. The signal was not filtered. The superfusate 

PO2 was continuously measured using an O2 electrode (ISO2; World Precision Instruments) and O2 

meter (OXELP; World Precision Instruments). The PO2 and chemoafferent derived voltage were both 

recorded using a CED micro1401 (Cambridge Electronic Design) and visualised on a PC with Spike2 

(version 7.1) software (Cambridge Electronic Design), as two individual waveforms. The chemoafferent 

voltage signal was sampled at 15000 Hz and the PO2 at 100 Hz. Using the in-built wavemark analysis in 
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the Spike2 software (Cambridge Electronic Design), electrical activity originating from a single 

chemoafferent fibre was determined by its unique ‘wavemark’ signature based on frequency, shape and 

amplitude.  

 

Experimental solutions and analysis of functional hypoxic responses 

During experimentation, dissociated type I cells were continuously superfused with a standard 

bicarbonate buffered Krebs solution containing, in mM: 117 NaCl, 4.5 KCl, 1 MgCl2, 23 NaHCO3, 2.5 

CaCl2 and 11 D-glucose. For intact CB preparations, an almost identical Krebs solution was used but in 

addition contained 1.25 mM NaH2PO4 and 5 mM Na2SO4. All solutions were heated to 37ºC using a 

water bath (Grant W14, Grant Instruments). In experiments using exogenous NaNO2, osmolality was 

balanced by appropriate subtraction of NaCl from the superfusate.  

 

The HEPES buffered Krebs solution used for Indo-1 calibrations contained in mM: 140 KCl, 2 MgCl2, 10 

CaCl2, 11 D-glucose and 20 HEPES, pH 7.4 at 37°C. The Ca2+ free solution was deficient in CaCl2 and 

contained 10 mM EGTA.  

 

For dissociated cell experiments, normoxic/hyperoxic solutions were equilibrated with 5% CO2 and 95% 

air. Mild hypoxic solutions were equilibrated with 5% CO2, 2% O2 and 93% N2 and severe hypoxic 

solutions with 5% CO2 and 95% N2. All solutions had a pH of 7.4 at 37ºC. 

 

For whole CB preparations, flow meters with high precision valves (Cole Palmer Instruments) were used 

in order to gas the superfusate with a desired gas mixture. For normoxia/hyperoxia the superfusate PO2 

was maintained throughout at 300 mmHg and PCO2 at 40 mmHg to enable a sufficient diffusion gradient 

[41]. To monitor chemoafferent responses to graded hypoxia the superfusate PO2 was gradually 

reduced at constant PCO2. The single fibre chemoafferent discharge frequency was plotted against the 

superfusate PO2, over the range of superfusate PO2 values. To produce the hypoxic response curves, 

the data points were fitted to an exponential decay curve with offset, as shown below.  

y = a + be-cx 

For the above equation, y is the single fibre discharge frequency in Hz, x is the superfusate PO2 in 

mmHg, a is the discharge frequency as the PO2 tends to infinity (offset), b is the discharge frequency 

when the PO2 is 0 mmHg (minus the offset) and c is the exponential rate constant. Specific components 

of the calculated hypoxic response curves were compared to identify any potential changes in CB 

hypoxic sensitivity.  

 

Analysis of data 
Values are expressed as mean ± standard error of mean unless otherwise stated. Statistical analysis 

was performed using i) a paired 2-tailed student’s t-test ii) an un-paired 2-tailed student’s t-test or iii) 

repeated measures one way Analysis of Variance (ANOVA) with Bonferroni or Dunnett’s post hoc 

analysis where appropriate (StatView version 5). Significance was taken as p<0.05.  
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Results 

 

Nitrite causes dose dependent, carotid body chemostimulation coupled to NADH 

autofluorescence.  
In the intact CB preparation, NO2

- elevated the chemoafferent frequency at mM concentrations, 

consistent with those concentrations known to generate NO at the mitochondria (Fig. 1a). 

Chemostimulation induced by NO2
- was rapidly induced (less than 1 minute) and well maintained 

throughout the application and was reversed within 1 to 2 minutes of removal from the superfusate (Fig. 

1a). Significant dose dependent increases in mean chemoafferent activity were observed at 

concentrations of 3.3, 10 and 33 mM NO2
- with the mean response to 33 mM NO2

- measuring 69.3 ± 

6.5 % of the absolute maximum frequency response to severe hypoxia (superfusate PO2 approximately 

40 mmHg for an intact CB preparation) (Fig. 1b). 
    

In acutely dissociated type I cell clusters (ca 2-10 cells) similar concentrations of NO2
- to those that 

increased chemoafferent frequency in the intact CB organ also generated significant elevations in NADH 

autofluorescence, indicative of an attenuation of mitochondrial electron transport (Fig. 1c). Increases in 

NADH autofluorescence were almost instantaneous upon NO2
- application and reversed within 1 to 2 

minutes of removal from the superfusate (Fig. 1c). Addition of 10 mM NO2
- caused a 25.5 ± 1.3 % whilst 

33 mM NO2
- caused a 79.2 ± 13.8 % rise in NADH autofluorescence, when measured as the proportion 

of the peak responses to 0% O2 (Fig. 1d).  

 

Carotid body type I cell Ca2+ is elevated by NO2
- in mild hypoxia 

[Ca2+]i was recorded from clusters of type I cells (ca 2-10 cells) at two levels of dissolved O2: 20% and 

2%. An example trace from a single cluster in the presence and absence of 10 mM NO2
- is shown in Fig. 

2a. Addition of 10 mM NO2
- had little effect on type I cell [Ca2+]i in hyperoxia but when the superfusion 

medium was switched to one equilibrated with 2% O2 (mild hypoxia), 10 mM NO2
- stimulated an almost 

instantaneous and substantial rise in [Ca2+]i that was rapidly reversible (Fig. 2a & b), consistent with 

significant stimulus interaction. At 33mM NO2
-, the elevation in [Ca2+]i in 2% O2 was more substantial 

and better maintained (Fig. 2c & d). To maintain osmolality, experiments using NaNO2 were performed 

at lower concentrations of NaCl. Therefore, to examine the potential impact of a reduction in Cl- 

concentration, experiments were also carried out in the presence and absence of 33 mM sodium nitrate 

(NO3
-). Type I cell [Ca2+]i was unaffected by the addition of 33 mM NO3

-, at either 20% or 2% dissolved 

O2 (Fig. 2e & f). In view of this, it is unlikely that the response observed in the presence of NO2
- is a 

consequence of a reduction in Cl- ions.  

 

To confirm that the observed rise in [Ca2+]i in response to NO2
- is due to Ca2+ entry via voltage gated 

Ca2+ channels, as is the case for equivalent [Ca2+]i-responses to hypoxia or other mitochondrial inhibitors 

[53], we studied the effects of both removal of extracellular Ca2+ and of a non-selective Ca2+-channel 

antagonist Ni2+. Fig. 3a & c show that in a Ca-free Krebs (containing 100 µM EGTA) 30 mM NO2
- had no 

discernible effect on [Ca2+]i. Similarly, in the presence of 2 mM NiCl2, NO2
- again had no effect on [Ca2+]i 
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(see Fig. 3b & d). Thus the [Ca2+]i-response to NO2
- would appear to be dependent upon both 

extracellular Ca2+ and the involvement of voltage-gated Ca2+-channels. It is however notable that in both 

Ca2+-free solutions and in Ni2+ solutions there is a rapid rebound increase in [Ca2+]i when those solutions 

are washed off. This may reflect a difference in time course between the wash out of extracellular 

solutions (typical half time for solution exchange in our perfusion chamber is < 2 s) and the washout of 

intracellular and inner mitochondrial matrix NO2
-. 

 

Nitrite sensitises the carotid body to acute graded hypoxia  

We next sought to investigate whether mild inhibitory targeting of the mitochondria, using NO2
-, modified 

the intact CB O2 sensitivity. The CB was stimulated by hypoxia in the presence and absence of 3.3 mM 

NO2
-, a concentration previously shown to evoke only a very small increase in basal activity (0.60 ±0.10 

Hz; control compared with 1.11 ± 0.21 Hz; 3.3 mM NO2
-) consistent with a very mild level of 

mitochondrial inhibition. NO2
- exaggerated the rise in single fibre chemoafferent frequency during 

hypoxia causing a marked right and upward shift of the CB hypoxic response curve (Fig. 4a & b). The 

mean right shift was quantified by measuring the PO2 when the discharge frequency was at 5 Hz 

(control: 105 ± 7mmHg PO2, NO2
-: 141 ± 11mmHg PO2, Fig. 4c). This effect was consistent in all the 

fibres tested (Fig. 4c).  

 

Analysis of the paired differences in discharge frequency calculated at fixed levels of PO2, showed that 

NO2
- sensitivity was increasingly enhanced by reductions in PO2 (Fig. 4d), indicative of significant 

synergistic interaction between NO2
- and hypoxia.  

 

Nitrite augments the carotid body sensitivity to hypercapnia  

Hypoxia causes a multiplicative augmentation of the CB response to hypercapnia, showing that these 

two stimuli are highly interdependent [40,11,18]. We therefore examined whether the NO2
- impacts on 

the CB sensitivity to hypercapnia.  

 

Chemoafferent responses to hypercapnia were performed in the presence and absence of 3.3 mM NO2
-. 

An example trace of a single fibre response to hypercapnia in the presence and absence of 3.3 mM NO2
- 

is presented in Fig. 5a. NO2
- significantly enhanced the response to hypercapnia (Fig. 5b). 

Measurements of the differences between the paired hypercapnic and basal frequencies demonstrate 

that 3.3 mM NO2
- augmented the absolute frequency rise induced by hypercapnia in all fibres tested 

(0.90 ± 0.20 Hz; control, 1.7 ± 0.30; nitrite) (Fig. 5c). Accordingly, the calculated CO2 sensitivity 

(determined by Δ Hz / mmHg PCO2) was significantly heightened in the by NO2
- (Fig. 5d).  

 

Chemoafferent excitation induced by nitrite is not due to a direct action on the nerve ending or 

secondary to reactive oxygen species generation 

To investigate a possible direct action of NO2
- upon the sensory afferents of the CSN, 10 mM NO2

- was 

applied to the intact preparation during hyperoxia (95%O2, 5%CO2), when type I cell activity is effectively 

silenced. A characteristic example of the responses to NO2
- during normoxia and hyperoxia is shown in 
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Fig. 6a. Grouped data shows that the chemoafferent response to 10 mM NO2
- is abolished in hyperoxia 

(Fig. 6b). Furthermore, addition of 10 mM NO2
- in hyperoxia did not augment the response to 1 mM ATP 

(Fig. 6c), a stimulus that should excite P2X receptors on CSN terminals with minimal involvement of type 

I cell receptors.  

 
To determine whether responses to NO2

- were mediated by ROS levels within the CB, chemoafferent 

excitation induced by 10 mM NO2
- was examined before and during 15 min incubation with 1 mM 4-

hydroxy-TEMPO (TEMPOL); a membrane permeable SOD mimetic and free radical scavenger [10,22] 

previously used to reduce ROS levels in a comparable in vitro CB preparation [30]. An example of the 

responses to 10 mM NO2
- in the presence and absence of 1 mM TEMPOL is presented in Fig. 6d. 

TEMPOL did not significantly affect the magnitude of the chemoafferent stimulation induced by 10mM 

NO2
- (Fig. 6e). Thus, chemoexcitation induced by NO2

- does not appear to involve alterations in ROS 

generation/reduction.  
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Discussion 

 

Mild mitochondrial inhibition using nitrite increases the carotid body sensitivity to hypoxia. 

This study provides evidence supporting a functional role for type I cell mitochondria in establishing the 

overall sensitivity of the CB to O2. Addition of NO2
-, a type I cell mitochondrial inhibitor, caused greater 

than additive augmentation in the hypoxic chemoafferent discharge frequency and evoked a reversible 

right shift in the exponential chemoafferent hypoxic response curve, an effect that is consistent with an 

alteration in the PO2 threshold or ‘set point’ required for CB hypoxic response initiation. Thus we 

demonstrate that a substance capable of competitively inhibiting mitochondrial complex IV increases the 

CB O2 sensitivity. We suggest that CB NO-complex IV interactions may thus provide both a means by 

which a relatively low O2 affinity is achieved in the mitochondria of the type I cell and a means by which 

plasticity could occur during natural development and/or pathology.  

 

NO2
- was selected in this study as 1) it has been shown to release small quantities (nM/pM) of NO at the 

mitochondria when applied at mM concentrations and 2) NO (and therefore NO2
-) is a rapidly reversible 

competitive inhibitor of complex IV and thus mitochondrial function [27,9,2,48,47]. This allowed us to 

investigate the effects of NO on CB mitochondrial activity rather more specifically than would be possible 

by application of NO itself, which is likely to inhibit chemoreceptor function through soluble guanylate 

cyclase and modulation of L-type Ca2+ channels and BKCa channels [50,49].  

 

With regards to the concentrations of NO2
- used in this study it is important to note that there is a 

fundamental physical-chemical difference between NO2
- and other common inhibitors of complex IV. 

NO2
- is a strong ion i.e. in solution it is fully dissociated as the anion NO2

-, in contrast other inhibitors e.g. 

cyanide & sulphide are relatively weak ions, or in the case of NO & CO gases. The latter can all readily 

cross membranes in their lipid soluble uncharged form (e.g. HCN & H2S) and will reach an equilibrium in 

which the unionised form is at an equal concentration on either side of the membrane. In contrast NO2
- is 

charged and will therefore only be able to cross lipid membranes via ion channels and transporters. 

Unless there are highly active primary or secondary active transporters for NO2
- its equilibrium 

distribution across a membrane will be determined by the Nernst equation. In consequence, as the cell 

membrane has a resting potential of -60mV, the limiting concentration for intracellular NO2
- would be 10 

fold lower than the extracellular concentration, equally as the inner mitochondrial membrane has a 

potential of around -180 mV under normal conditions the limiting concentration for inner matrix NO2
- will 

be a 1000 fold lower than in the cytosol. Thus, at an extracellular concentration of 30 mM, matrix NO2
- 

may be no higher than 3 µM. 

 

NO levels cannot however be measured here directly because of the small size of the CB (~200µg), the 

fact that NO production is limited to a specific region and the lack of specific fluorescent probes for NO 

which would allow imaging of localised NO production. In addition, attempts to inhibit responses to NO2
- 

with the NO scavenger 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) 

would be difficult to interpret due to its low cell permeability [20,4]. We were however able to observe the 
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effects of NO2
- on mitochondrial function in isolated type I cells by measuring changes in mitochondrial 

NADH levels [15,8,7]. We did not attempt to measure the effects of NO2
- on oxygen consumption in 

carotid body mitochondria due to the lack of suitable instrumentation for working with such a small 

amount of tissue.  

 

The finding that NO2
- augmented responses to hypoxia in the intact CB is in striking contrast to recent 

studies using other complex IV inhibitors. Donnelly et al [14] have reported that the prolonged (mins) 

application of low levels of cyanide (or azide or sulphide) attenuates the neural response to hypoxia in 

isolated chemoreceptors. One possible explanation for this is that whereas CN-, azide and H2S will 

indiscriminately inhibit complex IV in all tissue elements within the CB (including nerve endings, type-II 

cells and blood vessels), NO2
- would be expected to selectively target type I cell mitochondria. This is 

because whereas CN-, azide and H2S are non-competitive inhibitors of complex IV, NO is a competitive 

inhibitor and should therefore be much more effective at inhibiting complex IV in the type I cell which has 

a lower apparent affinity for oxygen [8] than in other cell types. Moreover the reduction of NO2
- to NO by 

mitochondria is promoted when hypoxia limits electron transport to oxygen [9]. This is likely to occur at 

higher levels of tissue oxygenation in the type I cell than in other cells again on account of type I cell 

mitochondria having a lower apparent O2 affinity. Thus, mitochondrial NO production and its ability to 

inhibit cytochrome oxidase should be more favourable in the type I cell compared with other surrounding 

cell types. Our results with NO2
- in the intact carotid body may therefore more faithfully represent the 

effects of mitochondrial inhibition in type I cells free of the confounding effects arising from the metabolic 

poisoning of nerve endings and other adjacent tissues.  In this context it is notable that when Donnelly et 

al [14] studied the effects of low levels of CN- in isolated type I cells (as opposed to the intact CB) it also 

augmented calcium responses to hypoxia.  

 

To eliminate a potential non-selective/alternative action of NO2
- on chemoreceptor function, we 

performed a number of additional control experiments. First, experiments using NaNO2 were performed 

at reduced NaCl concentrations, in order to maintain osmolality. The finding that NO3
- had no effect on 

type I cell [Ca2+]i at the same lower concentration of NaCl suggests that the observed excitation evoked 

by NO2
- was not subsequent to the reduction in Cl- ions. Second, as there is evidence that some sensory 

neurons, often with mitochondrial-rich terminals, may respond to hypoxia [12,5,34], our observations that 

chemoafferent activity was not elevated by addition of NO2
- during hyperoxia, or that chemoafferent 

responses to ATP in hyperoxia were not enhanced by NO2
-, supports the idea that the chemostimulatory 

impact of NO2
- occurs only at the level of the type I cell and has no direct influence on the CSN 

terminals. Finally, we showed that response to NO2
- was not altered during administration of TEMPOL, a 

cell permeable SOD-mimetic and free-radical scavenger [10,22,30], and thus we propose that the 

excitatory impact of NO2
- is not a consequence of a modification in levels of mitochondrial/NADPH 

derived reactive oxygen species (ROS) [3,19,13,38]. We suggest that alternative signaling pathways 

activated subsequent to type I cell mitochondrial inhibition could include direct inhibition of TASK-like 

channels due to a fall in [ATP]i [52] or activation of the AMP-activated protein kinase [17,54].   
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Whether there is a role for endogenous NO (and/or NO2
-) in mediating CB mitochondrial function and 

hypoxic sensing remains to be more clearly defined. Measurable amounts of NO have been identified in 

mitochondrial membranes of type I cells [55]. The more likely source of endogenous NO is nitric oxide 

synthase 3 (NOS-3) given that this is the only NOS isoform to be detected within the type I cell [55]. 

Selective inhibitors of NOS-3 are currently unavailable. However, mice deficient in NOS-3 do exhibit a 

significantly diminished ventilatory response to hypoxia coupled with a downgraded CB function [26]. 

The absence of significant type I cell hyperplasia in these mice, suggests that the reduced CB 

excitability is not mediated by chronic hypoxia [51,32]. Rather, it points towards an alternative 

explanation and perhaps a tonic excitatory action of NO on CB chemoreceptor activity. Future 

investigations could test whether endogenous NO generation from NOS-3 or NO2
- is sufficient to reduce 

type I cell mitochondrial O2 affinity. A sufficiently high mitochondrial production of NO may well help 

explain the exceptionally low O2 affinity of the mitochondria in the CB type I cell [8].  

 

Mitochondrial inhibition with nitrite sensitises the CB to hypercapnic stimulation  

Significant stimulus interaction between hypoxia and hypercapnia is well documented in the CB [40,11]. 

Our own findings demonstrated that mitochondrial targeting with NO2
- increased CB hypercapnic 

sensitivity. Identification of the synergy between these two stimuli further substantiates the proposal that 

hypoxia and mitochondrial inhibition have similar effects on CB chemoreceptor function.  

 

The exact site of convergence between mitochondrial inhibition and hypercapnic stimuli is still to be 

detected. These stimuli do share a number of key transduction processes including attenuation of 

background TASK-like conductance, activation of L-type Ca2+ channels, neurosecretion and stimulation 

of the CSN afferents [29]. The observed stimulus interaction could be a consequence of up-regulation of 

any or all of these processes and additional examination was beyond the scope of this study. The data 

does however support a role for the mitochondria in setting not only the CB threshold for the response to 

hypoxia but also to hypercapnia. Whether it may set the threshold to other putative stimuli of the CB 

remains to be investigated.   

 

Relevance to carotid body pathology.  

The mechanisms underpinning pathological CB activation in CHF and SDB are as yet unknown but it is 

thought that reactive oxygen species (ROS) production, possibly by an NADPH oxidase [30,25], may 

play a role. Downstream targets/effectors for ROS mediated signalling/damage and chemoreceptor 

activation are yet to be identified. Mitochondrial function could well be such a target. Electron transport 

complexes are known to be susceptible to ROS damage [23] (as is mitochondrial DNA [44]) and, as 

shown here, inhibition of electron transport has the capacity to dramatically alter chemoreceptor activity. 

It is therefore important that the effects of CHF and SDB on type I cell mitochondrial function are 

evaluated along with other potential effectors.  

 

Conclusions 
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NO2
-, a NO donor and mitochondrial inhibitor, produces dose dependent rises in CB type I cell NADH 

autofluorescence combined with a similar degree of [Ca2+]i and chemoafferent stimulation. Inhibitory 

targeting of the mitochondria using NO2
- sensitises the CB to hypoxia, thus supporting the hypothesis 

that mitochondrial function is important in establishing the CB sensitivity to O2. Manipulation of CB 

mitochondrial energy metabolism and downstream metabolic signalling pathways may prove to be 

important in reducing the CB sensory output that drives hypertension in certain pathologies.  
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Figure captions 
 

Fig. 1 Exogenous nitrite acts as a chemostimulant and mitochondrial inhibitor in the carotid body. a) An 

example trace showing the impact of nitrite (NO2
-) on the frequency recorded from a single 

chemoafferent fibre. Raw discharge is shown (upper) along with frequency histograms (lower) grouped 

in 10 s intervals. Overdrawn action potentials are shown inset to demonstrate the single fibre 

discrimination. b) Mean frequencies induced by different concentrations of NO2
-, expressed as a 

percentage of the paired peak frequency response to severe hypoxia. Data presented is from 9 fibres 

from 6 different CB preparations. Error bars indicate ± S.E.M. * denotes p<0.05 compared with initial 

NO2
- dose; one way repeated measures ANOVA with Dunnett’s post hoc analysis. c) Example 

recordings demonstrating the effect of 10 mM and 33 mM NO2
- on NADH autofluorescence in two 

different type I cell clusters, measured in 2% O2. d) Mean increase in NADH autofluorescence induced 

by 10 mM NO2
- (4 clusters, 4 CB preparations) and by 33 mM NO2

- (6 clusters from 4 CB preparations), 

expressed as a percentage of the paired mean peak NADH autofluorescence responses evoked by 

severe hypoxia (0% O2). Error bars indicate + S.E.M. * denotes p<0.05 compared with 10 mM NO2
-; 

unpaired t-test. 

 

Fig. 2 The carotid body type I cell [Ca2+]i response to nitrite is dose dependent and influenced by the 

background steady state level of dissolved O2. a) Example recording from a type I cell cluster 

demonstrating the impact of 10 mM nitrite (NO2
-) on [Ca2+]i measured in 20% and 2% dissolved O2. b) 

Mean [Ca2+]i measured in 4 type I cell clusters from 3 CB preparations. c) and d) As for a) and b) but in 

the presence of 33 mM NO2
- (n=9 cell clusters from 4 preparations). e) An example trace showing the 

absence of any augmentation in [Ca2+]i upon addition of 33 mM nitrate (NO3
-). f) Mean [Ca2+]i in the 

presence and absence of NO3
- (n=9 cell clusters from 3 preparations). Error bars indicate + S.E.M. * 

denotes p<0.05 compared with 2% O2; one way repeated measures ANOVA with Bonferroni post hoc 

analysis test. 

 

Fig. 3 Effects of removal of extracellular calcium and calcium channel block on nitrite response. Figure 

shows intracellular Ca2+ measurements in isolated rat type I cells. All cells were confirmed as being 

oxygen sensitive by brief application of a severe hypoxic stimulus (95% N2/5% CO2; PO2 approximately 

2 mmHg) prior to commencement of the experiment. Responses to NO2
- were tested in the presence of 

a mild hypoxic stimulus i.e. 2% O2. a) Effects of 30 mM NO2
- in the presence and absence of 

extracellular Ca2+ (Ca-free Krebs also contained 100 µM EGTA). b) Effects of 30 mM NO2
- in the 

presence and absence of extracellular NiCl2 (2 mM). c) Comparison of average [Ca2+]i  under control 

conditions (20% O2), mild hypoxia (2 % O2), 30 mM NO2
- in mild hypoxia and 30 mM NO2

- (2 % O2) in 

Ca-free media. (n= 8, * p< 0.001). Statistical comparisons were performed between NO2
- and NO2

- in 

Ca-free media using a paired t-test. d) Comparison of average [Ca2+]i  under control conditions (20% 

O2), mild hypoxia (2 % O2), 30 mM NO2
- in mild hypoxia and 30 mM NO2

-  (2 % O2) in the presence of 

2 mM NiCl2. (n=9, * p<0.001). Statistical comparisons were performed between NO2
- and NO2

- in the 

presence of Ni2+ using a paired t-test. 
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Fig. 4 Nitrite enhances the carotid body chemoafferent response to hypoxia a) An example of the 

sensory neuronal frequency recorded during graded hypoxia in the presence and absence of 3.3 mM 

nitrite (NO2
-). The continuous superfusate PO2 is shown along with frequency histograms and 

demonstrate an augmented discharge in the presence of 3.3 mM NO2
-. Overdrawn action potentials are 

shown inset to illustrate the single fibre discrimination. For this same fibre, PO2 response curves are 

plotted (right), displaying a reversible ‘right shift’ induced by 3.3 mM NO2
-, characteristic of an 

heightened O2 sensitivity. b) Mean single fibre frequencies recorded during graded hypoxia in the 

presence and absence of 3.3 mM nitrite (NO2
-). † denotes p<0.05, 3.3 mM NO2

- vs control; two way 

repeated measures ANOVA. c) For all fibres the PO2 was measured at 5 Hz in the presence and 

absence of 3.3 mM NO2
- in order to quantify the mean ‘right shift’. + denotes p<0.05, 3.3 mM NO2

- 

compared with control; paired t-test. d) The calculated augmentation in single fibre discharge frequency 

induced by 3.3 mM NO2
- was plotted over a range of defined superfusate PO2 values and shows an 

enhanced impact in hypoxia, consistent with stimulus interaction. Error bars indicate ± S.E.M. * denotes 

p<0.05 compared with the frequency difference at 300 mmHg PO2; one way repeated measures ANOVA 

with Dunnett’s post hoc analysis. For b), c) and d) data is from 9 fibres from 7 different CB preparations.  

 

Fig. 5 Nitrite enhances the carotid body sensitivity to hypercapnia. a) Example of the sensory neuronal 

response to hypercapnia in the presence and absence of 3.3 mM nitrite (NO2
-). Raw discharge is shown 

(upper) along with frequency histograms (lower) that collate single fibre action potentials in 10 s 

intervals. Overdrawn action potentials are shown inset to demonstrate the single fibre discrimination 

used to measure the frequency. b) Mean discharge frequencies recorded under normocapnic (PCO2 = 

40 mmHg) and hypercapnic (PCO2 = 80 mmHg), in control conditions and following addition of 3.3 mM 

NO2
-. Error bars indicate ± S.E.M.* denotes p<0.05 compared with control group; one way repeated 

measures ANOVA with Bonferroni post hoc analysis. c) Discharge frequency differences (80 – 40 

mmHg PCO2) for each fibre in the presence and absence of 3.3 mM NO2
-. * denotes p<0.05 compared 

with control group; paired t-test. d) Calculated mean CO2 sensitivity (Δ Hz / mmHg PCO2) in control 

conditions and following NO2
- application. Error bars indicate + S.E.M. * denotes p<0.05 compared with 

control group; paired t-test. For b), c) and d) mean data is from 10 fibres from 6 CB preparations. 

 

 

Fig. 6 Responses to nitrite are not a consequence of a direct action on the carotid sinus nerve ending or 

dependent on reactive oxygen species. a) Example chemoafferent response to 10 mM nitrite (NO2
-) in 

normoxia and following CB silencing with hyperoxia (95% O2). Raw neuronal discharge is presented 

along with frequency histograms. Overdrawn action potentials are shown inset to demonstrate single 

fibre discrimination. b) Mean frequency responses to 10 mM NO2
- in normoxia and hyperoxia. * denotes 

p<0.05; one way repeated measures ANOVA with Bonferroni post hoc analysis, 10 fibres from 5 CB 

preparations. c) Mean responses to 1mM ATP (excitatory neurotransmitter) in hyperoxia, in the 

presence and absence of 10mM NO2
-, 6 fibres from 3 CB preparations. d) Example chemoafferent 

response to 10 mM NO2
- before and during addition of 1mM TEMPOL (free-radical scavenger). e) Mean 
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basal discharge and responses to 10 mM NO2
- in the presence and absence of 1mM TEMPOL, 8 fibres 

from 4 CB preparations. All grouped data presented as Mean + S.E.M.  
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