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Abstract: Pterosaurs, a Mesozoic group of flying archosaurs, have become a focal point for 

debates pertaining to the impact of sampling biases on our reading of the fossil record, as well 

as the utility of sampling proxies in palaeodiversity reconstructions. The completeness of the 

pterosaur fossil specimens themselves potentially provides additional information that is not 

captured in existing sampling proxies, and might shed new light on the group’s evolutionary 

history. Here we assess the quality of the pterosaur fossil record via a character completeness 

metric based on the number of phylogenetic characters that can be scored for all known 

skeletons of 172 valid species, with averaged completeness values calculated for each 

geological stage. The fossil record of pterosaurs is observed to be strongly influenced by the 

occurrence and distribution of Lagerstätten. Peaks in completeness correlate with Lagerstätten 

deposits, and a recovered correlation between completeness and observed diversity is 

rendered non-significant when Lagerstätten species are excluded. Intervals previously 

regarded as potential extinction events are shown to lack Lagerstätten and exhibit low 

completeness values: as such, the apparent low diversity in these intervals might be at least 

partly the result of poor fossil record quality. A positive correlation between temporal patterns 

in completeness of Cretaceous pterosaurs and birds further demonstrates the prominent role 

that Lagerstätten deposits have on the preservation of smaller bodied organisms, contrasting 

with a lack of correlation with the completeness of large-bodied sauropodomorphs. However, 

we unexpectedly find a strong correlation between sauropodomorph and pterosaur 
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completeness within the Triassic–Jurassic, but not the Cretaceous, potentially relating to a 

shared shift in environmental preference and thus preservation style through time. This study 

highlights the importance of understanding the relationship between various taphonomic 

controls when correcting for sampling bias, and provides additional evidence for the 

prominent role of sampling on observed patterns in pterosaur macroevolution. 

 

Key words: Fossil record completeness; Lagerstätten, Mesozoic; Pterodactyloidea; 

Pterosauria; Sampling bias 

 

PTEROSAURS were a group of Mesozoic flying archosaurs that went extinct at the 

Cretaceous/Paleogene (K/Pg) mass extinction 66 Ma, approximately 150 myr after their first 

appearance in the fossil record (Wellnhofer 1991; Unwin 2003, 2005; Barrett et al. 2008; 

Dalla Vecchia 2013; Witton 2013). They show high taxonomic (Unwin 2005; Butler et al. 

2009, 2013; Witton 2013) and morphological diversity (Prentice et al. 2011; Foth et al. 2012; 

Butler et al. 2012), with a global distribution by at least the Early Jurassic (Barrett et al. 2008; 

Upchurch et al. 2015). A number of studies have evaluated evidence for fluctuations through 

time in pterosaur diversity, including discussion of their possible competitive replacement by 

birds (e.g. Unwin 1987, 2005; Buffetaut et al. 1996; Slack et al. 2006; Butler et al. 2009, 

2012, 2013; Dyke et al. 2009; Benton et al. 2011; Andres 2012; Benson et al. 2014).  

 Whereas pterosaur remains have been found in hundreds of localities, and on all 

continents throughout the Mesozoic (Barrett et al. 2008; Upchurch et al. 2015), their often-

fragmentary state means that many specimens do not yield sufficient morphological data to 

determine their taxonomic status. Pterosaur skeletons were adapted for flight and, as such, are 

light, thin-walled and highly fragile; preservation of complete specimens within high-energy 

depositional settings is rare (Wellnhofer 1991). Consequently, our knowledge of pterosaur 
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anatomy and species richness is dominated by Lagerstätten (Buffetaut 1995; Butler et al. 

2009), formations with unusually good fossil preservation (Seilacher 1970), of which several 

pterosaur-bearing units are known, including the Late Jurassic Solnhofen Limestone of 

Bavaria in Germany (e.g. Wellnhofer 1970, 1975), and the Early Cretaceous Jehol Group of 

China (e.g. Wang & Zhou 2006). Approximately a dozen of these formations account for 

~50% of the total known species of pterosaurs (Benton et al. 2011). Previous palaeodiversity 

studies have shown that these Lagerstätten deposits can have a large influence on observed 

diversity for time periods in which they appear (Benson and Butler 2011), potentially 

distorting our understanding of patterns of diversity change through time. As such, their 

predominance as our main window onto pterosaur evolution might mask true diversity 

patterns throughout the Mesozoic: i.e. highly heterogeneous sampling might produce episodic 

peaks of observed diversity during periods containing Lagerstätten, whereas time intervals 

dominated by fragmentary or less diagnosable material might produce troughs in recorded 

diversity which do not necessarily reflect real diversity changes (Wellnhofer et al. 1991; 

Buffetaut 1995; Butler et al. 2009, 2013; Benton et al. 2011, 2013; Prentice et al. 2011; but 

see Dyke et al. 2009).  

 It has become increasingly apparent that biases in our sampling of the fossil record, 

resulting from geological, taphonomic and anthropogenic processes, might distort observed 

patterns of diversity (e.g. Raup 1976; Alroy et al. 2001; Smith 2001; Peters and Foote 2001; 

Peters 2005; Smith and McGowan 2005). Ameliorating for such biases is crucial to enable 

exploration of diversity through deep time. Sampling proxies, representations of bias 

introduced to the fossil record through anthropogenic or geological processes, have become a 

common, albeit controversial, method used to ‘correct’ for biased signals recorded in the 

geological record. Butler et al. (2009) presented a detailed examination of pterosaur species 

and genus level diversity through time, and attempted to account for sampling bias by 
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comparing diversity with the numbers of geological formations preserving pterosaur remains 

(pterosaur-bearing formations: PBFs). A strong correlation was found between temporal 

variation in the number of PBFs and diversity over time for both taxonomic and phylogenetic 

diversity estimates (TDEs and PDEs respectively). Butler et al. (2009) suggested that these 

correlations could potentially be explained by one of two hypotheses: that either a significant 

portion of the observed diversity curve for pterosaurs is controlled by sampling variation, or 

that diversity is accurate, with diversity and sedimentary rock preservation covarying in 

response to a third driving factor (e.g. sea level). Butler et al. (2009) favoured the sampling 

bias hypothesis, but voiced caution with regard to their attempts to ‘correct’ diversity patterns 

using PBFs, because this approach did not account for the presence or absence of 

Lagerstätten. 

However, the use of formations as a sampling proxy (for both raw numbers of 

formations and counting only fossiliferous formations) has been criticized by several authors 

(e.g. Crampton et al. 2003; Benton et al. 2011, 2013; Dunhill et al. 2012, 2013, 2014). Benton 

et al. (2011) argued  that: (1) in many cases formation counts will always correlate with fossil 

counts, irrespective of the degree of sampling, rendering PBFs redundant with pterosaur 

diversity; and (2) absent results (either potential future sites of pterosaur recovery or sites 

which failed to produce pterosaurs but still represent a sampling attempt) are ignored: if 

sampling in these formations in insufficient, this can create an additional bias (see also 

Upchurch et al. 2011 for further debate). Butler et al. (2013) revisited the analyses of Butler 

et al. (2009), using new sampling proxies of pterosaur-bearing collections (PBCs), as well as 

dinosaur-bearing formations and collections (DBFs and DBCs respectively), the latter two 

representing attempts to quantify ‘global’ sampling and utilize sampling metrics independent 

of the pterosaur fossil record. DBFs and PBFs were found to correlate with one another at 

least within the Cretaceous, suggesting that PBFs at least partially reflect a ‘global’ sampling 
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proxy (Butler et al. 2013). Butler et al. (2013) concluded that whereas ‘true’ pterosaur 

diversity might be impossible to ever fully reconstruct, current formation-based proxies 

enable an incomplete, but informative picture of broad scale patterns of species richness 

throughout the Mesozoic.  

The completeness of the fossil material of a taxonomic group is likely to exert a direct 

influence on the observed species richness of that group through time, and thus represents an 

additional metric that might capture otherwise neglected aspects of sampling bias (Mannion 

and Upchurch 2010a; Brocklehurst et al. 2012; Walther and Fröbisch 2013; Brocklehurst and 

Fröbisch 2014; Cleary et al. 2015). Time bins with low average completeness values of 

specimens will potentially yield less taxonomically diagnosable specimens. Observed 

diversity could therefore be: (1) reduced, as collected remains cannot confidently be assigned 

to a species; or (2) increased, as a result of assigning partial remains of one taxon to multiple 

species (Mannion and Upchurch 2010a). Alternatively, periods of high completeness levels 

(including times in which Lagerstätten are present) should allow for clear recognition and 

identification of species, resulting in heightened observed diversity.  

 Only one previous study has attempted to examine the completeness of the pterosaur 

fossil record. Dyke et al. (2009) compiled a dataset of 66 genera, comprising 101 species, to 

calculate completeness over geological stage-level time bins, using three-categories of 

preservation, based on: (1) one bone; (2) more than one bone; and (3) more than one 

individual, each known from more than one bone. Although this approach utilized semi-

quantitative values, these appear to be assigned as arbitrary metrics; the application of 

alternative preservation categories might have a notable impact on the resultant data, 

irrespective of actual fossil record quality or methodology. The low number of categories 

assigned (three unevenly assigned metrics relating to potential states of completeness) is 

coarse-grained and it is possible that underlying trends and subtle variations in fossil record 



6	  
	  

quality might be obscured. In light of these potential weaknesses, as well as the recent spate 

of newly described pterosaur taxa (e.g. Manzig et al. 2014; Wang et al., 2014a,b), a re-

evaluation of the completeness of the pterosaur fossil record is timely.  

Here, an extensive new dataset of pterosaur completeness is presented, utilizing a 

recently devised quantitative metric (Mannion and Upchurch 2010a), and comprising 

completeness values for 172 valid species of pterosaurs. The impact of completeness on our 

reading of the pterosaur fossil record is evaluated via statistical comparisons with various 

sampling proxies and sea level, as well as a ‘corrected’ diversity estimate. Pterosaur 

completeness is also compared to comparable datasets for Mesozoic birds and 

sauropodomorph dinosaurs in order to assess how completeness varies between different body 

plans and sizes through time. In addition, we make comparisons between our results and those 

of Dyke et al. (2009), to test for differences between these two approaches to assessing 

completeness. Four main aims form the focus of this study: (1) to determine the potential 

impact of pterosaur completeness on ‘key’ intervals of pterosaur history; (2) to determine 

whether completeness acts as a controlling mechanism on observed pterosaur diversity; (3) to 

assess the impact of Lagerstätten on the pterosaur fossil record through time; and (4) to 

compare the fossil record of small bodied (i.e. pterosaurs and birds) and large-bodied 

(sauropodomorphs) organisms to test for differences in preservational bias. 

 

MATERIALS AND METHODS 

Dataset 

Data on all taxonomically diagnosable species of pterosaurs were compiled from Andres 

(2010), Butler et al. (2013), The Paleobiology Database (PaleoDB: www.paleobiodb.org), 

and a comprehensive review of the literature. Collated information was thoroughly scrutinized 

for potential synonyms and nomina dubia. The finalized dataset contains 135 genera, 
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comprising 172 species described between 1812 and 1st January 2014, along with 

stratigraphic ranges, completeness data, and environment of deposition (see Appendix S1).  

Although this study presents the most complete compilation of pterosaur taxic 

diversity to date, only minor changes are noticeable between this and the dataset of Butler et 

al. (2013). As such, our focus is on comparisons between diversity and fossil record quality, 

rather than a re-evaluation of aspects of pterosaur diversity, and results relating only to 

diversity or residual diversity estimates are not discussed.  

 

Completeness metrics 

The Character Completeness Metric (CCM) of Mannion and Upchurch (2010a) quantifies the 

potential phylogenetic data preserved in specimens; a percentage score is provided for the 

number of characters that can be coded for a specimen/taxon for phylogenetic analysis. This 

allows for adequate representation of individual skeletal elements that contain considerably 

more phylogenetically important information than others. CCM2 (sensu Mannion and 

Upchurch 2010a), combining the information of all specimens of a taxon to attain overall 

completeness, has been deemed more appropriate for comparisons between fossil record 

quality and diversity (Brocklehurst et al. 2012), and has thus been employed here. It is herein 

referred to just as the CCM. The phylogenetic data matrix presented in Butler et al. (2012 

[based on that of Andres, 2010]) which samples 101 pterosaur species, scored for 183 

characters (cranial = 107 characters, 59%; axial = 19 characters, 10%; appendicular = 57 

characters, 31%) is utilized using the same methodology as Walther and Fröbisch (2013), 

whereby the number of scorable characters was counted (See Supporting Information). The 

completeness of the remaining 71 taxa was determined via the literature, using this same 

character list. Completeness of sauropodomorphs and Mesozoic birds was extracted from 

Mannion and Upchurch (2010a) and Brocklehurst et al. (2012). 
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Sampling proxies and sea level  

Four time series are utilised as proxies to account for sampling biases within the Mesozoic 

rock record: PBFs, PBCs, DBFs, and DBCs (see Table 1). Formations represent a prospective 

site of fossil extraction and, although potentially influenced by external factors (e.g. human 

naming and collection bias, geographical bias, extent of outcrop, ability to preserve fossils 

adequate for taxonomic assignment), and despite criticism (Dunhill 2012; Benton et al. 2011, 

2013), have been argued to provide an appropriate proxy for estimating temporal variation in 

the amount of rock available for sampling (Peters 2005; Upchurch et al. 2011; Butler et al. 

2013). Collections incorporate all specimens collected from a stratigraphic horizon tied to a 

single location. DBFs and DBCs are proxies that capture a more global estimate of terrestrial 

sampling: dinosaurs were abundant and geographically diverse throughout the Mesozoic, 

living in nearly all terrestrial and coastal environments. The use of formations and collections 

in which pterosaur fossils could, but have not yet, been recovered, reduces the possibility of 

‘redundancy’ with pterosaur diversity estimates (Benton et al. 2011; Butler et al. 2013). Two 

further proxies were utilized for appropriate comparisons with sub-divided environmental 

data series (see below): terrestrial and marine tetrapod-bearing collections (TTBCs and 

MTBCs, respectively). 

All data for PBFs, PBCs, DBFs and DBCs were obtained from Butler et al. (2013), 

originally sourced from PaleoDB downloads, augmented with data from new 

collections/formations reported since this publication. Numbers of TTBCs and MTBCs were 

downloaded from the PaleoDB on the 8th June 2013. The Mesozoic sea level curve was 

sourced from data in Butler et al. (2011), based on Haq et al. (1987) and Miller et al. (2005).  

 

Time Bins 
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Pterosaur fossil record quality was assessed through calculating a mean average value of 

CCM scores and associated standard deviations for each Mesozoic stage-level time bin. 

Stage-level bins were chosen to facilitate comparisons with the diversity and sampling proxy 

data in Butler et al. (2013), the sea level data in Butler et al. (2011), and the completeness 

data in Dyke et al. (2009). This approach resulted in a discrepancy when making comparisons 

to the sub-stage level data for sauropodomorph completeness of Mannion and Upchurch 

(2010a). To enable comparisons between datasets, sauropodomorph data were averaged to 

produce artificial stage level bins, and resulting stages were assessed for any statistically 

significant outlying results. Most bins showed minimal or no change; the average alteration to 

completeness values across all time bins produced by this method is 1.39%. Original and 

averaged values are presented in Appendix S1. Comparisons between pterosaur and bird 

CCM were carried out for stages after the first appearance of birds (Tithonian onwards). 

Species appearing within multiple time bins were considered independently and included in 

the total count for each stage where they are present. All further time series data were 

assigned to stage-level time bins.  

No valid pterosaur taxa are known from the Aalenian (early Middle Jurassic). 

Although this time interval might represent a genuine drop in diversity, pterosaurs clearly did 

not become entirely extinct, and inclusion of this zero-data time bin has the potential to 

artefactually influence the strength and significance of correlative tests. As such, we ran our 

analyses both including and excluding the Aalenian.  

 

Subdivisions of pterosaurs 

To examine additional parameters which might influence or record otherwise neglected 

aspects of pterosaur completeness through time, we subdivided our pterosaur dataset 
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according to Lagerstätten, environment, and taxonomy, and then calculated additional time 

series of completeness and diversity for these subsets (see Appendix S1). 

 

Lagerstätten. To assess the impact of Lagerstätten on both pterosaur completeness and 

diversity, we separated species into those that were recovered from Lagerstätten, and those 

that came from other formations. Although formations such as the Calcare di Zorzino of Italy 

(Dalla Vecchia 2003) could potentially be classified as Lagerstätten, our list remains identical 

to that of Butler et al. (2013) for ease of comparison, and can be found in Appendix S1. 

Environments. Pterosaurs were additionally grouped according to whether they were 

deposited and preserved within marine/coastal or terrestrial settings. Marine environments 

include lagoonal, coastal and open marine deposits, whereas terrestrial environments included 

lacustrine, fluvial, and floodplain deposits (for a full list of environments see Appendix S1; 

Environments). For ease, we subsequently refer to pterosaurs as either terrestrial or marine. 

All data were sourced from the PaleoDB and the relevant literature.  

Taxonomic groups. Pterosaurs were taxonomically divided into Pterodactyloidea and non-

Pterodactyloidea (the paraphyletic assemblage of early-branching pterosaur taxa that have 

historically been referred to as ‘rhamphorhynchoids’). The aim of this was to examine events 

around the Jurassic/Cretaceous (J/K) boundary, which has been suggested to mark a major 

extinction of non-pterodactyloids (e.g. Benson et al. 2014), as well as to consider any 

potential impact of palaeobiological changes on completeness metrics.  

 

Pairwise statistical tests & Residual Diversity Estimates (RDE) 

Jarque-Bera and Shapiro-Wilk tests were implemented to test for normality in all time series. 

As pterosaur CCM scores were shown to not be normally distributed, statistical comparisons 

between time series were therefore calculated using non-parametric tests (Spearman’s rank 
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correlation coefficient and Kendall’s tau rank correlation coefficient). In addition to 

calculating raw taxic diversity, the residuals method of Smith and McGowan (2007) was used 

to produce species diversity curves that are ‘corrected’ for sampling bias. Using this 

approach, residual diversity estimates (RDEs) were calculated using all sampling proxies. 

Data were detrended, and generalized differencing (McKinney 1990) was applied where 

autocorrelation was detected. These analyses were implemented in Excel and PAST (Hammer 

et al. 2001). Abbreviations for common terms used in this paper can be found within Table 1. 

 

Multiple Regression Modelling 

For multivariate statistical approaches, stage duration was included as a non-optional 

predictor in models to account for stage length variation, and Lagerstätten were coded as 

present or absent using a binary variable in an attempt to account for their presence without 

discarding data (see Benson and Butler 2011). Both linear modelling (multiple regression 

models) and generalized least squares (GLS) models were applied to explore the possibility of 

multiple explanatory variables, which can otherwise be missed through pairwise comparisons. 

Multiple regression models allow for the sequential addition and removal of time series to 

seek the model that best explains the chosen metric, with autoregressive terms included to 

correct for serial correlation in time series data (Chatfield 2003). The order of the 

autoregressive term for each model was selected by comparing AICc values at autoregressive 

orders between zero and three.  

GLS models take account of autocorrelation and permit specification of a non-

standard variance-covariance matrix, allowing non-independence of points within data series 

according to specific models. The first-order autoregressive correlation model was used in 

this case, which seeks autocorrelation at up to one lag in either direction, and minimizes the 

error term (Box et al. 1994). Combinations of explanatory variables were compared using 
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AICc weights, as small sample sizes potentially reduce the efficiency of AIC for assessing the 

quality of model fitting (Burnham and Anderson 2001). R-squared, F-value or p-values were 

not computed for GLS models as their benefits are currently debated (e.g. Long and Freese 

2006). All multivariate analyses were implemented in R version 3.0.2 (R Development Core 

Team 2015), using the packages lmtest version 0.9-22 (Zeilis and Hothorn 2002), nlme 

version 3.1-117 (Pinheiro et al. 2009), qPCR version 1.3-9 (Spiess and Ritz 2010), and tseries 

version 0.10-32 (Trapletti and Hornik 2009), and data were log10 transformed prior to 

analysis (only stage duration and Lagerstätten presence/absence were not transformed). The 

Jarque–Bera test indicated that the residuals from these regression analyses were all normally 

distributed. 

 

RESULTS 

Pterosaur completeness through time 

Completeness scores and taxic diversity for each stage are plotted against time (Fig. 1). Initial 

completeness within the Late Triassic is high (~50%), followed by fluctuations through the 

Jurassic. After a Hettangian peak (84%), completeness declines to a Pliensbachian low (13%), 

prior to a peak in the Toarcian (62%). The remainder of the Jurassic exhibits varying levels of 

completeness, with a trough in the Bathonian (26%), and peaks in the Oxfordian (58%) and 

Tithonian (57%). Average completeness is generally lower in the Cretaceous than in 

preceding time intervals. Values fall dramatically across the J/K boundary (Berriasian = 

15%), before a gradual rise to an Aptian peak (43%), and subsequent decrease in the 

Cenomanian (11%). A second Cretaceous peak is reached in the Coniacian–Santonian 

(~40%), before a decline in the Campanian (25%) that is continued into the Maastrichtian 

(14%). 
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Sampling proxies through time 

PBFs, PBCs, DBFs and DBCs were plotted against time and compared with the pterosaur 

completeness curve (See Fig. 2A-C). PBF counts are low in the Triassic and Jurassic, 

averaging eight formations per stage, although a slight increase is observed towards the end of 

the Jurassic. PBCs exhibit strong, irregular peaks within the Toarcian and Kimmeridgian. 

Trends in PBCs and PBFs within the Cretaceous show a similar pattern to changes in 

completeness, mirroring the two broad peaks observed in completeness data; it should 

however be noted that these peaks appear to lag behind completeness values and, as such, 

correspond with intervals of lower completeness. This is also observable in the Late Jurassic, 

where troughs in completeness correlate with apparent peaks in PBF and PBC counts.  

Whereas counts differ vastly between the two proxies, DBFs and DBCs exhibit a 

similar shape, and thus shall be discussed together. There is little clear similarity between 

pterosaur completeness and DBF/DBC curves throughout the Triassic or Jurassic; whereas 

completeness scores fluctuate, sampling proxy curves show a trend of gradual increase 

towards the Cretaceous. DBF/DBC counts seem to follow a similar shape to that of 

completeness within the Early and middle Cretaceous, although this appears as a one stage 

‘lag’ behind completeness. A large discrepancy is observed in the Campanian and 

Maastrichtian between high values of DBFs/DBCs and steadily declining pterosaur 

completeness. 

 

Correlations between completeness, diversity and sampling 

All formation- and collection-based sampling proxies exhibit strong, positive and statistically 

significant correlations with species richness over geological time (see Table 2). Pterosaur 

completeness has a statistically significant positive correlation to both uncorrected diversity 

and residual diversity (calculated with PBFs, DBFs and DBCs) throughout the Mesozoic (see 
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Table 3) in all tests. The PBF-based residual diversity estimate produced the strongest 

correlation with pterosaur completeness, followed by DBF-based residuals, raw taxic 

diversity, and finally DBC-based residuals. Within the Triassic–Jurassic, a statistically 

significant, positive correlation is recovered between completeness and PBF-based residuals 

for all tests, and with taxic diversity and DBF-based residuals for the Kendall’s tau test. 

Completeness shows a strong, positive correlation with raw taxic diversity, PBFs and DBFs in 

the Cretaceous, as well as with DBCs when using Spearman’s Rank. PBCs are not shown to 

have any statistically significant correlations with completeness. 

 

Comparisons with completeness of Sauropodomorpha and Aves 

Completeness values for sauropodomorph dinosaurs and Mesozoic birds were plotted against 

time to facilitate comparisons (see Fig. 3). Whereas both pterosaur and sauropodomorph 

completeness show a general decrease throughout the Mesozoic, comparisons between the 

two curves reveal little in the way of similarities on a stage to stage basis. The avian 

completeness curve bears a striking similarity to that of Pterosauria throughout the Tithonian–

Cretaceous; only one discrepancy exists, when the bird fossil record quality dips compared to 

that of pterosaurs in the Albian (6% and 30% average completeness respectively).  

 Statistical comparisons between average completeness scores for pterosaurs, birds and 

sauropodomorph dinosaurs are shown in Table 4. Pterosaurs exhibit higher average 

completeness than avian species within stages where both are present, but lower than 

sauropodomorphs. When split between the Triassic–Jurassic and Cretaceous, pterosaurs 

display the lowest completeness values within both time intervals (48% and 28% 

respectively; it should be noted that the first appearance of birds in the Tithonian does not 

allow for comparison of Triassic–Jurassic completeness between pterosaurs and birds). 

Pterosaur and avian completeness show a strong, positive and statistically significant 
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correlation within the Cretaceous and across all time bins in which they are present for all 

statistical tests. Sauropodomorph completeness scores show no significant correlation to those 

of pterosaurs across the Mesozoic and for the Cretaceous by itself; however, a statistically 

significant positive correlation is found in analyses restricted to the Triassic–Jurassic 

component of our sauropodomorph and pterosaur completeness values. 

 

Sensitivity tests 

To examine the effect that stages with no data might have on correlation tests, 

analyses were also run with the Aalenian excluded (Table 5). For the Mesozoic, the results of 

correlation tests were the same as for the complete dataset, apart from with DBC-based 

residuals, which did not produce a statistically significant result. When we restricted analyses 

to the Triassic–Jurassic, only sauropodomorph completeness shows a statistically significant, 

positive correlation with pterosaur completeness values, compared to positive correlations 

between pterosaur completeness and taxic diversity, PBF residuals and DBF residuals with 

the Aalenian included. Cretaceous comparisons were largely unchanged, with only DBC-

based residuals failing to recover a statistically significant result. 

 

Lagerstätten 

Time-binned CCM values for species from Lagerstätten and species from non-Lagerstätten 

deposits were each plotted against time (Fig. 4A). These were compared to overall pterosaur 

completeness scores to visualize the occurrence of deposits of exceptional preservation on 

temporal variation in the completeness of pterosaur remains (Fig. 4A). The removal of 

Lagerstätten deposits decreased average completeness for each stage that they appear within. 

The largest decreases appear within the Toarcian (from 62% to 26%) and Santonian (from 

40% to 8%), corresponding to the Posidonienschiefer and Niobrara Chalk formations. Further 
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reductions are visible in the Oxfordian, Barremian, Aptian and Campanian. A very strong, 

highly statistically significant correlation occurs between Lagerstätten-only completeness and 

taxic diversity (Fig. 4B) for the Mesozoic (for all tests). This pattern is also observed when 

the Triassic–Jurassic and Cretaceous are analysed separately, although the latter is marginally 

weaker. No significant correlation is observed between Lagerstätten-excluded completeness 

and diversity for the Mesozoic or for the Triassic–Jurassic and Cretaceous. 

Two data series were examined to check for the influence of Lagerstätten on pterosaur 

completeness through deep time: Lagerstätten-only (Fig. 4C) and Lagerstätten-excluded (Fig. 

4D). For many stages, completeness values are zero for the Lagerstätten-only data series, due 

to their heterogeneous appearance in the fossil record. However, when Mesozoic 

completeness is averaged only from stages containing fossil remains, Lagerstätten-only 

deposits show a much higher average completeness (59%). Additionally, differences in 

Lagerstätten completeness between periods can be assessed: for Lagerstätten-only, within the 

Triassic–Jurassic, an extremely high CCM (71%) is observed. When looking at the 

Cretaceous, Lagerstätten-only completeness is much lower (40%). With Lagerstätten 

excluded from the completeness scores, no significant correlations between completeness and 

other variables were observed for the Mesozoic as a whole, within all tests (Table 6). For the 

Triassic–Jurassic, a positive, statistically significant result was recorded when compared to 

sauropodomorph completeness scores; no significant correlations were observed for all other 

variables in both the Triassic–Jurassic and the Cretaceous. 

 

Environmental variation 

The completeness of pterosaurs from marine deposits closely follows overall pterosaur 

completeness from the Triassic until the Bathonian, at which point much lower completeness 

values are observed for marine pterosaurs (Fig. 5A). A sharp increase in marine pterosaur 
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completeness occurs from the Callovian, reaching a peak in the Tithonian (63%), which 

corresponds with an increase in the taxic diversity of pterosaurs in marine deposits (Fig. 5B-

C). This increase is followed by a decline in completeness across the J/K boundary, into the 

Berriasian. Marine and overall pterosaur completeness are similar for the rest of the 

Cretaceous, although marine values are generally lower; only within the Santonian and 

Campanian are there higher completeness values from marine specimens.  

Terrestrial pterosaur completeness and overall completeness values are not similar for 

the Triassic and Early Jurassic, with terrestrial pterosaurs being less complete than the overall 

pattern (Fig. 5A). A peak in terrestrial completeness is observed from the Bajocian–

Oxfordian, which matches closely with the overall pterosaur completeness curve; the end of 

this peak coincides with an increase in terrestrial taxic diversity. Following a decline within 

the Kimmeridgian and Tithonian, completeness values for terrestrial pterosaurs increase until 

the Albian. Whereas high terrestrial completeness values are observed in tandem with high 

terrestrial taxic diversity for the Barremian and Aptian (Fig. 5D), both the Hauterivian and 

Albian exhibit only high completeness, with low taxic diversity. Following a period of no 

recorded terrestrial specimens within the Turonian and Coniacian, completeness increases 

towards the K/Pg boundary, the opposite of that seen for the total pterosaur completeness 

curve.  

Pterosaurs found within marine deposits are on average slightly more complete (31%) 

than those from terrestrial deposits (25%), both as an average across all stages and when only 

counting stages with pterosaurs recovered. This pattern is only partially supported when the 

Mesozoic is subdivided: marine completeness is much higher than that of the terrestrial realm 

in the Triassic–Jurassic (50% compared to 34%), but slightly lower within the Cretaceous 

(22% compared to 27%).  
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Marine completeness is statistically significantly, positively correlated with both 

marine taxic diversity and marine TBCs for the Mesozoic in all tests (Table 7). This same 

pattern is also observed within the Triassic–Jurassic, in addition to a statistically significant, 

positive correlation with sauropodomorph completeness. No significant correlations appear 

within the Cretaceous. Terrestrial completeness exhibits a strong, positive, statistically 

significant correlation with terrestrial taxic diversity for the Mesozoic in all tests; this is also 

observed within the Triassic–Jurassic. Once again, no significant correlation appears within 

the Cretaceous with any variable.  

 

Taxonomic groups 

The average completeness of non-pterodactyloid pterosaurs is much higher than that of 

Pterodactyloidea (45% versus 27%). Occurrences of non-Pterodactyloidea and 

Pterodactyloidea overlap only in the Late Jurassic (Figure 6); consequently, direct comparison 

of completeness values between the two groups is difficult. The first appearance of a possible 

pterodactyloid in the Oxfordian (Lü and Fucha, 2010) exhibits low completeness 

(Archaeoistiodactylus linglongtaensis [4.9%]; however, see Martill and Etches [2013] and 

Sullivan et al. [2014] regarding the affinities of this taxon). Subsequently, as pterodactyloid 

diversity increases within the following stages, their completeness values rise to a peak of 

56% in the Tithonian, immediately prior to the J/K boundary. Non-pterodactyloid pterosaurs 

exhibit high completeness values throughout the Late Jurassic, although no taxa survive 

across the J/K boundary (Unwin 2003; Butler et al. 2013; Andres et al. 2014).  

Positive and statistically significant correlations exist between pterodactyloid 

completeness scores and both pterodactyloid taxic diversity and bird completeness scores 

(Table 8). Non-Pterodactyloidea completeness is statistically significantly positively 
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correlated with non-Pterodactyloidea taxic diversity (Kendall’s Tau test only) and with 

sauropodomorph completeness.  

 

Sea Level 

There are no clear, shared patterns between pterosaur completeness and sea level changes: sea 

level shows an overall rising trend towards the K/Pg boundary, whereas the completeness of 

pterosaur specimens fluctuates widely (Figure 7). The correlation between sea level and 

pterosaur completeness through time is weak and statistically insignificant for all comparisons 

(See Tables 3, 5, 6, 7 & 8). Plots were also generated for groupings of marine and terrestrial 

completeness and diversity against sea level (see Appendix S1, All Categories). None of these 

showed evidence for correlation. 

 

Multiple Regression Models 

Multiple regression model fitting procedures show that a combination of taxic diversity and 

PBFs provides the best explanation for pterosaur completeness (Table 9). The relationship 

between completeness and diversity is strongly positive, but interestingly the relationship 

with formations is negative, suggesting that lower numbers of formations result in higher 

average completeness. However, it should be noted that the p-value for this model is above 

the 0.05 threshold, and thus the null model cannot be rejected.   

Ranked by AICc value, the best fitting GLS model shows that a combination of DBFs 

and Lagerstätten presence/absence is the best predictor of pterosaur completeness (Table 10; 

for the full model, see Appendix S1: GLS Outputs). Out of the top five models, the time 

series that appear are DBFs, PBFs, PBCs and Lagerstätten presence/absence, with the latter 

appearing in four out of five. In the top twenty models, Lagerstätten presence/absence and 

PBFs are the most commonly observed variables. The bottom five models all contain many 
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time series, and no discernable pattern is observed. However, in the bottom twenty models, 

stage length, PBCs and taxic diversity are the most commonly observed data (See Appendix 

S1).  

 

Diversity: Additional GLS models were generated to test for the combination of variables 

which best explains pterosaur taxic diversity (Table 11; for the full model, see Appendix S1: 

GLS Outputs). By AICc value, the top GLS model shows a combination of Lagerstätten 

presence/absence and PBFs as the best explanation for pterosaur diversity, with the former 

also appearing in every one of the top twenty models.  

 

DISCUSSION 

Lagerstätten and comparisons with Dyke et al. (2009) 

The strong heterogeneity of the sampling of the pterosaur fossil record likely introduces 

extensive sampling bias to observed diversity patterns. How Lagerstätten deposits influence 

patterns of completeness or observed diversity through time is poorly understood. A prior 

investigation by Dyke et al. (2009) concluded that the numbers of pterosaur species were not 

skewed towards specific stratigraphic intervals, although completeness of specimens through 

time was influenced by Lagerstätten distribution.  

Multiple lines of evidence collected in this study indicate that Lagerstätten have a 

strong impact on the fossil record of pterosaurs. Results from the GLS models strongly 

support this hypothesis and imply a joint influence on diversity and completeness from 

Lagerstätten and formation numbers. No significant correlation is found between 

completeness and PBFs, PBCs, DBFs or DBCs; whilst this indicates that there is no 

relationship between these proxies and completeness, it does not contradict the existence of a 

pervasive Lagerstätten influence. A single Lagerstätte will represent one formation with 
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numerous species and high completeness values. This formation might occur in a time 

interval in which other PBFs are scarce. The apparent discrepancy between low numbers of 

formations occurring at the same time as high apparent diversity and completeness results in 

absence of correlation between metrics. The same is true for our results from multiple 

regression modelling, specifically the negative relationship recovered between completeness 

and PBFs, suggesting fewer sampled formations leads to higher completeness values 

(although these results should be treated with caution due to lack of statistical significance). 

Additionally, when looking at visual evidence of the influence of Lagerstätten, peaks 

in both average completeness and taxic diversity seem to correlate closely, or at least be 

influenced by the presence or absence of Lagerstätten. This is especially evident when 

looking at falls in diversity and completeness across stage boundaries where Lagerstätten are 

absent. These lines of evidence suggest that Lagerstätten are a dominating influence on 

completeness throughout the pterosaur fossil record, and confirm the hypothesis that 

Lagerstätten effects on observed diversity are severe for small and/or delicate organisms 

(Brocklehurst et al. 2012). 

 Within the last decade, there has been a marked increase in attempts to understand and 

address the potential impacts that uneven sampling of the fossil record might have on species 

richness through time (e.g. Alroy et al. 2001; Peters and Foote 2001; Smith 2001; Smith and 

McGowan 2007; Benson et al. 2010; Mannion et al. 2011). Correlation between residual 

diversity estimates and completeness recovered here could indicate that evolutionary factors 

related to increased diversity and abundance would have had a direct impact on the 

probability of recovering complete specimens. This study recovered a statistically significant 

positive correlation between pterosaur completeness and uncorrected raw diversity, as well as 

with residual diversity estimates produced using PBFs, DBFs and DBCs. As PBF-based 

residuals showed the strongest and most statistically significant result, it is possible that 
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observed pterosaur completeness might be driven at least in part by genuine variation in 

species richness throughout time. Time periods during which pterosaur diversity was high 

would likely result in a wider geographical distribution and higher abundance, and as such an 

increased probability of high quality specimen preservation. Correlation with uncorrected 

diversity indicates an underlying influence from sampling bias within the fossil record; 

however, this appears to exert less control than the residual diversity estimate, implying that 

’true‘ diversity (i.e. ‘sampling-corrected’ diversity) plays a more dominant role on 

completeness.  

Multivariate analyses produce partly contrasting results. Diversity did not appear in 

the top five models when completeness was the independent variable, and vice versa. This 

disparity with the results from pairwise comparisons to residual diversity estimates is likely 

due to the fact that residual ‘corrected’ diversity does not include a correction for the presence 

or absence of Lagerstätten; this is further exacerbated by the increased influence of 

Lagerstätten-type deposits on small organisms.  As such, it appears that diversity and 

completeness are unlikely to exert much influence upon one another, and the correlation 

recorded in pairwise comparison tests is a secondary effect of either Lagerstätten 

presence/absence and/or PBFs driving both in tandem.  

Dyke et al. (2009) suggested two substantial areas of bias within the pterosaur fossil 

record: high completeness within the Tithonian (latest Jurassic) and fragmentary fossil 

material during the middle Cretaceous (Aptian–Cenomanian). Although comparison with the 

completeness curve presented here yields remarkably similar Tithonian and middle 

Cretaceous peaks and troughs, considerably more variation in fossil record quality is observed 

within the current study, with numerous fragmentary remains within the Jurassic 

(Pliensbachian and Callovian) and during the latest Cretaceous (Campanian–Maastrichtian).  
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Little further inference on patterns can be made, as significant changes in taxonomy 

have made comparison between Dyke et al (2009)’s results and ours problematic. 

Furthermore, the disparity between the opposing methods of using bone counts and character 

counts casts doubt on the few similarities that can be observed. As such, a better comparison 

with this study is likely to be produced when using the SCM method of measuring 

completeness, where a completeness score is based on the physical quantity and bulk of 

elements preserved, gauging an estimate as to how much of a complete skeleton is 

represented (see Mannion and Upchurch 2010a). However, despite this disparity between 

methods, our results challenge the idea that “the pterosaur fossil record is unbiased by sites of 

exceptional preservation (lagerstätte)” (Dyke et al. 2009, p890). 

 

Potential Impact on Origins, Evolution and Extinctions 

Completeness is high from the Norian to Hettangian (Late Triassic–earliest Jurassic), during 

the first appearance and radiation of pterosaurs (Andres 2012; Andres et al. 2014), potentially 

suggesting that specimen completeness is unlikely to be an important limiting factor in our 

understanding of taxonomic diversity at this time. Thus, the apparent rapid acquisition of high 

taxonomic diversity might be a genuine feature of the pterosaur fossil record, as implied by 

the interpretation of early pterosaur evolution as an adaptive radiation (Andres 2012). Whilst 

it could be argued that the Norian merely represents the first time bin with conditions suitable 

for pterosaur preservation, the first pterosaurs have all been found in marine formations, often 

in black shale lithologies, in Italy, Germany and Austria. Similar formations within the same 

geographical region and also preserving vertebrates are present within the Carnian (for 

example, the Polzberg Lagerstätte of the Reubgraben shales), yet yield no pterosaurs, 

providing a supportive taphonomic control. However, whereas currently recognized Norian 

diversity (eight species) approaches the average per stage for the Mesozoic (~9), species 
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numbers throughout the Rhaetian–Pliensbachian are low, and fluctuations in completeness 

metrics might be driven by the relative preservation of individual, rarely discovered 

specimens. For example, the apparent peak in completeness during the Hettangian results 

from the discovery of a single species (Dimorphodon macronyx from the Lower Lias of 

England) within a marine formation that is well known for exceptionally preserved vertebrate 

specimens (Benton and Spencer 1995). The scarcity of pterosaur specimens from the 

Rhaetian–Pliensbachian, and the low completeness values of Sinemurian and Pliensbachian 

pterosaur species, makes it difficult to make inferences as to the impact of the 

Triassic/Jurassic mass extinction event on pterosaur evolution (see also Butler et al. 2013).  

  

 The J/K boundary has previously been noted as a period of potential extinction and 

faunal turnover for both marine and terrestrial groups (e.g. Raup & Sepkoski 1984; Upchurch 

et al. 2011; Benson and Druckenmiller 2014), including pterosaurs (e.g. Butler et al. 2009; 

Benson et al. 2014). Although the precise timing of their extinction is currently unknown, 

unambiguously dated remains of non-pterodactyloids are not observed after the J/K, and there 

is also an apparent decline in Pterodactyloidea species richness in the earliest Cretaceous. 

However, the impact of fluctuations in completeness levels through this interval has not 

previously been discussed in detail. There is a dramatic decline from 57% to 15% within 

average completeness, as well as a decline within Pterodactyloidea completeness from 54% to 

15%, between the Tithonian and Berriasian. When split into preservational environments, 

pterosaurs appear to show varying completeness trends over the same interval: a decline is 

evident for marine completeness and diversity (with completeness falling from 63% to 11%), 

whereas terrestrial deposits show a slight increase in diversity and completeness (with 

completeness rising from 10% to 20%). One potential cause of this drop in completeness 

could be the lack of Lagerstätten reported in the Berriasian, in comparison to the Tithonian. 
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However, the same pattern of reduced completeness within the Berriasian is also observed 

when Lagerstätten are removed (showing a drop from 40% to 15%). Two explanations are 

possible: (1) the apparent low diversity of the earliest Cretaceous might be an artefact of a 

decreased preservation potential and the absence of Lagerstätten, perhaps resulting from 

global palaeoenvironmental change; or (2) the scrappy material by which currently known 

earliest Cretaceous pterosaurs are diagnosed could reflect a genuine scarcity of pterosaurs 

following a J/K extinction event. At present, these explanations cannot be readily 

distinguished and might not be mutually exclusive; however, given the results discussed 

above, it is likely that the first provides the more probable explanation.    

A post-Albian reduction in pterosaur diversity has been equated with either a middle 

Cretaceous extinction event, or a long-term Late Cretaceous decline (Unwin 2005; Butler et 

al. 2009, 2013; Benson et al. 2014). A sudden decline in taxic diversity is observed during the 

Cenomanian, accompanied by troughs in completeness in the Cenomanian and Turonian. 

When split into environments, it is evident that the majority of this decline in completeness 

can be attributed to declines in the completeness of terrestrial pterosaurs. Lagerstätten 

deposits are also absent from this interval. Smith (2001) and Benson et al. (2013) have argued 

that a reduction in available fossiliferous rocks masks true diversity at this time. Although 

both a reduction in diversity and the loss of small-bodied pterosaurs clearly does occur 

through this time interval, low completeness values might make this decline appear more 

rapid and severe than was actually the case.    

The record of pterosaurs during the Late Cretaceous has received particular interest 

due to the concurrent radiation of birds, with claims of a correlated Late Cretaceous decline 

within pterosaur diversity (Unwin 1987, 2005; Slack et al. 2006, Benson et al. 2014). A 

steady decline in pterosaur completeness is recovered from the Santonian onwards; taxic 

diversity first increases, then decreases through this interval. When split into environmental 



26	  
	  

groupings, marine completeness is observed to dramatically drop during this time interval, 

whereas marine taxic diversity remains relatively level; terrestrial completeness increases 

towards the Maastrichtian, whereas corresponding terrestrial diversity shows a peak followed 

by a trough.  However, a single species (Quetzalcoatlus northropi) produces an anomalously 

high value for pterosaur completeness within the Maastrichtian; when removed, completeness 

within the stage drops from 14% to 5%. Overall, these results indicate the poor quality of the 

fossil record used for assessing pterosaur diversity within the Maastrichtian, especially within 

the marine realm, and, as such, we urge caution when attempting to compare pterosaur taxic 

diversity in this stage with that of other vertebrate groups. In general, the importance of 

addressing environmental differences in taphonomy should be stressed when discussing the 

dynamics of extinction events within groups of low species and specimen counts.  

 

Comparative Completeness 

A statistically significant, strong positive correlation was recovered when comparing 

pterosaur and avian completeness within stage bins throughout the Mesozoic, but not with 

sauropodomorphs. This result is in agreement with the hypothesis proposed by Brocklehurst 

et al. (2012), whereby completeness is driven by differing taphonomical mechanisms between 

large, robust organisms and smaller fragile animals. Radically different body plans result in 

different methods of preservation and thus different completeness values. Both birds and 

pterosaurs exhibit similar flight-adapted bodies, with thin-walled and fragile bones; as such, 

similar modes of preservation within low energy depositional environments are common. 

Both are often found as part and counter-part split blocks in Lagerstätten deposits, yielding 

exceptionally preserved specimens; for example, Chinese Lagerstätten deposits, such as those 

in the Jehol Group, are famous for containing exquisitely preserved bird and pterosaur 

specimens (Wang et al. 2005; Wang & Zhou 2006). The control of Lagerstätten on the 
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completeness of these groups can be clearly observed in the single discrepancy between bird 

and pterosaur completeness during the Albian, where birds are found to exhibit a much lower 

completeness. This can be explained by the Crato Formation, which acts as a pterosaur 

Lagerstätten, but for which bird specimens are only just starting to be discovered (Carvalho et 

al., 2015). As such, similar fossil record quality between pterosaur and avian species is to be 

expected.  

In contrast, the large, robust bones of sauropodomorphs are likely to be preserved 

under different taphonomic settings. Despite the overall lack of correlation throughout the 

Mesozoic, and the expectation of a taphonomic difference between pterosaurs and 

sauropodomorphs, a positive correlation is present between pterosaur and sauropodomorph 

completeness for the Triassic–Jurassic. Similar results are apparent when sauropodomorph 

completeness is compared against non-Pterodactyloidea completeness, and the completeness 

of pterosaurs found in marine environments from those stages (and remain when the Aalenian 

is excluded). A potential cause for this surprising result might relate to environmental 

preferences. It has previously been suggested that sauropods displayed differing habitat 

preferences between non-titanosaurs and titanosaurs, with the former dominating during the 

Jurassic and the latter during the Cretaceous (Butler and Barrett 2008; Mannion and Upchurch 

2010b). Although both were fully terrestrial groups, non-titanosaurs seem to have spent a 

greater amount of time in coastal environments than titanosaurs, which were more restricted 

to inland settings. Pterosaurs have also been inferred to have inhabited increasingly terrestrial 

environments through time (Butler et al. 2013); this appears to coincide with an increase in 

diversity and disparity towards the end of the Jurassic (Prentice et al. 2011; Butler et al. 2012; 

Foth et al. 2012) and the emergence of Pterodactyloidea (Andres et al. 2014). These results, 

in combination with an observed increase in terrestrial completeness values across the J/K 

boundary, suggest the possibility of an environmental-taphonomic shift, whereby 
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sauropodomorphs and pterosaurs often frequented coastal environments during the Triassic 

and Jurassic, before showing increased terrestrialisation in the Cretaceous. This shared 

environment preference during the Triassic and Jurassic potentially led to similar patterns of 

fossil completeness. Coastal areas will likely preserve fossils within a narrow range of 

conditions, such as lagoonal or estuarine depositional environments. Similar preservation 

mechanisms will therefore be recorded for both groups during this time, resulting in the 

observed statistically significant correlation. Increased exploration of a wider range of 

habitats may have occurred within both sauropods and pterosaurs in the Early Cretaceous. 

Terrestrial environments naturally exhibit a wider range of depositional settings 

(Behrensmeyer et al. 1992), many of which would be unsuitable for pterosaur preservation, 

but adequate for sauropodomorphs. As such, this might account for the divergence in 

correlation during the Cretaceous.  

Several counterpoints are presented to this environmental shift hypothesis. Firstly, the 

observed pattern is not supported as statistically significant in all comparisons, and visual 

representations of the data show little in the way of correlation between the two data series 

throughout the Triassic–Jurassic. The general lack of co-occurrences of pterosaurs and 

sauropodomorphs in a single locality (see the PaleoDB) also suggests that the two groups 

were not tightly linked ecologically. Additionally, pterosaur diversity and completeness 

curves for both marine and terrestrial environments (Fig. 5A-D) exhibit little evidence for an 

increase within terrestrial diversity at the J/K boundary, whereas an increase in marine taxic 

diversity is observed within the Albian. However, divergence between marine completeness 

and taxic diversity during this stage is potentially due to taxonomic inflation caused by the 

Cambridge Greensand Formation, consisting of highly fragmentary remains (Unwin 2001).  

Furthermore, the potential exists for discovering additional pterosaur-yielding terrestrial 

Lagerstätten within the Triassic and Jurassic, which currently remain unknown. Another point 
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to consider is the comparison between the nature of the characters used in calculation of the 

CCM scores for the two groups. The phylogenetic matrix used to calculate the CCM scores of 

pterosaurs is heavily biased towards cranial characters (making up 59% of the total 

characters), whereas the sauropodomorph characters are assigned more evenly across the 

skeleton (Mannion and Upchurch 2010a). As 56 species of pterosaur are known solely from 

cranial material, with 13 of these appearing in the Triassic–Jurassic and 43 in the Cretaceous 

(making up 22% and 39% of the pterosaurs found in those time bins respectively), this could 

confound relationships between these groups. These factors make the testing of this 

hypothesis difficult, and increased collection of both sauropodomorphs and pterosaurs for the 

Jurassic–Cretaceous will be needed to fully explore this issue. 

 

CONCLUSIONS 

1. Completeness values for 172 species of pterosaur were generated using a Character 

Completeness Metric (CCM), and tested for correlations with ‘raw’ and ‘corrected’ 

diversity, a variety of sampling proxies, and completeness of other vertebrate groups, 

to address several critical questions relating to the fossil record of pterosaurs. 

2. The earliest fossil record of pterosaurs is shown to be characterized by relatively high 

levels of completeness, and thus data quality is high; however, taxon counts from the 

Rhaetian–Bajocian (latest Triassic–early Middle Jurassic) are generally low. A decline 

in completeness values is recovered across the J/K boundary, with low completeness 

also characterizing the middle Cretaceous, meaning that apparent extinctions at these 

times might at least partly reflect sampling artefacts. A taxic decline throughout the 

Late Cretaceous is observed; however, the Maastrichtian exhibits extremely low 

completeness, and thus taxic diversity is potentially unreliable.  
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3. CCM values of pterosaurs and birds exhibit a strong positive correlation throughout 

the Mesozoic, in contrast to sauropodomorph dinosaurs, supporting claims of 

taphonomic mode differences between large and small organisms affecting 

completeness. However, there is a correlation between pterosaur and sauropodomorph 

CCM when only the Triassic–Jurassic is examined. The absence of such a pattern in 

the Cretaceous might reflect a move within both groups to increased terrestrial 

habitation after the J/K boundary. 

4. The fossil record of pterosaurs is strongly and pervasively affected by Lagerstätten 

deposits and heterogeneous sampling, which consequently drives both observed 

pterosaur taxic diversity and completeness through time.  
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Tables and Figure Captions: 

 
Table 1: All abbreviated terms discussed in the paper. 

PBF Pterosaur-Bearing Formations 

PBC Pterosaur-Bearing Collections 

DBF Dinosaur-Bearing Formations 

DBC Dinosaur-Bearing Collections 

SCM Skeletal Completeness Metric 

CCM Character Completeness Metric 

RDE Residual Diversity Estimate 

TTBC Terrestrial Tetrapod-Bearing Collections 

MTBC Marine Tetrapod-Bearing Collections 
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Table 2: Spearman’s Rank and Kendall’s Tau correlation coefficients and uncorrected 

probability values (p) of statistical comparisons between taxic diversity of pterosaurs and 

various sampling proxies.  

Taxic Div vs: Spearman's rs Kendall's tau 
PBFs 0.51231 (p=0.00884) 0.34 (p=0.0172) 
PBCs 0.56 (p=0.00360) 0.38 (p=0.00776) 
DBFs 0.42154 (p=0.0358) 0.3 (p=0.0356) 
DBCs 0.43846 (p=0.0283) 0.31333 (p=0.0281) 
 
 
Table 3: Spearman’s Rank and Kendall’s Tau correlation coefficients and uncorrected 

probability values (p) of statistical comparisons between mean CCM values of pterosaurs and 

various sampling proxies, for the Mesozoic, the Triassic/Jurassic, and the Cretaceous.  

 

 
MESOZOIC TRIASSIC/JURASSIC CRETACEOUS 

CCM vs: Spearman's rs Kendall's tau Spearman's rs Kendall's tau Spearman's rs Kendall's tau 

Taxic Diversity 0.53 (p=0.00643) 0.413 (p=0.00378) 0.456 (p=0.117) 0.410 (p=0.0509) 0.650 (p=0.0220) 0.515 (p=0.0197) 

PBFs  -0.00538 (p=0.980)  -0.00667 (p=0.963)  -0.0110 (p=0.972)  -0.0256 (p=0.903) 0.0490 (p=0.880) 0.0606 (p=0.784) 

PBCs 0.213 (p=0.306) 0.18 (p=0.207) 0.280 (p=0.354) 0.256 (p=0.222) 0.168 (p=0.602) 0.182 (p=0.411) 

DBFs 0.287 (p=0.164) 0.207 (p=0.148) 0.467 (p=0.108) 0.333 (p=0.113) 0.238 (p=0.457) 0.182 (p=0.411) 

DBCs 0.282 (p=0.173) 0.233 (p=0.102) 0.412 (p=0.162) 0.359 (p=0.0876) 0.273 (p=0.391) 0.182 (p=0.411) 

PBF Residuals 0.604 (p=0.0013924) 0.453 (p=0.0014918)  -0.0110 (p=0.972)  -0.0256 (p=0.903) 0.727 (p=0.00736) 0.576 (p=0.00917) 

PBC Residuals 0.211 (p=0.312) 0.127 (p=0.375) 0.280 (p=0.354) 0.256 (p=0.222) 0.238 (p=0.457) 0.091 (p=0.681) 

DBF Residuals 0.539 (p=0.00541) 0.427 (p=0.00279) 0.467 (p=0.108) 0.333 (p=0.113) 0.720 (p=0.00824) 0.515 (p=0.0197) 

DBC Residuals 0.469 (p=0.018) 0.327 (p=0.0221) 0.412 (p=0.162) 0.359 (p=0.0876) 0.615 (p=0.0332) 0.394 (p=0.0746) 

Sea Level  0.0269 (p=0.898) 0.0333 (p=0.815) 0.00549 (p=0.986)  -0.0256 (p=0.903)  -0.182 (p=0.572)  -0.0606 (p=0.784) 
Results in bold highlight statistical significance at p=0.05  
 
 
Table 4: Spearman’s Rank and Kendall’s Tau correlation coefficients and uncorrected 

probability values (p) of statistical comparisons between mean CCM values of pterosaurs, 

birds and sauropodomorphs, for the Mesozoic, Triassic/Jurassic, and the Cretaceous. 

  MESOZOIC TRIASSIC/JURASSIC CRETACEOUS 
CCM vs: Spearman's rs Kendall's tau Spearman's rs Kendall's tau Spearman's rs Kendall's tau 

Sauropod CCM 0.148 (p=0.479) 0.133 (p=0.350) 0.670 (p=0.0122) 0.513 (p=0.0147)  -0.510 (p=0.0899)  -0.212 (p=0.337) 

Aves CCM 0.758 (p=0.00267) 0.641 (p=0.00229) N/A N/A 0.804 (p=0.00161) 0.727 (p=0.000997) 
Results in bold highlight statistical significance at p=0.05  
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Table 5: Spearm
an’s R

ank and K
endall’s Tau correlation coefficients and uncorrected probability values (p) of statistical 

com
parisons betw

een m
ean C

C
M

 values of pterosaurs and various independent variables w
hen the A

alenian is rem
oved for 

the M
esozoic, Triassic/Jurassic, and the C

retaceous 

A
A

LEN
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EM
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ED
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ZO

IC
 

TR
IA

SSIC
/JU

R
A

SSIC
 

C
R

ETA
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EO
U
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C
C

M
 vs: 

Spearm
an's rs 

K
endall's tau 

Spearm
an's rs 

K
endall's tau 

Spearm
an's rs 

K
endall's tau 

Taxic D
iversity 

0.412 (p=0.0453) 
0.304 (p=0.0372) 

0.322 (p=0.308) 
0.303 (p=0.170) 

0.587 (p=0.0446) 
0.424 (p=0.0549) 

PBFs 
 -0.183 (p=0.393) 

 -0.116 (p=0.427) 
-0.224 (p=0.484) 

 -0.182 (p=0.411) 
 -0.0559 (p=0.863) 

 -0.0303 (p=0.891) 

PBC
s 

0.142 (p=0.50883) 
0.130 (p=0.372) 

0.133 (p=0.680) 
0.121 (p=0.583) 

0.14 (p=0.665) 
0.152 (p=0.493) 

D
BFs 

0.163 (p=0.448) 
0.130 (p=0.372) 

0.252 (p=0.43) 
0.152 (p=0.493) 

0.175 (p=0.587) 
0.212 (p=0.337) 

D
BC

s 
0.133 (p=0.535) 

0.123 (p=0.399) 
0.28 (0.379) 

0.273 (p=0.217) 
0.161 (p=0.618) 

0.121 (p=0.583) 

Sauropod C
C

M
 

 0.027 (p=0.901) 
 0.029 (p=0.843) 

0.657 (p=0.0202) 
0.455 (p=0.0397) 

 -0.476 (p=0.118) 
 -0.212 (p=0.337) 

Aves C
C

M
 

0.841 (p=0.000319) 
0.667 (p=0.00151) 

N
/A

 
N

/A
 

0.839 (p=0.000643) 
0.697 (p=0.00161) 

Sea Level 
0.0548 (p=0.799) 

0.0362 (p=0.804) 
0.126 (p=0.697) 

0.0909 (0.681) 
 -0.23077 (p=0.47053) 

 -0.152 (p=0.493) 

PBF Residuals 
0.461 (p=0.0234) 

0.333 (p=0.0225) 
0.54) 

0.273 (p=0.217) 
0.73427 (p=0.0065435) 

0.515 (p=0.197) 

PBC
 Residuals 

0.183 (p=0.393) 
0.159 (p=0.275) 

0.147 (p=0.649) 
0.152 (p=0.493) 

0.18881 (p=0.55674) 
0.152 (p=0.493) 

D
BF Residuals 

0.422 (p=0.0401) 
0.319 (p=0.0291) 

0.364 (p=0.225) 
0.333 (p=0.131) 

0.580 (p=0.0479) 
0.394 (p=0.0746) 

D
BC

 Residuals 
0.335 (p=0.11) 

0.232 (p=0.1124) 
0.203 (p=0.527) 

0.182 (p=0.411) 
0.392 (p=0.208) 

0.242 (p=0.273) 
R

esults in bold highlight statistical significance at p=0.05  
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Table 6: Spearman’s Rank and Kendall’s Tau correlation coefficients and uncorrected probability values 

(p) of statistical comparisons between CCM values of pterosaurs and various proxies within Lagerstätten 

only and Lagerstätten removed subgroups for the Mesozoic, Triassic/Jurassic, and the Cretaceous. 

	  

 
MESOZOIC 

 
LAGERSTÄTTEN ONLY LAGERSTÄTTEN REMOVED 

CCM vs: Spearman's rs Kendall's tau Spearman's rs Kendall's tau 

Taxic Diversity 0.738 (p=0.0000258) 0.547 (p=0.000128) 0.328 (p=0.109) 0.253 (p=0.0759) 
Lagerstatten 
presence/absence Tax. Div. 0.936 (p=0.00000000000633) 0.84 (p=0.00000000397) 0.219 (p=0.292) 0.16 (p=0.262) 

Sauropod CCM  -0.00308 (p=0.988)  -0.0133 (p=0.926) 0.182 (p=0.383) 0.147 (p=0.304) 

Aves CCM 0.615 (p=0.0252) 0.385 (p=0.0672) 0.418 (p=0.156) 0.385 (p=0.0672)) 

Sea Level 0.236 (p=0.256) 0.18 (p=0.207) 
  -0.0654 
(p=0.756)  -0.02 (p=0.744) 

Results in bold highlight statistical significance at p=0.05  
	  

 CRETACEOUS 

 LAGERSTÄTTEN ONLY LAGERSTÄTTEN REMOVED 
CCM vs: Spearman's rs Kendall's tau Spearman's rs Kendall's tau 

Taxic Diversity 0.755 (p=0.00451) 0.636 (p=0.00398) 0.294 (p=0.354) 0.212 (p=0.337) 

Lagerstatten 
presence/absence Tax. Div. 

0.944 
(p=0.00000393) 

0.848 (p=0.000123) 0.105 (p=0.746) 0.0909 (p=0.681) 

Sauropod CCM  -0.538 (p=0.0709)  -0.394 (p=0.0746)  -0.035 (p=0.914)  0.0303 (p=0.891) 

Aves CCM 0.622 (p=0.0307) 0.424 (p=0.0549) 0.378 (p=0.226) 0.364 (p=0.0998) 

Sea Level 0.119 (p=0.713) 0.121 (p=0.583)  -0.189 (p=0.557)  -0.121 (0.583) 

Results in bold highlight statistical significance at p=0.05  
	  

 TRIASSIC/JURASSIC 

 LAGERSTÄTTEN ONLY LAGERSTÄTTEN REMOVED 
CCM vs: Spearman's rs Kendall's tau Spearman's rs Kendall's tau 

Taxic Diversity 0.615 (p=0.0252) 0.385 (p=0.0672) 0.302 (p=0.316) 0.231 (p=0.272) 

Lagerstatten 
presence/absence Tax. Div. 

0.967 (p=0.0000000706) 0.897 (p=0.0000195) 0.275 (p=0.364) 0.179 (p=0.393) 

Sauropod CCM 0.445 (p=0.128) 0.333 (p=0.113) 0.489 (p=0.0899) 0.387 (p=0.0672) 

Aves CCM N/A N/A N/A N/A 
Sea Level 0.214 (p=0.482) 0.103 (p=0.626)  -0.0824 (p=0.789)  -0.103 (p=0.626) 

Results in bold highlight statistical significance at p=0.05  
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retaceous.	  
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Taxic 
D

iversity 
0.587 

(p=0.00204) 
0.407 

(p=0.00438) 
0.247 

(p=0.234) 
0.12 (p=0.4) 

0.555 
(p=0.049) 

0.385 
(p=0.0672) 

0.269 
(p=0.374) 

0.154 
(p=0.464) 

0.531 
(p=0.0754) 

0.394 
(p=0.0746) 

0.028 
(p=0.931) 

0.0303 
(p=0.891) 

Env. 
Taxic 
D

iversity 
0.585 

(p=0.00215) 
0.44 

(p=0.00205) 
0.686 

(p=0.000153) 
0.527 

(p=0.000224) 
0.714 

(p=0.00609) 
0.538 

(p=0.0104) 
0.615 

(p=0.0252) 
0.513 

(p=0.0147) 
0.413 

(p=0.183) 
0.364 

(p=0.0998) 
0.028 

(p=0.931) 
0.0303 

(p=0.891) 
G

roup 
TBC

s 
 -0.0454 

(p=0.829) 
 -0.0333 

(p=0.815) 
0.536 

(p=0.00573) 
0.373 

(p=0.0089) 
 -0.209 

(p=0.494) 
 -0.231 

(p=0.272) 
0.626 

(p=0.022) 
0.462 

(p=0.0281) 
0.413 

(p=0.183) 
0.303 

(p=0.170) 
0.294 

(p=0.354) 
0.212 

(p=0.337) 
Sauropod 
C

C
M

 
 -0.00615 
(p=0.977) 

 -0.00667 
(p=0.963) 

0.283 
(p=0.170) 

0.187 
(p=0.191) 

 -0.011 
(p=0.972) 

 -0.0769 
(p=0.714) 

0.571 
(p=0.0413) 

0.410 
(p=0.0509) 

 -0.266 
(p=0.404) 

 -0.152 
(p=0.493) 

 -0.21 
(p=0.513) 

 -
0.182(p=0.411) 

Aves 
C

C
M

 
0.209 

(p=0.494) 
0.154 

(p=0.464) 
0.473 

(p=0.103) 
0.308 

(p=0.143) 
N

/A
 

N
/A

 
N

/A
 

N
/A

 
0.238 

(p=0.457) 
0.182 

(p=0.411) 
0.476 

(p=0.118) 
0.333 

(p=0.131) 

Sea Level 
0.162 

(p=0.438) 
0.107 

(p=0.455) 
 -0.115 

(p=0.583) 
 -0.113 

(p=0.427) 
0.368 

(p=0.216) 
0.256 

(p=0.222) 
 -0.346 

(p=0.247) 
 -0.333 

(p=0.113) 
 -0.112 

(p=0.729) 
 -0.0606 

(p=0.784) 
 -0.042 

(p=0.897) 
 -0.0909 

(p=0.681) 
R

esults in bold highlight statistical significance at p=0.05  
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Table 8: Spearman’s Rank and Kendall’s Tau correlation coefficients and uncorrected 

probability values (p) of statistical comparisons between CCM values of pterosaurs and 

various proxies within Pterodactyloidea and non-Pterodactyloidea subgroups. 

 
 

 
MESOZOIC 

 
PTERODACTYLOIDEA NON PTERODACTYLOIDEA 

CCM vs: Spearman's rs Kendall's tau Spearman's rs Kendall's tau 

Taxic Diversity 0.389 (p=0.152) 0.352 (p=0.0671) 0.522 (p=0.0673) 0.462 (p=0.00281) 

Group Diversity 0.729 (p=0.00207) 0.6 (p=0.00182) 0.121 (p=0.694) 0.128 (p=0.542) 

Sauropod CCM  -0.482 (p=0.0688)  -0.314 (p=0.102) 0.714 (p=0.00609) 0.564 (p=0.00727) 

Aves CCM 0.758 (p=0.00267) 0.564 (p=0.00727) N/A N/A 

Sea Level  -0.114 (p=0.685)  -0.0476 (p=0.805) 0.0714 (p=0.817) 0.0256 (p=0.903) 
Results in bold highlight statistical significance at p=0.05  
 
 

 

 

 

Table 9: Multiple regression results showing sampling proxy effects on pterosaur 

completeness. 

 
Full       Best       

Dependent Independents R² p AIC Independents R² p AIC 

CCM 

Lagerstätten 
Presence/absence + PBFs + 
PBCs + DBFs + DBCs + 
Diversity + Stage Length 0.22 0.58 10.5 

PBFs + 
Diversity 0.17 0.14 4.11 

 
Details of full and best model selection process can be found in Supporting Information. 
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Table 10: Statistical comparison of the top twenty possible explanatory models for 

completeness of pterosaurs through the Mesozoic. 

 
Model Parameters df Weighting AICc AIC BIC logLik 

112 DfL 5 0.11070917 -2.172124414 -3.372124414 2.518144738 6.686062207 
119 LPf 5 0.079832147 -1.518163596 -2.718163596 3.172105555 6.359081798 

99 LPcPf 6 0.068188103 -1.202851277 -3.308114435 3.760208547 7.654057217 
120 PcPf 5 0.054518999 -0.755409579 -1.955409579 3.934859573 5.977704789 

94 DfLPf 6 0.050394272 -0.598066097 -2.703329255 4.364993727 7.351664627 
81 DcDfL 6 0.049432517 -0.559527974 -2.664791132 4.40353185 7.332395566 
90 DfSL 6 0.02663663 0.677114286 -1.428148872 5.64017411 6.714074436 
71 DDfL 6 0.026328567 0.700379821 -1.404883337 5.663439645 6.702441669 
93 DfLPc 6 0.026161243 0.71313088 -1.392132278 5.676190704 6.696066139 
79 DPcPf 6 0.0250594 0.799190877 -1.306072281 5.762250702 6.65303614 
54 DcDfLPf 7 0.02335848 0.939768771 -2.393564563 5.85281225 8.196782281 
63 DfLPcPf 7 0.023135291 0.958970553 -2.37436278 5.872014032 8.18718139 
97 SLPf 6 0.022332941 1.0295634 -1.075699758 5.992623225 6.537849879 
78 DLPf 6 0.022278074 1.034483014 -1.070780144 5.997542839 6.535390072 
88 DcLPf 6 0.019942075 1.256025272 -0.849237886 6.219085096 6.424618943 
98 SPcPf 6 0.019289483 1.32256884 -0.782694318 6.285628665 6.391347159 
64 SLPcPf 7 0.017452414 1.522732971 -1.810600362 6.43577645 7.905300181 

105 DPf 5 0.015889977 1.710311852 0.510311852 6.400581004 4.744844074 
49 DLPcPf 7 0.014044312 1.957253944 -1.376079389 6.870297424 7.688039694 
59 DcLPcPf 7 0.013834353 1.987379236 -1.345954097 6.900422715 7.672977049 

 
Models comprise different combinations of diversity, dinosaur and pterosaur bearing 

collections and formations, stage length and Lagerstätten presence/absence that potentially 

explain the character completeness metric. Models are ranked in order of explanatory power 

according to the Akaike’s second-order corrected information criterion (AICc), where a 

smaller value equals a superior fit. The full table can be found with Supporting Information. 

Abbreviations of parameters: D, diversity. Df, Dinosaur Bearing Formations. Dc, Dinosaur 

Bearing Collections. S, Stage Length. L, Lagerstätten presence/absence. Pf, Pterosaur Bearing 

Formations. Pc, Pterosaur Bearing Collections. 
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Table 11: Statistical comparison of the top twenty possible explanatory models for diversity 

of pterosaurs through the Mesozoic. 

 
Model Parameters df Weights AICc AIC BIC logLik 

119 LPf 5 0.161913896 4.054284125 2.854284125 8.744553276 3.572857938 
97 SLPf 6 0.100306361 5.011955262 2.906692104 9.975015086 4.546653948 

118 LPc 5 0.088667634 5.258623631 4.058623631 9.948892783 2.970688184 
99 LPcPf 6 0.072214036 5.669144623 3.563881465 10.63220445 4.218059267 
96 SLPc 6 0.051663081 6.338926642 4.233663484 11.30198647 3.883168258 
78 CLPf 6 0.044769643 6.625352899 4.520089741 11.58841272 3.739955129 
94 DfLPf 6 0.041389992 6.782335268 4.677072111 11.74539509 3.661463945 
88 DcLPf 6 0.037942491 6.956270247 4.851007089 11.91933007 3.574496455 
93 DfLPc 6 0.034870645 7.125122796 5.019859638 12.08818262 3.490070181 
64 SLPcPf 7 0.033949556 7.178661915 3.845328581 12.09170539 5.077335709 
87 DcLPc 6 0.024699875 7.81481714 5.709553982 12.77787696 3.145223009 
77 CLPc 6 0.024044448 7.868605272 5.763342114 12.8316651 3.118328943 
47 CSLPf 7 0.021915304 8.054043071 4.720709737 12.96708655 4.639645131 
61 DfSLPf 7 0.020836498 8.155001204 4.82166787 13.06804468 4.589166065 
57 DcSLPf 7 0.020757362 8.162611565 4.829278232 13.07565504 4.585360884 
60 DfSLPc 7 0.016659272 8.602479664 5.269146331 13.51552314 4.365426834 
49 CLPcPf 7 0.015331366 8.76861193 5.435278597 13.68165541 4.282360701 
63 DfLPcPf 7 0.015171737 8.789544867 5.456211534 13.70258835 4.271894233 
59 DcLPcPf 7 0.014771424 8.843024555 5.509691222 13.75606803 4.245154389 
46 CSLPc 7 0.012575983 9.164835738 5.831502405 14.07787922 4.084248798 

 

Models comprise different combinations of completeness, dinosaur and pterosaur bearing 

collections and formations, stage length and Lagerstätten presence/absence that potentially 

explain pterosaur diversity. Models are ranked in order of explanatory power according to the 

Akaike’s second-order corrected information criterion (AICc), where a smaller value equals a 

superior fit. The full table can be found with Supporting Information. Abbreviations of 

parameters: C, Completeness. Df, Dinosaur Bearing Formations. Dc, Dinosaur Bearing 

Collections. S, Stage Length. L, Lagerstätten presence/absence. Pf, Pterosaur Bearing 

Formations. Pc, Pterosaur Bearing Collections. 
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Figure 1: 

Completeness and taxic diversity of pterosaurs throughout the Mesozoic. Light blue areas 

surrounding Character Completeness Metric represent one standard deviation around the 

mean. 
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Figure 2: 

Sampling proxies plotted throughout the Mesozoic. A, Pterosaur completeness, Pterosaur 

Bearing Formations and Pterosaur Bearing Collections. B, Pterosaur completeness and 

Dinosaur Bearing Formations. C, Pterosaur completeness and Dinosaur Bearing Collections.  
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Figure 3: 

Pterosaur, bird and sauropodomorph completeness plotted throughout the Mesozoic. Bird 

completeness is not available prior to the Tithonian.  
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Figure 4: 

Plots of Lagerstätten groupings plotted throughout the Mesozoic. A, Overall pterosaur 

completeness compared with subgrouping of Lagerstätten only and Lagerstätten removed 

completeness. B, Overall pterosaur diversity compared with subgrouping of Lagerstätten only 

and Lagerstätten removed diversity. C, Lagerstätten only completeness and diversity. D, 

Lagerstätten removed completeness and diversity. 
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Figure 5:  

Plots of pterosaurs found within marine and terrestrial environments for all stages of the 

Mesozoic. A, Overall pterosaur completeness compared with subgrouping of marine and 

terrestial completeness. B, Overall pterosaur diversity compared with subgrouping of marine 

and terrestial diversity. C, Marine completeness and diversity. D, Terrestrial completeness 

and diversity. 
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Figure 6: 

Plots showing completeness and diversity in subgrouping of Pterodactyloidea and non-

Pterodactyloidea throughout the Mesozoic. 
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Figure 7: 

Comparison between global sea level (Butler et al. 2013, after Haq et al. 1987) and pterosaur 

completeness for the Mesozoic. 

 

 

 

 

 

 

 

 

 


