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Robust Optimization Over Time: Problem
Difficulties and Benchmark Problems

Haobo Fu, Bernhard Sendhoff, Senior Member, IEEE, Ke Tang, Senior Member, IEEE,
and Xin Yao Fellow, IEEE

Abstract—The focus of most research in evolutionary dynamic
optimization has been tracking moving optimum (TMO). Yet,
TMO does not capture all the characteristics of real-world
dynamic optimization problems (DOPs), especially in situations
where a solution’s future fitness has to be considered. To account
for a solution’s future fitness explicitly, we propose to find
robust solutions to DOPs, which are formulated as the robust
optimization over time (ROOT) problem. In this paper we ana-
lyze two robustness definitions in ROOT and then develop two
types of benchmark problems for the two robustness definitions
in ROOT, respectively. The two types of benchmark problems
are motivated by the inappropriateness of existing DOP bench-
marks for the study of ROOT. Additionally, we evaluate four
representative methods from the literature on our proposed
ROOT benchmarks, in order to gain a better understanding
of ROOT problems and their relationship to more popular
TMO problems. The experimental results are analyzed, which
show the strengths and weaknesses of different methods in solv-
ing ROOT problems with different dynamics. In particular, the
real challenges of ROOT problems have been revealed for the
first time by the experimental results on our proposed ROOT
benchmarks.

Index Terms—Benchmarking, dynamic optimization
problems (DOPs), evolutionary algorithms (EAs), robust
optimization over time (ROOT).

Manuscript received January 26, 2013; revised October 08, 2013,
February 02, 2014, and June 19, 2014; accepted November 10, 2014. Date of
publication December 4, 2014; date of current version September 29, 2015.
This work was supported in part by Honda Research Institute Europe, in
part by the Engineering and Physical Sciences Research Council under
Grant EP/K001523/1, in part by the EU FP7 International Research Staff
Exchange Scheme under Grant 247619, in part by the National Natural
Science Foundation of China under Grants 61329302 and 61175065, in part
by the Program for New Century Excellent Talents in University under
Grant NCET-12-0512, and in part by the Science and Technological Fund of
Anhui Province for Outstanding Youth under Grant 1108085J16. The work of
X. Yao was supported by the Royal Society Wolfson Research Merit Award.

H. Fu is with the Centre of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: hxf990@cs.bham.ac.uk).

B. Sendhoff is with Honda Research Institute Europe, Offenbach 63073,
Germany.

K. Tang is with University of Science and Technology of China (USTC)–
Birmingham Joint Research Institute in Intelligent Computation and
its Applications, School of Computer Science and Technology, USTC,
Hefei 230027, China.

X. Yao is with the Centre of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K., and also with the University
of Science and Technology of China (USTC)–Birmingham Joint Research
Institute in Intelligent Computation and its Applications, School of Computer
Science and Technology, USTC, Hefei 230027, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2014.2377125

I. INTRODUCTION

DYNAMIC optimization problems (DOPs) are optimiza-
tion problems that are changing over time. The change

can happen in the objective fitness function and the number of
design variables, as well as the constraints. The research on
applying evolutionary algorithms (EAs) to DOPs has become
very active [1]–[3]. On the one hand, this is due to the
fact that most real-world optimization problems are inherently
dynamic. On the other hand, EAs are believed to be suitable
methods [1] for solving several DOPs as EAs maintain a pop-
ulation that may potentially be good at adapting to dynamic
environments.

For static optimization problems, usually only one solution,
which is found to be best in terms of fitness for the correspond-
ing objective fitness function among all evaluated solutions, is
determined and implemented1 in practice. However, for DOPs,
the decision maker has to repeatedly implement solutions over
time in a changing environment. Accordingly, DOPs can be
classified following the way the decision maker implements
solutions in a changing environment. So far, the majority of
research on applying EAs to DOPs has been focusing on
one type of DOPs, i.e., tracking moving optimum (TMO)
problems [4]–[8]. For TMO problems, the objective for the
current time is to find an optimum in terms of fitness for
the current environment and then relocate a new optimum in
terms of fitness for the new environment once the environment
changes. Therefore, it is implicitly assumed in TMO that the
decision maker has to determine and implement a new solu-
tion every time the environment changes. The formalization of
TMO problems is justifiable in situations where implementing
a solution, e.g., updating some control variables, can be fin-
ished instantaneously and inexpensively, such as in [9]–[11].
However, in situations where the implementation of a solution
involves human operation [12], resource transportation [13],
etc., which all incur a huge cost, it might be impossible to
implement a new solution every time the environment changes.
In other words, TMO may be an inappropriate formalization
of the corresponding DOP. This is further explained in the
following.

1) A lot of real-world DOPs involve human operation.
Taking practical dynamic vehicle routing problems for
example [12], [14], [15], the environmental states,

1We would like to emphasize the difference between determination of a
solution and implementation of a solution. Determination of a solution is
completed once the algorithm finishes its computation, while implementation
of a solution involves the practical operation of the determined solution.
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e.g., demands from customers, conditions of road, etc.,
vary from day to day. For this kind of DOPs, if we
implement a different solution every day, it will cause
disruptions to the working timetable of staff and may
also confuse the operators as the operators would daily
change their implementations [15]. Therefore, in such
circumstances, it would be more beneficial having a
fixed and good solution implemented and used for a long
time period than implementing a new solution every time
the environment changes, which is done in TMO.

2) In some circumstances, it is desirable to have an already
implemented solution in use as much time as possi-
ble, during which environmental changes may happen,
as long as the solution maintains its feasibility and its
fitness above a certain level. Such circumstances can
be found in aircraft taking-off/landing scheduling prob-
lems [16], [17]. As long as the system performance is
maintained above a certain level, it is preferred to stick to
an already implemented solution/schedule after an envi-
ronmental change. The reason is that any modification
of an already implemented solution will cause unfavor-
able disruptions to the operations in the airport, e.g.,
rescheduling some other aeroplanes. Therefore, in such
circumstances, it is more practical to use a solution that
can maintain its feasibility and its fitness above a thresh-
old as long as possible, starting from the time when it
is first implemented, than to use a solution that is deter-
mined by TMO, i.e., maximizing the fitness only for the
current environment.

In order to account for the two aforementioned situa-
tions where TMO is not a proper formalization of DOPs,
we proposed the idea of finding robust solutions to DOPs,
and the corresponding formalization is referred to as robust
optimization over time (ROOT) [18], [19].

To account for the first aforementioned situation where it
is desirable to use a solution for a long time period, during
which environmental changes occur, we proposed the fol-
lowing robustness definition to quantify the performance of
a solution during a time period [20]. Assuming a solution
x is determined at time t, the corresponding robustness is
defined as

Fa(x, t, T) = 1

T

t+T∫

t

f (x,α(i))di (1)

where x denotes the design variables, i.e., the solution; T is
a user-specified parameter stating for how long a solution is
used; α represents the environmental state that specifies the
fitness function f . The environment state at time i is denoted
as α(i).

To account for the second aforementioned situation where
it is desirable to use a solution for as much time as possible,
as long as the solution maintains its fitness above a predefined
threshold,2 we proposed the following robustness definition to
quantify the amount of time a solution can maintain its fitness

2Only maximization problems are considered in this paper without loss of
generality.

above a user-specified threshold [20]. Assuming a solution x
is determined at time t, we have the corresponding robustness

Fs(x, t, V) =
{

0, if f (x,α(t)) < V
max{l|t ≤ i ≤ t + l : f (x,α(i)) ≥ V}, else

(2)

where V is a user-specified parameter of the fitness threshold.
Assuming that the dynamic environment can be represented

as a sequence of static fitness functions ( f1, f2, . . . , fN) during
a considered time interval [t0, tend), (1) and (2) are reduced to
the discrete forms, respectively, in

Fa(x, t, T) = 1

T

T−1∑
i=0

ft+i(x). (3)

Fs(x, t, V)

=
{

0, if ft(x) < V
1 + max{l|∀i ∈ {t, t + 1, . . . , t + l} : fi(x) ≥ V}, else

(4)

where the fitness function f in either (3) or (4) belongs to the
sequence ( f1, f2, . . . , fN). The two definitions in (3) and (4)
are termed “average fitness” and “survival time” in [20], and
we follow this convention in this paper.

Assuming that the dynamic environment can be represented
as a sequence of static fitness functions ( f1, f2, . . . , fN) dur-
ing a considered time interval [t0, tend), the ROOT problem is
defined as

max
N∑

i=1

F(xi)

s.t. xi is feasible, 1 ≤ i ≤ N (5)

where xi denotes the robust solution determined at time step i
when the dynamic environment is represented as fi. F(xi) is
the robustness of solution xi, and in this paper F is either
average fitness or survival time.3 It should be noted that any
ROOT method is supposed to solve the ROOT problem in an
on-line manner. In other words, a ROOT method starts when
the dynamic environment takes the form of f1 and determines
a solution x1 within a computational budget �e. Then, the
ROOT method will determine a solution x2 within the compu-
tational budget �e after the environment changes from f1 to f2.
The process repeats till the last static fitness function fN .
Also, the computational budget �e should be generally smaller
than the time interval between two successive environmental
changes.

At the current time step t, the objective of ROOT in this
paper is to find a solution that maximizes average fitness or
survival time. In contrast, for TMO problems, the objective at
the current time step t is to find a solution that maximizes
the fitness function ft. Hence, the way the decision maker
determines and implements solutions to ROOT problems is
different from that to TMO problems. A solution implemented
at a certain time step in ROOT can be used for multiple con-
secutive time steps (i.e., it is not necessary to implement a
new solution every time the environment changes as what is

3This means we have two versions of ROOT: one is about maximizing
average fitness, and the other is about maximizing survival time.
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assumed in TMO), due to the definition of average fitness
or survival time. Moreover, it should be noted that for both
robustness definitions in (3) and (4), at the current time step t,
only ft can be exactly evaluated, and a solution’s fitness at
future time steps (i.e., time step t + 1, t + 2, . . .) has to be
predicted either explicitly or implicitly.

In order to evaluate algorithms for ROOT, appropriate
benchmarks are needed. Over the years, researchers have
developed various DOP benchmarks to test an algorithm’s
TMO ability. Since existing DOP benchmarks are essentially
benchmarks that define the dynamic fitness functions (DFFs)
(i.e., a sequence of static fitness functions in the discrete-time
case) for DOPs, those DOP benchmarks could be potentially
used for testing an algorithm’s ROOT ability as well.

There are mainly three categories in existing DOP/DFF
benchmarks. In the first category, the DFF switches among
several fixed fitness functions, e.g., the oscillating fitness
landscape [21] and the dynamic knapsack problem [22].

The second category includes benchmarks that are built
by constructing baseline fitness functions with configurable
parameters and developing dynamics to change those con-
figurable parameters. Typical examples are the moving peaks
benchmark [23], DF1 dynamic benchmark [24], the multiob-
jective dynamic test problem generator [25], the dynamic rota-
tion peak benchmark together with the dynamic composition
benchmark [26], and the dynamic constrained benchmark [5].

Compared to the first two categories, in which the DFF
changes over time, the third category involves benchmarks
where the DFF stays unchanged but a solution x has to
go through a transformation before being evaluated, and the
transformation rule is subject to environmental changes. A rep-
resentative example is the exclusive-or generator for binary
encoded problems [27] and continuous domains [28].

In contrast to the fitness-landscape-oriented DOP bench-
marks in the aforementioned three categories, another seminal
work was developed in [10], where the authors proposed a
DOP benchmark based on general characteristics of real-world
DOPs.

Given so many DOP benchmarks available, it turns out that
it is not sufficient to test an algorithm’s ROOT ability on
existing DOP benchmarks. The reason is that it is generally
difficult to know the absolute best average fitness for existing
DOP benchmarks given a time window T (T > 2). Also, it
is generally difficult to know the absolute best survival time
for existing DOP benchmarks given a fitness threshold V . The
reasons for both difficulties will be explained, respectively, in
later sections of this paper. The lack of knowledge about the
absolute best performance makes the evaluation and compar-
ison of algorithm in terms of ROOT on existing benchmarks
difficult if not impossible.

The rest of this paper is organized as follows. Having
introduced two robustness definitions, i.e., average fitness
and survival time, in ROOT, we explain in Section II the
assumptions in ROOT so that people can understand potential
applications of ROOT better. This is followed by discussing
two primary aspects of difficulties in finding optimal solu-
tions to ROOT in terms of average fitness or survival time. In
Section III, we explain in detail why it is so hard to obtain

the absolute best average fitness and the absolute best sur-
vival time on existing DOP benchmarks. In Section IV, we
develop two new benchmarks by defining two new baseline
fitness functions for maximizing average fitness and maximiz-
ing survival time, respectively. Both baseline fitness functions
are specially designed, which are scalable to any number of
dimensions and computationally efficient. Most importantly,
both baseline fitness functions allow the exact calculation of
the absolute best average fitness and the absolute best survival
time, respectively. The calculations are based on the corre-
sponding theorems proved in this paper. With the absolute
best average fitness and the absolute best survival time avail-
able in the two proposed benchmarks, respectively, we test two
state-of-the-art ROOT methods and two representative TMO
methods on the two proposed ROOT benchmarks in Section V.
Finally, the conclusion is given in Section VI.

II. ROOT

The objective of ROOT is different from that of TMO,
where a solution that maximizes the fitness function ft is
sought at time step t. However, it is easy to understand that
TMO does not necessarily contradict with ROOT as solu-
tions that maximize ft might also maximize average fitness or
survival time depending on how the DFF changes over time.

It is important that implicit assumptions made explicit about
ROOT, so people can understand the potential applications of
ROOT. In the following, we make the least number of assump-
tions about ROOT in the hope that ROOT can be as applicable
as possible.

Firstly, we assume that the dynamic environment, i.e., the
DFF, changes suddenly with constant status between two suc-
cessive changes. This means that the DFF can be represented
as a sequence of static fitness functions during a considered
time interval [t0, tend). The primary reason to assume that the
dynamic environment changes discretely is as follows. It is
natural to divide those types of DOPs where implementing
a solution involves human operation or huge cost into time
windows, during each of which the environment is considered
static, according to the comprehensive survey of real-world
DOPs in [29, Ch. 3]. Also, detecting environmental changes
is considered as a separate task from ROOT.

Secondly, the task of the decision maker in ROOT is to
determine a solution within a computational budget when an
environmental change occurs. The decision maker would then
decide whether to implement the determined solution for the
new environment. In the context of average fitness, the deter-
mined solution will not be implemented until the previously
implemented solution has been used for T time steps. In the
context of survival time, the determined solution will not be
implemented as long as the previously implemented solution
maintains its fitness above the predefined fitness threshold V .

Thirdly, at each time step when the DFF is considered
static, the decision maker should be able to evaluate a num-
ber of solutions and obtain their fitnesses for the static fitness
function at that time step. In other words, ROOT can deal
with black-box DFFs, which means that the analytical form
of DFF can be unavailable and the only requirement is that the
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decision maker can evaluate a solution’s fitness at the current
time step.

Fourthly, a solution’s future fitness4 should be predictable
to some extent. In ROOT, at the current time step, we would
like to find a solution that maximizes average fitness or sur-
vival time, both of which involve a solution’s future fitness.
As we are unable to evaluate a solution’s future fitness at the
current time step, certain prediction techniques are needed,
which will be trained based on historical evaluation informa-
tion. The historical evaluation information consists of a set of
evaluated solutions with their fitnesses at previous time steps,
which is essentially a set of triplets in the form (x, fi(x), i).
(x, fi(x), i) means that solution x has been evaluated at previ-
ous time step i with its fitness for fi being fi(x). Only under
the assumption about predictability in solution’s future fitness,
information gathered in the past is useful to guide the search
in the present in ROOT. Otherwise, the environment is said
to change completely randomly and there is no need to use
historical evaluation information.

Finally, solutions implemented in ROOT are used for a long
time period, during which the environment changes. Therefore,
it is required that the dimensionality of design variables does
not change over time. However, it should be noted that we can
have the constraints for design variables changing over time
in ROOT, although in this paper we only investigate the case
where the solution space5 S stays constant over time. Also, in
this paper, we do not consider the issue of time-linkage [30],
which means that maximizing the sum in (5) is equivalent to
maximizing the corresponding robustness respectively at each
time step.

From the discussion above, we can see that at the cur-
rent time step, in order to find optimal robust solutions in
terms of average fitness or survival time, a solution’s future
fitness needs to be predicted. This imposes two major diffi-
culties in ROOT problems. The first one would be in building
learning models for the prediction task. Given historical eval-
uation information, under our assumptions in ROOT, it is not
straightforward as to how to build such a learning model that
can be used to predict a solution’s future fitness. The second
major difficulty lies in that there is no guarantee that a solu-
tion’s future fitness can be predicted perfectly. In other words,
when we apply EAs to ROOT problems, solutions are evolved
inevitably based on inaccurate average fitness or survival time.
In the following, we discuss in detail difficulties encountered
in ROOT from both perspectives.

A. Difficulties in Predicting Solution’s Future
Fitness in ROOT

The most intuitive way to predict a solution’s future fitness
would be formulating it as a time series prediction problem
and then employing time series prediction models, e.g., the
autoregressive model [31], to predict a solution’s future fit-
ness. However, should the time series data be a solution’s past
fitnesses or models of past fitness functions does not have

4If the current time step is t, a solution’s future fitness means its fitness at
future time step t + i, i ≥ 1.

5The solution space is a set of all candidate solutions.

a confirm answer. Moreover, how to generate the time series
data is not straightforward. For instance, if we decide the time
series data is a series of a solution’s past fitnesses, it may hap-
pen that a solution has not been evaluated at certain previous
time steps, and therefore the solution’s fitness at some previ-
ous time steps cannot be fetched directly from the historical
evaluation information. Finally, given the time series data, the
time series prediction task is itself a hard problem [32].

B. Difficulties in Evolving Population Based on
Inaccurate Information in ROOT

We are interested in applying EAs to ROOT problems. The
metric that is used to differentiate good solutions from bad
ones in EAs plays an important role in optimization process
as it guides the population to converge to good solutions.
For TMO problems, a solution’s future fitness is not con-
sidered, and the corresponding metric is a solution’s current
fitness. In contrast, solutions to ROOT problems are com-
pared based on a solution’s estimated/predicted average fitness
or survival time. Since a solution’s future fitness cannot be
exactly evaluated, the estimated/predicted average fitness or
survival time is inevitably inaccurate or noisy. Evolving solu-
tions based on an inaccurate or noisy metric has long been
studied in evolutionary optimization with noisy fitness func-
tions [2] and surrogate-assisted evolutionary optimization [33].
A major concern with an inaccurate or noisy metric is that it
may lead EAs to converge to a false optimum. This concern
applies to EAs for ROOT problems as well.

III. DIFFICULTIES IN CALCULATING THE ABSOLUTE BEST

AVERAGE FITNESS AND THE ABSOLUTE

BEST SURVIVAL TIME

Existing DOP benchmarks are essentially DFF benchmarks.
Suppose a sequence of static fitness functions of length N,
( f1, f2, . . . , fN), has been generated by a DFF benchmark.
According to the average fitness definition in (3), the abso-
lute best average fitness starting from ft with time window T ,
t + T ≤ N, is

max
{
Fa(x, t, T)|x ∈ S}

(6)

where S denotes the solution space of x. According to the
survival time definition in (4), the absolute best survival time
starting from ft with the fitness threshold V is

max
{
Fs(x, t, V)|x ∈ S}

. (7)

A. Difficulties in Calculating the Absolute
Best Average Fitness

The difficulty to obtain the absolute best average fitness
for existing DFF benchmarks lies in the fact that usually the
function form of Fa(x, t, T) when T ≥ 2 cannot be reduced to
the same form as the corresponding baseline fitness function.
Therefore, the procedure that is used to obtain an optimum of
the corresponding baseline fitness function cannot be used to
obtain an optimum of the average fitness function in (3).

Taking the widely used moving peaks benchmark [23] and
the DF1 dynamic benchmark [24] for example, the baseline
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fitness function in both benchmarks takes a similar form as

ft(x) = i=m
max
i=1

{
hi

t − wi
t ∗ ∣∣∣∣x − ci

t

∣∣∣∣
2

}
(8)

where scalars hi
t, wi

t, and vector ci
t, ci

t = (ci
1, . . . , ci

d), denote
the height, the width and the center of the ith peak function
at time step t; x is the vector of design variables; m is the
total number of peaks, and d is the number of dimensions.
According to the function form in (8) and supposing the solu-
tion space S being the d-dimensional vector space over the real
numbers Rd, it is easy to infer that an optimal solution for the
baseline fitness function in (8) is c j∗

t with its fitness taking the
value h j∗

t where j∗ = arg maxi hi
t, 1 ≤ i ≤ m. When we use the

baseline fitness function in (8) to generate the DFF, the func-
tion form of average fitness, Fa(x, t, T), becomes (supposing
T = 2)

1

2

(
i=m
max
i=1

{
hi

t − wi
t ∗ ∣∣∣∣x − ci

t

∣∣∣∣
2

}

+ i=m
max
i=1

{
hi

t+1 − wi
t+1 ∗ ∣∣∣∣x − ci

t+1

∣∣∣∣
2

})
. (9)

It is easy to verify that we are now unable to use the same
inference technique to obtain the absolute best average fitness
(T ≥ 2). The reason is that the function form of average fitness
in (9) cannot be reduced to the same form as the baseline
fitness function in (8).

A natural attempt to find the absolute best average fitness for
DFFs generated using the baseline fitness function in (8) would
be to set the derivative of the function of average fitness to zero
and then obtain the stationary points. However, the analytical
solutions of stationary points are not available because of the
function form in (9).

Although we illustrate the difficulty in calculating the
absolute best average fitness using two existing DFF
benchmarks, we argue that for most existing DFF bench-
marks [23], [24], [26], the same difficulty in calculating the
absolute best average fitness applies. However, there exists one
DFF benchmark [25] where the function form of average fit-
ness can be reduced to the form of the corresponding baseline
fitness function, and therefore it is capable to calculate the
absolute best average fitness just as calculating the optimal
fitness for the baseline fitness function in [25]. Nonetheless,
we would like to contribute a new benchmark for maximizing
average fitness in ROOT. This is partly because, for the DFF
benchmark in [25], all possible optimal solutions of average
fitness are confined within a fixed Pareto set. The reason is that
the DFF is generated in [25] by aggregating different objects
of a fixed multiobjective optimization problem and changing
the aggregating weights.

B. Difficulties in Calculating the Absolute
Best Survival Time

The difficulty in calculating the absolute best sur-
vival time in (7) originates from the difficulty associ-
ated with general nonlinear arithmetic constraint satisfaction
problems (CSPs) [34]. Given a sequence of static fitness func-
tions ( f1, f2, . . . , fN), the problem of calculating the absolute
best survival time starting from ft is equivalent to the problem

of finding the maximal number that the variable l can take
for which there exists a solution x∗, x∗ ∈ S, satisfying the
following array of arithmetic constraints simultaneously:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ft (x∗) ≥ V

ft+1 (x∗) ≥ V
...

ft+l (x∗) ≥ V.

(10)

The problem of answering whether there exists a solu-
tion x∗ ∈ S that satisfies all the constraints in (10) for
a fixed l, l ≥ 0, is one type of CSPs. Therefore, being
able to solve the corresponding CSP is a necessary condi-
tion of calculating the absolute best survival time. Supposing
we can solve the corresponding CSP successfully, we can
obtain the absolute best survival time, starting from any fit-
ness function ft, 1 ≤ t ≤ N, in the sequence ( f1, f2, . . . , fN),
by separately solving a number of corresponding CSPs with l
being 1, 2, . . . , N − t.

As stated in [34], solving arbitrary nonlinear arithmetic
CSPs over the real numbers is undecidable. This means if
ft+i, 0 ≤ i ≤ l, is an arbitrary nonlinear function of x, it
is impossible to construct a single algorithm that will always
lead to a yes/no answer as to whether there exists a solution
x∗ simultaneously satisfying all the constraints in (10). If ft+i,
0 ≤ i ≤ l, is a linear function of x, the corresponding CSP
in (10) is reduced to a linear programming problem and can
be solved in polynomial time. Also, if both the baseline fitness
function ft+i, 0 ≤ i ≤ l, and the solution space S are convex,
the corresponding CSP can be solved satisfactorily [35].

Based on the above discussion, we can see that in order
to employ a general CSP solver to solve the CSP with a
fixed l in (10), the baseline fitness function ft is required
to be either linear or convex together with a convex solu-
tion space S. Alternatively, we can require the baseline fitness
function to take a specific form (more complexed than linear
and convex) based on which we can calculate the absolute best
survival time. We take the latter way in this paper to develop
a new baseline fitness function (i.e., a new baseline fitness
function for a new benchmark) for the study of maximizing
survival time in ROOT. The reason is that the requirement
of the baseline fitness function being linear or convex is too
strong that may only represent a small portion of real-world
problems.

IV. TUNABLE BENCHMARK PROBLEMS FOR ROOT

In this section, we describe in detail the construction of
two benchmark problems for ROOT. The first benchmark is
used specially for maximizing average fitness in ROOT, and
the other is used specially for maximizing survival time in
ROOT. It is worth noting that, although we use loosely the
term of “two benchmark problems,” it actually includes many
different benchmark instances given different dynamics for the
corresponding baseline fitness function. Two here should be
regarded as two types of baseline fitness functions.

The two benchmarks are developed by first developing
respectively two baseline fitness functions with configurable
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Fig. 1. One fitness landscape example with five peaks along each dimension
generated by the baseline fitness function in RMPB-I.

parameters. After that, we suggest some desired dynamics that
are used to change the configurable parameters in our baseline
fitness functions to produce DFFs. We prove two lemmas and
one theorem based on which the absolute best average fitness
is calculated for DFFs generated from the first baseline fitness
function. Another two lemmas and one theorem are proved
with regard to calculating the absolute best survival time for
DFFs generated from the second baseline fitness function.

Since the two proposed ROOT benchmarks have the “peak”
characteristic as defined in the moving peaks benchmark [23]
and aim at testing an algorithm’s ROOT ability (in terms
of maximizing average fitness and survival time, respec-
tively), we term the two benchmarks robust moving peaks
benchmark (RMPB). The benchmark for maximizing aver-
age fitness is denoted as RMPB-I, and the benchmark for
maximizing survival time is denoted as RMPB-II.

A. Baseline Fitness Functions

The baseline fitness function in RMPB-I for maximizing
average fitness in ROOT is

f a
t (x) = 1

d

d∑
j=1

i=m
max
i=1

{
hij

t − wij
t ∗

∣∣∣xj − cij
t

∣∣∣
}

(11)

and the baseline fitness function in RMPB-II for maximizing
survival time in ROOT is

f s
t (x) =

j=d
min
j=1

{
i=m
max
i=1

{
hij

t − wij
t ∗

∣∣∣xj − cij
t

∣∣∣
}}

(12)

where, in both baseline fitness functions, scalars hij
t , wij

t , and
cij

t denote the height, the width, and the center of the ith
peak function for the jth dimension at time step t. The ith
peak function for the jth dimension in both baseline fitness
functions takes the same form: hij

t − wij
t ∗ |xj − cij

t |. The only
difference between f a

t and f s
t is that f a

t is the average over
all dimensions while f s

t takes the minimal value among all
dimensions. x represents the design variables with d dimen-
sions (x = (x1, . . . , xd)), and m is the number of peaks along
each dimension. Without loss of generality, we set the solu-
tion space S as the constrained d-dimensional vector space
[a, b]d where a and b are two real numbers. Also, we require
that each wij

t takes positive values and each cij
t belongs to the

interval [a, b].

Fig. 2. One fitness landscape example with 20 peaks along each dimension
generated by the baseline fitness function in RMPB-I.

Fig. 3. One fitness landscape example with five peaks along each dimension
generated by the baseline fitness function in RMPB-II.

The construction of the two baseline fitness functions is
motivated as follows. On the one hand, we would like both
baseline fitness functions to be multimodal, scalable to any
number of dimensions, and computationally efficient. More
importantly on the other hand, we should be able to calcu-
late the absolute best average fitness in DFFs generated using
the first baseline fitness function and the absolute best survival
time in DFFs generated using the second baseline fitness func-
tion. However, we would like to mention that the two baseline
fitness functions are developed not to represent any specific
real-world situation but to provide proper platforms for the
study of ROOT problems.

We generate two examples of fitness landscape using the
baseline fitness function in (11) in Figs. 1 and 2. We generate
another two examples of fitness landscape using the baseline
fitness function in (12) in Figs. 3 and 4. In Figs. 1 and 3,
we have 5 peaks along each dimension (2-D solution space),
and we generate the landscapes randomly with each height
ranging from 30 to 70, each width ranging from 1 to 13, and
each center ranging from −25 to 25. The same rule is applied
to Figs. 2 and 4 except that we set m, i.e., the number of
peaks along each dimension, to 20. We can see that the fitness
landscape in Fig. 2 is more rugged than that in Fig. 1, and so
is the fitness landscape in Fig. 4 than that in Fig. 3.

B. Dynamics for the Baseline Fitness Functions

We do not restrict the types of dynamics that are applied

to the configure parameters, i.e., height hij
t , width wij

t , and
center cij

t , in the two baseline fitness functions to generate
DFFs. In other words, users can define their own dynamics
for their study of ROOT problems using the two baseline
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Fig. 4. One fitness landscape example with 20 peaks along each dimension
generated by the baseline fitness function in RMPB-II.

fitness functions. However, we suggest the following 6 types
of dynamics that have been developed in CEC09 dynamic opti-
mization competition [26]. The six different types of dynamics
cover common dynamics found in real-world DFFs, which are
described as follows.

1) Small Step

�φ = γ ∗ ||φ|| ∗ r ∗ φseverity. (13)

2) Large Step

�φ = ||φ|| ∗ (γ ∗ sign(r) + (γmax − γ ) ∗ r) ∗ φseverity.

(14)

3) Random

�φ = N (0, 1) ∗ φseverity. (15)

4) Chaotic

φt+1 = φmin + A ∗ (φt − φmin) ∗ (1 − (φt − φmin)/||φ||).
(16)

5) Recurrent

φt = φmin + ||φ|| ∗
(

sin

(
2π

P
t + ϕ

)
+ 1

) /
2. (17)

6) Recurrent With Noise

φt = φmin + ||φ|| ∗
(

sin

(
2π

P
t + ϕ

)
+ 1

) /
2

+ N (0, 1) ∗ noiseseverity (18)

where φ represents a configurable parameter in DFFs. φt is
the value of φ at time step t, and �φ denotes the change
in φ between two consecutive time steps: φt+1 = φt + �φ.
φmin, ||φ||, and φseverity denote the minimum value of φ, the
range of φ, and the change severity of φ, respectively. φseverity
basically controls the magnitude of the change in φ between
two consecutive time steps. γ and γmax are constant values,
which are set to 0.04 and 0.1, respectively. A logistic function
is used for the chaotic change: A is a positive constant in the
interval (1, 4). P is the period for the recurrent change and
recurrent with noise change, and ϕ is the initial phase. r is
a random number drawn uniformly from the interval (−1, 1).
sign(r) returns 1 when r is positive, −1 when r is negative,
and 0 otherwise. N (0, 1) is a random number drawn from the
Gaussian distribution with mean 0 and variance 1. noiseseverity
is the noise severity applied to the recurrent with noise change.

The height hij
t and width wij

t in (11) and (12) are updated
using up-mentioned six dynamics. An additional technique
using rotation matrix is employed to rotate the centers
(vector ci

t = (ci1
t , ci2

t , . . . , cid
t ) in (11) and (12)). More specif-

ically, according to [26], the following algorithm is used to
change the center.

1) lr (lr is even) number of dimensions are randomly
selected from the d dimensions resulting a vector
(d1, . . . , dlr ).

2) For each pair of dimension di and dimension di+1
(1 ≤ i ≤ lr − 1), construct a rotation matrix Rt(di, di+1)

that rotates the vector of centers in the plane di − di+1
by an angle θt from the dith axis to the di+1th axis.

3) Since rotation matrices are orthogonal, an overall rota-
tion matrix Rt is obtained via: Rt = Rt(d1, d2) ∗ · · · ∗
Rt(dlr−1, dlr ).

4) The new vector of centers is produced by setting
ci

t+1 = ci
t ∗ Rt.

Moreover, the rotation angle θt is subject to the six different
dynamics. Therefore, every time the DFF changes, the rotation
angle θt is updated first, and the new angle is used to construct
the rotation matrix that eventually changes the position of each
center.

Additionally, we introduce a parameter �e for both RMPB-I
and RMPB-II. �e is measured in the number of fitness evalua-
tions and is used to measure the computational budget for the
decision maker to determine a solution right after an envi-
ronmental change in ROOT problems. It should be noted
that �e should be generally smaller than the frequency of
environmental changes measured in the number of fitness eval-
uations. The reason to introduce �e, instead of a parameter
that controls how frequently the DFF changes, is that usu-
ally a solution has to be found before a certain deadline in
many real-world DOPs (�e is called the deadline parameter
in [29, Ch. 3, p. 67]). The deadline is usually before the next
possible environmental change. In other words, solutions usu-
ally have to be implemented before the next environmental
change happens.

C. Relationship Between the Benchmark Parameters
and ROOT Problem Difficulties

We can tune the difficulties of ROOT problems in the
following aspects. The complexity of the baseline fitness func-
tions can be varied by changing the number of peaks, m, along
each dimension and the number of dimensions. The larger m
is, the more rugged the fitness landscape is, and the more dif-
ficult it is for EAs to find a good solution to ROOT problems.
In addition, we can vary ROOT problem difficulties by tuning
the parameter �e as �e controls the number of fitness eval-
uations for EAs to determine a solution at a time step. Also,
different dynamics in the DFF should have an influence on the
performance of methods for ROOT problems.

D. Calculating the Absolute Best Average
Fitness in RMPB-I

In this subsection, we prove two lemmas and one theorem
for the purpose of calculating the absolute best average fitness
in (6) for DFFs generated in RMPB-I.
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Suppose a sequence of fitness functions ( f a
1 , f a

2 , f a
3 , . . . , f a

N)

has been generated in RMPB-I. Without loss of generality, we
would like to calculate the following absolute best average
fitness: max{Fa(x, t, T)|x ∈ S}, which starts from f a

t in the
sequence ( f a

1 , f a
2 , f a

3 , . . . , f a
N) (t < N, t + T − 1 ≤ N, and

T ≥ 2). max{Fa(x, t, T)|x ∈ S} takes the form as

max
{
Fa(x, t, T)|x ∈ S} = max

{
1

T

T−1∑
i=0

f a
t+i(x)|x ∈ S

}
. (19)

Firstly, we define the maximal average fitness (MAF) of a
number of fitness functions (g1, g2, . . . , gk) as

MAF(g1, g2, . . . , gk) = max

{
1

k

k∑
i=1

gi(x)|x ∈ S
}

(20)

where gi, 1 ≤ i ≤ k, represents a fitness function of x. All
the fitness functions, i.e., gi, 1 ≤ i ≤ k, share the same
solution space S. By definition, max{Fa(x, t, T)|x ∈ S} =
MAF( f a

t , f a
t+1, . . . , f a

t+T−1). We use peakij
t to denote the ith

peak function for the jth dimension at time step t in (11):
peakij

t = hij
t −wij

t ∗|xj −cij
t |, a ≤ xj ≤ b. We have the following

lemma.
Lemma 1: The MAF of a set of peak functions

{peakikj
t+k|0 ≤ k ≤ T − 1}, i.e., MAF(peaki0j

t , peaki1j
t+1, . . . ,

peakiT−1j
t+T−1), can be achieved when xj takes the value of one

of the centers cikj
t+k, 0 ≤ k ≤ T − 1.

Lemma 1 is proved in the Appendix. From Lemma 1, we
can see that the MAF for a set of peak functions {peakikj

t+k|0 ≤
k ≤ T −1} equals max{ 1

T

∑T−1
k=0 (hikj

t+k −wikj
t+k ∗|xj −cikj

t+k|) | xj ∈
{cikj

t+k|0 ≤ k ≤ T−1}}, which can be calculated by enumerating
all the centers.

We use dim j
t to denote the jth dimensional function at

time step t in (11): dimj
t = maxi=m

i=1 {hij
t − wij

t ∗ |xj − cij
t |},

a ≤ xj ≤ b. We have the following lemma, which is proved
in the Appendix.

Lemma 2: The MAF of a set of dimensional functions
{dimj

t+k|0 ≤ k ≤ T − 1}, i.e., MAF(dimj
t, dimj

t+1, . . . ,

dimj
t+T−1), is equal to max{MAF(peaki0j

t , peaki1j
t+1, . . . ,

peakiT−1j
t+T−1) | 1 ≤ ik ≤ m, 0 ≤ k ≤ T − 1}.

Theorem 1: The MAF of a set of fitness func-
tions { f a

t+k|0 ≤ k ≤ T − 1} is equal to

1/d
∑d

j=1 max{MAF(peaki0j
t , peaki1j

t+1, . . . , peakiT−1j
t+T−1) | 1 ≤

ik ≤ m, 0 ≤ k ≤ T − 1}.
Theorem 1 is proved based on Lemma 2 in the Appendix.

Based on Lemma 1 and Theorem 1, we can exactly calculate
MAF( f a

t , f a
t+1, . . . , f a

t+T−1), which is the absolute best average
fitness, i.e., max{Fa(x, t, T)|x ∈ S}, given a sequence of fitness
functions ( f a

1 , f a
2 , . . . , f a

N) generated in RMPB-I.

E. Calculating the Absolute Best Survival
Time in RMPB-II

In this subsection, we prove two lemmas and one theorem
for the purpose of calculating the absolute best survival time
in (7) for DFFs generated in RMPB-II.

Suppose a sequence of fitness functions ( f s
1 , f s

2 , f s
3 , . . . , f s

N)

has been generated in RMPB-II. Without loss of generality,

we would like to calculate the following absolute best survival
time: max{Fs(x, t, V)|x ∈ S}, which starts from f s

t (1 ≤ t ≤ N)
in the sequence ( f s

1 , f s
2 , f s

3 , . . . , f s
N) with the fitness threshold V .

Firstly, we define the maximal intersection fitness (MIF) of
a number of fitness functions (g1, g2, . . . , gk) as

MIF(g1, g2, . . . , gk) = max

{
i=k
min
i=1

gi(x)|x ∈ S
}

(21)

where gi, 1 ≤ i ≤ k, represents a fitness function of x, and all
the fitness functions, i.e., gi, 1 ≤ i ≤ k, share the same solution
space S. We use peakij

t to denote the ith peak function for the
jth dimension at time step t in (12): peakij

t = hij
t −wij

t ∗|xj−cij
t |,

a ≤ xj ≤ b. It is easy to verify that the MIF of peaki0j
t and

peaki1j
t+1, i.e., MIF(peaki0j

t , peaki1j
t+1), is equal to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hi0j
t , if hi1j

t+1 − wi1j
t+1 ∗ |ci0j

t − ci1j
t+1| ≥ hi0j

t

hi1j
t+1, elseif hi0j

t − wi0j
t ∗ |ci1j

t+1 − ci0j
t | ≥ hi1j

t+1

w
i0j
t ∗h

i1j
t+1+w

i1 j
t+1∗h

i0j
t −w

i0j
t ∗w

i1 j
t+1∗|ci0j

t −c
i1j
t+1|

w
i0j
t +w

i1 j
t+1

, else.

(22)

For a number of peak functions, we have the following
lemma, which is proved in the Appendix.

Lemma 3: The MIF of a set of peak functions {peakikj
t+k|0 ≤

k ≤ L−1} (L ≥ 2), i.e., MIF(peaki0j
t , peaki1j

t+1, . . . , peakiL−1j
t+L−1),

is equal to min{MIF(peak
ipj
t+p, peak

iqj
t+q)|0 ≤ p < q ≤ L − 1}.

We use dimj
t to denote the jth dimensional function at

time step t in (12): dimj
t = maxi=m

i=1 {hij
t − wij

t ∗ |xj − cij
t |},

a ≤ xj ≤ b. We have the following lemma, which is proved
in the Appendix.

Lemma 4: The MIF of a set of dimensional
functions {dimj

t+k|0 ≤ k ≤ L − 1} (L ≥ 2),

i.e., MIF(dimj
t, dimj

t+1, . . . , dimj
t+L−1), is equal to

max{MIF(peaki0j
t , peaki1j

t+1, . . . , peakiL−1j
t+L−1) | 1 ≤ ik ≤

m, 0 ≤ k ≤ L − 1}.
Theorem 2: The MIF of a set of fitness functions { f s

t+k|0 ≤
k ≤ L − 1} (L ≥ 2), i.e., MIF( f s

t , f s
t+1, . . . , f s

t+L−1), is equal to

mind
j=1{max{MIF(peaki0j

t , peaki1j
t+1, . . . , peakiL−1j

t+L−1) | 1 ≤ ik ≤
m, 0 ≤ k ≤ L − 1}}.

Theorem 2 is proved based on Lemma 4 in the Appendix.
Based on (23), Lemma 3, and Theorem 2, we can exactly
calculate MIF( f s

t , f s
t+1, . . . , f s

t+L−1) for any L number of
consecutive fitness functions in a sequence of fitness func-
tions ( f s

1 , f s
2 , . . . , f s

N) generated in RMPB-II. The absolute
best survival time, max{Fs(x, t, V)|x ∈ S}, starting from f s

t ,
is equal to the largest number that L can take satisfying
MIF( f s

t , f s
t+1, . . . , f s

t+L−1) ≥ V . Therefore, the absolute best
survival time, max{Fs(x, t, V)|x ∈ S}, starting from f s

t , is
equal to{

0, if max
{

f s
t (x)|x ∈ S}

< V
max

{
L|MIF

(
f s
t , f s

t+1, . . . , f s
t+L−1

) ≥ V
}
, else.

(23)

V. BEHAVIOR OF EXISTING METHODS FOR ROOT

In this section, experimental studies are conducted regard-
ing the performance of existing methods on RMPB-I and
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TABLE I
PARAMETER SETTINGS OF THE TEST PROBLEMS

RMPB-II. The purpose is to investigate the strengths and
weaknesses of different methods on ROOT problems with
different dynamics.

A. Experimental Settings

1) Test Problems: We generate six benchmark instances in
RMPB-I by applying the six types of dynamics defined in (13)
and (18) to the first baseline fitness function in (11). In the
meantime, we apply those six types of dynamics to the sec-
ond baseline fitness function in (12) to produce six benchmark
instances in RMPB-II. We refer each of them as TPij, i = 1, 2,
j = 1, 2, . . . , 6, where TPij means the benchmark instance that
is generated by applying the jth dynamic to the ith baseline
fitness function. TP1j, j = 1, 2, . . . , 6, are used for maximizing
average fitness in ROOT, and TP2j, j = 1, 2, . . . , 6, are used
for maximizing survival time in ROOT. For each TPij in this
paper, we generate 200 consecutive fitness functions as fol-
lows. For the first fitness function, we randomly initialize the
heights and the widths in their corresponding ranges, and the
centers are randomly initialized across the solution space. To
generate the next fitness function, we apply the jth dynamic to
the current heights, widths, and rotation angle. The centers of
the next fitness function are obtained by rotating the centers of
the current fitness function using the updated rotation angle.
Whenever the heights, widths, or centers get out of their corre-
sponding ranges, we reset them to their up limits (if larger than
up limits) or low limits (if lower than low limits). Note the fol-
lowing exceptions. For the chaotic change, centers are updated
dimension by dimension using (16) rather than the rotation
technique. For the recurrent change and the recurrent with
noise change, θ is fixed to 2π/P where P is the period, and
the centers are rotated following a fixed direction. A summary
of all test problem parameters is presented in Table I.

2) Methods Investigated for ROOT Problems: We select
four representative methods from the literature to test their
ROOT abilities. The first approach is a simple particle swarm
optimizer (PSO) with a restart strategy, which we will denote
as “RPSO” hereafter. The restart strategy means that the best
solution found in terms of the fitness for the last fitness

function at the last time step is copied into the initial pop-
ulation for the current time step whenever the environment
changes and that all other particles are initialized randomly.
The second approach can be seen as an ideal TMO algo-
rithm, in which each fitness function’s optimum is chosen
as the ROOT solution at each time step. The ideal TMO
approach, denoted as “optimum” hereafter, can be viewed as
the best any TMO approach can do in terms of TMO. The
third and fourth approaches are two latest methods developed
specially for ROOT problems. The third approach is Jin et al.’s
framework [36], denoted as “Jin’s” hereafter. A global radial
basis function network (RBFN) is employed as the surrogate
model to approximate a solution’s previous fitness in Jin’s. For
predicting a solution’s future fitness in Jin’s, the autoregres-
sion (AR) [37] model with order 4 is employed. One estimated
previous fitness and four predicted future fitnesses are used in
the metric6 in Jin’s, the setting of which is reported to have
the best performance in [36]. For more details of Jin’s, read-
ers are referred to [36]. The fourth approach is the method
developed by Fu et al. [20], which we will denote as “Fu’s”
hereafter. The same RBFN and AR models are used in Fu’s
as in Jin’s except that the metrics used for respectively maxi-
mizing average fitness and survival time in Fu’s are different
from the metric in Jin’s. Furthermore, the control parameter
in the metrics in Fu’s is set to 0. For more details of Fu’s,
readers are referred to [20].

For methods RPSO, Jin’s, and Fu’s, they all employ the
same constriction version of PSO [38] as the optimizer. The
swarm population size is 50. The constants c1 and c2 that are
used to bias a particle’s attraction to the local best and the
global best are both set to 2.05, and therefore the constriction
factor χ takes the value 0.729844. The velocity of particles is
constricted within the range [− vmax, vmax]. The value of vmax
is set to the range of the search space, which is 50 in our case.

We believe it is necessary to test TMO methods for the pur-
pose of ROOT. At the current time step, the objective of TMO
is to find a solution maximizing the current fitness function.
In contrast, the objective of ROOT is to find a solution that
maximizes average fitness or survival time. It is easy to note
that a solution’s current fitness does not necessarily contradict
with the solution’s average fitness or survival time. In other
words, whether a TMO method would be successful in finding
robust solutions to ROOT problems largely depends on how
the DFF changes over time, and the question is under what cir-
cumstances will TMO methods be effective or not in solving
ROOT problems. The reason to employ RPSO and “optimum”
methods is that they serve to represent a vast majority of
approaches designed for the purpose of TMO. The ideal TMO
approach, i.e., optimum approach, is selected in the hope that
the effort to enumerate all state-of-the-art TMO approaches
can be saved. Actually, optimum approach is the best any
algorithm can do in terms of TMO. Besides, the reason to
include Jin’s and Fu’s methods is that they are, to the best of
our knowledge, the only two methods that have been designed
specially for ROOT problems.

6The metric is a function that returns a real number for a candidate solution
to quantify the quality of the solution.
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TABLE II
MEAN PERFORMANCE IN (24) OVER 30 RUNS UNDER THE ROBUSTNESS AVERAGE FITNESS WITH DIFFERENT SETTINGS OF TIME WINDOW T

TABLE III
MEAN PERFORMANCE IN (24) OVER 30 RUNS UNDER THE ROBUSTNESS SURVIVAL TIME WITH DIFFERENT SETTINGS OF FITNESS THRESHOLD V

3) Performance Measurement: In ROOT, our objective is
to find solutions whose performances are robust against future
environmental changes. At a particular time step, we are
searching for solutions that are not only good for the current
time step but also for future ones. Therefore, we can evalu-
ate an algorithm’s ROOT ability by evaluating the robustness
(in this paper: average fitness and survival time) of solutions
the algorithm found at each time step given a certain com-
putational budget �e at each time step. For the performance
measurement, a solution’s robustness is calculated using the
true future fitness functions. Nonetheless, it should be noted
that, in practice, we will not implement a new solution every
time the environment changes due to the definition of average
fitness and survival time. The performance measurement of
ROOT used in this paper on a sequence of fitness functions
( f1, f2, . . . fN) is

PerformanceROOT = 1

N

N∑
i=1

F(xi) (24)

where F(xi) is the robustness (either average fitness or survival
time) of the solution xi determined by an algorithm at time
step i.

It should be noted that performance measurement for ROOT
proposed here is dependent on parameter settings, being either
T if average fitness is considered or V if survival time is
investigated. Therefore, in order to compare an algorithm’s
ROOT ability comprehensively, results should be reported
under different settings of T and V .

B. Experimental Results

Thirty independent runs are conducted, and all the results
presented below are for time steps 20–100, i.e., from the 20th
fitness function to the 100th fitness function in the sequence of
TPij, i = 1, 2, j = 1, 2, . . . , 6. The reason is that we require
20 length of time series data available for the prediction of
a solution’s future fitness in Jin’s and Fu’s. This means the
performance measure in (24) is calculated by averaging the

corresponding robustness of the solution determined by the
investigated method at each time step (from time step 20–100).
Since some solution’s survival time defined in (4) can be infin-
ity in certain benchmarks, we reset a solution’s survival time
to be 10 if its survival time is larger than 10.

Results with a “+” or “−” attached in the right hand side
in Tables II and III are significantly better or worse than those
of Fu’s at a 0.05 significance level of Wilcoxon rank sum test.

1) Results for Maximizing Average Fitness: The results of
maximizing average fitness in ROOT are presented in Table II.
We can see that when the time window T takes a small
value, i.e., T = 2, it is generally better to use TMO meth-
ods than methods specially designed for ROOT problems
(i.e., Jin’s and Fu’s). The reason is straightforward as within
a small time window T , previously good solutions tend to
remain good during that time window. However, as the time
window T gets larger (T = 6, 10), the advantage of ROOT
methods (i.e., Jin’s and Fu’s, especially Fu’s) over TMO meth-
ods gradually shows up. Fu’s is significantly better than RPSO
and optimum in almost all cases when T = 6, 10. However,
for some specific dynamics in the DFFs, such as the random
change in TP13 and the recurrent with noise change in TP16,
RPSO and optimum outperform Jin’s and Fu’s. The reason is
that there is large randomness in the change of the DFFs in
TP13 or TP16, and hence it is difficult for prediction meth-
ods in Jin’s and Fu’s to predict a solution’s future fitness
well. As a result, the metric used in Jin’s and Fu’s may be a
poor estimation of a solution’s true robustness, which therefore
degrades the ROOT performance of Jin’s and Fu’s. Finally,
for the comparison between Jin’s and Fu’s, Fu’s outperforms
Jin’s in most cases. The success of Fu’s over Jin’s is primarily
due to the metric in Fu’s, which guides EAs better to con-
verge to good solutions. For more details of Fu’s, readers are
referred to [20].

2) Results for Maximizing Survival Time: The results for
maximizing survival time in ROOT are presented in Table III.
We can see that Fu’s outperforms RPSO and optimum in
most cases except in some cases when the fitness threshold
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(a) (b) (c)

(f)(e)(d)

Fig. 5. Mean performance in (24) with one standard deviation errorbar over 30 runs of investigated methods under the robustness average fitness
with different settings of time window T , in comparison with the corresponding absolute best performance. (a) TP11. (b) TP12. (c) TP13. (d) TP14.
(e) TP15. (f) TP16.

V takes a large value (V = 50). The reason why TMO meth-
ods (i.e., RPSO and optimum) outperform Fu’s in some cases
when V = 50 is that the main difficulty in maximizing survival
time is maximizing a solution’s current fitness above V if V is
set relatively high. In other words, maximizing survival time
in ROOT is approximately equivalent to TMO when the fitness
threshold V is set relatively high. The reason why Fu’s outper-
forms RPSO and optimum in all other cases is that a solution’s
future fitness is considered in Fu’s while TMO methods only
maximize a solution’s current fitness, without any considera-
tion of a solution’s future fitness. For the comparison between
Jin’s and Fu’s, Fu’s outperforms Jin’s in most cases, and the
primary reason is again due to the metric used in Fu’s. For
more details of Fu’s, readers are referred to [20].

3) Gaps Between the Absolute Best and the Results
Obtained by Investigated Methods: In Tables II and III, we
have compared the ROOT performance of investigated meth-
ods on TPij, i = 1, 2, 1 ≤ j ≤ 6. We would also like to
know the gaps between the absolute best performance and the
performance of each investigated method for solving ROOT
problems, based on which we can examine how well existing
methods solve ROOT problems.

We plot the absolute best performance in terms of aver-
age fitness and the corresponding performance of investigated
methods on TP1j under different settings of time window T ,
T = 2, 3, 4, . . . , 10, in Fig. 5. It should be noted that Fu’s
has only been tested on T = 2, 6, 10. Taking Fig. 5(a) for

example, we calculate the absolute best performance in the
following way (taking T = 2 for example). For TP11, we
have already generated a sequence of fitness functions of
length 200: ( f a

1 , f a
2 , . . . , f a

200). We then calculate the absolute
best average fitness in (6) starting from each fitness func-
tion in the sequence ( f a

20, f a
21, . . . , f a

100) based on Theorem 1.
Finally, we average the absolute best average fitness starting
from each fitness function in the sequence ( f a

20, f a
21, . . . , f a

100)

to obtain the absolute best performance for TP11 with T = 2.
Other absolute best performances for TP1j (1 ≤ j ≤ 6), with
T = 2, 3, . . . , 10, are produced in the same way. From Fig. 5,
we can see that there is generally a large gap between the
absolute best performance and the performance of each investi-
gated method. Also, the gap gets larger as T increases. In other
words, the difficulty in maximizing average fitness in ROOT
increases with larger time window T in our experimental
studies.

We plot the absolute best performance in terms of survival
time and the corresponding performance of investigated meth-
ods on TP2j under different settings of fitness threshold V ,
V = 40, 41, 42, . . . , 50, in Fig. 6. It should be noted that
Fu’s has only been tested on V = 40, 45, 50. Taking Fig. 6(a)
for example, we calculate the absolute best performance in
the following way (taking V = 40 for example). For TP21,
we have already generated a sequence of fitness functions of
length 200: ( f s

1 , f s
2 , . . . , f s

200). We then calculate the absolute
best survival time in (7) starting from each fitness function in
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(a) (b) (c)

(f)(e)(d)

Fig. 6. Mean performance in (24) with one standard deviation errorbar over 30 runs of investigated methods under the robustness survival time with
different settings of fitness threshold V , in comparison with the corresponding absolute best performance. (a) TP21. (b) TP22. (c) TP23. (d) TP24.
(e) TP25. (f) TP26.

the sequence ( f s
20, f s

21, . . . , f s
100) based on Theorem 2. Finally,

we average the absolute best survival time starting from each
fitness function in the sequence ( f s

20, f s
21, . . . , f s

100) to obtain
the absolute best performance for TP21 with V = 40. Other
absolute best performances for TP2j (1 ≤ j ≤ 6), with
V = 40, 41, 42, . . . , 50, are produced in the same way. From
Fig. 6, we can see that investigated methods do not perform
well on ROOT problems when maximizing survival time as
there is generally a large gap between the absolute best per-
formance and the performance of each investigated method.
Also, the gap gets larger as V decreases. In other words, the
difficulty in maximizing survival time in ROOT increases as
V gets smaller in our experimental studies.

VI. CONCLUSION

For the past decades, most research in dynamic optimiza-
tion using EAs falls into the category of TMO. Recently, we
proposed a new formulation, i.e., ROOT, which captures prob-
lem characteristics that cannot be captured by TMO. In this
paper, we contribute to ROOT by developing two types of
benchmarks that aim at testing an algorithm’s ROOT abili-
ties in terms of maximizing average fitness and survival time,
respectively.

Our proposed benchmarks (i.e., RMPB-I and RMPB-II) are
easily tunable and computationally efficient. Most importantly,
both benchmarks allow the exact calculation of the abso-
lute best average fitness and the absolute best survival time,

respectively, which are extremely difficult to compute for most
existing DOP benchmarks.

In this paper, we focus on discrete-time ROOT problems
as most real-world DOPs, especially those that can be for-
mulated as ROOT problems, are presented in a discrete-time
manner. The assumptions behind ROOT and the task of ROOT
methods are made explicit, which help to make ROOT as gen-
eral and clear as possible and facilitate any further studies
of ROOT. The task of a ROOT algorithm is to determine
a solution that aims to maximize a corresponding robust-
ness definition (i.e., average fitness or survival time in this
paper) within a computational budget �e after an environ-
mental change occurs. Two major difficulties in solving ROOT
problems are identified in this paper, which, to some extent,
point out what a successful ROOT algorithm is required to
be good at. Finally, several methods from the literature have
been tested on RMPB-I and RMPB-II, which demonstrates
potential strengths and weaknesses of different methods for
ROOT problems with different dynamics. More importantly,
the difficulties of ROOT problems are demonstrated by show-
ing the gaps between the absolute best performances and those
of investigated methods.

Research of ROOT is still in its infancy, and more atten-
tion should be given to ROOT for its practical advantage over
TMO in the future. Firstly, in this paper we have discussed
the single objective ROOT problem, i.e., either maximizing
average fitness or survival time. It would be interesting to
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define and explore multiple objectives for ROOT as many
real-world DOPs are multiobjective in nature. Secondly, more
successful ROOT methods are still needed, which can explic-
itly deal with the two major difficulties in ROOT, i.e., the
difficulty to predict a solution’s future fitness and the diffi-
culty to evolve solutions based on inaccurate information. Only
after being successfully tested on synthetic benchmarks, will
ROOT methods be ready to be applied to real-world ROOT
problems, and our RMPB benchmarks developed in this paper
can server as proper synthetic benchmarks. Finally, investigat-
ing real-world DOPs from the perspective of ROOT would be
very inspiring.

APPENDIX

Proof of Lemma 1

Remember that xj and all the centers cikj
t+k, 0 ≤ k ≤

T − 1, belong to the interval [a, b]. By definition, the MAF
of a set of peak functions {peakikj

t+k|0 ≤ k ≤ T − 1} is

max{1/T
∑T−1

k=0 (hikj
t+k − wikj

t+k ∗ |xj − cikj
t+k|)|xj ∈ [a, b]}. Without

loss of generality, suppose all the centers cikj
t+k, 0 ≤ k ≤ T −1,

are in an ascending order in the list (ci0j
t , ci1j

t+1, . . . , ciT−1j
t+T−1). It

is easy to verify that 1/T
∑T−1

k=0 (hikj
t+k − wikj

t+k ∗ |xj − cikj
t+k|) is

monotonically increasing for the interval [a, ci0j
t ] and mono-

tonically decreasing for the interval [ciT−1j
t+T−1, b]. For any of the

intervals [cik−1j
t+k−1, cikj

t+k], 1 ≤ k ≤ T − 1, either
∑k−1

l=0 wilj
t+l <∑T−1

l=k wilj
t+l is true or

∑k−1
l=0 wilj

t+l ≥ ∑T−1
l=k wilj

t+l is true. This

means 1/T
∑T−1

k=0 (hikj
t+k − wikj

t+k ∗ |xj − cikj
t+k|) is monotonically

either decreasing or increasing in the interval [cik−1j
t+k−1, cikj

t+k].
Therefore, we have that the MAF of a set of peak functions
{peakikj

t+k|0 ≤ k ≤ T − 1} can be achieved when xj takes the

value of one of the centers cikj
t+k, 0 ≤ k ≤ T − 1.

Proof of Lemma 2

By definition, the MAF of a set of dimensional functions
{dimj

t+k|0 ≤ k ≤ T − 1} is max{ 1
T

∑k=T−1
k=0 maxi=m

i=1 {hij
t+k −

wij
t+k ∗ |xj − cij

t+k|} | xj ∈ [a, b]}. Without loss of gen-

erality, suppose MAF(dimj
t, dimj

t+1, . . . , dimj
t+T−1) is

achieved at point x∗
j . As a result, there exists a set of i∗ks,

0 ≤ k ≤ T − 1, such that MAF(dimj
t, dimj

t+1, . . . , dimj
t+T−1)

equals 1
T

∑k=T−1
k=0 (h

i∗k j
t+k − w

i∗k j
t+k ∗ |x∗

j − c
i∗k j
t+k|).

1
T

∑k=T−1
k=0 (h

i∗k j
t+k − w

i∗k j
t+k ∗ |x∗

j − c
i∗k j
t+k|) is no bigger than

MAF(peak
i∗0j
t , peak

i∗1j
t+1, . . . , peak

i∗T−1j
t+T−1), which is no bigger

tn max{MAF(peaki0j
t , peaki1j

t+1, . . . , peakiT−1j
t+T−1) | 1 ≤ ik ≤ m,

0 ≤ k ≤ T − 1}.
On the other hand, without loss of generality, suppose

max{MAF(peaki0j
t , peaki1j

t+1, . . . , peakiT−1j
t+T−1) | 1 ≤ ik ≤ m,

0 ≤ k ≤ T − 1} is obtained on a set of i′ks,

0 ≤ k ≤ T − 1, such that max{MAF(peaki0j
t ,

peaki1j
t+1, . . . , peakiT−1j

t+T−1) | 1 ≤ ik ≤ m, 0 ≤ k ≤ T − 1}
is equal to MAF(peak

i′0j
t , peak

i′1j
t+1, . . . , peak

i′T−1j
t+T−1). By

definition, MAF(peak
i′0j
t , peak

i′1j
t+1, . . . , peak

i′T−1j
t+T−1) is

max{ 1
T

∑k=T−1
k=0 (h

i′kj
t+k − w

i′kj
t+k ∗ |xj − c

i′kj
t+k|) | xj ∈ [a, b]},

which is no bigger than max{ 1
T

∑k=T−1
k=0 maxi=m

i=1 {hij
t+k −

wij
t+k ∗ |xj − cij

t+k|} | xj ∈ [a, b]}, i.e., MAF(dimj
t,

dimj
t+1, . . . , dimj

t+T−1).
Therefore, we have Lemma 2 proved.

Proof of Theorem 1

By definition and arithmetic operation, we have

MAF
(

f a
t , f a

t+1, . . . , f a
t+T−1

)

= 1

d

d∑
j=1

max

{
1

T

T−1∑
k=0

i=m
max
i=1

{
hij

t+k

− wij
t+k ∗

∣∣∣xj − cij
t+k

∣∣∣
}

| xj ∈ [a, b]

}

= 1

d

d∑
j=1

MAF
(

dim j
t , dim j

t+1, . . . , dim j
t+T−1

)
.

Based on Lemma 2, we have
MAF(dimj

t, dimj
t+1, . . . , dimj

t+T−1) equal to max{MAF

(peaki0j
t , peaki1j

t+1, . . . , peakiT−1j
t+T−1) | 1 ≤ ik ≤ m, 0 ≤ k ≤

T − 1}. Therefore, we have Theorem 1 proved.

Proof of Lemma 3

Remember that xj and all the centers cikj
t+k, 0 ≤

k ≤ L − 1, belong to the interval [a, b]. Without
loss of generality, suppose MIF(peak

ip∗ j
t+p∗ , peak

iq∗ j
t+q∗) equals

min{MIF(peak
ipj
t+p, peak

iqj
t+q)|0 ≤ p < q ≤ L − 1}, and

that MIF(peak
ip∗ j
t+p∗ , peak

iq∗ j
t+q∗) is achieved at point xp∗q∗ .

Furthermore, suppose that the center of peak
ip∗ j
t+p∗ is no big-

ger than the center of peak
iq∗ j
t+q∗ : c

ip∗ j
t+p∗ ≤ c

iq∗ j
t+q∗ . It is easy to

verify that c
ip∗ j
t+p∗ ≤ xp∗q∗ ≤ c

iq∗ j
t+q∗ .

For any peak function peakilj
t+l in the set

{peakikj
t+k|0 ≤ k ≤ L − 1} whose center is no big-

ger than xp∗q∗ , suppose that MIF(peakilj
t+l, peak

ip∗ j
t+p∗) is

achieved at point xlp∗ , and that MIF(peakilj
t+l, peak

iq∗ j
t+q∗) is

achieved at point xlq∗ . On the one hand, if xp∗q∗ = c
ip∗ j
t+p∗ ,

we have peak
ip∗ j
t+p∗(c

ip∗ j
t+p∗) = MIF(peak

ip∗ j
t+p∗ , peak

iq∗ j
t+q∗) ≤

MIF(peakilj
t+l, peak

ip∗ j
t+p∗) ≤ peak

ip∗ j
t+p∗(xlp∗), and hence xp∗q∗ =

xlp∗ = c
ip∗ j
t+p∗ . Therefore, peakilj

t+l(xp∗q∗) = peakilj
t+l(xlp∗) ≥

MIF(peakilj
t+l, peak

ip∗ j
t+p∗) ≥ MIF(peak

ip∗ j
t+p∗ , peak

iq∗ j
t+q∗).

On the other hand, if c
ip∗ j
t+p∗ < xp∗q∗ ≤ c

iq∗ j
t+q∗ , we

have peak
iq∗ j
t+q∗(xp∗q∗) = MIF(peak

ip∗ j
t+p∗ , peak

iq∗ j
t+q∗) ≤

MIF(peakilj
t+l, peak

iq∗ j
t+q∗) = peak

iq∗ j
t+q∗(xlq∗). Therefore, xp∗q∗ ≤

xlq∗ ≤ c
iq∗ j
t+q∗ , and hence peakilj

t+l(xp∗q∗) ≥ peakilj
t+l(xlq∗) ≥

MIF(peakilj
t+l, peak

iq∗ j
t+q∗) ≥ MIF(peak

ip∗ j
t+p∗ , peak

iq∗ j
t+q∗). To

sum it all, we have proven, so far in this paragraph, that
peakilj

t+l(xp∗q∗) ≥ MIF(peak
ip∗ j
t+p∗ , peak

iq∗ j
t+q∗) for any peak

function peakilj
t+l in the set {peakikj

t+k|0 ≤ k ≤ L − 1} whose
center is no bigger than xp∗q∗ .
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Following the same proof procedure as above, it is easy
to see that the following statement is true: for any peak
function peakirj

t+r whose center, cirj
t+r, is larger than xp∗q∗ ,

we have peakirj
t+r(xp∗q∗) ≥ MIF(peak

ip∗ j
t+p∗ , peak

iq∗ j
t+q∗). As

a result, we have MIF(peaki0j
t , peaki1j

t+1, . . . , peakiL−1j
t+L−1) ≥

MIF(peak
ip∗ j
t+p∗ , peak

iq∗ j
t+q∗) proved.

On the other hand, peak
ip∗ j
t+p∗ and peak

iq∗ j
t+q∗ are a subset

of all the peak functions {peakikj
t+k|0 ≤ k ≤ L − 1}, and there-

fore MIF(peaki0j
t , peaki1j

t+1, . . . , peakiL−1j
t+L−1) ≤ MIF(peak

ip∗ j
t+p∗ ,

peak
iq∗ j
t+q∗).

Therefore, we have Lemma 3 proved.

Proof of Lemma 4

By definition, MIF(dimj
t, dimj

t+1, . . . , dimj
t+L−1)

is max{mink=L−1
k=0 maxi=m

i=1 {hij
t+k − wij

t+k ∗ |xj −
cij

t+k|} | xj ∈ [a, b]}. Without loss of generality, sup-

pose MIF(dimj
t, dimj

t+1, . . . , dimj
t+L−1) is achieved

at point x∗
j . As a result, there exists a set of i∗ks,

0 ≤ k ≤ L − 1, such that MIF(dimj
t, dimj

t+1, . . . , dimj
t+L−1)

equals mink=L−1
k=0 (h

i∗k j
t+k − w

i∗k j
t+k ∗ |x∗

j − c
i∗k j
t+k|).

mink=L−1
k=0 (h

i∗k j
t+k − w

i∗k j
t+k ∗ |x∗

j − c
i∗k j
t+k|) is no bigger than

MIF(peak
i∗0j
t , peak

i∗1j
t+1, . . . , peak

i∗L−1j
t+L−1), which is no bigger

than max{MIF(peaki0j
t , peaki1j

t+1, . . . , peakiL−1j
t+L−1) | 1 ≤ ik ≤ m,

0 ≤ k ≤ L − 1}.
On the other hand, without loss of generality, suppose

max{MIF(peaki0j
t , peaki1j

t+1, . . . , peakiL−1j
t+L−1) | 1 ≤ ik ≤ m, 0 ≤

k ≤ L−1} is obtained on a set of i′ks, 0 ≤ k ≤ L−1, such that
max{MIF(peaki0j

t , peaki1j
t+1, . . . , peakiL−1j

t+L−1) | 1 ≤ ik ≤ m, 0 ≤
k ≤ L − 1} equals MIF(peak

i′0j
t , peak

i′1j
t+1, . . . , peak

i′L−1j
t+L−1).

By definition, MIF(peak
i′0j
t , peak

i′1j
t+1, . . . , peak

i′L−1j
t+L−1) is

max{mink=L−1
k=0 (h

i′kj
t+k − w

i′kj
t+k ∗ |xj − c

i′kj
t+k|) | xj ∈ [a, b]}, which

is no bigger than max{mink=L−1
k=0 maxi=m

i=1 {hij
t+k − wij

t+k ∗ |xj −
cij

t+k|} | xj ∈ [a, b]}, i.e., MIF(dimj
t, dimj

t+1, . . . , dimj
t+L−1).

Therefore, we have Lemma 4 proved.

Proof of Theorem 2

For any dimension j, 1 ≤ j ≤ d, MIF( f s
t , f s

t+1, . . . , f s
t+L−1) ≤

MIF(dimj
t, dimj

t+1, . . . , dimj
t+L−1), since f s

t+k ≤ dimj
t+k, 0 ≤

k ≤ T − 1. Supposing MIF(dimj∗
t , dimj∗

t+1, . . . , dimj∗
t+L−1) =

mind
j=1 MIF(dimj

t, dimj
t+1, . . . , dimj

t+L−1), we have MIF( f s
t ,

f s
t+1, . . . , f s

t+L−1) ≤ MIF(dimj∗
t , dimj∗

t+1, . . . , dimj∗
t+L−1).

On the other hand, suppose for any dimension j,
1 ≤ j ≤ d, MIF(dimj

t, dimj
t+1, . . . , dimj

t+L−1) is

achieved at point x∗
j : MIF(dimj

t, dimj
t+1, . . . , dimj

t+L−1) =
min{dimj

t+i(x
∗
j )|0 ≤ i ≤ L − 1}. By denoting

x∗ = (x∗
1, x∗

2, . . . , x∗
d), we have min{ f s

t+i(x
∗)|0 ≤ i ≤ L − 1} =

MIF(dimj∗
t , dimj∗

t+1, . . . , dimj∗
t+L−1). This means

MIF( f s
t , f s

t+1, . . . , f s
t+L−1) ≥ min{ f s

t+i(x
∗)|0 ≤ i ≤ L − 1} =

MIF(dimj∗
t , dimj∗

t+1, . . . , dimj∗
t+L−1).

Therefore, we have MIF( f s
t , f s

t+1, . . . , f s
t+L−1) equal to

MIF(dimj∗
t , dimj∗

t+1, . . . , dimj∗
t+L−1).

Based on Lemma 4, we have MIF(dimj
t,

dimj
t+1, . . . , dimj

t+L−1) equal to max{MIF(peaki0j
t ,

peaki1j
t+1, . . . , peakiL−1j

t+L−1) | 1 ≤ ik ≤ m, 0 ≤ k ≤ L − 1}.
Therefore, we have Theorem 2 proved.
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