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The present study is focused on the optical properties of the Ag+
10 cluster in the photon energy range

¯ω = 1.9–4.4 eV. Absorption spectra are recorded by longitudinal molecular beam depletion spec-
troscopy and compared to optical response calculations using time-dependent density functional the-
ory. Several cluster isomers obtained by the new pool-based parallel implementation of the Birm-
ingham Cluster Genetic Algorithm, coupled with density functional theory, are used in excited state
calculations. The experimental observations, together with additional simulations of ion mobilities
for the several geometries found within this work using different models, clearly identify the ground
state isomer of Ag+

10 to be composed of two orthogonal interpenetrating pentagonal bipyramids, hav-
ing overall D2d symmetry. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901109]

The transition metal silver has the particular property of
a filled d-shell causing its chemistry to be mainly dominated
by the s-valence electron. As the most “alkali-like” group-11
element, it has been well studied in a number of theoretical
investigations,1–3 especially due to the strong surface plasmon
absorption in the visible regime observed in silver clusters and
nanoparticles.4–9, 52 In order to understand the size-dependent
physical and chemical properties of such nano-sized silver
particles, small clusters consisting of only a few atoms are
ideal model systems.10–13 The relatively large s-d separation
means that the optical response is mainly associated with s-
electrons while d-electrons are only partially involved in the
excitations.14 The Nilsson-Clemenger model,15 taking only
the 5s-electrons into account, leads to absorption spectra in
good qualitative agreement with experiments.16 Further, it has
been shown that the jellium model is valid at high tempera-
tures, whereas a molecular picture is more appropriate at low
temperatures.17 However, especially at small sizes, a quan-
tum chemical treatment becomes important since the elec-
tronic structure of the sub-nanometer particles becomes more
discrete. In order to probe the optical response of small sil-
ver clusters, photodissociation spectroscopy18–24 and rare-gas
matrix spectroscopy14, 16, 25 have been reported previously.
Very recently, Ito et al. presented optical spectra of Ag+

n

(n = 8–14) clusters in the range ¯ω = 3.7–4.4 eV.26 However,
the absorption spectrum of Ag+

10, to the best of our knowledge,
has not been reported in the literature yet.

Previously, Weis et al. performed ion mobility measure-
ments on Ag+

n (n<12) clusters and compared their results to
theoretical predictions from density functional theory (DFT),
employing the BP-86 functional and Møller-Plesset (MP2)
perturbation theory both with RI-J quadrature using a svp
basis set augmented by additional polarization and diffuse
functions.27 In order to identify global minimum (GM) struc-

a)Author to whom correspondence should be addressed. Electronic mail:
shayeghi@cluster.pc.chemie.tu-darmstadt.de

tures for the different investigated cluster sizes, they ap-
plied the exact hard spheres scattering (EHSS)28 model to
their ground state structure candidates and calculated colli-
sion cross sections in good agreement with their experimental
data. However, the ion mobility does not enable a clear iden-
tification of the ground state isomer in the case of Ag+

10. Pho-
todissociation spectroscopy, combined with quantum chemi-
cal investigations, therefore is indispensable for the sake of a
clear structural assignment.

In this article, we present the photodissociation spec-
trum of the Ag+

10 cluster in the photon energy range
¯ω = 1.9–4.4 eV combined with calculations of optical spec-
tra for several isomers in the framework of time-dependent
density functional theory (TDDFT).29 Initial cluster geome-
tries are obtained by the Birmingham Cluster Genetic Al-
gorithm (BCGA),30 coupled with DFT (GADFT),31 in a re-
cently developed parallel pool modification.32 The long-range
corrected (LC) exchange correlation (xc) functional, LC-
ωPBEh,33 is used throughout our whole analysis. It has been
shown to perform well for the calculation of ground and ex-
cited state properties of gold,24, 34 silver,24 and mixed silver
gold clusters,35 where it leads to the reliable prediction of op-
tical absorption spectra.

The experimental setup is described in detail elsewhere.24

Briefly, cluster cations are produced by pulsed laser vapor-
ization and separated with time-of-flight mass spectrometry.
The optical response is probed by longitudinal photodissoci-
ation spectroscopy with a tunable ns-laser pulse from an op-
tic parametric oscillator, pumped by the third harmonic of an
Nd:YAG laser. Spectra are recorded by monitoring the ion sig-
nal depletion upon photon absorption using the Lambert–Beer
law and assuming perfect overlap between the dissociation
laser and molecular beam.

In the search of the decamer cation configuration space,
the pool-BCGA uses the plane-wave self consistent field
code within the Quantum Espresso36 package in local
optimizations, where 11 electrons for each Ag atom are

0021-9606/2014/141(18)/181104/4/$30.00 © 2014 AIP Publishing LLC141, 181104-1
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treated explicitly and the remaining 36 core electrons
are captured by ultrasoft Rabe-Rappe-Kaxiras-Joannopoulos
pseudopotentials,38 employing the Perdew-Burke-Ernzerhof
(PBE)39 xc functional. Local optimization is performed with
an electronic self consistency criterion of 10−5 eV, and to-
tal energy and force convergence threshold values of 10−3

eV and 10−2 eV/Å, respectively. The lowest lying puta-
tive GM candidates are subsequently locally optimized using
NWChem v6.3,40 employing an extensive 19-electron def2-
tzvpp basis set and the corresponding effective core poten-
tial (def2-ecp) of Weigend and Ahlrichs.41 The long-range
corrected xc functional LC-ωPBEh33 is used in order to ac-
curately recover the asymptotic behaviour of the exchange
correlation potential, since this has proven to reliably re-
produce vertical electronic excitation spectra.4, 6, 8, 24, 33, 34 The
theoretical description of optical properties of clusters based
on TDDFT calculations is easily applicable and widely used,
in particular due to the low computational costs associated
with the single-reference character.42 In minimizations the
BP-8643, 44 and M06-L45 functionals are also studied for com-
parison purposes. The energy is calculated using a grid of high
density (xfine integration grid, tight optimization criterion).
The integral precision is set to 10−9 eV while the tolerance
on linear dependencies in the overlap matrix has been set to
10−6 eV since diffuse basis sets are prone to linear depen-
dencies. Additionally, harmonic frequency analyses are per-
formed in order to verify whether the considered geometries
are true minima on the potential energy surface.

Isomers of Ag+
10 lying within 0.25 eV of the low-

est energy structure, sorted by increasing energy at the
LC-ωPBEh/def2-tzvpp level of theory, are presented in
Figure 1. Beside the isomers g and h found by Weis et al., the
pool-BCGA finds several lower lying isomers (a-f). The com-
parison of relative energies obtained with LC-ωPBEh, BP-86,
and M06-L, sorted by increasing LC-ωPBEh energy, is dis-
played in Figure 2. The employed functionals give the same
local minima with minute distortions of bond lengths and an-
gles and they all agree upon the D2d isomer a as the GM.
However, they differ substantially in the energetic ordering of
the higher lying geometries. Isomer h, which was predicted
to be the GM from ion mobility experiments, becomes the
highest lying geometry at the LC-ωPBEh level while it is the

FIG. 1. Lowest lying pool-BCGA isomers of the Ag+
10 cluster (a–h) within

0.25 eV sorted by increasing energy at the LC-ωPBEh/def2-tzvpp level of
theory. Point group symmetries are given in brackets. The atomic coordinates
are available in the supplementary material.37

FIG. 2. Lowest lying isomers of the Ag+
10 cluster relaxed at the LC-

ωPBEh/def2-tzvpp level of theory and their relative energies in eV (circles)
compared to relative energies from the BP-86 (diamonds) and the M06-L (tri-
angles) xc functional. Dashed lines connecting the data points are a guide to
the eye. The horizontal (dotted) line represents the thermal energy at 300 K.

second lowest isomer from calculations with the local meta-
GGA functional M06-L, recommended for transition metal
systems. Thus, our calculations exclude isomer h as the GM
but also demonstrate the strong dependence of the energetic
ordering on basis set and xc functional, as can be seen at the
M06-L/def2-tzvpp level, where isomer h becomes the second
lowest geometry.

For all geometries resulting from the DFT optimiza-
tions, electronic excitation spectra are calculated using spin-
unrestricted TDDFT (at the LC-wPBEh/def2-tzvpp level with
NWChem v6.3.40) with 50 excited state roots to be deter-
mined. The optical response calculations are compared to
the experimental photodissociation spectrum in Figure 3. It
is clear that only isomer a qualitatively reproduces the sig-
nature of the experimental spectrum, while all other isomers
show features which do not match the experimental observa-
tion. The pool-BCGA results and local relaxations, as well
as the measured absorption spectrum point to isomer a being
the GM and the only species present in the molecular beam
experiment.

In order to compare these results to previous ion mo-
bility experiments, three commonly used theoretical mod-
els for calculating the collision cross section of a given ion
structure have been used. The EHSS model, the trajectory
method including either partial charges (CT-TR) or a uniform
charge distribution (EQ-TR), and the projection approxima-
tion (PA) are used in order to elucidate the structure of Ag+

10.
For all structure candidates minimized with the LC-ωPBEh
functional, collision cross sections are calculated within the
MOBCAL code of Mesleh et al.,46 using the same potential
parameters as Weis et al.: ε = 1.35 meV, σ AgHe = 3.0 Å,

rHardSphere = 2.57 Å for Ag–He and αHe = 0.205 Å3. For
each TR simulation 2 × 106 classical trajectories are run.
The partial charges in CT-TR calculations are determined by
the Löwdin method,47 using the LC-ωPBEh functional. Here
the smaller def2-svp basis set is used in order to counter the
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FIG. 3. Experimental Ag+
10 absorption cross section σ (¯ω) data points (open

circles) and a 3-pt adjacent average of these to guide the eye (solid line)
compared to TDDFT calculations for the lowest lying isomers relaxed at the
LC-ωPBEh/def2-tzvpp level of theory. The irreducible representations of the
electronic ground states are given. The calculated line spectra (vertical lines)
are convoluted with Gaussian functions with a full width at half maximum of
0.1 eV (dotted lines).

common problem of population analyses, based on partition-
ing the wave function: to predict unphysical charges when us-
ing diffuse basis functions.48 The calculated collision cross
sections are shown in Figure 4. The dashed line represents
the experimental value within the experimental error range
of 5% (pale dotted lines). The EHSS model takes multiple
collisions into account but generally overestimates collision
cross sections due to neglect of dispersion and ion-induced
dipole interactions between the positively charged cluster and
the polarizable He atom. The PA tends to underestimate col-
lision cross sections due to the simple projection of the pos-
sible hard sphere contact area, which is only a good approxi-
mation for convex molecules. In concave molecules multiple
collisions must be considered.49 The trajectory method (TR)
includes attractive interactions and allows a specific charge
distribution to be taken into account. Here, the comparison of
CT-TR (including Löwdin charges) and the EQ-TR (uniform
charge distribution) shows only small deviations. This is not

FIG. 4. Experimental collision cross section of Ag+
10 (dashed line) compared

to calculated collision cross sections using the EHSS model for the lowest ly-
ing isomers obtained at the BP-86/aug-SVP level (crosses) with RI-J quadra-
ture (experiments and calculations taken from Ref. 27) compared to calcu-
lated collision cross sections for cluster geometries from this work obtained
with LC-ωPBEh using the EHSS model (triangles), the PA (inverse triangles),
the EQ-TR (diamonds), and the CT-TR method (squares) including Löwdin
partial charges.

surprising since the charge distribution becomes less relevant
for larger clusters though the total charge has to be taken into
account.

In general, all of the postulated isomers can fit the exper-
imental ion mobility data as nearly all collision cross section
calculations, for the different models, remain in the experi-
mental error range. Hence, spectroscopy is necessary for the
unambiguous assignment in the case of Ag+

10, since the struc-
tural differences have a dominant influence on optical absorp-
tion spectra.50

In conclusion, we have strong evidence that we have
identified the true GM structure of the Ag+

10 cluster from
the combination of photodissociation spectra with systematic
structural global optimization using genetic algorithms and
spectral simulation based on LC-TDDFT calculations. We are
therefore confident that the GM structure for Ag+

10 is com-
posed of two interpenetrating pentagonal bipyramids, gener-
ating a structural motif with overall D2d symmetry.

We acknowledge financial support by the DFG (Grant
No. SCHA 885/10-2) and the Merck’sche Gesellschaft für
Kunst und Wissenschaft e.V. The calculations reported here
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by EPSRC (EP/F067496), this work made use of the facilities
of ARCHER, the UK’s national high-performance computing
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