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Abstract. Spectral imaging is a useful tool in many fields of scientific
research and industry. Spectral images contain both spatial and spectral
information of the scene. Spectral information can be used for effective
visualization of the features-of-interest. One approach is to use spec-
tral image enhancement techniques to improve the diagnostic accuracy
of medical image technologies like retinal imaging. In this paper, two
multichannel spectral image enhancement methods and a technique to
further improve the visualization are presented. The methods are tested
on four multispectral retinal images which contain diabetic retinopathy
lesions. Both of the methods improved the detectability and quantitative
contrast of the diabetic lesions when compared to standard color images
and are potentially valuable for clinicians and automated image analyses.

Keywords: spectral image, multispectral imaging, principal component
analysis, enhancement, retina, diabetes mellitus, diabetic retinopathy

1 Introduction

Spectral imaging is a powerful imaging modality, which allows one to capture
both the spatial and spectral information of the target-of-interest. These data
are often stored in a spectral image, i.e., a three-dimensional matrix where the
first two dimensions (rows and columns) contain the spatial information of the
target and the third dimension (layers) contains the information of the target’s
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wavelength-dependent optical properties for each spatial location. Spectral imag-
ing can be divided into multispectral or hyperspectral imaging depending on the
number of unique spectral channels captured. Spectral imaging is used widely
in many areas like in remote sensing, industrial quality inspection and medical
imaging [1–3].

Diabetes mellitus (DM) is one of the most important health care problems
worldwide and diabetic retinopathy (DR) is the most common complication of
DM [4, 5]. DR will reveal the overall status of DM and the vision threaten-
ing ophthalmological complications like proliferative DR and diabetic macular
edema. Early detection of these complications is mandatory to avoid permanent
loss of vision or expensive health care costs. Retinal imaging is a recommended
tool for the screening of DR but has increasing potential to screen other eye
or systemic diseases, e.g., age-related macular degeneration, glaucoma and sys-
temic vascular and neurological diseases. Both greyscale and RGB images are
used in clinical retinal imaging, even though the color information content of
RGB images is very limited. Spectral images, however, typically contain tens
or hundreds of individual color channels, providing detailed color information.
Furthermore, spectral image enhancement can be applied to spectral images to
enhance the contrast of the wavelength-dependent properties of the object in the
images [6–10]. Enhanced spectral images of the retina could be used for early
detection of DR.

In this study, two existing methods of single-channel spectral image enhance-
ment were modified for multichannel spectral image enhancement [6, 7]. Com-
pared to the single-channel-enhancement methods, multichannel methods allow
simultaneous enhancement of different spectral features. The two multichannel
spectral image enhancement methods were applied to multispectral retinal im-
ages containing DR lesions in order to enhance the detectability of early-stage
diabetic changes [11]. Also, a scheme for further improving the results is intro-
duced and applied to the multispectral retinal images.

2 Multichannel Spectral Image Enhancement: Method 1

The multichannel spectral image enhancement Method 1 is based on the ap-
proach introduced by Hashimoto et al. [6]. In their original method, a single
spectral channel i of the spectral image (a three-dimensional X × Y × N data
cube containing X rows, Y columns and N spectral channels) is enhanced as fol-
lows: first, principal component analysis (PCA) is applied to the original spectral
image and a spectral image estimate is calculated using m principal components
(m < N) [12]. This PCA reconstruction is also an X × Y × N data cube. The
PCA estimate is subtracted from the original spectral image:

sdiff(x, y) = s0(x, y) − ŝ(x, y) , (1)

where s0(x, y) is the spectrum from spatial coordinates (x, y), x = 1, 2, . . . , X,
y = 1, 2, . . . , Y , from the original spectral image. Similarly, ŝ(x, y) is the spec-
trum from the estimated spectral image for the same coordinates (x, y).
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A weighting factor matrix W is an N ×N matrix of zeros, except for the ith

column which is defined as

[W]i = kg . (2)

Here, constant k is the weighting factor, and vector

g = starget − smean (3)

is the difference between a selected target spectrum starget and the mean spec-
trum smean of the original spectral image. Target spectrum is the spectrum of
the color to be used for the enhanced visualization of the spectral features. The
enhanced spectrum senh(x, y) is defined as

senh(x, y) = Wsdiff(x, y) + s0(x, y) . (4)

When matrix W is defined as in Eq. (2), the spectral image enhancement is
applied to a single spectral channel i, and Eq. (4) can be written as

senh(x, y) = ksdiff(x, y, i)g + s0(x, y) . (5)

In this paper, matrix W is expanded for multichannel spectral enhancement:

W =
[
k1g, k2g, . . . , kNg

]
= gkT , (6)

where vector k = [k1, k2, . . . , kN ]T contains the weighting factors for the N spec-
tral channels.

Inserting Eq. (6) into Eq. (4), the enhanced spectrum can be calculated as

senh(x, y) = gkTsdiff(x, y) + s0(x, y) . (7)

If only one element of vector k is non-zero, the enhancement method of
Eq. (7) reduces to the single-channel-enhancement method of Eq. (5).

3 Multichannel Spectral Image Enhancement: Method 2

The second multichannel spectral image enhancement method is based on the
method introduced by Mitsui et al., in which a single spectral channel i is also
enhanced by using Eq. (4) [7]. In [7], the weighting factor matrix W is a N ×N
diagonal matrix with a single non-zero value k at the ith row/column. Equa-
tion (4) becomes

senh(x, y) = s′diff(x, y) + s0(x, y) , (8)

where vector s′diff(x, y) contains one non-zero value ksdiff(x, y, i) on its ith ele-
ment.

In Method 2, Eq. (8) is expanded for multichannel enhancement:

senh(x, y) = diag(k)sdiff(x, y) + s0(x, y) , (9)

where diag(k) contains vector k = [k1, k2, . . . , kN ]T.
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4 Scheme for Further Improving Object Visibility in
Enhanced Spectral Images
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Fig. 1. Flowchart of multichannel spectral image enhancement.

In order to further improve the visibility of selected features, the following
steps were taken (see Fig. 1): The original spectral image can suffer from un-
even lighting distribution due to uneven illumination conditions during imaging.
Therefore, brightness normalization is applied to the spectral image. An illumi-
nation map is obtained for each spectral channel separately by convolving the
original spectral channel image with a Gaussian kernel. The original spectral
channel images are divided by their respective illumination maps to attain an
even illumination field while preserving the image contrast.

The brightness-normalized spectral image and its PCA estimate were then
used for the multichannel spectral image enhancement. Either Method 1 or
Method 2 was used. Two different manually selected weight vectors (k1 and
k2) were used so that k1 enhanced the visibility of the features-of-interest and
k2 enhanced the image background. Then, CIE (Commission Internationale de
l’Eclairage) XYZ tristimulus values were calculated for the two enhanced spec-
tral images according to the standard equations [13]:

{
X(x, y), Y (x, y), Z(x, y)

}
= γ

∫
λ

S(λ)Renh(x, y, λ)
{
x̂(λ), ŷ(λ), ẑ(λ)

}
dλ ,

(10)
where λ is wavelength, (x, y) are pixel coordinates, S(λ) is the spectrum of the
light source (in this paper: CIE D65 daylight illuminant), Renh(x, y, λ) is the
enhanced spectral image, and x̂(λ), ŷ(λ), ẑ(λ) are the spectral sensitivities of
the CIE standard colorimetric observer. Here, it is assumed that Renh(x, y, λ)
is an enhanced spectral reflectance image. Normalization factor γ is defined
as γ = 100/

(∫
λ
S(λ)ŷ(λ) dλ

)
. The XYZ-values were converted into RGB color

space using the standard transformation. Finally, a difference image D was cal-
culated from the two RGB images as described in Fig. 1.
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5 Enhancement of Multispectral Retinal Images

Multichannel spectral image enhancement Methods 1 and 2 were applied to a
set of four previously acquired multispectral (spectral reflectance) images of the
human retina. Detailed information on the acquisition of these images can be
found from Ref. [11]. These multispectral retinal images contained lesions re-
lated to DR. The size of the multispectral images was 800 × 800 × 30, and these
30 spectral channels were obtained from the wavelength range 400–700 nm by
∼10 nm steps. Based on information from a previous study [11], the spectral
channels corresponding to the following wavelengths were selected for spectral
enhancement for Method 1: Λ = [492, 500, 540, 550, 580, 600, 620] nm. For vec-
tors k1 and k2, the following values were experimentally chosen for the selected
wavelengths: [k1]Λ = [3, 3,−3,−3,−3, 3,−3], and [k2]Λ = [−1,−1, 1, 1, 1,−1, 1].
For all the other wavelengths, the k-values were zero. To get high image contrast,
the target color was set to black: starget = 0N , where 0N is an N -vector of zeros.

For Method 2, the selected wavelengths and values for k1 were as follows:
Λ1 = [492, 500, 540, 550, 580, 600, 620] nm, [k1]Λ1

= [−7,−7,−7, 14, 14,−14,−14].
Analogously, for vector k2: Λ2 = [632, 640, 650, 656, 671, 676, 690, 694] nm, and
[k2]Λ2

= [−10,−10,−10,−10, 10, 10, 10, 10]. For brightness normalization, the
symmetric Gaussian kernel’s size and standard deviation were both set to 200
pixels. The PCA estimates for the brightness-normalized spectral images were
calculated using all except the three most significant principal components.

6 Results and Discussion

The results for four different multispectral retinal images — using the above-
mentioned vectors k1 and k2 — are shown in Figs. 2 and 3 for Methods 1 and 2,
respectively. The RGB images of the spectral images enhanced by Eq. (7) and
k1 are shown in Figs. 2(c), (h), (m) and (r). The relative contrast of all blood-
related features in the retina (blood vessel tree emerging from the optic disk,
microaneurysms, bleedings, intraretinal microvascular abnormalities (IRMA))
is considerably improved, while the retinal background remains relatively un-
changed. The RGB images for k2, Figs. 2(d), (i), (n) and (s), on the other hand,
emphasize the retinal background and not the abnormalities caused by diabetes.
The difference images in Figs. 2(e), (j), (o) and (t) have a diminished back-
ground variation for improved visibility and contrast of the blood-related retinal
features. Analogously for Method 2 (Fig. 3).

For Eye 1, the multichannel spectral image enhancement reveals two micro-
aneurysms in the macular area which are not visible in the original RGB image
(Fig. 4). For Eye 2, the enhanced images show a large number of microaneurysms
and small haemorrhages, and also a larger bleeding close to the optic disk. The
choroidal background is relatively visible in the images (especially in Figs. 2(i)
and 3(i)). The relatively small, bright spots in the RGB images for Eye 2 and 3
are hard (lipid) exudates, which are another typical sign of DR. For Eye 3, the
enhanced images again reveal a microaneurysms and small bleedings around the
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Fig. 2. Results for Method 1. Eye 1: (a) RGB image of the original multispectral image,
(b) brightness-normalized image, (c) RGB1, (d) RGB2, and (e) difference image D. Eye
2: (f)–(j); Eye 3: (k)–(o); and Eye 4: (p)–(t).

macula. And for Eye 4, microaneurysms and a larger bleeding in the macular
area can be observed. Method 1 produces images with relatively high contrast
between the blood-related features and the retinal background. The target color
was black, which results in improved contrast. Method 2 doesn’t use target color.

To quantify the improved contrast for the enhanced images, Michelson con-
trast was calculated on the luminance channel of the image in LAB-colorspace
(Table 1). The color contrast was calculated as root-mean-square error (RMSE)
contrast [14] with distance defined as CIEDE2000 color difference (Table 2).
The decrease in contrast for Eye 1 is due to all the regions of interest where the
contrast is calculated reside inside uniformly colored lesions. While the contrast
with the background increases, the contrast inside the lesion area is lower.

7 Conclusion

Two multichannel spectral image enhancement methods and a scheme for fur-
ther improving the detectability of DR changes in retinal multispectral images
were introduced. The introduced methods enhanced the detectability and con-
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Fig. 3. Results for Method 2. Eye 1: (a) RGB image of the original multispectral image,
(b) brightness-normalized image, (c) RGB1, (d) RGB2, and (e) difference image D. Eye
2: (f)–(j); Eye 3: (k)–(o); and Eye 4: (p)–(t).

Fig. 4. Details for Eyes 1–4 from Figs. 2 and 3: (a)–(d): brightness-normalized images,
(e)–(h) Method 1 results, and (i)–(l) Method 2 results. Arrows: macula (M), micro-
aneurysm (MA), hard exudates (HE), IRMA, blood vessel (BV), and bleeding (B).
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Table 1. Michelson contrast (luminance). Means and standard deviations.

Eye Brightness-norm. Method 1 Method 2

Mean Std Mean Std Mean Std
1 19.57 1.89 26.37 5.20 15.36 12.08
2 13.99 14.04 30.04 15.89 27.34 15.85
3 13.94 5.88 35.88 13.16 31.63 9.82
4 12.28 3.79 52.21 12.57 52.69 9.82

Table 2. RMSE contrast (CIEDE2000). Means and standard deviations.

Eye Brightness-norm. Method 1 Method 2

Mean Std Mean Std Mean Std
1 76.57 24.76 65.50 62.62 44.44 28.43
2 31.29 15.58 41.83 31.44 30.20 15.18
3 23.24 8.81 33.89 20.68 35.38 18.24
4 34.57 19.65 57.41 35.97 46.14 8.59

trast of blood-containing features in the retinal images, including typical signs of
DR (microaneurysms, haemorrhages, retinal bleedings, IRMA). In some cases,
lesions that were either poorly visible or not visible at all in the original image,
became clearly visible in the enhanced images. The methods seem to have poten-
tial in clinical and automated retinal imaging as well as in other spectral images
and spectral imaging applications. The future work will include quantitative
validation of the methods by using a larger set of spectral retinal images.
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