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Abstract

Magnetic Optimization Algorithm (MOA) has emerged as a promising optimization algorithm that is
inspired by the principles of magnetic field theory. In this paper we improve the performance of the algorithm
in two aspects. First an Opposition-Based Learning (OBL) approach is proposed for the algorithm which
is applied to the movement operator of the algorithm. Second, by learning from the algorithm’s past
experience, an adaptive parameter control strategy which dynamically sets the parameters of the algorithm
during the optimization is proposed. To show the significance of the proposed parameter adaptation strategy,
we compare the algorithm with two well-known parameter setting techniques on a number of benchmark
problems. The results indicate that although the proposed algorithm with the adaptation strategy does not
require to set the parameters of the algorithm prior to the optimization process, it outperforms MOA with
other parameter setting strategies in most large-scale optimization problems. We also study the algorithm
while employing the OBL by comparing it with the original version of MOA. Furthermore, the proposed
algorithm is tested and compared with seven traditional population-based algorithms and eight state-of-the-
art optimization algorithms. The comparisons demonstrate that the proposed algorithm outperforms the
traditional algorithms in most benchmark problems, and its results is comparative to those obtained by the
state-of-the-art algorithms.

Keywords: Parameter Adaptation Strategy, Opposition-Based Learning, Magnetic Optimization
Algorithm, Numerical Optimization Problems.

1. Introduction

Inspired by the principles of attraction among magnetic particles, MOA is a population based algorithm
that belongs to the group of swarm intelligence algorithms. In MOA, the candidate solutions are some
magnetic particles that are scattered across the search space. In this respect, each magnetic particle has
a measure of mass and magnetic field according to its fitness. In this scheme, the fitter magnetic particles
have higher magnetic field and greater mass. In terms of interaction, these particles are located in a
lattice-like population and apply a long range force of attraction to their neighbours. Unlike Particle Swarm
Optimization (PSO) algorithm in which each particle utilizes only the best experience of the best neighboring
particle(s) or the best particle in the population, in MOA each magnetic particle uses the best experience
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of all its neighboring particles, including the inferior ones. In order to improve the performance of the
algorithm, an OBL [1] approach is proposed in this paper in which by calculating the opposite population
of the current population at each iteration, the algorithm tries to find fitter solutions. OBL has been
used to solve many optimization problems [2, 3, 4] and has been employed in several population based
algorithms [5, 6, 7, 8, 9].

MOA has shown promising results when applied to numerical benchmark functions [10, 11] and to a
wide range of optimization problem including travelling salesman problem [12] and multi-layer perception
training [13]. Similar to other population based algorithms, the performance of the MOA depends on ap-
propriately setting its parameters [10, 11]. Although there is a systematic way of setting the parameters of
MOA [10, 11], it is computationally expensive. The parameter setting technique [14, 10, 15, 16] provides ap-
propriate values for control parameters; however, the algorithm designer needs to set the control parameters
for each problem prior to the search process.

To improve the performance of the algorithm in this aspect, several parameter setting approaches have
recently been proposed. The F-Race algorithm firstly proposed for tackling the model selection problem [17]
is among them. The algorithm is an automatic parameter configuration algorithm that was firstly used
by [18] to automatically set the parameters of Ant Colony algorithm. Then a new version of the algorithm
called Iterated F-Race was utilized in some optimization algorithms [19, 20, 21]. Iterated F-Race determines
the most appropriate parameter configuration of an algorithm using the non-parametric Friedman’s two-way
analysis of variance by ranks. Acting like a hill climbing stochastic procedure, iterated F-Race performs a
few race among the candidate configurations on a stream of instances in order to find the best candidate
configuration. First a set of configurations with uniform random values are initialized. Then, at each
iteration, all configurations are evaluated according to Friedman test. If the first Friedman test shows that
at least one configuration is significantly different from any other configurations in the race, the second
Friedman test is applied to eliminate the candidates that are remarkably worse than other configurations.
The race proceeds with the surviving configurations and continues until only one candidate configuration
remains in the race or the a certain number of iteration is reached. Although the method is successful in
setting parameters of algorithms, specially when an algorithm has a number of parameters [19, 21], it can
be prohibitively expensive for large-scale optimization problems.

Using the feedback received from the search process, parameter adaptation techniques adjust the param-
eters of algorithms adaptively. According to [22, 23, 24], depending on how the received feedback is used,
there are three major types of parameter setting strategies: deterministic parameter control, self-adaptive
parameter control and adaptive parameter control. The deterministic parameter setting approaches are
those that do not receive any feedback from the optimization process and set their parameters prior to
the search process via trial and error. The original version of MOA is an example of this type of strategy.
Self-adaptive parameter setting strategy attempts to evolutionarily adjust the parameters of algorithms;
to do so, they often adopt recombination operators such as mutation and crossover to select the optimal
parameter configuration. This approach has shown remarkable success in iteratively making the individuals
more adapted to the problems. For example, reference [25] proposed a new Differential Evolution (DE)
algorithm that uses a self-adaptive parameter strategy for the population size, mutation rate and crossover
rate. The parameter adaptation strategy refers to the parameter setting, which uses feedback received from
the search process to dynamically set the parameters of the problem. Several state-of-the-art algorithms
such as JADE [22], SaDE [26], jDE [27] and Memetic algorithm with adaptive local search [28] can be
categorized into this group. The proposed algorithm, which dynamically adjusts its control parameters in
the course of the optimization, also belongs to this category.

Being adaptable to the properties of the problem usually enhances the ability of algorithms to find good
parameters without spending time on the trial and error parameter setting procedure. Therefore, parameter
adaptation strategy can help the algorithm discover a good parameter value while enhancing the convergence
performance. JADE as one of the powerful DE algorithms that employs the parameter adaptation strategy
showed remarkable success in tackling several small-scale optimization problems [22]. JADE has two control
parameters that sets them adaptively. In this paper, we develop the idea used in JADE for adaptively
setting the control parameters of the proposed algorithm. The difference between the proposed algorithm
and JADE is that our algorithm optimizes the control parameters individually. When the control parameters
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are investigated and set together (similar to JADE), they may not provide high-quality results for large-scale
benchmark problems. This is because it cannot be ensured which parameter is responsible for improving
the quality of the solution and so unnecessary changes in the value of a parameter may occur. Instead, if
separately evaluated and set, the parameters can be more appropriately adjusted which results in better
performance.

The contribution of this paper is summarized into the following aspects:

• A new version of MOA using a run-time adaptation strategy for dynamically setting the parameters
of the algorithm is proposed.

• A new approach that is based on the opposite number principle is developed and added to the algorithm
to improve its performance.

• The proposed parameter adaptation strategy is compared with two famous parameter setting tech-
niques including systematic parameter setting and F-Race algorithm.

• A set of most powerful optimizers including Genetic Algorithm (GA) [29], PSO [30], DE [31], Evolution
Strategy (ES) [32], Fast Evolution Strategy (FES) [33], Evolutionary programming (EP) [34] and Fast
Evolutionary Programming (FEP)[35], Memetic Algorithm with Solis Wet local search (MASW) [36],
Memetic Algorithm with Subgrouping Solis Wet local search (MASSW) [36], Cooperatively Coevolv-
ing Particle Swarms Optimization (CCPSO2) [37], JADE [22], Three Stages Memetic Exploration
(3SOME) [38], Parallel Memetic Structure (PMS) [39], Biogeography Based Optimization (BBO) [40],
Opposition-based Differential Evolution (ODE) [41] and Covariance Matrix Adaptation Evolution
Strategy (CMAES) [42] are used to be compared with the proposed algorithm on 27 standard bench-
mark functions.

The rest of this paper is organized as follows. Section 2 discusses the background of the proposed
algorithm, including the OBL and the original version of MOA. Section 3 introduces the proposed algorithm.
Section 4 evaluates the proposed parameter adaptation strategy, by studying the control parameters and
comparing the proposed strategy with two well-known strategies. Section 5 provides a comparison between
the proposed algorithm and the original version of MOA, seven popular population-based and nine state-
of-the-art algorithms. Section 6 concludes this paper.

2. Background

In this section, a general overview of the key components of the proposed algorithm is presented, con-
centrating on the opposition-based learning scheme and the original version of MOA.

2.1. Opposition-Based Learning

Population-based algorithms often initialize the population randomly, thus the chance of sampling better
regions in the search space is not higher. However, there are several ways to enhance the probability of
detecting better regions. One is Opposition-Based Learning (OBL). By employing OBL at the initialization
phase of algorithms, the likelihood of finding better solutions increases. Furthermore, an algorithm can
employ the OBL approach during its search process to increases its chances of finding better solutions [41].

The concept of OBL was proposed by Tizhoosh in[1]. In this paper, we first explain the concept of
opposition numbers. Let x ∈ [a, b] be a real number, then the opposite number x̆ is defined as,

x̆ = a+ b− x.

The definition can be extended to an N-dimensional search space[1] as follows. Let P = (x1, x2, ..., xN )
represent a point in an N-dimensional space. The opposition vector in this space is defined as,

x̆i = ai + bi − xi.
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Heretofore, the OBL has extensively been used to solve many optimization problems[2, 3, 4] and has been
employed in several population-based algorithms[41, 6, 7, 9]. This encouraged us to employ the method in
MOA to speed up the convergence speed and maintain population diversity simultaneously, thus reaching
better solutions more swiftly.

2.2. Magnetic Optimization Algorithm

Inspired by the principles of magnetic field theory, MOA [10] was proposed to cover some weaknesses
of the PSO, including premature convergence and the dictatorship of the best particles. In the traditional
version of PSO algorithm, individuals tend to follow and imitate the best particle, which results in premature
convergence. In newer versions of PSO like cellular PSO, in which inferior particles follow the behaviour
of the best neighbouring particles, individuals usually suffer from the dictatorship of the best neighbouring
particles. The dictatorship in this context means that the best neighbouring individuals always force other
particles to abandon their positions and follow their lead, resulting in ignoring some important information
that might be lied within low fitness particles. To overcome this weakness, MOA was proposed [10] which
uses a cellular structure to surmount the premature convergence. It also utilizes a motion strategy, where
each particle, even the lowest fitness one, influences other neighbouring particles.

Apart from these advantages, one disadvantage of MOA, similar to many other optimization algorithms,
is that it has some parameters that should be carefully tuned before solving a problem. The original version
of MOA [10, 11] has two parameters (α and ρ). Another problem is that its parameters are problem
dependent, so each parameter of the algorithm needs to be set for every specific problem. The pseudo-code
of MOA is presented in 2.2.

Procedure Basic MOA
begin
t = 0

1. initialize X0 with a structured population
2. while not termination condition do

begin
t = t+ 1

3. evaluate the particles in Xt and store their performance
in magnetic fields Bt

4. normalize Bt according to equation 6
5. evaluate the mass M t for all particles according to (7)
6. for all particles xtij in Xt do

begin
7. Fij=0
8. find Nij
9. for all xtuv in Nij do

10. Fij = Fij +
(xtuv−x

t
ij)×B

t
uv

D(xtij ,x
t
uv)

end
11. for all particles xtij in Xt do

begin

12. vt+1
ij,k =

Fij,k
Mij,k

×R(lk, uk)

13. xt+1
ij,k = xtij,k + vt+1

ij,k

end
end

end

A more comprehensive description of each step of the original MOA can be found in [11].
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3. The proposed algorithm

The proposed algorithm consists of two major elements: MOA and OBL. It also employs an extended
version of JADE’s parameter adaptation strategy to dynamically adjust the algorithm’s parameters. The
proposed adaptation strategy differs from JADE’s in one important aspect. Algorithms usually have some
parameters that affect one another. In JADE, this effect is ignored and the parameters are optimized
independently. Our idea here is to take this effect into account in the parameter adaptation process.

In addition to the proposed parameter adaptation strategy, the proposed algorithm benefits from a
population-diversifying procedure called the OBL procedure. The OBL has been employed to improve the
performance of some population-based algorithms [5, 6, 7, 8, 9].

In the proposed algorithm the magnetic particles interact with each other in a cellular-like structure as
represented in figure 1.

i i+1i-1

i-S

i+S

r

c

Figure 1: The interaction scheme between the i-th particle in the population and its neighboring particles in the cellular-like
structure with size of (r, c).

The pseudo-code of the proposed algorithm is represented in algorithm 3.

Procedure FMOA
1 t = 0, J = 0.3, ρ = 0.5, α = 0.5
2. xt = Initialization()
3. while not termination condition do

t = t+ 1
4. JA = �, αA = �, ρA = �
5. for i= 1 to Np
6. Ji = randnorm(Jr, 0.01)
7. Bti = evaluateFitness(xti)
8. if Bti ≥ B

t−1
i

9. ρi → ρA, αi → αA
end if

10. if R(0, 1) ≤ Ji
11. Y ti,k=Mink + Maxk-xti,k
12. if Bti ≤ f(Y ti )
13. xti = yti
14. Ji → JA

end if
end if
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15. ρi = randnorm(ρ, 0.1), αi = randnorm(α, 0.1)
end for

16. normalize Bt using equation ( 6)
17. evaluate the mass M t for all particles according to (7)
18. for i= 1 to Np do
19. Fi=0
20. N = findneighbor(i)
21. for j= 1 to S do

23. Fi = Fi +
(xtNj

−xti)×B
t
Nj

D(xti,x
t
Nj

)

end for
end for

24. for i= 1 to Np do

25. vt+1
i,k =

Fi,k
Mi,k

×R(lk, uk)

26. xt+1
i,k = xti,k + vt+1

i,k

end for
27. ρ = (c− 1)× ρ+ c× (meanL(ρA))
28. α = (c− 1)× α+ c× (meanL(αA))
29. Jr = (c− 1)× Jr + c× (meanS(JA))

end while
end procedure

A more detailed description of the proposed algorithm is as follows.
1. In this step, the parameters of the algorithm α, ρ and Jr are initialized. Jr is initialized with 0.3

because it was shown in [41] that the best value for this parameter is in [0.3− 0.6].
2. Randomly initialize the particles in the population xt. The initialization process is performed as

follows:

xi,k = R(lk, uk), (1)

for i = 1, 2, ..., Np and k = 1, 2, ..., D where Np and D are the size of the population and problem respectively,
lk and uk are the lower and the upper bounds of the search space and R(., .) is a uniform random number
generator.

3. The “termination condition” is met when the maximum number of iterations (MI) is reached.
4. In this step, the set of successful jumping rate values JA and the set of successful parameters (αA, ρA)

are initialized as empty sets.
5. Steps 6-15 are applied to all the particles.
6. The jumping rate for i-th magnetic particle in the population is generated according to a normal

distribution with the mean of Jr and standard division 0.01. This procedure is carried out as,

Ji = randnorm(Jr, 0.01). (2)

For standard division, we use 0.01 as our studies showed that it is the best choice.
7. In this step, the objective of xi is calculated and stored in the magnetic field Bi.
8-9. If the fitness of i-th particle has improved in the current generation, αi and ρi are inserted in αA

and ρA respectively.
10. The OBL procedure is performed at i-th particle with the probability of jumping rate.
11. In this step, the opposite points of the current particle xi are found and stored in Y ti . This is

performed as,

Y ti,k = Mintk +Maxtk − xti,k, k = 1, 2, ..., D, (3)
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where Maxtk and Mintk are the maximum and minimum values of the variables in the k-th dimension at
iteration t respectively.

12-14. If the particle xti is worse than its opposite particle Y ti , it is replaced by its opposite, and Ji is
stored in JA.

15. In this step, αi is generated from normal distribution with the mean parameter α and standard
deviation parameter 0.1.

αi = randnorm(α, 0.1), (4)

Similarly, the value of ρi is generated from normal distribution with the mean parameter ρ and standard
division parameter 0.1.

ρi = randnorm(ρ, 0.1) (5)

For standard division, we use 0.1 as our studies demonstrated that it is the best choice.
16. To remove problem dependency, the magnetic field of each particle is normalized within the range

of [0− 1]. Bti is normalized as follows,

Bti −Min(B)

Max(B)−Min(B)
, (6)

where “Min” and “Max” are the minumum and maximum magnetic fields among all the population members.
17. The mass of all the particles is found and stored in M t. The mass of each particle is found as,

M t
i = αi + ρi ×Bti . (7)

18. The “for” loop is applied to all the particles.
19. The magnetic force of the particle xti is set to zero.
20. All the neighbors of the particle xti are found (See figure 1).
21. The magnetic force applied to the particle xti from its neighbors is found as,

Fi,k =
(xtu,k − xti,k ×Btu)

D(xtu,k, x
t
i,k)

, (8)

where D(., .) represents the distance between two neighboring particles and is calculated as,

Dis(xtu,k, x
t
i,k) =

1

n

n∑
k=1

|
xtu,k − xti,k
uk − lk

|, (9)

and xu is the u-th neighbor of the particle xi.
Since the distance between two particles depends on the domain of the search space, it is normalized

(see [10]).
24. In the “for” loop the location of the particles is updated.
25. The location and the velocity of the particle xt+1

i,k are updated as,

vt+1
i,k =

Fi,k
Mi
×R(lk, uk), (10)

xt+1
i,k = xti,k + vt+1

i,k , (11)

where Fi,k is the force applied to the i-th particle, vt+1
i,k and Mi are the velocity and the mass of i-th particle

respectively and
Fi,k
Mi,k

determines the magnitude and the direction of the particle xt+1
i,k .
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27. At the end of each iteration, ρ is updated through linear summation of the mean of αA and the
current value of ρ as,

ρ = (c− 1)× ρ+ c× (meanL(ρA)), (12)

where c is a constant positive value between 0 and 1 that makes a trade-off between the past experience
of ρ and the successful experiences of ρ in the current iteration and meanL(.) is the Lehmer mean that is
calculated as,

meanL(ρA) =

∑
k∈ρA k

2∑
k∈ρA k

. (13)

In the proposed update strategy, the value of ρ is determined by two parts of the equation. In the
equation, the parameter c controls the emphasis on each part. The first part is the current ρ that comes
from the current value of the parameter. The current value of the parameter has been found in previous
iterations so represents the past experience of the algorithm. The second part is mean(ρa) which is the
average of the best values of the parameter in the current iteration. Therefore, the second part represents
the best value of the parameter in the current iteration.

28. Similarly α is updated as,

α = (c− 1)× α+ c× (meanL(αA)). (14)

29. The jumping rate value Jr is updated as,

Jr = (c− 1)× Jr + c× (meanS(αA)), (15)

where meanS(.) is the standard arithmetic mean.
For updating α and ρ we use the Lehmer mean and for Jr the arithmetic mean, as our studies showed that

these are better choices. The difference between Lehmer and arithmetic mean is that Lehmer propagates
larger α and ρ values while arithmetic propagates smaller values.

4. Discussion of Parameter Setting

In this section, we first study the proposed parameter setting technique, by finding the relation between
the problem size and the parameters. We then study the performance of the proposed parameter adaptation
technique by comparing it with two well-known parameter setting techniques.

4.1. Parameter Study

The proposed algorithm uses the same strategy for storing and updating parameter values as JADE [22].
However, the major difference here is that instead of updating all the parameters in one process, our proposed
scheme updates each parameter independently. The advantage of this method is that the parameters do
not intervene and each parameter has the opportunity to move towards its desired optimal value. In JADE
however, since the algorithm evaluates the performance of all the parameters in one process and measures
the combined performance, the parameters intervene and some parameters distract the others.

In this section we analyse the performance of the proposed algorithm and that of JADE to show the
advantage of our algorithm. To do so, we find the best value for each of the parameters at each itera-
tions. We find this best value by giving different values to each parameter at each iteration and mea-
suring the performance of the algorithm when each of the values are used. Then we pick the value
that offers the best performance and move to next iteration. The set of values for the parameters are
αb = best(0.001, 0.01, 0.2, 0.6, 1, 2, 5, 10, 30, 50, 100), rhob = (0.001, 0.01, 0.2, 0.6, 1, 2, 5, 10, 30, 50, 100) and
Jrb = (0.3, 0.45, 0.6, 0.8, 1). Doing so, we can compare the best values for the parameters at each itera-
tion and the best parameters offered by the algorithms. Figure 2 shows the result of the analysis on the
parameters of FMOA where the proposed scheme is compared with JADE’s scheme and the parameter value.
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Figure 2: The best parameters at each iteration found by the proposed algorithm and JADE.

Figure 2-a, shows the best value for the parameter α found with different methods. The dotted line
shows the best parameter at each iteration. As shown in this figure, the parameter offered by the proposed
algorithm moves from the starting point to the best value, which means that it has been able to detect
the position of the best value. In this figure, JADE has also been able to detect the position of the best
parameter, but its movement is much slower than that of the proposed algorithm. We believe this could
be attributed to the fact that JADE evaluates the combined performance of all the algorithms at the same
time and therefore is less capable of measuring the true value of the best parameter. This results in a slow
movement toward the best value. The best parameters offered by each of the algorithms for the parameter
ρ is shown in figure 2-b. For this parameter, both the algorithms behave similarly and reach the best
parameter rapidly.

The interesting behaviour is seen for the parameter Jr in figure 2-c, where the proposed algorithm rapidly
reaches and follows the best parameter, while JADE does not even find the best parameter and moves away
from it. The parameter jr controls the opposition movement which has the role of exploring the search
space. A greater jr means an explorative and a smaller jr means a more exploitative algorithm. As seen in
figure 2-a and b, the values that JADE offers for α and ρ are smaller that the best value for the parameters.
Smaller α and ρ means that the particles have smaller mass than they should have. Particles with smaller
mass are more affected by other particles and move rapidly towards better particles. This means that small
α and ρ result in rapid convergence around local optima. We believe the reason that JADE offers a much
greater jr is to make the algorithm more explorative to help it escape from local optima. In other words, a
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Figure 3: The analysis on the proposed method when different initial values are used for Jr.

large value for jr to some extent cancels the small values offered for α and ρ.
Figure 2-d represents the fitness of the best found solution versus the iteration of the algorithm on a

log-log scale. Obviously, the mechanism that uses the best parameter archives the best performance. This
is because it exhaustively checks all the values for the parameter and chooses the best one. This may offer
the best performance, but it is not practical as it is extremely time consuming (Finding the best parameter
at each iteration takes N × δ instructions, where N is the number of parameters and δ is the number of
instructions it takes to run the algorithm for one iteration). After that is the proposed algorithm which has
reached a reasonably good performance compared to JADE.

As shown in the presented analysis, the proposed algorithm can adapt the parameters of the algorithm
and move them toward the value that offers the best performance. This, in some sense, makes the algorithm
parameterless, as the parameters adapt themselves and there is no need for setting the parameters before
using the algorithm. These parameters, however, should start from an initial value where the proposed
parameter adaptation algorithm moves them towards the best value. The question here is to what extent
this initial value affects the movement of the parameters. Figure 3 shows the parameter Jr when the proposed
parameter adaptation algorithm is used. The graph shows the parameter at each iteration for different initial
values of Jr = (0, 0.2, 0.4, 0.6, 0.8, 1). As shown in this figure, regardless of the initial value of the parameter,
it always converges to the best value of the parameter. This clearly suggests that the proposed algorithm is
not sensitive to the initial value of the parameters, and so the algorithm is parameterless.

4.2. Comparison with two famous parameter setting techniques

In order to study the performance of the proposed adaptive parameter approach, we compare it with two
famous parameter setting techniques, the systematic parameter setting [14, 10] and the automatic algorithm
configuration (iterated F-Race) [19]. We call the proposed algorithm with iterated F-Race FRFMOA and the
proposed algorithm with systematic approach OMOA. First we provide a short overview of these techniques.

1. Systematic parameter setting

(a) Definition: By discritizing the parameter space and evaluating its all possible values, this method
systematically finds the best value for each parameter of the algorithm. In this strategy, first a
large range is given to the algorithm making sure that the best parameter value is within this
range. Thus the best results versus the parameter forms a “U” shape (in a minimization problem).
Then knowing where the bottom of the “U” is located, we find a rough idea about the location of
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Table 1: Best parameter for OMOA on 21 benchmark functions. The results are averaged over 50 runs.

Algorithm Parameter f1 f2 f3 f4 f5 f6 f7 f8 f9
α 0.4 0.4 1 0.2 0.6 1 0.6 0.4 0.01

OMOA
ρ 1 1 0.6 1 1 0.2 0.2 0.2 0.8
Jr 0.3 0.3 0.3 0.45 0.3 0.6 0.6 0.6 0.6

Algorithm Parameter f10 f11 f12 f13 f14 f15 f16 f17 f18
α 0.4 0.4 0.001 0.2 1 0.8 0.2 0.01 0.6

OMOA
ρ 1 1 0.001 0.2 0.6 1 0.2 0.001 0.4
Jr 0.3 0.45 0.6 0.3 0.3 0.3 0.45 0.6 0.45

Algorithm Parameter f19 f20 f21 f22 f23 f24 f25 f26 f27
α 0.2 1 0.6 1 0.6 0.2 0.001 0.001 0.2

OMOA
ρ 1 1 1 0.2 0.001 0.01 0.2 0.2 0.01
Jr 0.3 0.3 0.3 0.3 0.45 0.6 0.6 0.6 0.6

the best parameters. We then shrink the domain from both sides focusing on the best parameters
to get a better resolution picture of the best parameters. For more information about this strategy
the readers are referred to [10].

(b) Parameter setting with systematic approach: Table 1 represents the best parameters found
over 50 runs for OMOA on 27 benchmark problems.

2. F-Race:

(a) Definition:
Instead of discretizing and checking all the possible values of the parameters, this strategy finds
the best parameters for the algorithm by performing a search process on the parameter space.
First several configurations of parameters are randomly generated. Then the configurations race
against one another over a set of problem instances. At each iteration of the F-race algorithm,
a set of best parameter configurations is selected for generating new candidate configurations for
the next iterations. The race is finished and the best candidate configuration is reported when
the tuning time budget is exhausted or when only one candidate configuration remains in the
race.
The main advantage of F-Race over checking all the possible values of the parameters is when the
algorithm has a large number of parameters. For such problems, it is usually very expensive or
sometimes impossible to check all the possible values. The other advantage is when the algorithm
is to be used for a new problem. In such a case, it is very hard to know the best parameters for
the new problem unless an expensive parameter setting is performed. Since F-Race performs the
parameter search on a number of problem instances and finds the best parameters that work the
best on these problem, it has the ability to generalize the best parameters for a set of problems.
Despite all these benefits, this algorithm still has some weaknesses. First it only can generalize the
parameters according to the problem instances on which the parameter setting is performed. So
the parameters may not be the best for a completely new problem that shows different properties
from the previous problems. Second it finds a set of parameters that, on average, work the best
for a number of problems. So this set of parameters is not necessarily the best for each of these
problem individually. And finally when the parameters are set, they are constant throughout the
search process. Obviously, it is better to have variable parameters that adapt during the search
process.

(b) Parameter setting with F-Race: Table 2 shows the parameter setting via F-Race. Note that
the suggested values are obtained from all 21 benchmark problems; so they will be used for all
the problems.

Table 2: The best parameter configuration for OMOA on 21 benchmark functions. The results are averaged over 50 runs.

Parameter Value
α 86.6102
ρ 93.01561
Jr 0.7958435

Comparing with F-Race and Systematic approach: The proposed adaptive parameter
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Table 3: The experimental results for the FMOA, FRFMOA and OMOA for 9 unimodal benchmark problems. The best results
are bolded.

D=100
f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA
Mean -1.67e-1 -3.60e-1 -1.04e-1 -9.80e+1 -1.62e-9 -6.24e-7 -5.13e-3 -1.48e+3 -1.02e+6
Std 8.00e-2 6.38e-2 2.06e-2 3.21e-3 9.59e-10 2.16e-6 7.89e-4 3.44e+2 5.81e+6

FRFMOA
Mean -1.57e+5 -8.43e+29 -7.14e+1 -1.21e+4 -1.56e-3 -8.44e-4 -8.20e-3 -2.79e+3 -7.57e+8
Std 7.84e+3 2.33e+30 1.69e+0 8.60e+2 8.24e-5 5.11e-4 1.38e-3 5.14e+2 2.97e+8

OMOA
Mean -1.41e-1 -3.18e-1 -8.10e-2 -9.68e+1 -1.54e-9 -6.67e-9 -4.24e-3 -1.45e+3 -5.39e+3
Std 6.59e-2 1.00e-1 2.55e-2 7.23e+0 8.12e-10 5.40e-9 6.30e-4 1.29e+2 2.64e+3

D=500
f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA
Mean -2.19e+0 -3.92e-1 -2.53e-2 -6.31e+2 -1.50e-6 -2.21e-7 -2.06e-2 -1.58e+3 -2.51e+8
Std 1.52e+1 6.94e-2 4.25e-3 3.54e+2 1.06e-5 6.41e-7 1.46e-3 4.13e+2 9.69e+8

FRFMOA
Mean -1.40e+6 -2.37e+262 -9.42e+1 -1.67e+5 -1.40e-2 -1.57e-4 -3.64e-2 -3.39e+3 -6.62e+11
Std 2.49e+4 Inf 3.39e-1 4.03e+3 2.60e-4 2.16e-4 2.35e-3 7.75e+2 1.60e+11

OMOA
Mean -4.23e+2 -2.46e+262 -1.98e-2 -5.20e+2 -1.08e-5 -2.71e-7 -2.09e-2 -1.07e+3 -3.77e+9
Std 2.13e+3 Inf 7.47e-3 1.67e+2 3.86e-5 1.60e-6 2.46e-3 7.61e+1 2.14e+10

D=1000
f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA
Mean -1.81e+3 - -1.36e-2 -1.03e+3 -3.93e-5 -5.16e-7 -4.44e-2 -2.64e+3 -1.85e+10
Std 1.02e+4 - 2.63e-3 2.69e+2 1.39e-4 1.60e-6 2.79e-3 6.23e+2 7.89e+10

FRFMOA
Mean -2.99e+6 - -9.71e+1 -3.79e+5 -3.00e-2 -1.65e-4 -7.14e-2 -3.82e+3 -1.24e+13
Std 4.25e+4 - 1.82e-1 7.03e+3 2.92e-4 3.71e-4 3.74e-3 8.81e+2 4.36e+12

OMOA
Mean -1.71e+3 - -1.11e-2 -1.16e+3 -1.79e-10 -4.22e-6 -4.44e-2 -9.60e+2 -2.41e+11
Std 8.70e+3 - 4.94e-3 5.54e+2 1.12e-10 1.92e-5 2.76e-3 1.62e+2 1.24e+12

setting is compared with F-Race and systematic approach on 21 benchmark functions over 3
different problem size, D = 100, 500 and 1000.
Tables 3 and 4 show the results obtained by FMOA, FRFMOA and OMOA on 21 benchmark
functions, where “Mean” and “Std” are the mean and standard deviation of fitness values obtained
by each algorithm over 50 runs.

As shown in Table 3, OMOA offers the best results when the dimensionality is equal to 100-D.
However, as the dimensionality increases, FMOA performs the best on f1, f2, f5, f6, f7 and f9 for
D = 500 and on f4, f6, f7 and f9 for D = 1000. As shown in Table 4, MOA and FMOA perform
the best on some problems and both show high-quality results for most problems. However,
the main advantage of FMOA over OMOA is that there is no need to set its parameters before
running it on a problem, because as mentioned earlier, its parameters are adaptively adjusted
during the optimization.

Table 6 shows the Friedman test among FMOA, FRFMOA and OMOA for different benchmark prob-
lems of different size. As shown in this table, in unimodal problems for size of the problems up to
500, FMOA achieves the best results. Then, as the problem size increases, OMOA reaches FMOA. In
multimodal problems, the results are different and as the problem size grows, FMOA reaches better
results. Interestingly, for all the problems, the friedman test shows that FMOA reaches similar results
to those of OMOA. This indicates that FMOA offers good performance, despite the fact that the
expensive parameter setting process is removed.

5. Experimental Results

In this section we first give a short description about the numerical functions used for comparison.
Then, using a RLDs measurement technique, we investigate the effect of OBL on the performance of the
proposed algorithm. Next, we compare FMOA with seven well-known population-based algorithms including
GA [29], PSO [30], DE [31], ES [32], FES [33], EP [34] and FEP [35] on the benchmark functions. Finally,
we compare FMOA with nine state-of-the-art optimization algorithms including MASW [36], MASSW [36],
CCPSO2 [37], JADE [22], 3SOME [38], PMS [39], BBO [40], ODE [41] and CMAES [42].
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Table 4: The experimental results for FMOA, FRFMOA and OMOA for 18 multimodal benchmark functions. The best results
are bolded.

D=100
f10 f11 f12 f13 f14 f15 f16 f17 f18

FMOA
Mean 6.17e+3 -8.74e-2 -6.58e-2 1.15e+0 1.61e+2 -1.05e-1 1.57e+1 9.88e+1 3.05e+0
Std 2.42e+3 4.93e-2 1.34e-2 7.98e-2 5.10e+1 3.12e-3 2.47e+0 5.27e+0 3.02e-1

FRFMOA
Mean 5.54e+3 -1.32e+3 -2.01e+1 -1.40e+3 -8.39e+4 -1.28e+5 6.99e+0 4.95e+1 -2.24e+6
Std 7.57e+2 4.75e+1 8.12e-2 6.33e+1 3.78e+3 3.98e+3 5.20e-1 1.20e+0 2.07e+5

OMOA
Mean 2.36e+4 -8.00e-2 -8.03e-2 1.22e+0 -2.95e-2 -1.06e-1 1.31e+1 9.99e+1 4.20e+1
Std 8.53e+3 4.19e-2 2.08e-2 1.48e-1 8.37e-4 3.80e-3 8.36e-1 2.02e-2 3.06e+0

D=500

FMOA
Mean 1.41e+4 -1.84e-2 -2.52e-1 -1.16e+1 3.35e+1 -1.91e+2 1.70e+1 4.47e+2 3.32e+0
Std 3.27e+3 8.74e-3 1.19e+0 4.95e+1 1.92e+1 1.34e+3 1.81e+1 8.81e+1 3.09e-1

FRFMOA
Mean 1.15e+4 -8.58e+3 -2.10e+1 -1.26e+4 -6.89e+5 -9.50e+5 9.93e+0 2.09e+2 -1.79e+8
Std 1.29e+3 1.00e+2 1.80e-2 2.11e+2 1.03e+4 1.38e+4 6.05e-1 2.28e+0 4.91e+6

OMOA
Mean 1.89e+5 -2.35e-2 -1.13e-2 9.70e-1 2.81e+1 -4.98e+1 2.60e+1 4.29e+2 -7.10e+3
Std 3.32e+4 2.11e-2 3.47e-3 5.19e-2 5.63e+0 3.18e+2 1.29e+0 9.83e+1 3.52e+4

D=1000

FMOA
Mean 3.26e+4 -6.63e+1 -9.91e-2 -5.40e+0 2.65e+1 -3.42e+1 2.33e+1 9.08e+2 -4.56e+0
Std 4.04e+4 4.69e+2 6.37e-1 4.33e+1 1.33e+1 1.28e+2 2.63e+1 1.68e+2 5.59e+1

FRFMOA
Mean 1.54e+4 -1.76e+4 -2.11e+1 -2.71e+4 -1.47e+6 -2.00e+6 1.18e+1 4.05e+2 -8.24e+8
Std 2.72e+3 1.58e+2 1.67e-2 4.15e+2 1.46e+4 2.21e+4 7.84e-1 3.99e+0 1.83e+7

OMOA
Mean 3.23e+5 -1.17e-1 -2.22e-1 9.19e-1 -1.15e+1 -1.00e-1 2.66e+1 7.77e+2 -4.78e+4
Std 7.71e+4 7.20e-1 1.10e+0 6.42e-2 2.62e+2 3.54e-4 2.61e+0 2.06e+2 1.62e+5

Table 5: The experimental results for FMOA, FRFMOA and OMOA for 18 multimodal benchmark functions. The best results
are bolded.

D=100
f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA
Mean -1.77e+3 4.39e+1 -2.89e+4 -1.45e+03 -4.13e+01 -7.92e+10 -1.48e+03 -4.21e+01 -1.77e+11
Std 9.02e+1 4.92e-2 1.74e+3 1.05e+03 2.64e-01 7.94e+09 3.99e+01 1.03e-01 7.24e+09

FRFMOA
Mean -2.36e+3 4.39e+1 -6.76e+4 -7.61e+08 -4.23e+01 -1.85e+11 -1.94e+03 -4.25e+01 -4.71e+11
Std 1.21e+2 3.24e-2 7.30e+3 2.62e+08 1.29e-01 3.19e+10 5.79e+01 1.24e-01 4.52e+10

OMOA
Mean -1.58e+3 4.39e+1 -2.78e+4 -9.22e+03 -4.07e+01 -6.93e+10 -1.56e+03 -4.15e+01 -1.70e+11
Std 5.55e+1 2.61e-2 2.23e+3 1.31e+04 4.85e-01 1.18e+10 4.27e+01 1.05e-01 1.05e+10

D=500
f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA
Mean -9.59e+3 4.37e+1 -2.31e+5 -9.33e+04 -1.25e+02 -4.06e+11 -8.33e+03 -2.11e+02 -9.30e+11
Std 2.53e+2 4.27e-2 5.41e+3 6.92e+04 2.53e-01 1.42e+10 1.06e+02 3.18e-01 1.80e+10

FRFMOA
Mean -1.33e+4 4.38e+1 -7.76e+5 -5.87e+11 -1.28e+02 -1.80e+12 -1.15e+04 -2.15e+02 -3.99e+12
Std 3.25e+2 2.29e-2 2.38e+4 1.82e+11 1.53e-01 8.10e+10 2.11e+02 1.87e-01 1.35e+11

OMOA
Mean -9.36e+3 4.38e+1 -2.31e+5 -2.74e+09 -1.25e+02 -4.03e+11 -8.52e+03 -2.11e+02 -9.30e+11
Std 2.31e+2 2.69e-2 6.44e+3 1.70e+10 2.19e-01 1.31e+10 8.12e+01 2.27e-01 1.78e+10

D=1000
f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA
Mean -1.95e+4 4.37e+1 -4.87e+5 -3.37e+10 -2.29e+02 -9.85e+11 -1.72e+04 -4.23e+02 -1.95e+12
Std 3.99e+2 3.88e-2 8.71e+3 2.38e+11 2.91e-01 1.69e+10 1.71e+02 3.61e-01 2.21e+10

FRFMOA
Mean -2.70e+4 4.38e+1 -1.72e+6 -1.30e+13 -2.36e+02 -4.25e+12 -2.40e+04 -4.30e+02 -8.83e+12
Std 4.46e+2 2.69e-2 5.22e+4 5.04e+12 1.60e-01 1.08e+11 1.86e+02 1.75e-01 1.84e+11

OMOA
Mean -1.92e+4 4.38e+1 -4.87e+5 -3.34e+11 -2.29e+02 -9.89e+11 -1.75e+04 -4.23e+02 -1.94e+12
Std 3.47e+2 2.00e-2 8.38e+3 1.55e+12 2.87e-01 1.91e+10 1.14e+02 1.48e-01 2.85e+10

Table 6: The Friedman Test for all the problems where D = 100, 500 and 1000.

Unimodal Multimodal Both and multimodal
Algorithm FMOA FRFMOA OMOA FMOA FRFMOA OMOA FMOA FRFMOA OMOA
D = 100 18 9 27 42 18 48 69 27 66
D = 500 24 9 21 43 18 47 67 27 68
D = 1000 20 8 20 45 18 45 63 27 63
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5.1. Test problems

A selected set of benchmark problems consisting of 27 global optimization problems that are usually
used in the literature [10, 38, 39, 22] is used in this paper to test the proposed algorithm. These problems
are listed in Table 7.

In general, with regard to their modality, these problems are categorized into two classes. The first class
is the set of unimodal problems with only one global optimum (f1 − f9) and no local optima in the search
space. The second class is the multi-modal problems with a large number of local optima (f10 − f27) and
one or more global optima. Obviously the second class are the harder problems to solve.

5.2. The benefit of the OBL approach

In this section, we study the performance of the proposed algorithm when OBL operator is applied. To
do so, we use the qualified Run-Length Distributions (RLDs), which is a statistical tool for evaluating and
comparing algorithms [48]. Note that in this section we only study the OBL operator, so the parameters
of the algorithm are tuned using the systematic approach. The best parameters for the algorithm are
represented in Table 1.

RLDs attempts to answer the question of “how to empirically measure the run-time behavior of an
algorithm on a given problem?”. RLDs provides a graphical view of the progress of the likelihood of finding
a solution for a problem with a certain quality over a large number of runs.

RLDs has a number of elements. The cumulative probability distribution RLDs of an algorithm, is
defined as,

Pd = P (RT <= l, SQ <= q′), (16)

where q′ is a predefined solution quality (fitness), P is the probability of finding a solution whose quality,
SQ, is better than or equal to the predetermined solution quality q′ and the function evaluation spent to
find the solution (RT ) is less than or equal to l function evaluations.

To empirically obtain the algorithm’s RLDs, the following steps are taken.
1- The algorithm is run for a specific number of function evaluations l. It is terminated when either the

maximum number of function evaluations l is reached (RT ≥ l) or a solution is found that is better than or
equal to the pre-specific quality q′ (SQ ≥ q′).

2- Step 1 is iterated until the total number of independent runs A is reached.
3- The success rate of the algorithm is measured through the following formula,

Sr =
S

R
, (17)

where S is the number of independent runs that the algorithm has successfully reached q′.
In order to provide a better chance of finding a predetermined solution (q′), we set it in a way that both

algorithms can find it within l function evaluations.
The total number of runs is set to 100; the number of function evaluations l is set to 106 for all the

problems where the size of the population for both algorithms is equal to 50. While MI (the maximum
number of iterations) for MOA is constant and is equal to 20000. For MOA with OBL procedure it is
not fixed and is affected by the number of times OBL operator is performed during the run, as each time
OBL operator is performed, one solution should be evaluated. We call MOA with the OBL procedure as
Opposition-based Magnetic Optimization Algorithm (OMOA) to distinguish it from the original version of
MOA.

Figure 4 shows the RLDs plot of MOA and OMOA on f2 as a representative of unimodal problems
and f10 as a representative of unimodal problems. The number in the brackets in each plot represents the
pre-determined solution quality q′ for each problem.

As shown in figure 4, OMOA reaches the predetermined solution quality much faster than MOA. We
performed a similar test on all unimodal (f1− f9) and mulimodal (f10− f27) problems and achieved similar
results, although the results were not reported in this paper.
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Table 7: The benchmark problems used in this paper.

benchmark function Search range Reference

f1(x) = −
∑n
i=1 x

2
i [-100,100] [43]

f2(x) = −
∑n
i=1 |xi| −

∏n
i=1 |xi| [-10,10] [43]

f3(x) = −maxi {|xi|, 1 ≤ i ≤ n} [-100,100] [43]

f4(x) = −
∑n−1
i=1 100

(
xi+1 − x2i

)2 − (1− xi)2 [-2,2] [44]

f5(x) = −
∑D
i=1 (10

6)
i−1
D−1 x2i [-10,10] [44]

f6(x) = −
∑D
i=1 (10

6)
i−1
D−1 z2i , z = x×M [-10,10] [45]

f7(x) = frot−elliptic[z(P1 : Pm)] ∗ 106 + felliptic[z(Pm+1 : Pn)] [-10,10] [45]

f8(x) = frot−schwefel[z(P1 : Pm)] ∗ 106 + fschwefel[z(Pm+1 : Pn)] [-100,100] [45]

f9(x) = −
∑n
i=1

(∑i
j=1 xj

)2
[-65.5,-65.5] [43]

f10(x) =
∑n
i=1

(
xi sin

√
|xi|
)

[-500,500] [43]

f11(x) = −
∑n
i=1(x

2
i − 10 cos (2πxi) + 10) [-5.12,5.12] [43]

f12(x) = 20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
+ exp

(
1
n

∑n
i=1 cos(2πxi)

)
− 20− e [-32,32] [43]

f13(x) =
−1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1 [-600,600] [43]

f14(x) = −πn{10 sin
2(πy1) +

∑n−1
i=1 (yi − 1)2 × [1 + 10 sin2(πyi+1)] [-50,50] [43]

+(yn − 1)2} −
∑n
i=1 u(xi, 10, 100, 1)

f15(x) =
−1
10
{sin2(3πx1) +

∑n−1
i=1 (xi − 1)2

[
1 + sin2(3πxi+1)

]
[43]

+(xn − 1)2
[
1 + sin2(2πxn)

]
} −

∑n
i=1 u(xi, 5, 100, 1) [-50,50] [43]

f16(x) =
∑n
i=1

(
sin(xi)×

(
sin
(
ix2i
π

))2n)
[−π, π] [46]

f17(x) =
∑n
i=1 gihi [-1,1] [47]

gi = [sin(5πxi + 0.5)]2, hi = exp
(
−2.0 log(2.0) (xi−0.1)2

0.64

)
f18(x) = −

∑n
i=1 ix

4
i −Gauss(0, 1) [-10,10] [46]

f19(x) = frot−rastrigin[z(P1 : Pm)] ∗ 106 + frastrigin[z(Pm+1 : Pn)] [-5.12,5.12] [45]

f20(x) = frot−ackley[z(P1 : Pm)] ∗ 106 + fackley[z(Pm+1 : Pn)] [-32,32] [45]

f21(x) = frot−rosenbrock[z(P1 : Pm)] ∗ 106 + frosenbrock[z(Pm+1 : Pn)] [-2,2] [45]

f22(x) =
∑ D

2m
i=1 frot−rastrigin[z(P(k−1)∗m+1 : Pk∗m)] + frastrigin[z(PD

2
+1 : PD)] [-2,2] [45]

f23(x) =
∑ D

2m
i=1 frot−ackley[z(P(k−1)∗m+1 : Pk∗m)] + fackley[z(PD

2
+1 : PD)] [-2,2] [45]

f24(x) =
∑ D

2m
i=1 frosenbrock[z(P(k−1)∗m+1 : Pk∗m)] + fsphere[z(PD

2
+1 : PD)] [-2,2] [45]

f25(x) =
∑D

m
i=1 frot−rastrigin[z(P(k−1)∗m+1 : Pk∗m)] [-2,2] [45]

f26(x) =
∑D

m
i=1 frot−ackley[z(P(k−1)∗m+1 : Pk∗m)] [-2,2] [45]

f27(x) =
∑D

m
i=1 frosenbrock[z(P(k−1)∗m+1 : Pk∗m)] [-2,2] [45]
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Figure 4: RLDs on f1 and f10 benchmark functions for MOA and OMOA. Each RLD is obtained with 50 particles. The results
are averaged over 100 independent runs and 106 function evaluations.

Another interesting characteristic seen in figure 4 is the ‘slope’ of the curves that represents useful
information about the behavior of the algorithms [49]. A steeper RLDs indicates that the algorithm reaches
the pre-specified quality much easier. OMOA has steep curves; conversely, the MOA algorithm has less
steep curves indicating that the problem is challenging for the algorithm.

The stagnation behavior is another feature that can be inferred from RLDs. An algorithm shows the
stagnation behavior whenever its performance growth significantly declines or stops advancing. As shown
in figure 4, while MOA shows strong stagnation behavior, OMOA shows steady progress.

The comparisons suggest that applying the OBL significantly improves both the performance and con-
vergence rate of the algorithm.

5.3. Boundary Handling

In order to detect and handle the infeasible solutions generated during the optimization process, there
are different boundary constraint handling techniques. Among them random reinitialization (RR) strategy
is the most unbiased technique [50, 51]. In this strategy, the variables that violate the boundaries (upper or
lower boundary) are randomly reinitialized within the range of lb and ub where lb, ub are the lower and the
upper boundaries of variables for a specific problem. Another strategy that has recently come to surface is
Boundary Adjustment (BA) technique [52], in which the variables that exceed boundaries are projected on
bounds. The last strategy studied in this paper is the Reflection Strategy (RS) that is proposed by Jani et
al. in [53]. In this technique, the variables that violate the boundaries are fixed by reflecting back from the
infeasible values.

In this section, in order to evaluate these strategies, we use the 27 benchmark problems where n = 100.
In order to make a fair comparison, parameters and population size are set according to table 12,table 17
and table 10. For all the algorithms, the number of FE is set to 50000. Table 8 summarizes the results of
this experiment for different boundary handling techniques.

As shown in table 8, the stochastic strategy has achieved the best results for all the algorithms except
OMOA and BBO. Therefore, hereafter, we use the BA strategy for all the algorithms except OMOA and
BBO and for the OMOA and BBO, we employ the RR strategy for the boundary handling.

5.4. Solution Representation

Usually, a real-encoding scheme is used by research papers [22, 37, 30, 29, 31, 41] for mathematical
optimization problems, including the ones we have used here for the test functions. However, in this section
in order to investigate the efficiency of the real-encoding scheme, we compare the scheme with integer-
encoding and binary-encoding schemes. For the sake of comparison, all the 27 problems are used where
D = 100. Like the previous section, the number of FE for all the algorithms is set 50000 and the population
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Table 8: The best handling constraint technique for all the algorithms and for all the 27 benchmark functions where D = 100.

Problem f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
FMOA BA BA BA BA BA BA BA BA BA BA BA BA BA BA

MOA BA BA BA BA BA BA BA BA BA BA BA BA BA BA

OMOA RR RR RR RR RR RR RR RR RR RR RR RR RR RR

GA BA BA BA BA BA BA BA BA BA BA BA BA BA BA

PSO BA BA BA BA BA BA BA BA BA BA BA BA BA BA

DE BA BA BA BA BA BA BA BA BA BA BA BA BA BA

ES BA BA BA BA BA BA BA BA BA BA BA BA BA BA

FES BA BA BA BA BA BA BA BA BA BA BA BA BA BA

EP BA BA BA BA BA BA BA BA BA BA BA BA BA BA

FEP BA BA BA BA BA BA BA BA BA BA BA BA BA BA

3SOME RR RR RR RR RR RR RR RR RR RR RR RR RR RR

PMS RR RR RR RR RR RR RR RR RR RR RR RR RR RR

MASW RR RR RR RR RR RR RR RR RR RR RR RR RR RR

MASSW BA BA BA BA BA BA BA BA BA BA BA BA BA BA

CCPSO2 BA BA BA BA BA BA BA BA BA BA BA BA BA BA

JADE BA BA BA BA BA BA BA BA BA BA BA BA BA BA

BBO RR RR RR RR RR RR RR RR RR RR RR RR RR RR

ODE BA BA BA BA BA BA BA BA BA BA BA BA BA BA

CMAES BA BA BA BA BA BA BA BA BA BA BA BA BA BA

Problem f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27
FMOA BA BA BA BA BA BA BA BA BA BA BA BA BA

MOA BA BA BA BA BA BA BA BA BA BA BA BA BA

OMOA RR RR RR RR RR RR RR RR RR RR RR RR RR

GA BA BA BA BA BA BA BA BA BA BA BA BA BA

PSO BA BA BA BA BA BA BA BA BA BA BA BA BA

DE BA BA BA BA BA BA BA BA BA BA BA BA BA

ES BA BA BA BA BA BA BA BA BA BA BA BA BA

FES BA BA BA BA BA BA BA BA BA BA BA BA BA

EP BA BA BA BA BA BA BA BA BA BA BA BA BA

FEP BA BA BA BA BA BA BA BA BA BA BA BA BA

3SOME RR RR RR RR RR RR RR RR RR RR RR RR RR

PMS RR RR RR RR RR RR RR RR RR RR RR RR RR

MASW RR RR RR RR RR RR RR RR RR RR RR RR RR

MASSW BA BA BA BA BA BA BA BA BA BA BA BA BA

CCPSO2 BA BA BA BA BA BA BA BA BA BA BA BA BA

JADE BA BA BA BA BA BA BA BA BA BA BA BA BA

BBO RR RR RR RR RR RR RR RR RR RR RR RR RR

ODE BA BA BA BA BA BA BA BA BA BA BA BA BA

CMAES BA BA BA BA BA BA BA BA BA BA BA BA BA
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Table 9: The best handling constraint technique for all the algorithms and for all the 27 benchmark functions where D = 100.
The Real stands for real-encoding and Integer for integer-encoding and Binary for binary-encoding schemes.

Problem f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
FMOA Real Real Real Real Real Real Real Real Real Real Real Real Real Real
MOA Real Real Real Real Real Integer Real Real Real Real Real Real Real Real
OMOA Real Real Integer Real Real Real Real Real Real Real Real Real Real Real
GA Real Real Real Real Real Real Real Real Real Real Real Integer Real Real
PSO Real Real Real Real Real Real Real Real Real Real Integer Real Real Real
DE Real Real Real Real Real Real Real Real Real Real Real Real Real Real
ES Real Real Real Real Real Real Real Real Real Real Real Real Real Real
FES Real Real Real Real Real Real Real Real Real Real Real Real Real Real
EP Real Real Real Real Real Real Real Real Real Real Real Real Real Real
FEP Real Real Real Real Real Real Real Real Real Real Real Real Real Real
3SOME Real Real Real Real Real Real Real Real Real Real Real Real Real Real
PMS Real Real Real Real Real Real Real Real Real Real Real Real Real Real
MASW Real Real Real Real Real Real Real Real Real Real Real Real Real Real
MASSW Real Real Real Real Real Real Real Real Real Real Real Real Real Real
CCPSO2 Real Real Real Real Real Real Real Real Real Real Real Real Real Real
JADE Real Real Real Real Real Real Real Real Real Real Real Real Real Real
BBO Real Real Real Real Real Real Real Real Real Real Real Real Real Real
ODE Real Real Real Real Real Real Real Real Real Real Real Real Real Real
CMAES Real Real Real Real Real Real Real Integer Real Real Real Real Real Real
Problem f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27
FMOA Real Real Real Real Real Real Real Real Real Real Real Real Real
MOA Real Real Real Real Real Real Real Real Real Real Real Real Real
OMOA Real Real Real Real Real Real Real Real Real Real Real Real Real
GA Real Real Real Real Real Real Real Real Real Real Real Real Real
PSO Real Real Real Real Real Real Real Real Real Real Real Real Real
DE Real Real Real Real Real Real Real Real Real Real Real Real Real
ES Real Real Real Real Integer Real Integer Real Real Real Real Real Real
FES Real Real Real Real Real Real Real Real Real Real Real Real Real
EP Real Real Real Real Real Real Real Real Real Real Real Real Real
FEP Real Real Real Real Real Real Real Real Real Real Real Real Real
3SOME Real Real Real Real Real Real Real Real Real Real Real Real Real
PMS Real Real Real Real Real Real Real Real Real Real Real Real Real
MASW Real Real Real Real Real Real Real Real Real Real Real Real Real
MASSW Real Real Real Real Real Real Real Real Real Real Real Real Real
CCPSO2 Real Real Real Real Real Real Real Real Real Real Real Real Real
JADE Real Real Real Real Real Real Real Real Real Real Real Real Real
BBO Real Real Real Real Real Real Real Real Real Real Real Real Real
ODE Real Real Real Real Real Real Real Real Real Real Integer Real Real
CMAES Real Real Real Real Real Real Real Real Real Real Real Real Real

size and the parameters are set according to table 10, table 12 and table 17. The boundary violations
are also fixed and repaired according to the best boundary handling method for each algorithm in table 8.
Table 9 represents the averaged fitness of the algorithms where different solution representations are used
and all the 27 numerical problems with 100−D are utilized.

As shown in table 9, the best encoding scheme is real as it helps the algorithms achieve the best results
for most of the problems. The reason behind this is obvious. Since the benchmark problems used in this
paper are encoded with real values, the best values are obtained when the solutions are formatted with real
values. Hereafter we use the real-encoding scheme for all the experiments.

5.5. Population Setting

In population-based algorithms, the size of population affects the performance as it has a significant effect
on the diversity of solutions. In this section, we study the population size and it’s effect on the performance
of the algorithms. To do so, different population sizes Np=1,5,10,25,50,100,200,500 are considered and for
the test functions, all 27 problems with D = 100 are used. To make a fair comparison, the number of FE
for each of the experiments is set to 50000; that is for example if the number of iterations is set to 2000,
the size of the population is Np = 25. The parameters of the algorithms are also set according to table 12
and table 17. For the boundary handling and solution representation, we apply the best boundary handling
technique and the best solution representation found in table 8 and table 9, respectively. Table 10 lists the
best population size for all the algorithms on all the benchmark problems.
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Table 10: The best population size for FMOA, MOA, GA, PSO, DE, ES, FES, EP, FEP, 3SOME, PMS, MASW, MASSW,
CCPSO2, JADE, BBO and ODE on all benchmark functions where D = 100.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA 50 25 50 50 100 100 200 50 100
MOA 500 200 200 200 500 200 500 500 5
GA 25 50 100 25 500 50 50 50 100
PSO 100 100 100 100 100 100 100 100 100
DE 5 25 5 5 100 50 5 5 100
ES 200 200 200 200 100 200 200 200 200
FES 100 100 100 100 100 100 200 100 100
EP 200 50 500 100 50 100 10 500 200
FEP 10 25 200 50 100 100 50 200 500
3SOME 100 100 200 5 25 50 200 50 500
PMS 50 200 500 200 50 50 100 200 200
MASW 100 200 200 500 500 200 500 200 500
MASSW 50 50 100 25 100 50 100 50 100
CCPSO2 25 5 5 5 200 10 25 100 100
JADE 100 100 200 50 100 100 200 100 200
BBO 100 100 100 100 100 100 200 100 50
ODE 5 5 5 5 5 100 200 200 5
Algorithm f10 f11 f12 f13 f14 f15 f16 f17 f18

FMOA 500 25 50 100 200 5 50 50 25
MOA 500 5 200 200 500 100 50 50 25
GA 50 25 25 50 25 50 100 50 25
PSO 100 100 100 100 100 100 100 100 100
DE 5 5 25 5 5 5 5 25 5
ES 200 200 200 200 200 100 200 100 100
FES 100 100 100 100 100 100 200 100 100
EP 500 500 500 200 100 10 50 50 100
FEP 500 100 200 100 100 25 500 100 100
3SOME 50 500 200 50 500 25 500 10 25
PMS 200 50 10 25 200 5 500 10 25
MASW 200 500 200 200 100 200 200 100 50
MASSW 25 100 10 100 50 10 25 50 50
CCPSO2 5 5 5 5 5 5 5 5 5
JADE 100 100 100 100 100 100 25 100 100
BBO 100 100 100 100 100 100 100 200 100
ODE 200 5 5 5 5 5 5 200 50
Algorithm f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA 50 25 50 50 25 100 50 50 50
MOA 500 5 100 100 50 50 50 100 50
GA 500 500 50 50 25 50 100 50 100
PSO 100 100 100 100 100 100 100 100 100
DE 25 5 25 5 5 25 5 5 5
ES 100 100 200 200 200 200 200 200 100
FES 100 100 100 100 100 100 200 100 100
EP 100 50 200 500 50 50 200 10 50
FEP 50 100 200 100 100 50 200 25 25
3SOME 10 10 50 50 25 5 500 25 50
PMS 500 10 25 50 50 25 100 5 500
MASW 500 200 200 500 200 200 200 200 500
MASSW 50 100 100 50 25 50 100 50 50
CCPSO2 5 5 5 25 25 100 100 5 5
JADE 200 100 50 100 200 50 200 100 200
BBO 100 50 100 100 100 100 100 100 100
ODE 200 5 5 5 5 100 100 5 5
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Table 11: A brief description of the parameters of the traditional algorithms.

Algorithms Parameters Description

GA
M Mutation rate
R Crossover rate

PSO
C Acceleration coefficient factor
W Inertia weight factor

DE
F The differential amplification factor
O Crossover rate

ES
L The number of breeds produced at each generation
S The regulator parameter

FES
L The number of breeds produced at each generation
S The regulator parameter

EP T The tournament size for recombination operator
FEP T The tournament size for recombination operator

As shown in table 10, the best population size for each algorithm is different and varies from 5 to
500. In Some algorithms like PSO, ES, FES and BO, the best population size for different problems is
not significantly different, but in some other algorithms like ODE, 3SOME, PMS, the best population size
significantly changes. Hereafter, we will use the best population size found here for each algorithm and for
each problem.

Contrary to other algorithms that their population size is determined beforehand, in CMAES algorithm,
the size of population is related to the problem size (D) and as D grows the population size logarithmically
increases. It is defined based on the equation presented in [54].

5.6. Comparison with popular optimization algorithms

In this part, we compare the proposed algorithm with GA [29], PSO [30], DE [31], ES [32], FES [33],
EP [34] and FEP [35]. We first set the parameters of each algorithm to make a fair comparison between
them. Before setting the parameters, we provide a short description of the parameters of the algorithms,
represented in Table 11.

To set the parameters, we utilize the systematic parameter setting [14] method described in section 4.2.
As mentioned before, since the proposed algorithm uses the parameter adaptation technique, it has no
parameter to set. Table 12 exhibits the best parameters for each well-known population-based algorithm
for each benchmark function. The results are averaged over 50 runs.

After setting the parameters, we run each algorithm with the best parameters reported in table 12, the
best population size found in table 10 and the best handling technique and the best solution representation
reported in table 8 and table 9, respectively. The means and standard deviation of results obtained by the
proposed algorithm and the other algorithms for 9 unimodal and 18 multi-modal problems are summarized
in Table 13 and 14.

As shown in table 13, for all problem sizes (D = 100, 500 and 1000) FMOA offers the best performance
on f1-f5 and f9 and DE on f6 and f8. For f7, when the size of the problem is equal to 100, DE is superior,
but when the size of the problem increases it loses to FES.

As seen in table 14, for D = 100, FMOA is superior in terms of solution quality over the other algorithms
on 7 out of 9 multi-modal functions, GA on f10 and f16, FES on f19, f20 and DE on f21. Similarly, for
D = 500 and 1000 the proposed algorithm outperforms the other algorithms on 7 multi-modal problems,
GA on f10 and f16, FES on f19, f20 and f21.

From table 13 and 14, it can be observed that FMOA outperforms the other population based algorithms
on the both unimodal and multi-modal problems.

5.7. Comparison with State-of-the-art Optimization Algorithms

In this section, we compare the proposed algorithm with nine state-of-the-art algorithms, including
MASW [36], MASSW [36], CCPSO2 [37], JADE [22], 3SOME [38], PMS [39], BBO [40], ODE [41] and
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Table 12: Best parameters for GA, PSO, DE, ES, FES, EP and FEP on all benchmark functions.

Algorithm Parameter f1 f2 f3 f4 f5 f6 f7 f8 f9

GA
R 1 1 1 1 1 0.8 0.4 0.4 1
M 0.003 0.05 0.003 0.003 0.003 0.01 0.01 0.01 0.003

PSO
C 0.01 0.01 0.01 0.01 0.01 1 1 1 0.5
W 1 1 1 1 0 1 0.5 0.5 0.5

DE
O 0.01 0.4 0.1 0.4 0.1 0.01 0.8 0.1 0.01
F 0.8 0.1 0.1 0.1 0.4 0.8 0.1 0.4 1.2

ES
L 1 1 1 1 1 1 1 1 1
S 1.1 1.1 1.1 1.1 1.1 1.5 1.1 1.1 1.1

FES
L 1 1 1 1 1 0.8 1 1 1
S 1.1 1.1 1.1 1.1 1.1 2 1.1 1.1 1.1

EP T 0.1 0.1 0.2 0.1 0.1 0.4 0.1 0.1 0.3
FEP T 0.7 0.1 0.5 0.4 0.6 0.2 1 0.1 1
Algorithm Parameter f10 f11 f12 f13 f14 f15 f16 f17 f18

GA
R 1 1 1 1 1 1 1 0.8
M 0.003 0.003 0.01 0.003 0.003 0.003 0.05 0.01 0.01

PSO
C 0.01 0.01 1 0.01 0.01 0.01 1 1 0.01
W 1 1 0.5 1 1 1 0.5 0.5 0.5

DE
O 0.01 0.1 0.1 0.1 0.4 0.4 0.01 0.8 0.4
F 0.4 0.4 0.01 0.1 0.1 0.1 1.2 0.1 0.1

ES
L 1 1 1 1 1 1 1 1 1
S 1.1 1.1 1.2 1.1 1.1 1.1 1.1 5 1.1

FES
L 1 1 1 1 1 1 1 1 1
S 1.1 1.1 1.2 1.1 1.1 1.1 1.1 1.1 1.1

EP T 0.2 0.2 0.9 0.4 0.2 0.3 0.6 0.1 0.3
FEP T 0.2 0.5 0.1 0.9 0.1 0.4 0.4 0.5 0.6
Algorithm Parameter f19 f20 f21 f22 f23 f24 f25 f26 f27

GA
R 0.2 1 1 1 0.4 1 0.4 0.2 0.4
M 0.003 0.05 0.003 0.005 0.5 0.5 0.5 0.5 0.5

PSO
C 1 1 0.01 0.001 1.5 1.5 1.5 1.5 0.001
W 0.5 1 1 1 0.73 0.73 0.73 0.73 1

DE
O 0.01 0.4 0.4 0.8 0.2 0.4 0.2 0.2 0.4
F 0.8 0.1 0.1 0.1 0.5 0.1 0.5 0.5 0.1

ES
L 1 0.6 1 1 0.8 0.6 1 1 0.8
S 1.1 1.1 1.1 1.01 1.01 1.01 1.01 1.01 1.01

FES
L 1 1 1 1 1 1 1 1 1
S 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

EP T 0.1 0.7 0.1 1 0.5 0.1 0.5 0.3 0.5
FEP T 0.4 1 0.7 0.4 0.5 0.8 0.2 1 0.4
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Table 13: The experimental results for FMOA, GA, PSO, DE, ES, FES, EP and FEP on unimodal benchmark problems f1-f9.
The best results are bolded.

D=100
f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA
Mean -1.67e-1 -3.60e-1 -1.04e-1 -9.80e+1 -1.62e-9 -6.24e-7 -5.13e-3 -1.48e+3 -1.02e+6
Std 8.00e-2 6.38e-2 2.06e-2 3.21e-3 9.59e-10 2.16e-6 7.89e-4 3.44e+2 5.81e+6

GA
Mean -6.69e+2 -1.58e+1 -4.33e+1 -3.99e+2 -6.08e-6 -2.02e-4 -6.27e-3 -1.69e+3 -1.32e+8
Std 1.21e+2 1.39e+0 4.79e+0 5.58e+1 1.19e-6 4.69e-5 6.34e-4 2.29e+2 1.93e+7

PSO
Mean -1.55e+4 -1.30e+2 -3.42e+1 -8.70e+2 -1.56e-4 -5.10e-5 -3.98e-3 -1.10e+3 -4.12e+8
Std 2.76e+3 1.42e+1 3.36e+0 1.68e+2 2.75e-5 1.07e-5 2.67e-4 1.38e+2 6.06e+7

DE
Mean -4.57e+3 -1.52e+2 -5.57e+1 -5.09e+2 -4.41e-5 -5.47e-9 -1.27e-3 -3.13e+2 -7.23e+7
Std 5.61e+2 7.17e+0 1.81e+0 5.24e+1 6.31e-6 1.74e-9 2.21e-4 2.90e+1 7.49e+6

ES
Mean -6.66e+3 -3.89e+1 -5.88e+1 -7.03e+2 -7.30e-5 -6.33e-5 -2.03e-3 -8.07e+2 -1.77e+8
Std 1.28e+3 4.67e+0 2.92e+0 9.83e+1 1.23e-5 2.06e-5 3.86e-4 1.04e+2 4.37e+7

FES
Mean -5.36e+3 -3.05e+1 -6.16e+1 -6.69e+2 -5.66e-5 -6.62e-5 -1.67e-3 -7.50e+2 -1.83e+8
Std 8.83e+2 3.95e+0 3.06e+0 7.52e+1 1.00e-5 2.22e-5 3.65e-4 1.72e+2 4.31e+7

EP
Mean -2.04e+5 -3.31e+038 -8.90e+1 -1.52e+4 -2.05e-3 -2.97e-4 -6.97e-3 -2.01e+3 -9.00e+8
Std 1.13e+4 1.76e+039 2.01e+0 1.28e+3 1.08e-4 1.19e-4 1.12e-3 2.96e+2 2.49e+8

FEP
Mean -1.62e+5 -7.05e+029 -8.48e+1 -1.49e+4 -1.63e-3 -1.09e-4 -4.80e-3 -1.22e+3 -3.69e+8
Std 1.00e+4 2.05e+030 1.84e+0 1.10e+3 9.99e-5 1.94e-5 4.38e-4 1.79e+2 3.82e+7

D=500
f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA
Mean -2.19e+0 -3.92e-1 -2.53e-2 -6.31e+2 -1.50e-6 -2.21e-7 -2.06e-2 -1.58e+3 -2.51e+8
Std 1.52e+1 6.94e-2 4.25e-3 3.54e+2 1.06e-5 6.41e-7 1.46e-3 4.13e+2 9.69e+8

GA
Mean -1.84e+5 -5.50e+2 -8.31e+1 -1.54e+4 -1.85e-3 -4.71e-6 -3.19e-2 -1.73e+3 -9.77e+10
Std 1.09e+4 2.02e+1 1.09e+0 9.41e+2 9.05e-5 1.66e-6 1.08e-3 3.00e+2 7.53e+9

PSO
Mean -7.26e+4 -6.40e+2 -4.01e+1 -3.98e+3 -7.20e-4 -1.09e-6 -2.22e-2 -1.09e+3 -2.58e+11
Std 8.17e+3 4.96e+1 3.21e+0 4.86e+2 9.54e-5 3.22e-7 5.57e-4 1.21e+2 2.89e+10

DE
Mean -4.38e+5 -6.45e+125 -8.71e+1 -3.34e+4 -4.36e-3 -1.31e-10 -1.69e-2 -3.11e+2 -7.73e+10
Std 1.05e+4 2.13e+126 6.48e-1 1.36e+3 1.33e-4 4.97e-11 6.13e-4 3.05e+1 6.33e+9

ES
Mean -7.12e+5 -2.26e+117 -9.76e+1 -4.01e+4 -7.20e-3 -2.12e-6 -1.62e-2 -9.38e+2 -4.18e+11
Std 5.32e+4 1.60e+118 2.94e-1 3.58e+3 4.93e-4 9.36e-7 9.19e-4 1.78e+2 2.34e+11

FES
Mean -2.05e+5 -7.06e+2 -8.62e+1 -1.42e+4 -2.06e-3 -1.90e-6 -1.11e-2 -7.29e+2 -1.26e+11
Std 1.37e+4 3.61e+1 1.20e+0 1.43e+3 1.43e-4 5.43e-7 1.09e-3 1.25e+2 3.08e+10

EP
Mean -1.28e+6 -1.48e+234 -9.76e+1 -1.16e+5 -1.27e-2 -9.68e-6 -3.13e-2 -1.61e+3 -7.28e+11
Std 2.44e+4 Inf 3.18e-1 3.28e+3 3.36e-4 1.03e-5 1.03e-3 3.21e+2 2.11e+11

FEP
Mean -1.18e+6 -3.62e+220 -9.69e+1 -1.35e+5 -1.18e-2 -2.31e-6 -2.76e-2 -1.20e+3 -2.33e+11
Std 2.17e+4 Inf 2.94e-1 4.23e+3 2.08e-4 5.62e-7 8.01e-4 1.74e+2 2.18e+10

D=1000
f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA
Mean -1.81e+3 - -1.36e-2 -1.03e+3 -3.93e-5 -5.16e-7 -4.44e-2 -2.64e+3 -1.85e+10
Std 1.02e+4 - 2.63e-3 2.69e+2 1.39e-4 1.60e-6 2.79e-3 6.23e+2 7.89e+10

GA
Mean -7.85e+5 - -9.12e+1 -6.70e+4 -7.76e-3 -9.69e-7 -6.48e-2 -1.93e+3 -1.68e+12
Std 2.28e+4 - 4.67e-1 2.64e+3 2.13e-4 3.46e-7 1.67e-3 4.10e+2 1.22e+11

PSO
Mean -1.32e+5 - -4.21e+1 -7.20e+3 -1.30e-3 -1.98e-7 -4.59e-2 -1.13e+3 -3.99e+12
Std 1.64e+4 - 3.09e+0 7.14e+2 1.26e-4 6.23e-8 9.13e-4 1.65e+2 5.27e+11

DE
Mean -1.24e+6 - -9.18e+1 -1.15e+5 -1.24e-2 -2.41e-11 -3.88e-2 -3.22e+2 -1.32e+12
Std 2.40e+4 - 3.92e-1 2.74e+3 1.79e-4 8.83e-12 9.07e-4 2.65e+1 1.19e+11

ES
Mean -1.65e+6 - -9.88e+1 -9.89e+4 -1.64e-2 -4.35e-7 -3.59e-2 -8.72e+2 -1.25e+13
Std 9.47e+4 - 1.47e-1 5.50e+3 1.00e-3 1.76e-7 1.46e-3 1.50e+2 1.83e+13

FES
Mean -6.60e+5 - -9.16e+1 -4.88e+4 -6.70e-3 -3.40e-7 -2.52e-2 -6.89e+2 -1.85e+12
Std 3.32e+4 - 9.03e-1 2.81e+3 3.56e-4 1.18e-7 1.45e-3 1.16e+2 5.47e+11

EP
Mean -2.67e+6 - -9.87e+1 -2.51e+5 -2.67e-2 -2.48e-6 -6.22e-2 -1.69e+3 -1.25e+13
Std 4.48e+4 - 1.88e-1 5.07e+3 4.41e-4 2.98e-6 1.42e-3 2.74e+2 3.48e+12

FEP
Mean -2.54e+6 - -9.84e+1 -3.03e+5 -2.54e-2 -4.57e-7 -5.74e-2 -1.21e+3 -3.64e+12
Std 3.59e+4 - 1.91e-1 6.32e+3 2.44e-4 1.42e-7 1.31e-3 1.91e+2 4.79e+11
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Table 14: The experimental results for FMOA, GA, PSO, DE, ES, FES, EP and FEP for multimodal benchmark functions
f10-f18

. The best results are bolded.
D=100

f10 f11 f12 f13 f14 f15 f16 f17 f18

FMOA
Mean 6.17e+3 -8.74e-2 -6.58e-2 1.15e+0 1.61e+2 -1.05e-1 1.57e+1 9.88e+1 3.05e+0
Std 2.42e+3 4.93e-2 1.34e-2 7.98e-2 5.10e+1 3.12e-3 2.47e+0 5.27e+0 3.02e-1

GA
Mean 4.05e+4 -7.74e+1 -4.55e+0 -4.57e+0 1.52e+2 -2.51e+1 7.01e+1 9.69e+1 -9.17e+1
Std 2.58e+2 6.71e+0 2.65e-1 1.06e+0 6.01e+0 4.89e+0 1.90e+0 2.71e-1 4.16e+1

PSO
Mean 1.09e+4 -8.65e+2 -1.29e+1 -1.37e+2 -3.42e+3 -1.80e+4 1.21e+1 6.46e+1 -3.06e+4
Std 1.49e+3 3.27e+1 6.81e-1 2.54e+1 1.70e+3 3.54e+3 2.10e+0 2.39e+0 1.09e+4

DE
Mean 1.85e+4 -8.07e+2 -1.39e+1 -3.69e+1 -2.31e+1 -5.06e+3 1.95e+1 6.75e+1 -6.24e+3
Std 5.49e+2 2.01e+1 2.62e-1 5.83e+0 1.03e+2 1.28e+3 6.76e-1 7.01e-1 1.62e+3

ES
Mean 2.97e+4 -1.79e+2 -9.55e+0 -5.79e+1 -1.39e+2 -2.91e+3 5.17e+1 9.13e+1 -2.51e+4
Std 8.79e+2 1.95e+1 5.70e-1 1.23e+1 3.29e+2 1.07e+3 2.66e+0 1.00e+0 6.04e+3

FES
Mean 3.33e+4 -1.68e+2 -8.91e+0 -4.68e+1 4.90e+1 -1.76e+3 5.52e+1 9.22e+1 -1.83e+4
Std 9.31e+2 1.39e+1 5.48e-1 9.36e+0 8.68e+1 8.79e+2 2.94e+0 8.75e-1 6.09e+3

EP
Mean 9.77e+3 -1.41e+3 -2.05e+1 -1.81e+3 -1.01e+5 -1.47e+5 8.21e+0 5.13e+1 -4.11e+6
Std 8.72e+2 4.02e+1 8.08e-2 1.17e+2 6.07e+3 7.51e+3 6.49e-1 1.25e+0 4.94e+5

FEP
Mean 8.71e+3 -1.30e+3 -2.02e+1 -1.45e+3 -8.10e+4 -1.23e+5 6.98e+0 5.25e+1 -2.79e+6
Std 6.17e+2 2.86e+1 9.48e-2 7.11e+1 4.51e+3 5.65e+3 5.79e-1 1.10e+0 2.87e+5

D=500

FMOA
Mean 1.41e+4 -1.84e-2 -2.52e-1 -1.16e+1 3.35e+1 -1.91e+2 1.70e+1 4.47e+2 3.32e+0
Std 3.27e+3 8.74e-3 1.19e+0 4.95e+1 1.92e+1 1.34e+3 1.81e+1 8.81e+1 3.09e-1

GA
Mean 1.50e+5 -2.33e+3 -1.58e+1 -1.63e+3 -5.50e+4 -1.32e+5 1.46e+2 4.15e+2 -8.63e+6
Std 1.96e+3 5.87e+1 1.68e-1 8.52e+1 4.13e+3 6.81e+3 3.61e+0 2.42e+0 6.83e+5

PSO
Mean 2.66e+4 -4.90e+3 -1.29e+1 -6.58e+2 -1.63e+4 -8.57e+4 1.91e+1 2.69e+2 -6.58e+5
Std 3.45e+3 9.36e+1 4.60e-1 1.11e+2 6.47e+3 1.35e+4 2.33e+0 5.54e+0 1.50e+5

DE
Mean 4.56e+4 -6.34e+3 -1.99e+1 -3.92e+3 -1.93e+5 -3.53e+5 2.53e+1 2.61e+2 -2.46e+7
Std 1.11e+3 5.29e+1 3.34e-2 1.06e+2 6.63e+3 9.04e+3 1.10e+0 1.90e+0 1.40e+6

ES
Mean 7.04e+4 -7.14e+3 -1.97e+1 -6.43e+3 -3.66e+5 -5.56e+5 2.42e+1 2.31e+2 -6.94e+7
Std 7.76e+3 3.52e+2 1.67e-1 5.79e+2 3.55e+4 5.42e+4 2.35e+0 5.99e+0 8.37e+6

FES
Mean 1.09e+5 -2.71e+3 -1.62e+1 -1.86e+3 -7.40e+4 -1.73e+5 9.64e+1 3.89e+2 -8.91e+6
Std 2.99e+3 1.08e+2 2.57e-1 1.40e+2 8.00e+3 1.08e+4 5.13e+0 3.89e+0 1.12e+6

EP
Mean 2.87e+4 -8.05e+3 -2.09e+1 -1.15e+4 -6.29e+5 -8.73e+5 1.28e+1 2.23e+2 -1.60e+8
Std 1.76e+3 1.10e+2 2.71e-2 2.88e+2 1.35e+4 1.67e+4 7.88e-1 2.36e+0 6.30e+6

FEP
Mean 1.90e+4 -7.80e+3 -2.08e+1 -1.06e+4 -5.81e+5 -8.19e+5 9.80e+0 2.23e+2 -1.41e+8
Std 1.54e+3 7.91e+1 2.82e-2 1.91e+2 9.80e+3 1.29e+4 8.19e-1 1.80e+0 3.90e+6

D=1000
f10 f11 f12 f13 f14 f15 f16 f17 f18

FMOA
Mean 3.26e+4 -6.63e+1 -9.91e-2 -5.40e+0 2.65e+1 -3.42e+1 2.33e+1 9.08e+2 -4.56e+0
Std 4.04e+4 4.69e+2 6.37e-1 4.33e+1 1.33e+1 1.28e+2 2.63e+1 1.68e+2 5.59e+1

GA
Mean 2.24e+5 -7.69e+3 -1.83e+1 -6.99e+3 -3.40e+5 -6.16e+5 1.69e+2 7.24e+2 -1.06e+8
Std 2.91e+3 1.19e+2 8.57e-2 1.86e+2 1.22e+4 1.48e+4 4.57e+0 3.79e+0 4.67e+6

PSO
Mean 3.94e+4 -1.00e+4 -1.25e+1 -1.15e+3 -2.38e+4 -1.46e+5 2.32e+1 5.09e+2 -2.28e+6
Std 5.74e+3 1.36e+2 3.70e-1 1.25e+2 7.82e+3 2.03e+4 2.73e+0 8.06e+0 4.34e+5

DE
Mean 6.51e+4 -1.39e+4 -2.03e+1 -1.11e+4 -5.78e+5 -9.42e+5 2.87e+1 4.86e+2 -2.03e+8
Std 1.68e+3 5.43e+1 2.14e-2 2.10e+2 1.20e+4 1.20e+4 1.00e+0 2.24e+0 8.34e+6

ES
Mean 1.31e+5 -1.53e+4 -2.03e+1 -1.48e+4 -8.16e+5 -1.24e+6 3.13e+1 4.44e+2 -3.51e+8
Std 1.04e+4 4.99e+2 1.12e-1 9.42e+2 4.56e+4 5.42e+4 3.41e+0 8.32e+0 3.49e+7

FES
Mean 1.74e+5 -7.40e+3 -1.79e+1 -6.03e+3 -2.97e+5 -5.67e+5 1.14e+2 7.11e+2 -7.38e+7
Std 4.79e+3 1.72e+2 1.21e-1 2.81e+2 2.05e+4 2.46e+4 5.64e+0 7.10e+0 6.69e+6

EP
Mean 4.91e+4 -1.66e+4 -2.10e+1 -2.40e+4 -1.31e+6 -1.81e+6 1.60e+1 4.29e+2 -6.94e+8
Std 2.57e+3 1.42e+2 1.78e-2 5.03e+2 2.17e+4 2.35e+4 9.32e-1 4.45e+0 1.89e+7

FEP
Mean 2.73e+4 -1.62e+4 -2.09e+1 -2.28e+4 -1.25e+6 -1.74e+6 1.12e+1 4.30e+2 -6.46e+8
Std 1.94e+3 1.13e+2 1.69e-2 3.12e+2 1.41e+4 1.75e+4 7.62e-1 2.66e+0 1.13e+7
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Table 15: The experimental results for FMOA, GA, PSO, DE, ES, FES, EP and FEP for f19-f27. The best results are bolded.

D=100
Algorithm f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA
Mean -1.77e+3 4.39e+1 -2.89e+4 -1.45e+03 -4.13e+01 -7.92e+10 -1.48e+03 -4.21e+01 -1.77e+11
Std 9.02e+1 4.92e-2 1.74e+3 1.05e+03 2.64e-01 7.94e+09 3.99e+01 1.03e-01 7.24e+09

GA
Mean -2.23e+3 4.39e+1 -8.14e+4 -1.31e+08 -4.20e+01 -1.29e+11 -1.79e+03 -4.24e+01 -4.67e+11
Std 9.93e+1 3.31e-2 9.96e+3 1.93e+07 2.00e-01 1.74e+10 4.66e+01 1.19e-01 3.42e+10

PSO
Mean -1.74e+3 4.40e+1 -2.83e+4 -1.18e+08 -4.04e+01 -4.34e+10 -1.53e+03 -4.16e+01 -1.75e+11
Std 6.00e+1 6.97e-2 2.67e+3 2.57e+07 4.36e-01 9.45e+09 5.24e+01 3.05e-01 1.97e+10

DE
Mean -1.32e+3 4.41e+1 -1.29e+3 -7.41e+07 -2.49e+01 -5.63e+06 -1.30e+03 -3.85e+01 -1.26e+09
Std 4.33e+1 2.80e-2 2.15e+2 6.57e+06 1.23e+00 2.11e+06 3.67e+01 8.36e-01 4.74e+08

ES
Mean -7.39e+2 4.43e+1 -3.13e+3 -3.87e+07 -3.66e-02 -7.60e+01 -1.38e+02 -6.85e+00 -6.97e+03
Std 7.35e+1 6.19e-2 6.05e+2 8.13e+06 2.07e-03 1.22e+01 2.15e+01 2.61e+00 7.26e+03

FES
Mean -6.36e+2 4.43e+1 -2.33e+3 -1.84e+08 -1.64e+01 -1.62e+08 -8.70e+02 -2.61e+01 -2.42e+09
Std 5.98e+1 5.33e-2 5.28e+2 4.05e+07 2.00e+00 7.21e+07 6.04e+01 1.53e+00 7.40e+08

EP
Mean -2.33e+3 4.39e+1 -7.93e+4 -3.28e+08 -4.03e+01 -4.61e+10 -1.52e+03 -4.17e+01 -2.30e+11
Std 1.55e+2 3.71e-2 9.93e+3 3.07e+07 6.72e-01 1.27e+10 5.94e+01 4.17e-01 3.81e+10

FEP
Mean -1.91e+3 4.39e+1 -4.51e+4 -3.66e+08 -4.08e+01 -5.51e+10 -1.57e+03 -4.19e+01 -2.66e+11
Std 8.04e+1 3.72e-2 6.03e+3 4.76e+07 4.33e-01 1.30e+10 6.93e+01 2.90e-01 3.41e+10

D=500
Algorithm f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA
Mean -9.59e+3 4.37e+1 -2.31e+5 -9.33e+04 -1.25e+02 -4.06e+11 -8.33e+03 -2.11e+02 -9.30e+11
Std 2.53e+2 4.27e-2 5.41e+3 6.92e+04 2.53e-01 1.42e+10 1.06e+02 3.18e-01 1.80e+10

GA
Mean -1.27e+4 4.38e+1 -7.35e+5 -9.95e+10 -1.28e+02 -1.44e+12 -1.10e+04 -2.14e+02 -3.66e+12
Std 2.37e+2 2.26e-2 2.88e+4 6.31e+09 1.94e-01 6.90e+10 1.27e+02 1.54e-01 9.97e+10

PSO
Mean -1.03e+4 4.38e+1 -2.46e+5 -7.61e+10 -1.27e+02 -9.51e+11 -1.00e+04 -2.14e+02 -1.02e+12
Std 1.53e+2 3.26e-2 1.26e+4 1.73e+10 3.04e-01 6.85e+10 1.61e+02 4.01e-01 3.96e+10

DE
Mean -9.38e+3 4.39e+1 -1.66e+5 -7.75e+10 -1.22e+02 -1.00e+11 -8.86e+03 -2.12e+02 -7.66e+11
Std 1.16e+2 1.88e-2 7.80e+3 6.16e+09 6.47e-01 1.08e+10 1.23e+02 6.93e-01 3.78e+10

ES
Mean -7.83e+3 4.39e+1 -2.19e+5 -3.75e+10 -4.71e+01 -4.11e+08 -1.99e+03 -1.29e+02 -5.60e+09
Std 2.96e+2 5.35e-2 2.21e+4 5.39e+09 5.09e+00 1.13e+08 1.64e+02 8.55e+00 9.51e+08

FES
Mean -5.10e+3 4.40e+1 -5.62e+4 -1.25e+11 -9.83e+01 -3.83e+10 -5.77e+03 -1.87e+02 -2.12e+11
Std 2.43e+2 4.74e-2 5.52e+3 2.90e+10 1.94e+00 6.79e+09 2.87e+02 2.69e+00 2.60e+10

EP
Mean -1.24e+4 4.38e+1 -6.11e+5 -2.06e+11 -1.27e+02 -9.24e+11 -9.90e+03 -2.13e+02 -2.67e+12
Std 2.63e+2 2.53e-2 2.44e+4 2.27e+10 5.02e-01 7.85e+10 1.95e+02 4.28e-01 1.39e+11

FEP
Mean -1.17e+4 4.38e+1 -5.64e+5 -2.32e+11 -1.27e+02 -1.05e+12 -1.02e+04 -2.14e+02 -2.89e+12
Std 1.75e+2 2.08e-2 2.15e+4 2.54e+10 2.66e-01 6.68e+10 1.30e+02 2.65e-01 1.37e+11

D=1000
Algorithm f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA
Mean -1.95e+4 4.37e+1 -4.87e+5 -3.37e+10 -2.29e+02 -9.85e+11 -1.72e+04 -4.23e+02 -1.95e+12
Std 3.99e+2 3.88e-2 8.71e+3 2.38e+11 2.91e-01 1.69e+10 1.71e+02 3.61e-01 2.21e+10

GA
Mean -2.61e+4 4.38e+1 -1.62e+6 -1.64e+12 -2.35e+02 -3.71e+12 -2.31e+04 -4.30e+02 -8.16e+12
Std 3.31e+2 2.63e-2 3.93e+4 8.87e+10 2.09e-01 8.55e+10 1.86e+02 1.32e-01 1.66e+11

PSO
Mean -2.14e+4 4.38e+1 -5.16e+5 -1.23e+12 -2.33e+02 -2.73e+12 -2.13e+04 -4.29e+02 -2.13e+12
Std 2.17e+2 3.88e-2 1.57e+4 3.33e+11 4.53e-01 1.25e+11 2.34e+02 3.49e-01 5.49e+10

DE
Mean -2.05e+4 4.39e+1 -6.01e+5 -1.29e+12 -2.29e+02 -7.69e+11 -1.93e+04 -4.28e+02 -2.98e+12
Std 1.56e+2 1.73e-2 2.01e+4 1.15e+11 6.06e-01 4.17e+10 2.15e+02 5.33e-01 8.17e+10

ES
Mean -1.71e+4 4.39e+1 -5.33e+5 -5.83e+11 -1.53e+02 -2.29e+10 -6.23e+03 -3.22e+02 -1.37e+11
Std 4.98e+2 4.50e-2 3.71e+4 7.20e+10 5.76e+00 3.50e+09 3.17e+02 7.63e+00 7.16e+10

FES
Mean -1.22e+4 4.39e+1 -2.05e+5 -1.86e+12 -2.02e+02 -2.14e+11 -1.27e+04 -3.96e+02 -8.84e+11
Std 4.14e+2 4.57e-2 1.59e+4 4.58e+11 2.87e+00 2.95e+10 4.93e+02 2.97e+00 7.17e+10

EP
Mean -2.52e+4 4.38e+1 -1.34e+6 -3.27e+12 -2.33e+02 -2.69e+12 -2.11e+04 -4.29e+02 -6.20e+12
Std 3.36e+2 2.41e-2 4.26e+4 3.84e+11 4.35e-01 1.50e+11 3.37e+02 3.97e-01 2.71e+11

FEP
Mean -2.43e+4 4.38e+1 -1.32e+6 -3.62e+12 -2.34e+02 -2.95e+12 -2.16e+04 -4.29e+02 -6.78e+12
Std 2.59e+2 2.58e-2 3.90e+4 4.38e+11 3.42e-01 1.38e+11 2.71e+02 2.81e-01 1.66e+11
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CMAES [42]. Before the comparison, we first set the parameters of the algorithms represented in table 16
using the same parameter setting method employed for the population based algorithms.

We first provide a short description about each algorithms, describing the general features and major
components of each algorithm.

ODE algorithm [41] is a conventional DE, which uses the OBL procedure in order to both accelerate the
search process and help the algorithm escape from local optima. JADE [22] is another version of DE that
employs a parameter adaptation strategy for dynamically setting its parameters and an external archive for
storing the best solutions.

MASW [36] and MASSW [36] are two different versions of genetic memetic algorithm that use a typical
version of GA as the global search and the Solis and Wet’s algorithm as the local search and chaining
mechanism for updating its local search. The only difference between them is that MASW utilizes single
group while MASSW uses subgrouping mechanism for applying the local search on the solutions. They have
gained remarkable results in CEC 2010 [45] by achieving the first place in the competition.

3SOME [38] is a single-solution memetic algorithm that has three memes for exploring the search space,
one for long range, one for middle range and one for small range. It was proposed based on the idea of
Ockham’s razor that says the simpler an algorithm is, the more powerful it is to solve problems. PMS [39]
is an extended version of 3SOME that utilizes three memetic operators for finding better solutions. The
difference between 3SOME and PMS is the mechanisms used for implementing the memes.

BBO [40] is a population-based algorithm inspired by the biogeography research studies. Like the
GA, it uses mutation operator to maintain its population diversity. The difference here is that GA has a
reproduction operator to make an offspring, while BBO uses a similar method to DE and PSO. This means
that through interacting with its neighboring particles, each particle attempts to find the best solution.

CCPSO2 [37] is a new variant of PSO algorithms that uses cooperative co-evolving strategy to deal with
large-scale optimization problems. The co-evolving strategy is a new kind of divide-and-conquer strategy
that divides a large-scale problem into a set of smaller sub-problems. It also employs a combination of
Cauchy and Gaussian distribution for the movement operator. In order to provide further improvement, it
uses dynamically changing-group-size strategy for interaction patterns of particles in the population.

CMAES is an extended version of evolution strategy algorithm, which has been extensively utilized by
many research papers for unconstrained or bounded constraint optimization problems. Similar to quasi-
Newton methods, the CMA-ES is considered as a second order approach, which estimates a positive definite
matrix within an iterative procedure. Because of this, it can be feasible on non-separable and/or badly
conditioned problems. Unlike quasi-Newton methods, it does not utilize or approximate gradients; thus, it
is feasible on non-smooth and even non-continuous problems, multimodal and/or noisy problems [55] and
for global optimization [42]. One important feature of this algorithm is that it does not need to employ
parameter configuration, as its parameters are set during the optimization process.

Table 16: A brief description of the main parameters of the state-of-the-art algorithms used in this paper.

Algorithms Parameters Description

3SOME
I inheritance factor
D The side width of the hypercube constructed

PMS
I inheritance factor
E The size of the search region in the short-distance stage

MASW
B mutation rate
U local

global rate

MASSW
B mutation rate
U local

global rate

CCPSO2
P probability of choosing cauchy-based operator
Q A set of several possible group sizes

JADE
H rate of adaptation of parameters
G mutation greediness factor

BBO
S The step size
N mutation probability

ODE
F differential amplification factor
O mutation rate

CMAES G wise standard deviation coordination

The best parameters for each algorithm are reported in table 17.
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Table 17: The best parameters for MASW, MASSW, CCPSO2, JADE, 3SOME, PMS, BBO, ODE andCMAES on all the
benchmark functions.

Algorithm Parameter f1 f2 f3 f4 f5 f6 f7 f8 f9

3SOME
I 0.3 0.6 0.9 0.9 0.6 0.9 0.6 0.1 0.3
D 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

PMS
I 0.05 0.3 0.05 0.05 0.3 0.01 0.05 0.01 0.05
E 0.01 0.01 0.01 0.01 0.01 0.01 0.1 0.01 0.01

MASW
B 0.05 0.05 0.05 0.01 0.05 0.05 0.01 0.05 0.05
U 0.9 0.9 0.3 0.5 0.3 0.5 0.5 0.5 0.5

MASSW
B 0.01 0.01 0 0.1 0.01 0.01 0.01 0.01 0.01
U 0.5 0.1 0.1 0.3 0.3 0.1 0.5 0.5 0.3

CCPSO2
P 0.01 0 0.1 0.01 0 0.01 0.1 1 0.01
Q 4 3 4 2 4 2 4 4 4

JADE
H 10−4 0 10−4 10−4 0 0.01 0 0.01 0.1
G 0.1 0.3 0.05 0.05 0.05 0.5 0.05 0.1 0.01

BBO
S 5 2 5 5 50 5 50 5 50
N 0.01 0.01 0.01 0.05 0.05 0.1 0.05 0.01 0.01

ODE
O 0.01 0.4 0.1 0.4 0.1 0.01 0.8 0.1 0.01
F 0.8 0.1 0.1 0.1 0.4 0.8 0.1 0.4 1.2

CMAES G 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Algorithm Parameter f10 f11 f12 f13 f14 f15 f16 f17 f18

3SOME
I 0.6 0.3 0.3 0.6 0.6 0.9 0.3 0.9 0.01
D 0.01 0.4 0.01 0.01 0.01 0.01 0.4 0.1 0.01

PMS
I 0.01 0.05 0.3 0.01 0.01 0.05 0.01 0.05 0.1
E 0.01 0.01 0.01 0.01 0.01 0.1 0.7 0.01 0.01

MASW
B 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.05
U 0.5 0.9 0.1 0.3 0.5 0.5 0.1 0.9 0.3

MASSW
B 0.1 0.01 0.5 0 0 0 0.5 0.1 0.01
U 0.3 0.5 0.5 0.3 0.3 0.1 0.3 0.7 0.3

CCPSO2
P 0.01 0 0 0.1 0 0 0 0.5 1
Q 4 4 4 4 4 4 4 3 4

JADE
0.1 10−4 10−4 0 10−4 0 0 0.01 0 0.1
G 0.3 0.3 0.5 0.3 0.1 0.1 0.1 0.5 0.05

BBO
S 50 5 5 5 50 5 0.5 2 5
N 0.05 0.05 0.01 0.05 0.01 0.05 0.1 0.1 0.05

ODE
O 0.01 0.1 0.1 0.1 0.4 0.4 0.01 0.8 0.4
F 0.4 0.4 0.01 0.1 0.1 0.1 1.2 0.1 0.1

CMAES G 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Algorithm Parameter f19 f20 f21 f22 f23 f24 f25 f26 f27

3SOME
I 0.6 0.6 0.6 0.6 0.6 0.9 0.6 0.3 0.9
D 0.01 0.01 0.01 0.01 0.4 0.001 0.4 0.001 0.001

PMS
I 0.01 0.01 0.01 0.001 0.05 0.01 0.05 0.001 0.01
E 0.01 0.1 0.01 0.3 0.1 0.1 0.1 0.1 0.3

MASW
B 0.05 0.05 0.05 0.01 0.01 0.05 0.001 0.001 0.01
U 0.5 0.5 0.3 0.9 0.1 0.5 0.1 0.1 0.9

MASSW
B 0.01 0.01 0.01 0.05 0.0 0.0 0.0 0.01 0.1
U 0.5 0.5 0.3 0.7 0.1 0.5 0.7 0.7 0.9

CCPSO2
P 0.1 0 0.01 1 0.5 1 1 1 1
Q 4 4 4 2 4 4 1 2 4

JADE
H 0.01 0 0.01 0.05 0.05 0.05 0.1 0.05 0.05
G 0.1 0.1 0.1 0.1 0 0 0.1 0.001 0.1

BBO
S 0.5 5 2 200 200 200 50 5 2
N 0.01 0.05 0.05 0.005 0.01 0.001 0.01 0.01 0.001

ODE
O 0.01 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
F 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

CMAES G 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
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To make a fair comparison, the number of function evaluations, l, assigned to each algorithm is set to
50000, and the population size for each algorithm (except CMAES that has a dynamic population size
setting) is set according to table 10. Note that for ODE and the proposed algorithm in which the OBL is
involved, MI is determined during the search process and, for MASW and MASSW that have a local search,
it is determined by U the local

global rate.
The experimental results for nine unimodal and eighteen multi-modal benchmark functions over several

dimensions D=(100, 500 ,1000) are summarized and shown in table 18, 19 and 20.

As shown in table 18, for D = 100, CMAES performs the best on three unimodal problems and FMOA
is the best on no problem. However, as the size of the problem increases, FMOA outperforms the other
algorithms in some cases. More specifically, for D = 100, CMAES outperforms other algorithms in f1, f2

and f3 and MASW performs the best on f5 and f7, JADE on f4 and f8, MASSW on f9, 3SOME on f6.
For D = 500 FMOA is superior over the other algorithms on f2, f3, f6 and f9, MASSW on f4, f5 and
f7, CMAES on f1 and JADE on f8. For D = 1000, FMOA outperforms the other algorithms on f3, f4,
MASSW on f1 and f7, JADE on f6 and f8, MASW on f5 and CMAES on f9.

As shown in table 19, for D = 100, FMOA performs the best on f11, f12 and f18, CCPSO2 on f14 and
f17, CMAES on f10 and f16, MASW on f13 and f21, JADE on f15, PMS on f20 and BBO on f10. As
the problem size grows, FMOA shows steady performance. For D = 500, FMOA outperforms the other
algorithms on f11, f15, f17 and f18, CCPSO2 on f10 and f20, JADE on f14 and f20, CMAES on f10 and f12

MASW on f13.
Table 13, 14, 18, 19 and 20, show that the performance of the proposed algorithm is improved as the

problem size increases and it performs the best for some unimodal and multi-modal problems. The proposed
algorithm does not offer the best results compared to some state-of-the-art algorithms (JADE, MASW and
MASSW). Note that the advantage of our proposed algorithm is that it removes the parameter setting stage
of the algorithms thus avoiding the time-consuming parameter configuration process.

In order to verify the significance of the experimental results we conduct the Wilcoxon Signed-Ranks
Test [56, 57] between the proposed algorithm and other competitive algorithms. Table 21 represents the
results two-tailed Wilcoxon Signed-Ranks Test where R+ shows the sum of ranks for all the problems in
which the proposed algorithm outperforms the second algorithm and R− shows the sum of ranks for the
opposite.

According to table 21, the proposed algorithm gained the sixth place after MASW, MASSW, CCPSO2,
JADE and 3SOME where D is up to 100. However when the problem size grows, it gained better place.
For D = 500 and D = 1000 the proposed algorithm gained the third position after MASSW and MASW.

In addition to Wilcoxon signed-ranks test, we also employ Friedman two-way analysis of variance by
ranks [58] to show the significance of the results. Table 22 shows the results of Friedman test where the
proposed algorithm is compared with both traditional and state-of-the art algorithms for unimodal and
multimodal problems where D = 100, 500 and 1000.

As seen in Table 22, the proposed algorithm has achieved the sixth place for unimodal problems when
the problem size is equal to 100. As the problem size grows, the algorithm gains better position (third rank
for D = 500 and forth place for D = 1000). For the multimodal problems, it holds the sixth place when
D = 100 and for D = 500 and D = 1000 it gets sixth and forth places, respectively. Like unimodal and
multi-modal problems, in all the tests, the proposed algorithm gains the sixth place when D = 100 and for
D = 500 and D = 1000, it holds the fifth place.

6. Conclusion

In this paper, we propose a new version of magnetic optimization algorithm called FMOA that is char-
acterized by the parameter adaptation strategy and the OBL procedure as well as MOA. The proposed
parameter adaptation strategy enables the algorithm to automatically set its control parameters to appro-
priate values during the evolutionary search. It is natural to use the adaptation technique along with an
OBL technique to improve the convergence rate while keeping the robustness of the algorithm at high level.
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Table 18: The experimental results for FMOA, MASW, MASSW, CCPSO2, JADE, 3SOME, PMS, BBO, ODE and CMAES
for 9 unimodal benchmark functions. The results are obtained over 50 independent runs. The best results are typed in bold.

D=100
f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA
Mean -1.67e-1 -3.60e-1 -1.04e-1 -9.80e+1 -1.62e-9 -6.24e-7 -5.13e-3 -1.48e+3 -1.02e+6
Std 8.00e-2 6.38e-2 2.06e-2 3.21e-3 9.59e-10 2.16e-6 7.89e-4 3.44e+2 5.81e+6

MASW
Mean -1.32e-38 -1.29e+2 -5.34e+1 -9.63e+1 -4.26e-41 -8.34e-7 -2.29e-5 -7.34e+2 -1.29e+6
Std 1.83e-38 1.44e+1 3.55e+0 7.76e+0 2.58e-40 4.48e-7 1.65e-5 8.02e+1 4.84e+5

MASSW
Mean -8.67e-4 -1.73e+1 -3.58e+1 -9.64e+1 -1.47e-14 -6.52e-6 -5.93e-5 -6.33e+2 -5.56e+5
Std 5.69e-3 5.88e+0 2.57e+0 1.52e+0 6.45e-14 2.38e-6 2.69e-5 6.33e+1 3.50e+5

CCPSO2
Mean -4.58e+1 -3.27e+0 -5.15e+1 -1.29e+2 -4.18e-7 -7.72e-5 -6.34e-4 -1.11e+3 -8.70e+7
Std 1.98e+1 1.36e+0 1.62e+1 1.81e+1 2.28e-7 4.44e-5 2.95e-4 2.09e+2 2.84e+7

JADE
Mean -1.73e-8 -2.46e-3 -1.78e+1 -9.17e+1 -1.37e-16 -1.96e-6 -2.95e-5 -4.03e+2 -3.74e+6
Std 3.01e-8 5.38e-3 2.08e+0 1.71e+0 1.77e-16 1.03e-6 8.48e-6 6.99e+1 8.62e+5

3SOME
Mean -2.73e-1 -8.66e+1 -2.24e+1 -1.03e+2 -2.46e-9 -3.96e-7 -2.32e-5 -9.87e+2 -1.65e+6
Std 8.11e-2 9.06e+1 7.37e+0 1.74e+1 6.44e-10 1.95e-7 9.08e-6 2.00e+2 3.61e+5

PMS
Mean -5.84e+3 -1.49e+044 -7.98e+1 -1.34e+2 -9.64e-18 -5.63e-5 -2.63e-4 -1.63e+3 -3.84e+7
Std 4.13e+4 9.96e+044 7.17e+0 4.34e+1 2.97e-17 8.66e-5 8.91e-4 6.41e+2 1.33e+8

BBO
Mean -3.55e+4 -1.07e+2 -8.44e+1 -3.13e+3 -3.64e-4 -8.28e-5 -2.14e-3 -1.08e+3 -2.85e+8
Std 7.18e+3 1.55e+1 3.49e+0 6.80e+2 7.86e-5 2.49e-5 4.65e-4 2.18e+2 5.43e+7

ODE
Mean -1.05e+4 -1.21e+2 -6.50e+1 -1.02e+3 -1.02e-4 -5.37e-5 -4.70e-3 -1.31e+3 -2.43e+8
Std 2.95e+3 2.42e+1 2.86e+0 2.01e+2 3.02e-5 1.49e-5 3.12e-4 1.42e+2 2.62e+7

CMAES
Mean -1.04e-41 1.33e+3 3.87e+40 -9.91e+1 -1.50e+3 2.62e-5 2.42e-5 -1.62e+3 -3.92e+3
Std 6.09e-42 138.07 7.20e+40 21.22 305.33 2.49e-5 3.02e-4 2.52e+2 3.79e+3

D=500
f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA
Mean -2.19e+0 -3.92e-1 -2.53e-2 -6.31e+2 -1.50e-6 -2.21e-7 -2.06e-2 -1.58e+3 -2.51e+8
Std 1.52e+1 6.94e-2 4.25e-3 3.54e+2 1.06e-5 6.41e-7 1.46e-3 4.13e+2 9.69e+8

MASW
Mean -4.90e-3 -3.37e+044 -7.07e+1 -1.20e+3 -6.45e-9 -1.51e-6 -1.10e-4 -6.88e+2 -1.01e+010
Std 1.87e-2 2.37e+045 2.97e+0 4.84e+2 4.55e-8 4.89e-7 1.65e-4 8.68e+1 1.73e+9

MASSW
Mean -2.75e-1 -1.39e+2 -4.73e+1 -5.12e+2 -3.80e-9 -5.87e-7 -5.01e-5 -6.59e+2 -2.40e+9
Std 8.22e-1 1.85e+1 2.30e+0 3.49e+1 1.51e-8 1.50e-7 2.33e-5 6.35e+1 7.21e+8

CCPSO2
Mean -1.02e+5 -4.10e+2 -8.47e+1 -1.09e+4 -1.05e-3 -4.69e-6 -7.75e-3 -1.19e+3 -6.52e+10
Std 1.95e+4 8.46e+1 5.71e+0 9.04e+2 1.98e-4 1.97e-6 4.84e-4 2.50e+2 1.35e+10

JADE
Mean -7.96e+3 -1.53e+2 -3.66e+1 -1.32e+3 -9.67e-5 -5.51e-7 -1.75e-3 -4.03e+2 -8.38e+9
Std 1.51e+3 1.49e+1 1.47e+0 1.33e+2 1.67e-5 2.23e-7 2.25e-4 1.24e+2 1.21e+10

3SOME
Mean -3.10e+5 -5.25e+96 -7.45e+1 -3.72e+3 -3.11e-3 -5.43e-7 -6.36e-5 -8.09e+2 -1.28e+010
Std 2.58e+4 3.71e+97 2.65e+0 3.27e+2 2.58e-4 1.75e-7 1.03e-5 2.09e+2 8.84e+8

PMS
Mean -7.35e+5 -2.88e+288 -9.52e+1 -8.56e+4 -9.04e-3 -2.79e-3 -5.45e-2 -4.06e+3 -1.07e+012
Std 8.06e+5 Inf 4.19e+0 1.05e+5 8.11e-3 6.66e-3 7.64e-2 3.62e+3 1.37e+12

BBO
Mean -6.32e+5 -2.46e+84 -9.70e+1 -6.46e+4 -6.44e-3 -2.97e-6 -2.05e-2 -1.27e+3 -1.50e+011
Std 4.72e+4 1.74e+085 7.75e-1 8.47e+3 4.86e-4 9.53e-7 1.71e-3 2.43e+2 2.73e+10

ODE
Mean -4.85e+5 -2.97e+41 -9.88e+1 -5.44e+4 -5.39e-3 -1.59e-6 -2.52e-2 -1.24e+3 -1.77e+11
Std 1.71e+4 1.83e+42 3.00e-1 2.29e+3 2.72e-4 5.58e-7 7.37e-4 1.42e+2 2.11e+10

CMAES
Mean -3.91e-05 -491.49 -20.42 -5.46e+2 -3.33e+6 -1.23e-6 -2.41e-2 -1.61e+3 -1.60e+9
Std 6.96e-6 174.39 8.80 64.84 3.30e+4 2.36e-7 5.16e-4 4.44e+2 3.41e+10

D=1000
f1 f2 f3 f4 f5 f6 f7 f8 f9

FMOA
Mean -1.81e+3 - -1.36e-2 -1.03e+3 -3.93e-5 -5.16e-7 -4.44e-2 -2.64e+3 -1.85e+10
Std 1.02e+4 - 2.63e-3 2.69e+2 1.39e-4 1.60e-6 2.79e-3 6.23e+2 7.89e+10

MASW
Mean -2.38e+2 - -7.53e+1 -6.09e+3 -9.02e-7 -4.49e-7 -2.09e-3 -6.35e+2 -2.40e+11
Std 1.04e+3 - 2.80e+0 3.21e+3 1.12e-7 2.14e-7 2.26e-3 7.49e+1 6.09e+10

MASSW
Mean -1.97e+2 - -5.87e+1 -1.05e+3 -1.56e-6 -1.49e-7 -2.25e-4 -5.88e+2 -4.23e+10
Std 1.56e+2 - 2.42e+0 4.77e+1 1.20e-6 4.70e-8 1.05e-4 8.10e+1 9.90e+9

CCPSO2
Mean -5.32e+5 - -9.27e+1 -5.14e+4 -5.30e-3 -1.05e-6 -2.45e-2 -1.03e+3 -1.13e+12
Std 6.87e+4 - 4.15e+0 3.51e+3 7.54e-4 5.14e-7 7.55e-4 2.08e+2 2.68e+11

JADE
Mean -7.28e+4 - -4.28e+1 -5.49e+3 -8.97e-4 -1.20e-7 -9.86e-3 -3.98e+2 -1.01e+11
Std 6.38e+3 - 1.46e+0 4.08e+2 8.85e-5 4.07e-8 5.14e-4 7.02e+1 1.93e+10

3SOME
Mean -1.13e+6 - -8.69e+1 -2.43e+4 -1.12e-2 -2.47e-7 -3.44e-4 -6.85e+2 -2.71e+11
Std 4.94e+4 - 1.26e+0 2.10e+3 5.19e-4 9.99e-8 2.70e-5 1.48e+2 1.96e+10

PMS
Mean -1.49e+6 - -9.81e+1 -2.08e+5 -1.62e-2 -1.24e-2 -9.35e-2 -6.41e+3 -1.54e+13
Std 1.63e+6 - 2.16e+0 2.17e+5 1.64e-2 2.88e-2 9.27e-2 4.70e+3 1.94e+13

BBO
Mean -1.66e+6 - -9.85e+1 -1.79e+5 -1.72e-2 -5.39e-7 -4.58e-2 -1.08e+3 -2.18e+12
Std 7.82e+4 - 3.02e-1 1.14e+4 1.11e-3 1.85e-7 2.59e-3 2.25e+2 4.40e+11

ODE
Mean -1.46e+6 - -9.95e+1 -1.65e+5 -1.50e-2 -4.28e-7 -5.15e-2 -1.51e+3 -2.92e+12
Std 3.29e+4 - 1.43e-1 8.04e+3 1.40e-3 2.58e-7 9.52e-4 2.01e+2 3.65e+11

CMAES
Mean -16.02 - -173.90 -1.15e+3 -2.66e+6 -2.45e-7 -4.25e-2 -2.42e+3 -3.63e+8
Std 1.19 - 11.08 143.78 1.73e+05 1.48e-7 4.71e-4 1.43e+2 1.29e+8
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Table 19: The experimental results for FMOA, MASW, MASSW, CCPSO2, JADE, 3SOME, PMS, BBO and ODE for bench-
mark functions f10 − f18. The results are obtained over 50 independent runs. The best results are typed in bold.

D=100
f10 f11 f12 f13 f14 f15 f16 f17 f18

FMOA
Mean 6.17e+3 -8.74e-2 -6.58e-2 1.15e+0 1.61e+2 -1.05e-1 1.57e+1 9.88e+1 3.05e+0
Std 2.42e+3 4.93e-2 1.34e-2 7.98e-2 5.10e+1 3.12e-3 2.47e+0 5.27e+0 3.02e-1

MASW
Mean 2.40e+4 -4.36e+2 -1.27e+1 2.00e+0 9.04e+1 -8.37e+1 2.11e+1 8.34e+1 3.45e-1
Std 8.61e+2 4.18e+1 6.97e-1 2.14e-3 5.55e+0 3.86e+1 2.25e+0 1.32e+0 1.04e-1

MASSW
Mean 2.42e+4 -1.13e+2 -6.91e+0 1.99e+0 9.35e+1 -1.94e+1 1.14e+1 9.42e+1 2.05e+0
Std 1.31e+3 2.58e+1 5.31e-1 1.63e-2 6.59e+0 9.45e+0 1.90e+0 1.19e+0 4.80e-1

CCPSO2
Mean 4.16e+4 -2.30e+1 -1.99e+0 5.70e-1 2.00e+2 -1.30e+0 5.82e+1 9.88e+1 -5.25e+0
Std 1.29e+2 6.73e+0 7.35e-1 1.52e-1 6.27e+0 6.15e-1 1.99e+0 2.69e-1 3.31e+0

JADE
Mean 1.44e+4 -5.87e+2 -1.50e+0 1.99e+0 1.38e+2 -2.06e-2 1.39e+1 6.94e+1 1.87e+0
Std 2.20e+3 5.87e+1 3.38e-1 1.06e-2 9.66e+0 4.66e-2 9.08e-1 4.07e+0 8.02e-1

3SOME
Mean 2.42e+4 -3.46e+2 -1.36e+1 1.87e+0 1.26e+2 -6.98e+1 1.63e+1 8.88e+1 -6.52e-1
Std 1.31e+3 6.73e+1 1.60e+0 3.38e-2 8.02e+0 3.54e+1 2.35e+0 1.87e+0 1.74e+0

PMS
Mean 2.43e+4 -4.73e+2 -1.85e+1 -4.42e+1 -2.32e+3 -3.35e+3 3.83e+1 8.44e+1 -1.07e+6
Std 1.29e+3 1.72e+2 1.69e+0 3.26e+2 1.74e+4 2.37e+4 9.96e+0 4.99e+0 2.69e+6

BBO
Mean 4.44e+4 -4.47e+2 -1.58e+1 -3.18e+2 -1.44e+4 -2.79e+4 3.99e+1 8.43e+1 -4.42e+5
Std 1.14e+3 4.59e+1 7.50e-1 6.35e+1 3.83e+3 5.71e+3 1.98e+0 1.72e+0 1.45e+5

ODE
Mean 1.49e+4 -7.00e+2 -1.21e+1 -1.54e+2 -2.25e+3 -1.34e+4 9.50e+0 5.95e+1 -3.56e+4
Std 1.31e+3 1.32e+2 9.84e-1 2.30e+1 1.25e+3 3.09e+3 8.21e-1 1.44e+0 1.07e+4

CMAES
Mean 7.02e+4 -9.28e+2 -4.18e+1 -5.48e+53 8.54e+1 -3.22e-1 7.71e+3 6.55e+1 -3.25e+4
Std 1.92e+4 3.83e+0 3.21e-2 1.03e+54 5.51e+0 6.12e-2 7.11e+1 1.29e+0 2.11e+4

D=500
f10 f11 f12 f13 f14 f15 f16 f17 f18

FMOA
Mean 1.41e+4 -1.84e-2 -2.52e-1 -1.16e+1 3.35e+1 -1.91e+2 1.70e+1 4.47e+2 3.32e+0
Std 3.27e+3 8.74e-3 1.19e+0 4.95e+1 1.92e+1 1.34e+3 1.81e+1 8.81e+1 3.09e-1

MASW
Mean 1.09e+5 -2.70e+3 -1.72e+1 1.96e+0 5.72e+1 -1.98e+5 2.90e+1 4.05e+2 -6.38e-1
Std 3.11e+3 1.33e+2 3.17e-1 1.22e-1 4.43e+0 2.29e+4 2.24e+0 4.98e+0 6.43e+0

MASSW
Mean 1.11e+5 -7.27e+2 -1.39e+1 1.83e+0 7.63e+1 -4.48e+3 1.99e+1 4.28e+2 -1.22e+3
Std 8.26e+3 3.38e+2 4.37e-1 2.21e-1 4.68e+0 3.25e+3 2.95e+0 1.28e+1 6.57e+2

CCPSO2
Mean 1.27e+5 -2.43e+3 -1.38e+1 -9.97e+2 -1.40e+4 -7.60e+4 7.58e+1 4.03e+2 -3.20e+6
Std 2.86e+3 1.95e+2 6.33e-1 1.84e+2 9.30e+3 2.09e+4 1.93e+0 5.56e+0 2.58e+6

JADE
Mean 3.28e+4 -4.06e+3 -8.79e+0 -7.07e+1 8.70e+1 -3.23e+3 1.71e+1 2.87e+2 -3.86e+4
Std 5.89e+3 1.53e+2 5.16e-1 1.06e+1 2.91e+0 1.28e+3 8.39e-1 1.74e+1 1.31e+4

3SOME
Mean 1.19e+5 -3.68e+3 -1.81e+1 -2.70e+3 -1.73e+5 -8.77e+2 3.92e+1 3.77e+2 -6.19e+2
Std 2.82e+3 1.32e+2 2.03e-1 2.58e+2 1.72e+4 4.21e+2 4.92e+0 4.20e+0 7.49e+1

PMS
Mean 6.38e+4 -6.33e+3 -2.03e+1 -6.30e+3 -3.39e+5 -5.67e+5 8.87e+1 3.26e+2 -1.08e+8
Std 5.90e+4 3.33e+3 1.05e+0 7.19e+3 3.86e+5 5.29e+5 7.03e+1 1.18e+2 1.19e+8

BBO
Mean 9.60e+4 -5.22e+3 -1.97e+1 -5.83e+3 -3.12e+5 -4.84e+5 5.10e+1 3.17e+2 -5.83e+7
Std 4.49e+3 2.59e+2 1.82e-1 4.18e+2 2.56e+4 3.08e+4 4.05e+0 6.93e+0 9.63e+6

ODE
Mean 6.70e+4 -5.75e+3 -1.91e+1 -4.14e+3 -2.13e+5 -3.67e+5 1.74e+1 2.68e+2 -2.74e+7
Std 7.11e+3 1.68e+2 1.48e-1 1.32e+2 7.92e+3 8.54e+3 1.12e+0 3.60e+0 1.87e+6

CMAES
Mean 4.44e+5 -4.70e+3 -2.033e+1 -2.96e+10 6.91e+1 -7.67e+2 7.58e+4 1.25e+2 -2.64e+7
Std 3.24e+4 9.09e+0 1.95e+1 1.84e+10 2.69e+0 1.63e+1 3.67e+3 6.14e+0 1.35e+6

D=1000
f10 f11 f12 f13 f14 f15 f16 f17 f18

FMOA
Mean 3.26e+4 -6.63e+1 -9.91e-2 -5.40e+0 2.65e+1 -3.42e+1 2.33e+1 9.08e+2 -4.56e+0
Std 4.04e+4 4.69e+2 6.37e-1 4.33e+1 1.33e+1 1.28e+2 2.63e+1 1.68e+2 5.59e+1

MASW
Mean 2.06e+5 -5.96e+3 -1.78e+1 1.95e-1 -3.74e+3 -5.59e+5 3.01e+1 7.91e+2 -6.07e+2
Std 1.07e+4 4.54e+2 2.63e-1 1.17e-1 7.06e+3 4.73e+4 2.20e+0 1.63e+1 1.47e+2

MASSW
Mean 2.17e+5 -2.11e+3 -1.42e+1 -6.51e-1 -3.05e+1 -4.26e+4 1.90e+1 8.58e+2 -1.83e+5
Std 1.78e+4 8.59e+2 5.45e-1 1.58e+0 2.90e+2 9.69e+3 4.43e+0 2.98e+1 4.94e+4

CCPSO2
Mean 1.84e+5 -7.74e+3 -1.72e+1 -5.14e+3 -2.24e+5 -4.72e+5 8.39e+1 7.00e+2 -5.90e+7
Std 3.99e+3 4.25e+2 4.63e-1 7.15e+2 4.60e+4 8.13e+4 2.26e+0 1.07e+1 1.89e+7

JADE
Mean 4.54e+4 -6.67e+3 -1.15e+1 -5.90e+2 -3.83e+3 -7.02e+4 1.95e+1 5.52e+2 -6.24e+6
Std 7.24e+3 1.30e+3 2.36e-1 5.13e+1 2.05e+3 7.57e+3 9.99e-1 1.19e+1 1.11e+6

3SOME
Mean 2.35e+5 -8.39e+3 -1.94e+1 -1.00e+4 -6.26e+5 -4.79e+3 4.74e+1 7.19e+2 -1.78e+4
Std 3.89e+3 1.55e+2 9.29e-2 4.92e+2 2.49e+4 1.33e+3 2.41e+0 6.06e+0 1.33e+3

PMS
Mean 1.39e+5 -1.13e+4 -2.01e+1 -1.63e+4 -9.69e+5 -1.23e+6 1.53e+2 5.88e+2 -4.25e+8
Std 1.18e+5 6.78e+3 1.08e+0 1.46e+4 7.67e+5 1.06e+6 1.15e+2 2.31e+2 4.85e+8

BBO
Mean 1.36e+5 -1.22e+4 -2.02e+1 -1.52e+4 -8.08e+5 -1.22e+6 5.76e+1 5.76e+2 -3.40e+8
Std 8.16e+3 3.61e+2 1.11e-1 7.63e+2 4.11e+4 6.27e+4 4.28e+0 1.19e+1 3.39e+7

ODE
Mean 1.26e+5 -1.21e+4 -1.97e+1 -1.17e+4 -6.30e+5 -9.96e+5 2.26e+1 5.24e+2 -2.18e+8
Std 1.13e+4 2.35e+2 1.73e-1 3.16e+2 1.36e+4 1.37e+4 1.81e+0 6.34e+0 8.36e+6

CMAES
Mean 7.89e+5 -9.46e+3 -13.44 -1.05e+6 1.18e+1 -1.39e+3 2.40e+5 1.97e+2 -5.36e+6
Std 9.90e+4 1.60e+1 1.58e+1 8.34e+4 2.69e+0 1.79e+2 6.94e+3 9.4e+0 4.35e+4
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Table 20: The experimental results for FMOA, MASW, MASSW, CCPSO2, JADE, 3SOME, PMS, BBO and ODE for f19-f27.
The best results are bolded.

D=100
Algorithm f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA
Mean -1.77e+3 4.39e+1 -2.89e+4 -1.45e+03 -4.13e+01 -7.92e+10 -1.48e+03 -4.21e+01 -1.77e+11
Std 9.02e+1 4.92e-2 1.74e+3 1.05e+03 2.64e-01 7.94e+09 3.99e+01 1.03e-01 7.24e+09

MASW
Mean -1.23e+3 4.42e+1 -9.63e+1 -4.75e+05 -3.78e+01 4.90e+01 -5.89e+02 -3.86e+01 -2.83e+03
Std 1.36e+2 5.38e-2 1.65e+0 1.78e+05 6.55e-01 1.85e-13 4.97e+01 4.12e-01 3.14e+03

MASSW
Mean -7.95e+2 4.40e+1 -1.05e+2 -1.35e+05 -3.76e+01 4.90e+01 -5.55e+02 -3.84e+01 -2.30e+03
Std 9.10e+1 3.88e-2 2.15e+1 7.90e+04 5.33e-01 3.85e-04 4.31e+01 3.52e-01 2.84e+03

CCPSO2
Mean -3.64e+2 4.45e+1 -4.85e+2 -8.17e+07 -2.06e+01 -5.21e+06 -8.98e+02 -3.24e+01 -1.16e+07
Std 5.64e+1 2.41e-2 6.72e+1 3.34e+07 1.14e+01 2.38e+06 1.47e+02 5.02e+00 8.89e+06

JADE
Mean -9.11e+2 4.40e+1 -1.09e+2 -2.87e+07 -3.17e-09 4.90e+01 -9.31e+02 -1.35e+01 -6.96e+07
Std 4.54e+1 3.09e-2 2.47e+1 1.09e+08 2.74e-09 2.15e-14 2.04e+02 3.85e+00 8.58e+07

3SOME
Mean -1.36e+3 4.41e+1 -1.05e+2 -1.62e+06 -3.08e+01 -1.94e+03 -1.33e+03 -4.01e+01 -1.14e+04
Std 3.62e+2 1.17e-1 1.50e+1 6.02e+05 6.53e+00 3.97e+02 1.74e+02 1.42e-01 6.83e+03

PMS
Mean -1.36e+3 4.45e+1 -1.48e+2 -9.23e+06 -4.06e+01 4.90e+01 -1.39e+03 -3.99e+01 -4.31e+03
Std 4.56e+2 1.28e-1 5.71e+1 2.26e+07 2.62e-01 1.92e-03 2.70e+02 4.60e-01 4.00e+03

BBO
Mean -9.32e+2 4.44e+1 -7.85e+3 -2.85e+08 -3.32e+01 -8.67e+09 -9.31e+02 -3.39e+01 -3.26e+10
Std 7.63e+1 4.08e-2 3.16e+3 5.77e+07 2.66e+00 5.56e+09 7.20e+01 3.02e+00 1.32e+10

ODE
Mean -1.92e+3 4.40e+1 -3.36e+4 -2.43e+08 -4.17e+01 -5.53e+10 -1.68e+03 -4.23e+01 -1.83e+11
Std 6.95e+1 2.68e-2 3.95e+3 3.12e+07 2.41e-01 1.28e+10 3.98e+01 1.21e-01 2.05e+10

CMAES
Mean -2.56e+3 3.50e+1 -2.45e+4 -3.35e+08 -3.56e+01 -3.45e+10 -3.58e+3 -3.55e+01 -2.56e+3
Std 3.45e+1 3.58e-2 4.42e+3 3.14e+07 2.52e-01 4.35e+10 4.38e+01 2.31e-01 1.45e+3

D=500
Algorithm f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA
Mean -9.59e+3 4.37e+1 -2.31e+5 -9.33e+04 -1.25e+02 -4.06e+11 -8.33e+03 -2.11e+02 -9.30e+11
Std 2.53e+2 4.27e-2 5.41e+3 6.92e+04 2.53e-01 1.42e+10 1.06e+02 3.18e-01 1.80e+10

MASW
Mean -6.72e+3 4.39e+1 -1.22e+3 -4.36e+09 -1.17e+02 2.45e+02 -4.55e+03 -2.00e+02 -6.53e+5
Std 3.07e+2 2.99e-2 6.44e+2 8.27e+08 7.78e-01 2.29e-02 3.17e+02 1.40e+00 5.31e+5

MASSW
Mean -4.79e+3 4.40e+1 -8.70e+2 -2.58e+09 -1.18e+02 1.47e+02 -3.87e+03 -1.96e+02 -2.39e+06
Std 4.62e+2 4.18e-2 1.66e+2 5.78e+08 8.02e-01 6.23e+02 2.67e+02 9.14e-01 1.64e+06

CCPSO2
Mean -5.86e+3 4.42e+1 -4.81e+4 -5.61e+10 -1.25e+02 -1.40e+10 -6.36e+03 -2.05e+02 -1.65e+11
Std 1.72e+2 2.60e-2 4.33e+3 1.60e+10 3.24e+00 2.41e+09 3.40e+02 1.22e+00 1.35e+10

JADE
Mean -3.99e+3 4.38e+1 -8.83e+3 -1.91e+10 -7.60e+01 -5.26e+07 -6.89e+03 -1.76e+02 -2.21e+11
Std 7.59e+2 2.85e-2 1.11e+3 4.72e+10 6.79e+00 3.80e+07 2.36e+02 5.68e+00 2.49e+10

3SOME
Mean -8.85e+3 4.41e+1 -1.11e+3 -1.27e+10 -1.22e+02 -5.31e+09 -7.86e+03 -2.01e+02 -1.54e+11
Std 4.19e+2 4.96e-2 1.47e+2 9.89e+08 3.18e+00 2.82e+09 3.98e+02 4.02e-01 2.78e+10

PMS
Mean -1.07e+4 4.40e+1 -6.34e+5 -1.19e+12 -1.25e+02 -1.12e+12 -9.77e+03 -2.07e+02 -2.64e+12
Std 6.67e+3 5.21e-1 7.15e+5 2.28e+12 4.07e+00 1.19e+12 2.61e+03 8.21e+00 2.69e+12

BBO
Mean -8.72e+3 4.41e+1 -2.31e+5 -1.48e+11 -1.21e+02 -2.87e+11 -7.61e+03 -2.09e+02 -9.50e+11
Std 4.52e+2 3.35e-2 3.33e+4 2.16e+10 1.78e+00 7.38e+10 3.38e+02 3.83e+00 1.50e+11

ODE
Mean -1.08e+4 4.39e+1 -4.35e+5 -1.74e+11 -1.27e+02 -6.72e+11 -9.84e+03 -2.13e+02 -1.87e+12
Std 1.69e+2 2.40e-2 1.84e+4 1.82e+10 2.10e-01 4.57e+10 1.38e+02 2.09e-01 8.99e+10

CMAES
Mean -2.15e+4 4.39e+1 -4.35e+5 -1.74e+11 -1.27e+02 -6.72e+11 -9.84e+2 -1.13e+2 -1.47e+5
Std 1.69e+2 2.40e-2 1.84e+4 1.82e+10 2.10e-01 4.57e+10 1.38e+2 2.09e-1 8.99e+4

D=1000
Algorithm f19 f20 f21 f22 f23 f24 f25 f26 f27

FMOA
Mean -1.95e+4 4.37e+1 -4.87e+5 -3.37e+10 -2.29e+02 -9.85e+11 -1.72e+04 -4.23e+02 -1.95e+12
Std 3.99e+2 3.88e-2 8.71e+3 2.38e+11 2.91e-01 1.69e+10 1.71e+02 3.61e-01 2.21e+10

MASW
Mean -1.44e+4 4.38e+1 -6.95e+3 -8.42e+10 -2.17e+02 -1.51e+03 -1.09e+04 -4.08e+02 -9.45e+06
Std 6.79e+2 2.89e-2 3.19e+3 1.74e+10 1.64e+00 8.98e+03 6.88e+02 2.81e+00 1.09e+07

MASSW
Mean -1.00e+4 4.39e+1 -4.17e+3 -4.60e+10 -2.17e+02 -5.47e+05 -8.49e+03 -3.96e+02 -1.87e+08
Std 8.14e+2 5.21e-2 4.67e+2 1.25e+10 1.74e+00 1.84e+06 3.26e+02 2.06e+00 4.00e+08

CCPSO2
Mean -1.51e+4 4.41e+1 -2.74e+5 -8.92e+11 -2.31e+02 -1.97e+11 -1.45e+04 -4.19e+02 -1.20e+12
Std 2.21e+2 2.57e-2 1.26e+4 2.81e+11 2.50e+00 1.98e+10 7.94e+02 7.47e-01 5.53e+10

JADE
Mean -9.93e+3 4.38e+1 -7.33e+4 -4.30e+11 -1.93e+02 -1.60e+10 -1.53e+04 -3.94e+02 -1.03e+12
Std 4.60e+2 2.20e-2 6.22e+3 1.13e+12 5.11e+00 3.84e+09 3.48e+02 5.70e+00 7.70e+10

3SOME
Mean -1.83e+4 4.40e+1 -6.02e+3 -2.77e+11 -2.30e+02 -1.29e+11 -1.63e+04 -4.06e+02 -1.04e+12
Std 5.55e+2 4.72e-2 5.00e+2 2.34e+10 2.55e+00 2.50e+10 4.00e+02 4.91e-01 1.17e+11

PMS
Mean -1.93e+4 4.40e+1 -1.10e+6 -4.63e+13 -2.30e+02 -2.77e+12 -2.10e+04 -4.16e+02 -5.75e+12
Std 1.05e+4 5.03e-1 1.18e+6 8.62e+13 7.87e+00 2.59e+12 5.21e+03 1.61e+01 5.16e+12

BBO
Mean -1.96e+4 4.40e+1 -6.73e+5 -2.18e+12 -2.27e+02 -9.99e+11 -1.72e+04 -4.25e+02 -2.79e+12
Std 6.72e+2 2.98e-2 7.74e+4 4.26e+11 1.57e+00 2.00e+11 5.61e+02 2.79e+00 3.25e+11

ODE
Mean -2.22e+4 4.38e+1 -9.87e+5 -2.85e+12 -2.33e+02 -1.92e+12 -2.06e+04 -4.28e+02 -4.54e+12
Std 2.38e+2 2.46e-2 2.46e+4 3.94e+11 3.28e-01 8.30e+10 2.19e+02 2.14e-01 1.37e+11

CMAES
Mean -3.07e+8 -1.98e+7 -4.67e+5 -6.53e+10 -2.17e+2 -2.44e+11 -6.36e+3 -2.16e+2 -4.09e+5
Std 3.39e+7 4.10e+4 -1.47e+5 3.10e+11 2.78e+00 8.75e+10 2.45e+2 8.83e-1 3.10e+5
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Table 21: The Wilcoxon Signed Rank Test for the proposed algorithm.

D = 100 D = 500 D = 1000
Algorithm R+ R− p− value R+ R− p− value R+ R− p− value
GA 338 40 3.43e-04 344 34 1.96e-04 310 41 6.35e-04
PSO 247 131 0.163 339 39 3.13e-04 318 33 3.10e-04
DE 206 172 0.683 249 129 0.14 276 75 0.01
ES 198 182 0.82 232 146 0.30 220 131 0.25
FES 197 181 0.84 214 164 0.54 203 148 0.48
EP 326 52 9.96e-04 358 20 4.89e-05 322 29 1.98e-4
FEP 245 133 0.17 334 44 4.94e-04 335 16 5.10e-05
MASW 164 214 0.54 172 206 0.68 160 191 0.69
MASSW 149 229 0.33 151 227 0.36 159 192 0.67
CCPSO2 157 221 0.44 209 169 0.63 212 139 0.35
JADE 143 235 0.26 193 185 0.92 196 155 0.60
3SOME 178 200 0.78 221 157 0.44 203 148 0.48
PMS 230 148 0.32 336 42 4.12e-04 306 45 9.18e-4
BBO 213 165 0.56 258 120 0.09 297.5 53.5 1.9e-4
ODE 310 68 3.0e-3 342 36 2.36e-04 319 32 2.67e-4
CMAES 189 189 0.787 259 119 0.09 180 171 0.90

Table 22: The Friedman Test for the benchmark problems where D = 100, 500 and 1000.

Unimodal Problems

Algorithm FMOA GA PSO DE ES FES EP FEP MASW MASSW CCPSO2 JADE 3SOME PMS BBO ODE CMAES

D = 100 108 67 59 91 70 74 11 29 121 122 90 132 113 72 46 52 120

D = 500 124 67 94 87 55 87 20 37 118 138 93 128 101 21 53 55 99

D = 1000 97 72 88 90 61 95 26 36 121 138 89 120 109 35 53 54 93

Multimodal Problems

Algorithm FMOA GA PSO DE ES FES EP FEP MASW MASSW CCPSO2 JADE 3SOME PMS BBO ODE CMAES

D = 100 170 142 100 151 207 198 50 141 209 228 240 209 190 160 145 78 136

D = 500 191 139 135 141 166 209 51 56 237 256 227 212 214 103 150 105 162

D = 1000 206 110 141 123 158 199 45 42 227 238 192 209 198 111 124 92 186

All the Problems

Algorithm FMOA GA PSO DE ES FES EP FEP MASW MASSW CCPSO2 JADE 3SOME PMS BBO ODE CMAES

D = 100 278 209 159 242 277 272 61 170 330 350 330 341 303 232 191 130 256

D = 500 315 206 229 228 221 296 71 93 355 394 320 340 315 124 203 160 261

D = 1000 303 182 229 213 219 294 71 78 348 376 281 329 307 146 177 146 279
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The main contribution of this paper is the new parameter setting algorithm that dynamically configures
the parameters. The algorithm tries to learn the properties of the fitness landscape and move the parameters
toward desired optimal value. As a result, the parameter tuning process of the optimization algorithms is
omitted. Despite this advantage, the proposed algorithm may not be as good as the some state-of-the-art
algorithms. Therefore, in the future work, we will concentrate on designing some powerful components to
improve the algorithm’s performance.

We analysed the parameter adaptation strategy and compared it with the JADE’s scheme. We have
shown that the proposed adaptation strategy promisingly find the best parameter value during the opti-
mization process and regardless of the initial value for each parameter, the algorithm finds optimal value
for each parameter. We also challenged the parameter adaptation strategy against two parameter setting
techniques on several unimodal and multi-modal problems, and the results showed that the proposed adap-
tation strategy outperforms the other two techniques in most problems, especially when the problem size is
greater than 500.

Furthermore, we studied the performance of the OBL part of the algorithm by making an comparison
based on RLDs between the original version of MOA and the MOA with the OBL mechanism, and the
results showed that the OBL helps the algorithm improve its convergence rate.

Finally, we compared the proposed algorithm with nine state-of-the-art optimization algorithms and
seven popular population-based algorithm on 27 benchmark functions. The results indicated that FMOA
outperforms all the traditional population-based algorithms on most problems and its results are comparative
to those found by other state-of-the-art algorithms, particularly when the problem size is large (greater than
500).

In future, we are planning to apply the proposed algorithm on some real-world problems. For example, for
solving a hypercube problem [59], which is a NP-hard problem, the proposed algorithm could be a very good
choice. This is because the problem is prohibitively time-consuming and removing the expensive parameter
configuration process will help us focus on solving the problems without excessively spending computational
effort on the parameter configuration process. Using the proposed method for machine learning applications
like training neural networks, optimizing the parameters of learning algorithms, etc. is another line of
research.
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