

Bees algorithm for multimodal function optimisation
Zhou, Zuokuan; Xie, Yong; Pham, Duc; Kamsani, Silah; Castellani, Marco

DOI:
10.1177/0954406215576063

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Zhou, Z, Xie, Y, Pham, D, Kamsani, S & Castellani, M 2015, 'Bees algorithm for multimodal function
optimisation', Institution of Mechanical Engineers. Proceedings. Part C: Journal of Mechanical Engineering
Science . https://doi.org/10.1177/0954406215576063

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185487282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1177/0954406215576063
https://research.birmingham.ac.uk/portal/en/publications/bees-algorithm-for-multimodal-function-optimisation(2c19c739-df8f-466e-973e-74d04a24758b).html

Bees Algorithm for Multimodal Function Optimisation

Z. D. Zhou
1
, Y. Q. Xie

1∗
, D. T. Pham

2
, S. Kamsani

2
, M. Castellani

2

1
School of Information Engineering, Wuhan University of Technology, China

2
School of Mechanical Engineering, University of Birmingham, U.K

Abstract: The aim of multimodal optimisation (MMO) is to find significant optima of a

multimodal objective function including its global optimum. Many real-world applications

are MMO problems requiring multiple optimal solutions. The Bees Algorithm (BA) is a

global optimisation procedure inspired by the foraging behaviour of honeybees. In this paper,

several procedures are introduced to enhance the algorithm’s capability to find multiple

optima in MMO problems. In the proposed Bees Algorithm for MMO, dynamic colony size is

permitted to automatically adapt the search effort to different objective functions. A local

search approach called balanced search technique (BST) is also proposed to speed up the

algorithm. In addition, two procedures of radius estimation and optima elitism are added, to

respectively enhance the Bees Algorithm’s ability to locate unevenly distributed optima, and

eliminate insignificant local optima. The performance of the modified Bees Algorithm is

evaluated on well-known benchmark problems, and the results are compared with those

obtained by several other state-of-the-art algorithms. The results indicate that the proposed

algorithm inherits excellent properties from the standard Bees Algorithm, obtaining notable

efficiency for solving MMO problems due to the introduced modifications.

Keywords: Swarm-based algorithms, multimodal optimisation, Bees Algorithm, balanced

search, hill valley

∗ Corresponding author: xyqwhut0728@126.com

Nomenclature

MMO: multimodal optimisation

BA: Bees Algorithm

BST: balanced search technique

SOA: swarm-based optimisation algorithm

EA: Evolutionary Algorithm

GA: Genetic Algorithm

PSO: Particle Swarm Optimisation

IWO: Invasive Weed Optimisation

HV: hill valley

DE: Differential Evolution

SDE: Species-based Differential Evolution

1. Introduction

Swarm-based optimisation algorithms (SOAs) are usually employed to find the global

solution to an optimisation problem, discarding any alternative solution of equal or

comparable fitness. However, in a multimodal optimisation (MMO) task, the main purpose is

to find multiple optimal solutions [1]. MMO problems are gaining increasing attention due

to their frequent occurrence in scientific and engineering applications, such as object

detection in machine vision, parameter tuning in varied-line-spacing holographic grating

design, and protein structure prediction. MMO applies to those problems which have more

than one global optimum in the feasible solution space, or one global optimum and several

local optima. As they represent alternative solutions, it is sometimes desirable to locate all the

significant optima of a given fitness landscape. In addition, the knowledge of multiple

optimal solutions may provide useful insight into the problem domain. A similarity analysis

of multiple optimal solutions may bring about helpful innovative and hidden principles,

similar to what is often observed in Pareto-optimal solutions in a multi-objective problem

solving task [2].

Investigation of the performance of SOAs for MMO problems has been receiving

growing interest in the SOA community. Evolutionary algorithms (EAs) are widely used to

solve MMO problems due to their population-based searching ability. Niching, clustering,

and speciation methods have been used to distribute the EA population on different peaks in

the search region. Similarly, several modified versions of Particle Swarm Optimisation (PSO)

and Invasive Weed Optimisation (IWO) have been used to search multiple optimal solutions.

More details about methods for solving MMO problems are presented in the second section.

First proposed by Pham [3], the Bees Algorithm is a SOA that mimics the foraging

behaviour of honey bees, a species which has been successfully surviving for hundreds of

thousands of years in various kinds of natural environments. This paper will introduce several

modifications to the basic Bees Algorithm with the aim to find multiple optimal solutions

simultaneously in a single run. The modifications are necessary since the basic Bees

Algorithm is designed to find only one optimum. First of all, unlike some SOAs that use a

predefined clustering radius (or parameter with the similar function) for the peaks in the

fitness landscapes, the proposed algorithm estimates the radius using an amended hill valley

(HV) method. The second modification introduces a local search operator named balanced

search technique (BST) to search for the solutions of highest fitness in a fitness peak. Some

algorithms calculate the gradient of the objective function. This can be very helpful in

simulation but unfortunately many real world problems are non-differentiable. Compared to

the purely random local search in the basic Bees Algorithm, this modification aims at

improving the algorithm’s search speed. Furthermore, the algorithm allows for variable

colony size. That is, the population size in each generation is allowed to increase if more

optima are detected, or decrease if only a small number of optima exist in the objective

function. This is biologically plausible, since biological bees optimise the number of

harvesting bees according to the abundance of food sources (i.e. nectar).

The remainder of this paper is organised as follows. In Section 2, a review is provided of

related SOAs for solving MMO problems. Section 3 outlines the basic Bees Algorithm. The

modifications introduced to perform MMO search are explained in Section 4. Thereafter, the

individual impact of each of the new features on the search capability of the algorithm is

highlighted in Section 5. In Section 6, the experimental results of the proposed algorithm and

comparisons are presented. Finally, Section 7 concludes the paper and suggests topics for

future work.

2. Related work

When applying SOAs to MMO problems, it is very important to consider two apparently

contradictory requirements: preserving promising individuals from one generation to the next

and maintaining the diversity of the population [4]. This section briefly reviews some

recently developed techniques to address the above trade-off.

De Jong tried to solve the MMO problem using an EA for the first time in 1975 [5]. He

used population crowding. Crowding encourages population diversity by eliminating from

the parent population those individuals which are most similar to the offspring. Fitness

sharing was proposed by Goldberg and Richardson in 1987 [6] to increase the chance of

locating multiple optima. Instead of using an absolute fitness function, they designed a shared

function which takes into account the genotypic or phenotypic similarity of the individuals.

Since then, an increasing number of researchers explored different ways to deal with the

population diversity problem. These methods include species conservation, pre-selection,

elitism, and clearing.

The adaptive elitist-population search method was used in a Genetic Algorithm (GA) for

MMO [7-8]. Vitela and Castanos proposed a sequential niching algorithm for MMO. They

combined hill-climbing, a derating function, niching and clearing techniques within a GA for

a multiple optima search [9]. In the literature [10-12], authors discussed a clustering genetic

algorithm based on dynamic niching with niche migration. They studied the niching method

intensively and claimed very little priori knowledge is required to determine the radius and

the number of niches. Other techniques as the distance measuring method [13] and memetic

algorithms [14] were used within a GA for MMO purpose.

Particle Swarm Optimisation (PSO) is another prominent member of the SOA family,

and is now receiving a great deal of interests for MMO purpose. A memetic algorithm, along

with a local search operator, was hybridised with PSO by Wang [15] for MMO. This hybrid

PSO obtained excellent performance. Likewise, other practitioners [16-22] hybridised PSO

with niching and clustering techniques to design different population topologies or fitness

evaluation methods to obtain several multiple optimal solutions. Some latest studies related to

PSO for MMO are summarised in [23].

 Li [24] utilised a SOA for determining species in conjunction with a basic Differential

Evolution (DE) procedure named Species-based Differential Evolution (SDE). In [25], the

principle of locality, a widely used concept in computing, was incorporated with differential

evolution for MMO. Spatial locality and temporal locality were adopted in the proposed

methods. Other learning algorithms such as artificial weed colony optimisation are

continuously investigated for MMO [26-28].

3. The basic Bees Algorithm

The basic Bees Algorithm is inspired by the foraging behaviour of honeybees in nature,

and was designed to search for the best solution to a given optimisation problem. A solution

in the search space is thought of as a nectar source. Scout bees randomly sample the solution

space and appraise the quality of the visited locations through the fitness function. Foragers

are recruited to exploit the most promising m locations found by the scout bees. Each scout

directs a number of foragers to the neighbourhood of the solutions found. The scouts that

found the e top-rated locations recruit nre foragers, the scouts that found the remaining m-e

most promising solutions recruit nrb< nre foragers. The neighbourhood of a solution is

regarded as a ‘flower patch’. Overall, the original Bees Algorithm employs a combination of

local exploitative and global exploratory search techniques. For the global search, scout bees

are sent to random points of the search space to look for potential solutions. For the local

search, foragers are sent to the neighbourhood of the most favourable solutions.

The parameters need to be set for the basic algorithm are: the number of scout bees (n);

the number of patches selected for the local search (m); the number of top-rated patches (elite)

in selected patches (e); the number of foragers recruited for the top patches (nre); the number

of foragers to be recruited for the other selected patches (nrb); the initial size of each patch

(ngh); and finally the stopping criteria. Since its original formulation, the Bees Algorithm has

undergone many variations [29-34], and for their applications reader can refer to [35-39].

4. The proposed modified Bees Algorithm

The proposed algorithm includes a number of modifications to the basic Bees Algorithm

to find multiple satisfactory solutions to an objective problem in a single run. This section

details the proposed algorithm and presents the modifications. Without loss generality, it will

be assumed in the rest of this paper that the optimisation problem requires the maximisations

of a given fitness function.

4.1 Main procedures of the proposed algorithm

Before detailing the proposed algorithm, a number of terms will first be defined.

Definition 1. Field: a field defines an area in the search space that may potentially cover

a fitness peak. It helps to differentiate one peak from another. Each field should cover one

and only one fitness peak ideally. The size of a field is determined by its radius (refer to

Definition. 3). Each field contains at least one scout.

Definition 2. Field centre: the field centre is the location of highest fitness found so far

by a scout bee in the field. If there is only one scout in that field, its location automatically

becomes the field centre.

Definition 3. Field radius: the field radius is the Euclidean distance from the field centre

to the border. It determines the size of field.

Definition 4. Neighbourhood: the neighbourhood is used to constrain the range for a

refined local search within a field to locate the local optima. Only within the neighbourhood

scouts and foragers are allowed to land. To enhance the search accuracy, the size of the

neighbourhood shrinks if the search stagnates in a field.

The main body of the proposed algorithm is designed based on the framework of the

basic version. Figure 1 summarises the proposed algorithm, and Table 1 lists the parameters

to be initialised in Step 1. In Step 3, fields are allowed to merge or split according to the

distance between them or the distribution of scouts. The fields’ radii are updated through an

estimation procedure. Local search is performed in Step 4 to look for the optimal solutions on

detected fitness peaks. A balanced search strategy is employed in this step to enhance the

search speed. This is followed by global search in Step 5. The global search tries to detect

potential fitness peaks that have not been identified in the search space. The hill valley

method is implemented in global search to enhance the possibility of finding unidentified

peaks.

Input: Objective function

Step 1: Initialisation

Step 2: While (stopping criteria not met)

Step 3: Fields update

Step 4: Local search (neighbourhood search)

Step 5: Global search

Step 6: End while

Output: Optimal solutions

Figure 1. Pseudo code of main body of the proposed algorithm

Table 1. Parameters of the Bees Algorithm for MMO

ns initial number of scouts in Fields

nr initial number of random scouts

nre number of foragers recruited by the scout at the field centre

nrb number of foragers recruited by other scouts in a field (nre> nrb)

ngh initial neighbourhood size

rad initial field radius

stlim limit of cycles to determine the stagnation of a field

4.2 Field update

Fields are allowed to merge and split when the certain conditions are met, and the radius

of each field is made adaptive to the objective problem through an estimation procedure.

4.2.1 Distance between fields

Let Pi and Pj be two fields with radius Ri and Rj, and Ci and Cj be the respective centre.

The distance between Pi and Pj is the Euclidean distance between Ci and Cj calculated as

Equation (1):

2

)()(),(jiji CposCposPPDis −= (1)

where)(⋅pos returns the position of a specified point in the search space.

4.2.2 Rule for merging fields

Pi and Pj are allowed to merge when Relation (2) is satisfied:

)(7.0),(jiji RRPPDis +×< (2)

Let Pk, Ck, Rk denote respectively the newly formed field, its centre and radius, then Ck is

the one selected from Ci and Cj which has higher fitness, and Rk is the larger one of Ri and Rj.

All the scouts of Pi and Pj are moved into the common field Pk. A restriction on the number of

scouts in a field is placed since a field cannot sustain an overly dense population. If the

number of scouts in a field exceeds a predefined upper limit (3 in this paper), only those at

the fittest positions will be kept for the next generation, whilst the others are regarded as

redundant and transferred to global search.

4.2.3 Rule for splitting a field

A field Pi is allowed to split when Relation (3) is satisfied:

 iii RSCDis ×> 4.1),((3)

where }atnotis|inscouts{ iiii CSPS ∈ is one of the scouts in Pi. Each field gets only one

chance to split in an evolving iteration. Denoting the two children fields as Pm and Pn, Cm, Cn,

Rm, Rn are updated as im CC = , in SC = and inm RRR ×== 7.0 , and Pm inherits all the

scouts from Pi except Si.

4.2.4 Field radius estimation

The field radius is updated through a radius estimation algorithm, where an amended hill

valley (HV) [40] is applied. Figure 2 helps to explain how the amended HV works on a one

dimensional function. Nevertheless, the validity of the procedure extends to any

dimensionality of the search space.

iB

iC
'

iC

'

iB

M

iB

iC
'

iC

'

iB

M

 (a) (b)

iB

iC

'

iC

'

iB

M

iB

iC

'

iC

'

iB

M

 (c) (d)

Figure 2. (a) (b) and (c) demonstrates the conditions (1), (2), and (3)respectively, (d)

demonstrates a valley being omitted.

Figure 2 illustrates four possible cases in field radius estimation. Let Ci and Ri be the

centre and estimated radius of the current field Pi. A particular bee Bi is created and sent to

the position obtained by Equation (4).

 irii RDCposBpos ⋅+=)()((4)

where Dr symbolises a normalised random direction, Then three sample points '

iC , '

iB and

M are created according to Equations (5).













−⋅+=

−⋅+=

−⋅+=

)]()([
2

1
)()(

)]()([)()(

)]()([)()(

'

'

iii

iiii

iiii

CposBposCposMpos

BposCposBposBpos

CposBposCposCpos

δ

δ

 (5)

where δ is an absolute small positive value. The basic motivation underneath the radius

estimation is: if a valley is detected between Bi and Ci, the current radius ought to be reduced,

otherwise it should be increased. A valley is said to exist if at least one of the following

conditions is met:

(1))}(),(min{)('

iii CfitnessBfitnessBfitness < , as shown in Figure 2(a);

(2))}(),(min{)('

iii CfitnessBfitnessCfitness < , as shown in Figure 2(b);

(3))}(),(min{)(ii CfitnessBfitnessMfitness < , as shown in Figure 2(c).

where the function fitness(·) returns the fitness value of a sampled position. Otherwise, it is

assumed there is no valley between Bi and Ci. Figure 2(d) shows a case in which the

conditions (1), (2) and (3) are not satisfied but actually a valley does exist between Bi and Ci.

The HV method omits a valley between two end points with a probability inversely

proportional to the number of adopted sample points. To reduce the chance of such an event,

the amended HV is repeated k (k > 0) times (k equals to the dimension of the objective

function in this paper) before determining the radius.

Figure 3 shows the pseudo code of field radius estimation algorithm where

)10(<< αα is introduced to control the radius alterability. Throughout this paper it is kept

constant to 2.0=α .

Input: current radius Ri(t), k

Step 1: Send Bi according to Equation (4), k = k-1;

Step 2: Produce sample points according to Equations (5);

Step 3: Determine whether a valley exists according to conditions (1), (2) and (3),

if a valley exists, go to Step 4,

if a valley does not exist and k = 0, go to Step 5,

otherwise go to Step 1;

Step 4: Ri(t+1)← ⋅−)1(α Ri(t), return;

Step 5: Ri(t+1)← ⋅+)1(α Ri(t).

Output: updated radius Ri(t+1)

Figure 3. The pseudo code of field radius estimation

4.3 Local search

The basic Bees Algorithm and most of its variants implement local search in a

neighbourhood using a random operator, as expressed by Equations (6).







=+

⋅+=

=
))}(()),(({max))1((

)())(())((

,...,2,1

1

tFfitnesstSfitnesstSfitness

rtnghtSpostFpos

j

nj

j

F

 (6)

where F
j
(t) stands for the jth forager recruited by the scout S(t) in generation t, nF denotes the

number of foragers recruited by S, 1r is a uniformly distributed random value in)1,1(− .

The function max{·} embodies the greedy selection strategy adopted in the local search, that

is the scout is replaced by the recruited forager if the forager is landing at a position of higher

fitness than the scout. The balanced search technique (BST) is developed to speed up the

algorithm as described below.

4.3.1 Obtaining the guide

A gradient-like vector is obtained as a search guide for the recruited foragers. It does not

require the function to be differentiable. The guide is calculated as follows:

))1(())(()(−−= tCpostCpostG iii (7)

where)(tGi denote the guide of the field Pi in generation t . Equation (7) indicates that the

guide for the current iteration depends on the position of the field centre in the last two

iterations. The guide is thereafter normalised by dividing it by the norm ||)(|| tGi as in

Equation (8). A search conducted by this guide is called guided search.

 0)(if,
||)(||

)(
)(≠=

∧

tG
tG

tG
tG i

i

i

i (8)

4.3.2 Formulating the balanced search

The basic principle of BST is to keep a balance between random and guided search, as

shown in Equations (9).









=+

⋅⋅⋅−+⋅+=

=

∧

))}(()),(({max))1((

)()))(1()()(())(())((

,...,2,1

2

tFfitnesstCfitnesstCfitness

rtnghDttGttCpostFpos

j

ii
nj

i

iriiii

j

F

i
µµ

 (9)

in which Dr symbolises a normalised random direction, 2r is a uniformly distributed random

value in)1,0(, and)(tiµ is introduced as an adaptive weight to balance the influence of

the two local search operators. The larger)(tiµ is, the more local search depends on guided

search. Conversely, the local search will rely more on randomness.

4.3.3 Updating the balance weight

The weight)(tiµ is updated according to Equations (10).













≥−×

≤−×

=+
∧∧

∧∧

.),(

|))1(),((|),(8.0

|))1(),((|),(2.1

)1(2

1

othert

tGtGanglet

tGtGanglet

t

i

iii

iii

i

µ

θµ

θµ

µ (10)

subject to 1)(0 ≤< tiµ . 1θ and 2θ are two thresholds that determine the size of)(tiµ ,

and the function angle(�) returns the angle between two vectors. Equations (10) indicate that

if improvements in fitness are obtained in consecutive iterations without altering substantially

the direction of the guide, iµ will keep growing until it reaches its upper limit. According to

Equations (9), an increase of iµ will result in the dominance of the guided search. On the

contrary, if the angle between two successive guides exceeds the threshold 2θ , iµ will

gradually decrease and then random search will take dominance.

4.3.4 Preserving stagnant fields

A field is considered stagnant if no improvement can be obtained after a predefined

number of evolutionary cycles (stlim). Instead of abandoning the stagnated field, the

proposed algorithm records the information of the field including its centre and radius. The

position of the field centre is one of the optimal solutions located by the algorithm. All the

scouts in the stagnated field except the one at the centre are released and become random

scouts, so the search in this field is terminated.

4.4 Global search

Global search focuses on yet unknown areas of the solution space. It is initially carried

out by a predefined number of scouts, called random scouts. To guarantee that a fitness peak

discovered by a random scout has never been searched before, the regional evolution and the

standard hill valley are combined. The regional evolution is used to prevent that a random

scout which just began to climb a fitness peak is being neglected due to its current low fitness.

A random scout is allowed to evolve a few times (equals to the dimension of the objective

function in this paper) before competing with those scouts at the field centre. Normally, the

HV would incur a fast increase of function evaluations, since it has to evaluate the fitness

values of a number of sample points. In the proposed algorithm, this increase is restrained by

restricting HV only to the fields in the vicinity of the peak under consideration. When a

random scout discovers a new promising region in the fitness landscape, a new field is

generated around this random scout. This random scout therefore become a scout in fields

and is involved in the local search in the next iteration. The global search process consists

essentially of the following steps in Figure 4:

Input: current fields, random scouts

Step 1: send a scouts randomly to the search space;

Step 2: implement the regional evolution;

Step 3: implement the HV to determine whether the random scout has found a new peak in

fitness landscape;

Step 4: if a new fitness peak is identified, a new field covering this peak is formed and

inserted into current fields

Step 5: go to Step 1 until all the random scouts are sent out

Output: updated fields

Figure 4. The pseudo code of global search

4.5 The mechanism of variable colony size

In the proposed algorithm, the variable colony size is achieved by transferring part of the

scouts between local search and global search, and setting a range for the number of random

scouts.

The rule governing how fields are merged has set a restriction on the number of scouts

in a field. If the number of scouts grows above a specified level in a field, some scouts

landing at low-fitness positions will be released and added to the random scouts. The number

of random scouts is hence increased. However it cannot exceed an upper boundary, otherwise

some surplus random scouts will be removed from the colony.

In the global search process, the random scouts that have discovered a potential fitness

peak are becoming the scouts in fields and will be involved in the local search process in the

following evolutionary iteration. In this situation the number of scouts in fields increases

while the random scouts decrease. A few random scouts will be created by the algorithm if

the number of current random scouts falls below the lower boundary. The colony size is

therefore increased. Through this way the algorithm ensures the number of random scouts

falls within the allowed boundaries. Figure 5 helps explain the mechanism of the variable

population size in a colony.

Figure 5. Variable population size in a colony

5. Effects of new features used

5.1 Evolution of the colony size

Two functions are used here to demonstrate how the colony size evolves during the

optimisation process.

(1) Deb’s function:

)5(sin)(6

1 xxf π= (11)

where 10 ≤≤ x and the five global maximal at 1.0=x , 3.0=x , 5.0=x , 7.0=x , and

9.0=x respectively.

(2) Two dimensional multimodal function:

 1)4sin()4sin()(22112 ++−= πππ xxxxxf (12)

where 2,2 21 ≤≤− xx . There are totally 100 optimal solutions (including local optima). Evolution of colony size
0102030

405060
1 6 11 16Cycle of iterationsNumber of scouts

Entire scouts Scouts in fields Random scouts Evolution of colony size
02468

101214
1 6 11 16 21Cycle of iterationsNumber of scouts

Entire scouts Scouts in fields Random scouts

 (a) (b) Evolution of colony size
0100200300400500

1 11 21 31Cycle of iterationsNumber of scouts
Entire colony Scouts in fields Random scouts Evolution of colony size

020406080
100120140

1 31 61 91 121Number of scoutsCycle of iterations
Entire colony Scouts in fields Random scouts

 (c) (d)

Figure 6. Evolution of the colony size during optimisation: in (a) and (b) the algorithm starts

with a large and small population size respectively to search the fitness landscape of function

(1); in (c) and (d) the algorithm starts with a large and small population size respectively to

search the fitness landscape of function (2).

In the case of function (1), the algorithm starts with 50 field scouts and 5 random scouts,

and then with 2 field scouts and 3 random scouts. As can be seen in Figure 6(a), the entire

population drops dramatically when the size of the initial colony is unnecessarily large to find

the five optima in the solution space. The number of random scout grows at the beginning

because the redundant scouts in fields are transferred to global search, and then declines due

to upper boundary of the number of random scouts. On the contrary, when the colony size is

insufficient for finding many optima at the beginning of the search (Figure 6(b)), new

members are gradually added to the colony so the colony size keep growing until enough for

exploring the fitness peaks. The developmental pattern in Figure 6(c) basically matches that

of 6(a), and the pattern in Figure 6(d) with 6(b). The two cases show that the population in an

evolving colony is able to adapt to the task, and finally run in a relatively stable state.

5.2 Effects of BST

Also, a set of well-known functions are used to demonstrate the effects of BST, as given

in Table 2.

Table 2. Functions used for evaluating the effects of BST

(1) Deb’s function (5 optima):

)5(sin)(6

1 xxf π= ,]1,0[∈x ;

(2) Deb’s decreasing function (5 optima):

)5(sin2)(6)9.0/)1.0((2

2

2

xxf
x π−−= ,];1,0[∈x

(3) Roots function (6 optima):

|1|1

1
)(

63
−+

=
x

xf , Cx ∈ ,]2,2[21 −∈+= ixxx ;

(4) Two dimensional multimodal function (100 optima):

1)4sin()4sin()(22114 ++−= πππ xxxxxf ,]2,2[, 21 −∈xx ;

(5) Eight dimensional multimodal function (256 optima):

8

|))1(2sin(|
),...,,(

8

1

53

8215

∑ =
−

= i ix
xxxf

π
, 8,...,2,1],1,0[=∈ ixi .

For each function, the algorithm starts with the same parameter configurations. For

problem (1) and (2), the colony starts with 10 field scouts and 5 random scouts. The search

accuracy is set to be 0.000001. For function (3), (4) and (5), these configurations are 20, 10,

0.0001; 50, 30 0.001 and 130, 85, 0.01 respectively. Table 3 compares the results of the

algorithms using random and balanced local search in terms of function evaluation, iteration

cycles and the number of optima found. The function evaluation is the primary criterion for

comparing the performance of the various algorithms. The statistical significance of the

difference between the results is evaluated through student’s t-tests. The t-tests are run with a

confidence level of 95% and the p-values are listed in Table 4. The p-value below the

significance level signal (0.05) indicates a statistically significant difference between the

results obtained by the two algorithms.

. Table 3 shows that the BST allows the Bees Algorithm to find the optimal solutions

using about 13.8%, 3.4%, 43%, 13.0% less function evaluations than the random local search

based Bees Algorithm on functions (1), (3), (4), (5) respectively, and the corresponding

p-values of 0.0014, 0.0051, 0.0001 0.0001 in Table 4 are below the acceptance value 0.05,

suggesting that the improvement is statistically significant. For function (2), The Bees

Algorithm using BST needs 8.2% less function evaluations but the p-value indicates the

improvement is not significant. The data shows both algorithms are successful in finding all

the optima. In these experiments, the BST based Bees Algorithm requires less function

evaluations and less iteration cycles on the majority of functions than the basic Bees

Algorithm. Therefore BST can be considered as a promising local search approach to speed

up the algorithm.

Table 3. Comparison betweem random local search and BST

Test function
Local search

method

Function

evaluations(Std.)

Iteration

cycles(Std.)

Optima

found(Std.)

(1) Deb’s function
Random 1,196(272) 19.3(5.3) 5(0)

BST 1,031(228) 16.2(4.7) 5(0)

(2) Deb’s decreasing

function

Random 1,162(312) 19.5(6.8) 5(0)

BST 1,067(254) 17.6(5.1) 5(0)

(3) Roots function
Random 10,310(619) 36.4(8.3) 5.8(0.4)

BST 9,960(603) 31.2(8.1) 5.8(0.4)

(4) Multimodal

function (2D)

Random 77,816(1,0142) 59.9(17.3) 94.9(1.75)

BST 44,037(6,520) 31.6(5.3) 96.7(1.7)

(5) Multimodal

function (8D)

Random 836,823(68,345) 49.2(4.38) 247.2(7.8)

BST 727,777(66,564) 47.6(5.94) 250.8(6.7)

Table 4. p-values showing statistical significance

Test function
Function

evaluations

Iteration

cycles

Optima

found

(1) Deb’s function 0.0014 0.0026 -

(2) Deb’s decreasing function 0.0982 0.1172 -

(3) Roots function 0.0051 0.0020 -

(4) Multimodal function (2D) <0.0001 <0.0001 <0.0001

(5) Multimodal function (8D) <0.0001 0.1285 0.0150

5.3 Evolution of field radius

Three benchmark functions are selected to demonstrate how the field radius evolves as

the algorithm proceeds. For visualisation purposes, two benchmarks are chosen to be two

dimensional (as plotted in Figure 7) whilst the other one is four dimensional, (Table 5).

Table 5. Functions used for demonstration of field radius evolvement

(1) Inverted Rastrigin (9 optima)

∑
=

⋅−−−=
2

1

2

1)2cos(1020)(
i

ii xxxf π , 5.15.1 ≤≤− ix ;

(2) Five hills (Ursem function, 5 optima)

2

||3

2

||2
)5.05.0sin(

2

||3

2

||2
)5.02.2sin()(122

2
12

12

xx
x

xx
xxf

−
⋅

−
⋅++

−
⋅

−
⋅+= ππππ ,

22,5.15.2 21 ≤≤−≤≤− xx ;

(3) Four dimensional multimodal function (16 optima)

3

|))1(2sin(|
),.,(

3

1

53

3213

∑ =
−

= i ix
xxxf

π
, 3,2,1],1,0[=∈ ixi .

For each function, the algorithm is executed several times using different initial field

radii, whilst all the other parameters are kept the same. For function (1), the radius is

initialized at 1.5 and 0.1. For function (2) and (3), it is set to respectively 1.0 and 0.2, and 0.3

and 0.03. Figure 8 shows how the radius evolves as the search proceeds. The plots in Figure 8

show two trends, which can be summarised as follows: the field radius self-adapts at the

beginning, then reaches a relatively steady value, and finally fluctuates around this value.

Figures 8 (e) and (f) show that the field radius estimation method is also applicable to

multi-dimensional problems. From this group of tests, it can be concluded that the radius

estimation method makes the radius adaptive and less dependent on the preset initial value.

However, the final phase of fluctuations indicates there is still room for enhancing the radius

estimation accuracy.

-2
-1

0
1

2

-2

0

2

-60

-40

-20

0

-3 -2 -1 0 1 2 3
-2

0
2

-1

0

1

2

3

 (a) (b)

Figure 7. functions for estimating field radius (a) function 1; (b)function (2)

Evolution of field radius
00.511.5

0 20 40 60 80 100Cycle of iterations
Radius

Evolution of field radius
00.20.40.60.8

0 20 40 60 80Cycle of iterations
Radius

 (a) (b) Evolution of field radius
00.20.40.60.811.2

0 10 20 30 40 50 60Cycles of iterations
Radius

Evolution of field radius
0.10.20.30.40.50.60.7

0 10 20 30 40 50Cycles of iterations
Radius

 (c) (d) Evolution of field radius
00.050.10.150.20.250.30.35

0 10 20 30 40 50Cycle of iteratons
Radius

Evolution of field radius
00.030.060.090.120.15

0 20 40 60 80Cycle of iterations
Radius

 (e) (f)

Figure 8. Evolution of the field radius during the optimisation process, (a)(c)(e) The

algorithm starts with a large field radius for each function; (b)(d)(f) The algorithm starts with

a small field radius for each function.

6. Evaluation of the Bees Algorithm for MMO

This section tests the proposed performance on optimising MMO problems. The purpose

is to underline the Bees Algorithm’s efficiency for MMO, rather than focusing on its

superiority to other algorithms.

6.1 Experimental setup

To evaluate the performance of the proposed algorithm, some commonly used

multimodal functions of various characteristics, such as irregular landscape, symmetric or

equal distribution of optima, unevenly spaced optima, multiple global optima in the presence

of multiple local optima, are employed as given in Table 6.

Table 6. Benchmark functions for evaluating the performance of the algorithm

f1: Two-peak trap (1 global optima/1 local optima)










<≤−

<≤−

=

2015),15(
5

200

150),15(
15

160

)(

xx

xx

xf , 200 ≤≤ x .

f2: Central two-peak trap (1/1)















≤≤−

<≤−

<≤

=

2015),15(
5

200

1510),15(
5

160

100,
10

160

)(

xx

xx

xx

xf , 200 ≤≤ x

f3: Five-uneven-peak-trap (2/3)



















<≤−

<≤−

<≤−

<≤−

<≤−

<≤−

<≤−

<≤−

=

305.27),5.7(80

5.275.22),5.27(32

5.225.17),5.17(32

5.175.12),5.17(28

5.125.7),5.7(28

5.75),5.7(64

55.2),5.2(64

5.20),5.2(80

)(

xx

xx

xx

xx

xx

xx

xx

xx

xf , 300 ≤≤ x

f4: Equal maxima (5/0)

)5(sin)(6 xxf π= , 10 ≤≤ x

f5: Decreasing maxima (1/4)

)5(sin
0.8

0.1x
)2log(2exp)(6

2

xxf π⋅


















 −
⋅−= , 10 ≤≤ x

f6: Uneven maxima (5/0)

)]05.0(5[sin)(436 −= xxf π , 10 ≤≤ x

f7: Uneven decreasing maxima (1/4)

)]05.0(5[sin
854.0

08.0
)2log(2exp)(436

2

−⋅


















 −
⋅−= x

x
xf π , 10 ≤≤ x

f8: Himmelblau’s function (4/0)

22

21

2

2

2

1)7()11(200)(−+−−+−= xxxxxf , 66 ≤≤− ix

f9: Six-hump camel back (2/2)

])44()
3

1
1.24[(4)(2

2

2

221

2

1

4

1

2

1 xxxxxxxxf +−+++−−=
r

,

9.19.1 1 ≤≤− x , 1.11.1 2 ≤≤− x

f10: Shekel’s foxholes (1/24)

∑
= −+−++

+

−=
24

0
6

2

6

1)]([)]([1

1
002.0

1
500)(

i ibxiaxi

xf
r

,where)25mod(16)(−= iia ,

)2
5

(16)(−=
i

ib ; 536.65536.65 ≤≤− ix

f11: Inverted Shutert (18/many)

∏∑
= =

++−=
2

1

5

1

])1cos[()(
i j

i jxjjxf
r

, 1010 ≤≤− ix

f12: 1D inverted Vincent function (6/0)

f13: 2D inverted Vincent function (36/0)

f14: 3D inverted Vincent function (216/0)

∑
=

⋅=
n

i

ix
n

xf
1

)]log(10sin[
1

)(
r

, 1025.0 ≤≤ ix

The performance of Bees Algorithm for MMO is compared with that of r2psols, r3psols,

r2psolhcls, r3psolhcls and IWO-δ-GSO. In the experiments, the parameter settings are

matched as closely as possible with those used by the other algorithms under comparison.

However, due to the different mechanisms of the algorithms, some of the parameters are

dimensionality depended, that is, nre=2·(D+1), nrb=D+1 and stlim=5·D. The initial ngh is

correlated with the search range: ngh=2·range/ns. Table 7 lists the other parameter settings

for the experiments.

Table 7. Initial colony size, initial field radius and search resolution

No. ns nr rad resolution

f1-f3 20 5 2 0.05

f4-f7, f9 20 5 0.02 0.000001

f8 20 5 0.02 0.005

f10 20 20 3 0.00001

f11 20 150 0.2 0.05

f12 40 10 0.2 0.0001

f13 150 50 0.2 0.001

f14 300 400 0.2 0.001

6.2 Results and discussion

The success rate and average number of optima found are recorded and presented in

Table 8 and Table 9 respectively, and again p-values are given in Table 10 to show the

statistical significance of the performance differences between the compared algorithms and

the proposed Bees Algorithm (with confidence level of 95%) in the number of optima. Some

p-values cannot be obtained because the compared and the proposed algorithm can both reach

100% success rate in finding the optima. The best performance is reported in boldface. As

can be seen from Table 8, the proposed Bees Algorithm and the IWO-δ-GSO generally

perform better than others. The functions f1, f2, f7 and f10 are the easiest, and all the algorithms

can find the optima. The r3psolhcls is the only algorithm that cannot reach 100% success rate

in finding the 5 optima of the function f4, and the corresponding p-value of 0.0112 (below

0.05) indicates the proposed Bees Algorithm significantly differs from r3psolhcls. For

function f6, all the algorithms except r2psols can find the 5 optima with 100% success rate,

and the p-value of 0.0346 suggests the difference between the results is significant. For

functions f3, f5 and f12, the proposed algorithm and IWO-δ-GSO show a distinctive advantage

over the other algorithms, since they are capable of locating all the optima with 100% success

rate while the other algorithms cannot. Furthermore, the p-values indicate that the differences

in results are statistically significant, except for the r2psolhcls on function f12. The success

rate and the number of optima found show that the proposed Bees Algorithm outperforms the

other algorithms on function f8, and the corresponding p-values imply the results difference is

significant except for the IWO-δ-GSO. However, the data from the three tables display the

inferior performances of the IWO-δ-GSO, r3psols and r3psolhcls to the Bees Algorithm,

r2psols and r2psolhcls on the function f9. For f11, even though r2psolhcls generates the highest

success rate, the corresponding p-values suggest all the algorithms except the r3psols produce

statistically similar results. On functions f13 and f14 all algorithms fail to achieve a non-zero

success rate. However, the average number of optima found, and the respective p-values,

imply that the proposed Bees Algorithm and IWO-δ-GSO produce statistically resembling

results, and that they outperform the other algorithms except for r3psols on f13.

Table 8. Success rate

No. BA

(%)

r2pso

ls(%)

r3pso

ls(%)

r2pso

lhcls(%)

r3pso

lhcls(%)

IWO-δ-GSO

(%)

f1 100 100 100 100 100 100

f2 100 100 100 100 100 100

f3 100 52 36 80 48 100

f4 100 100 100 100 96 100

f5 100 16 4 64 16 100

f6 100 96 100 100 100 100

f7 100 100 100 100 100 100

f8 100 76 64 68 72 88

f9 100 100 96 100 96 60

f10 100 100 100 100 100 100

f11 70 64 52 72 60 -

f12 100 92 96 96 92 100

f13 0 0 0 0 0 0

f14 0 0 0 0 0 0

Table 9. Average number of optima found

No. BA r2psols r3psols r2psolhcls r3psolhcls IWO-δ-GSO

f1 2.00 2.00 2.00 2.00 2.00 2.00

f2 2.00 2.00 2.00 2.00 2.00 2.00

f3 5.00 3.96 3.24 4.72 3.92 5.00

f4 5.00 5.00 5.00 5.00 4.96 5.00

f5 5.00 1.98 1.24 4.52 2.80 5.00

f6 5.00 4.96 5.00 5.00 5.00 5.00

f7 1.00 1.00 1.00 1.00 1.00 1.00

f8 4.00 3.76 3.60 3.68 3.72 3.88

f9 2.00 2.00 1.96 2.00 1.96 1.60

f10 25.00 25.00 25.00 25.00 25.00 25.00

f11 17.70 17.56 17.36 17.72 17.60 -

f12 6.00 5.92 5.96 5.96 5.88 6.00

f13 30.70 26.64 26.92 27.28 27.44 29.60

f14 105.20 77.20 76.28 78.40 77.99 102.60

Table 10. p-values showing statistical significance

No. r2psols r3psols r2psolhcls r3psolhcls IWO-δ-GSO

f1 - - - - -

f2 - - - - -

f3 < 0.0001 < 0.0001 0.0005 <0.0001 -

f4 - - - 0.0112 -

f5 < 0.0001 < 0.0001 0.0057 < 0.0001 -

f6 0.0346 - - - -

f7 - - - - -

f8 0.0326 0.0025 0.0135 0.0130 0.1331

f9 - 0.0453 - 0.0210 <0.0001

f10 - - - - -

f11 0.0972 0.0005 0.7715 0.1504

f12 0.0002 0.0449 0.0503 0.0068 -

f13 0.0017 0.5718 0.0115 0.0023 0.3415

f14 0.0118 0.0235 0.0094 0.0340 0.8240

6.3 Associated diagrams showing bees’ distributions in search space

Function f1 has two peaks, of which one is global and the other is local. Figure 9 shows

a simulation run of the proposed Bees Algorithm for MMO on f1 starting from 50 bees. The

initial population is much larger than the necessary for finding only two optimal solutions.

Most of the members in the colony become redundant and are removed. After 123 function

evaluations, the bees get attracted towards the global optimum at x=20, and the local

optimum at x=0. Finally both peaks are located by the bees.

0 5 10 15 20
0

50

100

150

200

x

fi
tn

e
s
s

0 5 10 15 20
0

50

100

150

200

x

fi
tn

e
s
s

 (a) initialisation (b) at 123 evaluations

Figure 9. Distribution of individuals in the search space during the evolution process for f1

0 5 10 15 20
0

50

100

150

200

x

fi
tn

e
s
s

0 5 10 15 20
0

50

100

150

200

x

fi
tn

e
s
s

 (a) initialisation (b) at 220 evaluations

Figure 10. Distribution of individuals in the search space during the evolution process for f2

0 5 10 15 20 25 30
0

50

100

150

200

x

fi
tn

e
s
s

0 5 10 15 20 25 30
0

50

100

150

200

x

fi
tn

e
s
s

 (a) initialisation (b) at 136 evaluations

Figure 11. Distribution of individuals in the search space during the evolution process for f3

Also function f2 has two peaks: one is the global peak and the other is the local one.

Figure 10 shows two snapshots from a sample simulation run of the Bees Algorithm with an

initial colony size of 50 bees, the first snapshot taken at initialisation and the other at 220

function evaluations.

f3 has five peaks, of which two are global and three are local. Figure 11 shows two

snapshots of a sample run of the Bees Algorithm on f3 at initialisation and after 136 function

evaluations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

fi
tn

e
s
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

fi
tn

e
s
s

 (a) at 205 evaluations (b) at 571 evaluations

Figure 12. Distribution of individuals in the search space during the evolution process for f4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

fi
tn

e
s
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

fi
tn

e
s
s

 (a) at 208 evaluations (b) at 575 evaluations

Figure 13. Distribution of individuals in the search space during the evolution process for f6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

fi
tn

e
s
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

fi
tn

e
s
s

 (a) at 208 evaluations (b) at 558 evaluations

Figure 14. Distribution of individuals in the search space during the evolution process for f5

Functions f4 and f6 have five global peaks. The peaks of f4 are evenly spaced, whereas

the peaks of f6 are unevenly spaced. Figure 12 and Figure 13 show two stages in a sample run

on f4 and f6 respectively. It shows that the Bees Algorithm is able to find all the global and

local peaks of f4 and f6 using very few function evaluations.

Functions f5 and f7 have one global peak and four local peaks. The peaks in f5 are evenly

spaced, whereas in f7 they are unevenly spaced. Figure 14 and Figure 15 show a sample run of

the Bees Algorithm on f5 and f7 respectively. The above figures show the colony

distributions of the Bees Algorithm and illustrate the algorithm’s ability to detect all the

peaks.

Function f8 has four global peaks. Figure 16 shows four stages of the search process of a

simulation run of the Bees Algorithm on f8, using initially 50 bees, and sampled at:

initialisation, after 495 evaluations, 1361 evaluations and 1736 evaluations.

Function f10 has 25 evenly spaced peaks of unequal heights, of which one is the global

peak whilst the others are local peaks. Figure 17 plots the evolution of the search process on

function f10 at the initialisation stage, after 2191 function evaluations, 5735 function

evaluations and 8253 function evaluations. Also on this function the algorithm locates all the

peaks successfully.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

fi
tn

e
s
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

fi
tn

e
s
s

 (a) at 209 evaluations (b) at 630 evaluations

Figure 15. Distribution of individuals in the search space during the evolution process for f7

-5

0

5

-5

0

5

-2000

-1000

0

x1x2

fi
tn

e
s
s

-5

0

5

-5

0

5

-2000

-1000

0

x1x2

fi
tn

e
s
s

 (a) initialisation (b) after 495 evaluations

-5

0

5

-5

0

5

-2000

-1000

0

x1x2

fi
tn

e
s
s

-5

0

5

-5

0

5

-2000

-1000

0

x1x2

fi
tn

e
s
s

 (c) after 1361 evaluations (d) after 1736 evaluations

Figure 16. Distribution of individuals in the search space during the evolution process for f8

-50

0

50

-50

0

50

x1x2 -50

0

50

-50

0

50

x1x2

 (a) initialisation (b) after 2191 evaluations

-50

0

50

-50

0

50

x1x2 -50

0

50

-50

0

50

x1x2

 (a) after 5735 evaluations (b) after 8253 evaluations

Figure 17. Distribution of individuals in the search space during the evolution process for f10

For visualisation reasons only a part of the benchmark functions showing how the bees

distribute in the optimising process are illustrated. The results clearly indicate the high

efficiency of the Bees Algorithm in solving MMO problems. The Bees Algorithm exhibits

good explorative and exploitative abilities of locating global and local peaks. At the same

time, the Bees Algorithm needs very few function evaluations to locate the optima. The speed

of the Bees Algorithm is likely due to its adaptive colony size, in which surplus bees are

removed.

7. Conclusion

This paper has proposed an evolutionary optimisation technique based on the basic Bees

Algorithm for solving MMO problems. Some fundamental concepts of the basic Bees

Algorithm are retained, such as the mechanism of combining exploration and exploitation,

and the “waggle dance” which allocates foragers according to the fitness of the discovered

flower patches. The basic Bees Algorithm has been improved by adding several new

procedures, which are also partly inspired by the honeybees’ natural behaviour. The

experiments proved the ability of the proposed algorithm to solve MMO problems. This

stems from the capability of the Bees Algorithm to adjust the number of individuals

according to the complexity of the search space. This ability is also enhanced by the proposed

local search method called balanced search technique (BST), which guides the foragers

towards the fitness gradient whilst still retaining some randomness for explorative purposes.

The HV is executed in the global search stage to detect good solutions in yet uncharted

regions of the search space. The experimental results show that the proposed Bees Algorithm

is competitive for the MMO problems compared with other algorithms.

A first step to extend the current work may be to stabilise the field radius. Currently, its

fluctuation around an estimated value may degrade the accuracy of locating optimal solutions

in the search space. Secondly, the BST can be further studied or modified for other

optimisation problems like find one global optimum or tracking a dynamic optimum. Finally,

a very important future research issue would be to develop a tool for estimating the ratio of

the number of scouts in fields to the number of random scouts. The partition in scouts directly

determines how the algorithm balances between exploitative and explorative search. The

former decides the accuracy and speed of convergence when searching around an identified

solution and the latter affects the ability of exploring potential spaces.

Acknowledgement

This research is supported by National Natural Science Foundation of China (Grant Nos.

51305319 and 51175389), and the Key Project of Natural Science Foundation of Hubei

Province of China (Grant No. 2013CFA044).

References

[1] K. Deb. Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm.

Evolutionary Computation. Vol.20(1), pp.27-62, 2012.

[2] K. Deb, A. Srinivasan. Innovation: Innovative Design Principles Through

Optimization. In Proceedings of the Genetic and Evolutionary Compuation

Conference (GECCO 2006), pp.1629-1636, 2006.

[3] D.T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, M. Zaidi. The Bees

Algorithm – A Novel Approach to Function Optimisation. Technical Note: MEC 0501,

The Manufacturing Engineering Centre, Cardiff University, Queen’s University UK,

2005.

[4] J.P. Li, M.E. Balazs, G.T. Parks, P.J. Clarkson. A species conserving genetic algorithm

for multimodal function optimization, Evolutionary Computation, Vol.10(3),

pp.207-234, 2002.

[5] K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.

Ph.D. thesis. University of Michigan Ann Arbor, MI, USA, 1975.

[6] D.E. Goldberg, J. Richardson. Genetic algorithms with sharing for multimodal

function optimization. In proceedings of the Second International Conference on

Genetic Algorithms and their application. L. Erlbaum Associates Inc., Hillsdale, NJ,

USA, pp.41-49, 1987.

[7] K.S. Leung, Y. Liang. Adaptive Elitist-Population Based Genetic Algorithm for

Multimodal Function Optimization, Genetic and Evolutionary Computation –

GECCO 2003, Lecture Notes in Computer Science Volume 2723, Springer-Verlag,

pp.1160-1171, 2003.

[8] Y. Liang, K.S. Leung. Genetic Algorithm with adaptive elitist-population strategies

for multimodal function optimization. Applied Soft Computing. Vol.11(2),

pp.2017-2034, 2011.

[9] J.E. Vitela, O. Castanos. A sequential niching memetic algorithm for continuous

multimodal function optimization. Applied Mathematics and Computation,

Vol.218(17), pp.8242-8259, 2012.

[10] D.X. Chang, X.D. Zhang, C.W. Zheng, D.M. Zhang. A robust dynamic niching

genetic algorithm with niche migration for automatic clustering problem. Pattern

Recognition, Vol.43(4), pp.1346-1360, 2010.

[11] A.E. Imrani, A. Bouroumi, H.Z. Abidine, M. Limouri, A. Essaid. A fuzzy

clustering-based niching approach to multimodal function optimization. Cognitive

Systems Research, Vol.1(2), pp.119-133, 2000.

[12] J. Gan, K. Warwick. Dynamic Niche Clustering: a fuzzy variable radius niching

technique for multimodal optimization in GAs. In Proceedings of the 2001 Congress

on Evolutionary Computation, Vol.1, pp.215-222, 2001.

[13] D.T. Vollmer, T. Soule, M. Manic. A Distance Measure Comparison to Improve

Crowding in Multi-Modal Optimization Problems. 2010 3rd International Symposium

on Resilient Control Systems (ISRCS), Idaho Falls, pp.31-36, 2010.

[14] E.J. Vitela, O. Castanos. A Real-Coded Niching Memetic Algorithm for Continuous

Multimodal Function Optimization. IEEE Congress on Evolutionary Computation

(CEC 2008), Hong Kong, pp2170-2177, 2008.

[15] H.F. Wang, I. Moon, S.X. Yang, D.W. Wang. A memetic particle swarm optimization

algorithm for multimodal optimization problems. Information Science, Vol.197,

pp.38-52, 2012.

[16] R. Brits, A.P. Engelbrecht, F.V. Bergh. Locating multiple optima using particle

swarm optimization. Applied Mathematics and Computation Vol.189(2),

pp.1859-1883, 2007.

[17] J. Zhang, D.S. Huang, T.M. Lok, M.R. Lyu. A novel adaptive sequential niche

technique for multimodal function optimization. Neurocomputing, Vol.69(16-18),

pp.2396-2401, 2006.

[18] X.D. Li. Niching Without Niching Parameters: Particle Swarm Optimization Using a

Ring Topology. IEEE Transactions on Evolutionary Computation, Vol.14(1), 2010.

[19] B.Y. Qu, J.J. Liang, P.N. Suganthan. Niching particle swarm optimization with local

search for multi-modal optimization. Information science 197, pp131-143, 2012.

[20] A. Passaro. Niching in Particle Swarm Optimization. Ph.D. thesis, University of Pisa,

Department of Computer Science, 2007.

[21] J, Zhang. J.R. Zhang, K. Li. A Sequential Niching Technique for Particle Swarm

Optimization. International Conference on Intelligent Computing, ICIC 2005, Hefei

China, Part I, Vol.3644, pp.390-399, 2005.

[22] Y.F. Xu. A niching particle swarm segmentation of infrared images. 2010 Sixth

International Conference on Natural Computing (ICNC), Yantai, China, Vol.7,

pp.3739-3742, 2010.

[23] Y. Liu, X.X. Ling, Z.W. Shi, M.W. Lv, J. Fang, L. Zhang. A survey on particle

swarm optimization algorithms for multimodal function optimization. Journal of

Software, Vol.6(12), pp.2449-2455, 2011.

[24] X.D. Li. Efficient differential evolution using speciation for multimodal function

optimization. In Proceeding of the 2005 conference on Genetic and evolutionary

computation (GECCO’05), New York, USA, pp.873-880, 2005.

[25] K.C. Wong, C.H. Wu, R.K.P. Mok, C.B. Peng, Z.L. Zhang. Evolutionary multimodal

optimization using the principle of locality. Information Science Vol.194, pp.138-170,

2012.

[26] X. Zhao, Y. Yao, L.P. Yan. Learning algorithm for multimodal optimization.

Computers & Mathematics with Applications, Vol.57(11-12), pp.2016-2021, 2009.

[27] M. Schoenauer, F. Teytaud, O. Teytaud. Simple tools for multimodal optimization. In

Proceedings of the 13th annual conference companion on Genetic and evolutionary

computation (GECCO’11), Dublin, Ireland, 2011.

[28] S. Roy, S.M. Islam, S. Das, S. Ghosh. Multimodal optimization by artificial weed

colonies enhanced with localized group search optimizers. Applied Soft Computing

Vol.13(1), pp.27-46, 2013.

[29] D.T. Pham, A. Ghanbarzadeh, E.Koc, S. Otri, S. Rahim, M. Zaidi. The Bees

Algorithm – A Novel Tool for Complex Optimisation Problems. In Proceedings of the

2nd International Virtual Conference on Intelligent Production Machines and Systems

(IPROMS 2006), pp.454-459, 2006.

[30] D.T. Pham, M. Castellani. The Bees Algorithm: modelling foraging behavior to

solve continuous optimization problems. Proceedings of the Institution of Mechanical

Engineers, Part C: Journal of Mechanical Engineering Science, Vol.223(12),

pp.2919-2938, 2009.

[31] D.T. Pham, Q.T. Pham, A. Ghanbarzadeh, M. Catstellani. Dynamic Optimisation of

Chemical Engineering Processes Using the Bees Algorithm. Proceedings of the 17th

IFAC World Congress, the International Federation of Automatic Control Seoul,

Korea, Vol.17, Part 1, pp.6100-6105, 2008.

[32] M.S. Packianather, M. Landy and D.T, Pham. Enhancing the speed of the Bees

Algorithm using pheromone-based recruitment. 7th IEEE International Conference on

Industrial Informatics (INDIN 2009), Cardiff, Wales, pp.789-794, 2009.

[33] D.T. Pham, A.H. Darwish. Fuzzy Selection of Local Search Sites in the Bees

Algorithm. In the 4th International Virtual Conference on Intelligent Production

Machines and Systems (IPROMS 2007) [online], Available from

http://conference.iproms.org.

[34] Q.T. Pham, D.T. Pham, M. Castellani. A modified bees algorithm and a

statistics-based method for tuning its parameters. Proceedings of the Institution of

Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226:287,

pp.287-301, 2011.

[35] D.T. Pham, H.A. Darwish. Using the Bees Algorithm with Kalman Filtering to Train

an Artificial Neural Network for Pattern Classification. Journal of Systems and

Control Engineering, Vol.224(1), pp.885-892, 2010.

[36] D.T. Pham, E. Koc. Design of a Two-dimensional recursive filter using the bees

algorithm. International Journal of automation and computing. Vol.7(3), pp399-403,

2010.

[37] D.T. Pham, E. Koc, J.Y. Lee, J. Phruekanant. Using the Bees Algorithm to schedule

jobs for a machine. In Proceedings of Eighth International Conference on Laser

Metrology, CMM and Machine Tool Performance, pp.430-439, 2007.

[38] M.C. Ang, D.T. Pham, A.J. Soroka, K.W. Ng. PCB assembly optimization using the

bees algorithm enhanced with TRIZ operations. 36th Annual Conference on IEEE

Industrial Electronics Society (IECON 2010), Glendale, AZ, pp.2708-2713, 2010.

[39] D.T. Pham, M. Castellani, A.A. Fahmy. Learning the inverse kinematics of a robot

manipulator using the Bees Algorithm. 6th IEEE International Conference on

Industrial Informatics (INDIN 2008), Daejeon, pp493-498, 2008.

[40] R.K. Ursem. Multinational evolutionary algorithms. Proceedings of the 1999

Congress on Evolutionary Computation (ECE 99), Washington DC, Vol.3,

pp.1633-1640, 1999.

