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Abstract: The aim of multimodal optimisation (MMO) is to find significant optima of a 

multimodal objective function including its global optimum. Many real-world applications 

are MMO problems requiring multiple optimal solutions. The Bees Algorithm (BA) is a 

global optimisation procedure inspired by the foraging behaviour of honeybees. In this paper, 

several procedures are introduced to enhance the algorithm’s capability to find multiple 

optima in MMO problems. In the proposed Bees Algorithm for MMO, dynamic colony size is 

permitted to automatically adapt the search effort to different objective functions. A local 

search approach called balanced search technique (BST) is also proposed to speed up the 

algorithm. In addition, two procedures of radius estimation and optima elitism are added, to 

respectively enhance the Bees Algorithm’s ability to locate unevenly distributed optima, and 

eliminate insignificant local optima. The performance of the modified Bees Algorithm is 

evaluated on well-known benchmark problems, and the results are compared with those 

obtained by several other state-of-the-art algorithms. The results indicate that the proposed 

algorithm inherits excellent properties from the standard Bees Algorithm, obtaining notable 

efficiency for solving MMO problems due to the introduced modifications. 

Keywords: Swarm-based algorithms, multimodal optimisation, Bees Algorithm, balanced 

search, hill valley 
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Nomenclature 

MMO: multimodal optimisation 

BA: Bees Algorithm 

BST: balanced search technique 

SOA: swarm-based optimisation algorithm 

EA: Evolutionary Algorithm 

GA: Genetic Algorithm 

PSO: Particle Swarm Optimisation 

IWO: Invasive Weed Optimisation 

HV: hill valley 

DE: Differential Evolution 

SDE: Species-based Differential Evolution 

 

1. Introduction 

Swarm-based optimisation algorithms (SOAs) are usually employed to find the global 

solution to an optimisation problem, discarding any alternative solution of equal or 

comparable fitness. However, in a multimodal optimisation (MMO) task, the main purpose is 

to find multiple optimal solutions [1].  MMO problems are gaining increasing attention due 

to their frequent occurrence in scientific and engineering applications, such as object 

detection in machine vision, parameter tuning in varied-line-spacing holographic grating 

design, and protein structure prediction. MMO applies to those problems which have more 

than one global optimum in the feasible solution space, or one global optimum and several 



local optima. As they represent alternative solutions, it is sometimes desirable to locate all the 

significant optima of a given fitness landscape. In addition, the knowledge of multiple 

optimal solutions may provide useful insight into the problem domain. A similarity analysis 

of multiple optimal solutions may bring about helpful innovative and hidden principles, 

similar to what is often observed in Pareto-optimal solutions in a multi-objective problem 

solving task [2]. 

Investigation of the performance of SOAs for MMO problems has been receiving 

growing interest in the SOA community. Evolutionary algorithms (EAs) are widely used to 

solve MMO problems due to their population-based searching ability. Niching, clustering, 

and speciation methods have been used to distribute the EA population on different peaks in 

the search region. Similarly, several modified versions of Particle Swarm Optimisation (PSO) 

and Invasive Weed Optimisation (IWO) have been used to search multiple optimal solutions. 

More details about methods for solving MMO problems are presented in the second section. 

First proposed by Pham [3], the Bees Algorithm is a SOA that mimics the foraging 

behaviour of honey bees, a species which has been successfully surviving for hundreds of 

thousands of years in various kinds of natural environments. This paper will introduce several 

modifications to the basic Bees Algorithm with the aim to find multiple optimal solutions 

simultaneously in a single run. The modifications are necessary since the basic Bees 

Algorithm is designed to find only one optimum. First of all, unlike some SOAs that use a 

predefined clustering radius (or parameter with the similar function) for the peaks in the 

fitness landscapes, the proposed algorithm estimates the radius using an amended hill valley 

(HV) method. The second modification introduces a local search operator named balanced 



search technique (BST) to search for the solutions of highest fitness in a fitness peak. Some 

algorithms calculate the gradient of the objective function. This can be very helpful in 

simulation but unfortunately many real world problems are non-differentiable. Compared to 

the purely random local search in the basic Bees Algorithm, this modification aims at 

improving the algorithm’s search speed. Furthermore, the algorithm allows for variable 

colony size. That is, the population size in each generation is allowed to increase if more 

optima are detected, or decrease if only a small number of optima exist in the objective 

function. This is biologically plausible, since biological bees optimise the number of 

harvesting bees according to the abundance of food sources (i.e. nectar). 

The remainder of this paper is organised as follows. In Section 2, a review is provided of 

related SOAs for solving MMO problems. Section 3 outlines the basic Bees Algorithm. The 

modifications introduced to perform MMO search are explained in Section 4. Thereafter, the 

individual impact of each of the new features on the search capability of the algorithm is 

highlighted in Section 5. In Section 6, the experimental results of the proposed algorithm and 

comparisons are presented. Finally, Section 7 concludes the paper and suggests topics for 

future work. 

 

2. Related work 

When applying SOAs to MMO problems, it is very important to consider two apparently 

contradictory requirements: preserving promising individuals from one generation to the next 

and maintaining the diversity of the population [4]. This section briefly reviews some 

recently developed techniques to address the above trade-off. 



De Jong tried to solve the MMO problem using an EA for the first time in 1975 [5]. He 

used population crowding. Crowding encourages population diversity by eliminating from 

the parent population those individuals which are most similar to the offspring. Fitness 

sharing was proposed by Goldberg and Richardson in 1987 [6] to increase the chance of 

locating multiple optima. Instead of using an absolute fitness function, they designed a shared 

function which takes into account the genotypic or phenotypic similarity of the individuals. 

Since then, an increasing number of researchers explored different ways to deal with the 

population diversity problem. These methods include species conservation, pre-selection, 

elitism, and clearing. 

The adaptive elitist-population search method was used in a Genetic Algorithm (GA) for 

MMO [7-8]. Vitela and Castanos proposed a sequential niching algorithm for MMO. They 

combined hill-climbing, a derating function, niching and clearing techniques within a GA for 

a multiple optima search [9]. In the literature [10-12], authors discussed a clustering genetic 

algorithm based on dynamic niching with niche migration. They studied the niching method 

intensively and claimed very little priori knowledge is required to determine the radius and 

the number of niches. Other techniques as the distance measuring method [13] and memetic 

algorithms [14] were used within a GA for MMO purpose. 

Particle Swarm Optimisation (PSO) is another prominent member of the SOA family, 

and is now receiving a great deal of interests for MMO purpose. A memetic algorithm, along 

with a local search operator, was hybridised with PSO by Wang [15] for MMO. This hybrid 

PSO obtained excellent performance. Likewise, other practitioners [16-22] hybridised PSO 

with niching and clustering techniques to design different population topologies or fitness 



evaluation methods to obtain several multiple optimal solutions. Some latest studies related to 

PSO for MMO are summarised in [23]. 

 Li [24] utilised a SOA for determining species in conjunction with a basic Differential 

Evolution (DE) procedure named Species-based Differential Evolution (SDE). In [25], the 

principle of locality, a widely used concept in computing, was incorporated with differential 

evolution for MMO. Spatial locality and temporal locality were adopted in the proposed 

methods. Other learning algorithms such as artificial weed colony optimisation are 

continuously investigated for MMO [26-28].  

 

3. The basic Bees Algorithm 

The basic Bees Algorithm is inspired by the foraging behaviour of honeybees in nature, 

and was designed to search for the best solution to a given optimisation problem. A solution 

in the search space is thought of as a nectar source. Scout bees randomly sample the solution 

space and appraise the quality of the visited locations through the fitness function. Foragers 

are recruited to exploit the most promising m locations found by the scout bees. Each scout 

directs a number of foragers to the neighbourhood of the solutions found. The scouts that 

found the e top-rated locations recruit nre foragers, the scouts that found the remaining m-e 

most promising solutions recruit nrb< nre foragers. The neighbourhood of a solution is 

regarded as a ‘flower patch’. Overall, the original Bees Algorithm employs a combination of 

local exploitative and global exploratory search techniques. For the global search, scout bees 

are sent to random points of the search space to look for potential solutions. For the local 

search, foragers are sent to the neighbourhood of the most favourable solutions. 



The parameters need to be set for the basic algorithm are: the number of scout bees (n); 

the number of patches selected for the local search (m); the number of top-rated patches (elite) 

in selected patches (e); the number of foragers recruited for the top patches (nre); the number 

of foragers to be recruited for the other selected patches (nrb); the initial size of each patch 

(ngh); and finally the stopping criteria. Since its original formulation, the Bees Algorithm has 

undergone many variations [29-34], and for their applications reader can refer to [35-39]. 

4. The proposed modified Bees Algorithm 

The proposed algorithm includes a number of modifications to the basic Bees Algorithm 

to find multiple satisfactory solutions to an objective problem in a single run. This section 

details the proposed algorithm and presents the modifications. Without loss generality, it will 

be assumed in the rest of this paper that the optimisation problem requires the maximisations 

of a given fitness function. 

4.1 Main procedures of the proposed algorithm 

Before detailing the proposed algorithm, a number of terms will first be defined. 

Definition 1. Field: a field defines an area in the search space that may potentially cover 

a fitness peak. It helps to differentiate one peak from another. Each field should cover one 

and only one fitness peak ideally. The size of a field is determined by its radius (refer to 

Definition. 3). Each field contains at least one scout. 

Definition 2. Field centre: the field centre is the location of highest fitness found so far 

by a scout bee in the field. If there is only one scout in that field, its location automatically 

becomes the field centre. 

Definition 3. Field radius: the field radius is the Euclidean distance from the field centre 



to the border. It determines the size of field. 

Definition 4. Neighbourhood: the neighbourhood is used to constrain the range for a 

refined local search within a field to locate the local optima. Only within the neighbourhood 

scouts and foragers are allowed to land. To enhance the search accuracy, the size of the 

neighbourhood shrinks if the search stagnates in a field. 

The main body of the proposed algorithm is designed based on the framework of the 

basic version. Figure 1 summarises the proposed algorithm, and Table 1 lists the parameters 

to be initialised in Step 1. In Step 3, fields are allowed to merge or split according to the 

distance between them or the distribution of scouts. The fields’ radii are updated through an 

estimation procedure. Local search is performed in Step 4 to look for the optimal solutions on 

detected fitness peaks. A balanced search strategy is employed in this step to enhance the 

search speed. This is followed by global search in Step 5. The global search tries to detect 

potential fitness peaks that have not been identified in the search space. The hill valley 

method is implemented in global search to enhance the possibility of finding unidentified 

peaks. 

Input: Objective function 

Step 1: Initialisation 

Step 2: While (stopping criteria not met) 

Step 3: Fields update 

Step 4: Local search (neighbourhood search) 

Step 5: Global search 

Step 6: End while 



Output: Optimal solutions 

Figure 1. Pseudo code of main body of the proposed algorithm 

Table 1. Parameters of the Bees Algorithm for MMO 

ns initial number of scouts in Fields 

nr initial number of random scouts 

nre number of foragers recruited by the scout at the field centre 

nrb number of foragers recruited by other scouts in a field (nre> nrb) 

ngh initial neighbourhood size 

rad initial field radius 

stlim limit of cycles to determine the stagnation of a field 

 

4.2 Field update 

Fields are allowed to merge and split when the certain conditions are met, and the radius 

of each field is made adaptive to the objective problem through an estimation procedure. 

4.2.1 Distance between fields 

Let Pi and Pj be two fields with radius Ri and Rj, and Ci and Cj be the respective centre. 

The distance between Pi and Pj is the Euclidean distance between Ci and Cj calculated as 

Equation (1): 

 
2

)()(),( jiji CposCposPPDis −=  (1) 

where )(⋅pos  returns the position of a specified point in the search space. 

4.2.2 Rule for merging fields  

Pi and Pj are allowed to merge when Relation (2) is satisfied: 

 )(7.0),( jiji RRPPDis +×<  (2) 



Let Pk, Ck, Rk denote respectively the newly formed field, its centre and radius, then Ck is 

the one selected from Ci and Cj which has higher fitness, and Rk is the larger one of Ri and Rj. 

All the scouts of Pi and Pj are moved into the common field Pk. A restriction on the number of 

scouts in a field is placed since a field cannot sustain an overly dense population. If the 

number of scouts in a field exceeds a predefined upper limit (3 in this paper), only those at 

the fittest positions will be kept for the next generation, whilst the others are regarded as 

redundant and transferred to global search. 

4.2.3 Rule for splitting a field 

A field Pi is allowed to split when Relation (3) is satisfied: 

 iii RSCDis ×> 4.1),(  (3) 

where }atnotis|inscouts{ iiii CSPS ∈  is one of the scouts in Pi. Each field gets only one 

chance to split in an evolving iteration. Denoting the two children fields as Pm and Pn, Cm, Cn, 

Rm, Rn are updated as im CC = , in SC =  and inm RRR ×== 7.0 , and Pm inherits all the 

scouts from Pi except Si. 

4.2.4 Field radius estimation 

The field radius is updated through a radius estimation algorithm, where an amended hill 

valley (HV) [40] is applied. Figure 2 helps to explain how the amended HV works on a one 

dimensional function. Nevertheless, the validity of the procedure extends to any 

dimensionality of the search space.  
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Figure 2. (a) (b) and (c) demonstrates the conditions (1), (2), and (3)respectively, (d) 

demonstrates a valley being omitted. 

Figure 2 illustrates four possible cases in field radius estimation. Let Ci and Ri be the 

centre and estimated radius of the current field Pi. A particular bee Bi is created and sent to 

the position obtained by Equation (4). 

 irii RDCposBpos ⋅+= )()(  (4) 

where Dr symbolises a normalised random direction, Then three sample points '

iC , '

iB  and 

M are created according to Equations (5). 
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where δ  is an absolute small positive value. The basic motivation underneath the radius 

estimation is: if a valley is detected between Bi and Ci, the current radius ought to be reduced, 



otherwise it should be increased. A valley is said to exist if at least one of the following 

conditions is met: 

(1) )}(),(min{)( '

iii CfitnessBfitnessBfitness < , as shown in Figure 2(a); 

(2) )}(),(min{)( '

iii CfitnessBfitnessCfitness < , as shown in Figure 2(b); 

(3) )}(),(min{)( ii CfitnessBfitnessMfitness < , as shown in Figure 2(c). 

where the function fitness(·) returns the fitness value of a sampled position. Otherwise, it is 

assumed there is no valley between Bi and Ci. Figure 2(d) shows a case in which the 

conditions (1), (2) and (3) are not satisfied but actually a valley does exist between Bi and Ci. 

The HV method omits a valley between two end points with a probability inversely 

proportional to the number of adopted sample points. To reduce the chance of such an event, 

the amended HV is repeated k (k > 0) times (k equals to the dimension of the objective 

function in this paper) before determining the radius. 

Figure 3 shows the pseudo code of field radius estimation algorithm where 

)10( << αα  is introduced to control the radius alterability. Throughout this paper it is kept 

constant to 2.0=α . 

Input: current radius Ri(t), k 

Step 1: Send Bi according to Equation (4), k = k-1; 

Step 2: Produce sample points according to Equations (5); 

Step 3: Determine whether a valley exists according to conditions (1), (2) and (3), 

if a valley exists, go to Step 4,  

if a valley does not exist and k = 0, go to Step 5, 

otherwise go to Step 1; 



Step 4: Ri(t+1)← ⋅− )1( α Ri(t), return; 

Step 5: Ri(t+1)← ⋅+ )1( α Ri(t). 

Output: updated radius Ri(t+1) 

Figure 3. The pseudo code of field radius estimation 

4.3 Local search 

The basic Bees Algorithm and most of its variants implement local search in a 

neighbourhood using a random operator, as expressed by Equations (6). 
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where F
j
(t) stands for the jth forager recruited by the scout S(t) in generation t, nF denotes the 

number of foragers recruited by S, 1r  is a uniformly distributed random value in )1,1(− . 

The function max{·} embodies the greedy selection strategy adopted in the local search, that 

is the scout is replaced by the recruited forager if the forager is landing at a position of higher 

fitness than the scout. The balanced search technique (BST) is developed to speed up the 

algorithm as described below. 

4.3.1 Obtaining the guide 

A gradient-like vector is obtained as a search guide for the recruited foragers. It does not 

require the function to be differentiable. The guide is calculated as follows: 

 ))1(())(()( −−= tCpostCpostG iii  (7) 

where )(tGi  denote the guide of the field Pi in generation t . Equation (7) indicates that the 

guide for the current iteration depends on the position of the field centre in the last two 

iterations. The guide is thereafter normalised by dividing it by the norm ||)(|| tGi as in 

Equation (8).  A search conducted by this guide is called guided search. 
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4.3.2 Formulating the balanced search 

The basic principle of BST is to keep a balance between random and guided search, as 

shown in Equations (9). 
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in which Dr symbolises a normalised random direction, 2r  is a uniformly distributed random 

value in )1,0( ,  and )(tiµ  is introduced as an adaptive weight to balance the influence of 

the two local search operators. The larger )(tiµ  is, the more local search depends on guided 

search. Conversely, the local search will rely more on randomness. 

4.3.3 Updating the balance weight 

The weight )(tiµ  is updated according to Equations (10). 

 













≥−×

≤−×

=+
∧∧

∧∧

.),(

|))1(),((|),(8.0

|))1(),((|),(2.1

)1( 2

1

othert

tGtGanglet

tGtGanglet

t

i

iii

iii

i

µ

θµ

θµ

µ  (10) 

subject to 1)(0 ≤< tiµ . 1θ  and 2θ  are two thresholds that determine the size of )(tiµ , 

and the function angle(�) returns the angle between two vectors. Equations (10) indicate that 

if improvements in fitness are obtained in consecutive iterations without altering substantially 

the direction of the guide, iµ  will keep growing until it reaches its upper limit. According to 

Equations (9), an increase of iµ  will result in the dominance of the guided search. On the 

contrary, if the angle between two successive guides exceeds the threshold 2θ , iµ  will 

gradually decrease and then random search will take dominance. 



4.3.4 Preserving stagnant fields 

A field is considered stagnant if no improvement can be obtained after a predefined 

number of evolutionary cycles (stlim). Instead of abandoning the stagnated field, the 

proposed algorithm records the information of the field including its centre and radius. The 

position of the field centre is one of the optimal solutions located by the algorithm. All the 

scouts in the stagnated field except the one at the centre are released and become random 

scouts, so the search in this field is terminated. 

4.4 Global search 

Global search focuses on yet unknown areas of the solution space. It is initially carried 

out by a predefined number of scouts, called random scouts. To guarantee that a fitness peak 

discovered by a random scout has never been searched before, the regional evolution and the 

standard hill valley are combined. The regional evolution is used to prevent that a random 

scout which just began to climb a fitness peak is being neglected due to its current low fitness. 

A random scout is allowed to evolve a few times (equals to the dimension of the objective 

function in this paper) before competing with those scouts at the field centre. Normally, the 

HV would incur a fast increase of function evaluations, since it has to evaluate the fitness 

values of a number of sample points. In the proposed algorithm, this increase is restrained by 

restricting HV only to the fields in the vicinity of the peak under consideration. When a 

random scout discovers a new promising region in the fitness landscape, a new field is 

generated around this random scout. This random scout therefore become a scout in fields 

and is involved in the local search in the next iteration. The global search process consists 

essentially of the following steps in Figure 4: 



Input: current fields, random scouts 

Step 1: send a scouts randomly to the search space; 

Step 2: implement the regional evolution; 

Step 3: implement the HV to determine whether the random scout has found a new peak in 

fitness landscape; 

Step 4: if a new fitness peak is identified, a new field covering this peak is formed and 

inserted into current fields 

Step 5: go to Step 1 until all the random scouts are sent out 

Output: updated fields 

Figure 4. The pseudo code of global search 

4.5 The mechanism of variable colony size 

In the proposed algorithm, the variable colony size is achieved by transferring part of the 

scouts between local search and global search, and setting a range for the number of random 

scouts. 

The rule governing how fields are merged has set a restriction on the number of scouts 

in a field. If the number of scouts grows above a specified level in a field, some scouts 

landing at low-fitness positions will be released and added to the random scouts. The number 

of random scouts is hence increased. However it cannot exceed an upper boundary, otherwise 

some surplus random scouts will be removed from the colony. 

In the global search process, the random scouts that have discovered a potential fitness 

peak are becoming the scouts in fields and will be involved in the local search process in the 

following evolutionary iteration. In this situation the number of scouts in fields increases 



while the random scouts decrease. A few random scouts will be created by the algorithm if 

the number of current random scouts falls below the lower boundary. The colony size is 

therefore increased. Through this way the algorithm ensures the number of random scouts 

falls within the allowed boundaries. Figure 5 helps explain the mechanism of the variable 

population size in a colony. 

 

Figure 5. Variable population size in a colony 

 

 

5. Effects of new features used 

5.1 Evolution of the colony size 

Two functions are used here to demonstrate how the colony size evolves during the 

optimisation process. 

(1) Deb’s function: 

 )5(sin)( 6

1 xxf π=  (11) 

where 10 ≤≤ x  and the five global maximal at 1.0=x , 3.0=x , 5.0=x , 7.0=x , and 

9.0=x  respectively. 

(2) Two dimensional multimodal function: 



 1)4sin()4sin()( 22112 ++−= πππ xxxxxf  (12) 

where 2,2 21 ≤≤− xx . There are totally 100 optimal solutions (including local optima). Evolution of colony size
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 (c) (d) 

Figure 6. Evolution of the colony size during optimisation: in (a) and (b) the algorithm starts 

with a large and small population size respectively to search the fitness landscape of function 

(1); in (c) and (d) the algorithm starts with a large and small population size respectively to 

search the fitness landscape of function (2). 

In the case of function (1), the algorithm starts with 50 field scouts and 5 random scouts, 

and then with 2 field scouts and 3 random scouts. As can be seen in Figure 6(a), the entire 

population drops dramatically when the size of the initial colony is unnecessarily large to find 

the five optima in the solution space. The number of random scout grows at the beginning 



because the redundant scouts in fields are transferred to global search, and then declines due 

to upper boundary of the number of random scouts. On the contrary, when the colony size is 

insufficient for finding many optima at the beginning of the search (Figure 6(b)), new 

members are gradually added to the colony so the colony size keep growing until enough for 

exploring the fitness peaks. The developmental pattern in Figure 6(c) basically matches that 

of 6(a), and the pattern in Figure 6(d) with 6(b). The two cases show that the population in an 

evolving colony is able to adapt to the task, and finally run in a relatively stable state. 

 

5.2 Effects of BST 

Also, a set of well-known functions are used to demonstrate the effects of BST, as given 

in Table 2. 

Table 2. Functions used for evaluating the effects of BST 

(1) Deb’s function (5 optima): 

)5(sin)( 6

1 xxf π= , ]1,0[∈x ; 

(2) Deb’s decreasing function (5 optima): 

)5(sin2)( 6)9.0/)1.0((2

2

2

xxf
x π−−= , ];1,0[∈x  

(3) Roots function (6 optima): 
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For each function, the algorithm starts with the same parameter configurations. For 

problem (1) and (2), the colony starts with 10 field scouts and 5 random scouts. The search 



accuracy is set to be 0.000001. For function (3), (4) and (5), these configurations are 20, 10, 

0.0001; 50, 30 0.001 and 130, 85, 0.01 respectively. Table 3 compares the results of the 

algorithms using random and balanced local search in terms of function evaluation, iteration 

cycles and the number of optima found. The function evaluation is the primary criterion for 

comparing the performance of the various algorithms. The statistical significance of the 

difference between the results is evaluated through student’s t-tests. The t-tests are run with a 

confidence level of 95% and the p-values are listed in Table 4. The p-value below the 

significance level signal (0.05) indicates a statistically significant difference between the 

results obtained by the two algorithms. 

. Table 3 shows that the BST allows the Bees Algorithm to find the optimal solutions 

using about 13.8%, 3.4%, 43%, 13.0% less function evaluations than the random local search 

based Bees Algorithm on functions (1), (3), (4), (5) respectively, and the corresponding 

p-values of 0.0014, 0.0051, 0.0001 0.0001 in Table 4 are below the acceptance value 0.05, 

suggesting that the improvement is statistically significant. For function (2), The Bees 

Algorithm using BST needs 8.2% less function evaluations but the p-value indicates the 

improvement is not significant. The data shows both algorithms are successful in finding all 

the optima. In these experiments, the BST based Bees Algorithm requires less function 

evaluations and less iteration cycles on the majority of functions than the basic Bees 

Algorithm. Therefore BST can be considered as a promising local search approach to speed 

up the algorithm. 

Table 3. Comparison betweem random local search and BST 

Test function 
Local search 

method 

Function 

evaluations(Std.) 

Iteration 

cycles(Std.) 

Optima 

found(Std.) 



(1) Deb’s function 
Random 1,196(272) 19.3(5.3) 5(0) 

BST 1,031(228) 16.2(4.7) 5(0) 

(2) Deb’s decreasing 

function 

Random 1,162(312) 19.5(6.8) 5(0) 

BST 1,067(254) 17.6(5.1) 5(0) 

(3) Roots function 
Random 10,310(619) 36.4(8.3) 5.8(0.4) 

BST 9,960(603) 31.2(8.1) 5.8(0.4) 

(4) Multimodal 

function (2D) 

Random 77,816(1,0142) 59.9(17.3) 94.9(1.75) 

BST 44,037(6,520) 31.6(5.3) 96.7(1.7) 

(5) Multimodal 

function (8D) 

Random 836,823(68,345) 49.2(4.38) 247.2(7.8) 

BST 727,777(66,564) 47.6(5.94) 250.8(6.7) 

Table 4. p-values showing statistical significance 

Test function 
Function 

evaluations 

Iteration 

cycles 

Optima 

found 

(1) Deb’s function 0.0014 0.0026 - 

(2) Deb’s decreasing function 0.0982 0.1172 - 

(3) Roots function 0.0051 0.0020 - 

(4) Multimodal function (2D) <0.0001 <0.0001 <0.0001 

(5) Multimodal function (8D) <0.0001 0.1285 0.0150 

 

5.3 Evolution of field radius 

Three benchmark functions are selected to demonstrate how the field radius evolves as 

the algorithm proceeds. For visualisation purposes, two benchmarks are chosen to be two 

dimensional (as plotted in Figure 7) whilst the other one is four dimensional, (Table 5).  

Table 5. Functions used for demonstration of field radius evolvement 

(1) Inverted Rastrigin (9 optima) 
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(3) Four dimensional multimodal function (16 optima) 
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For each function, the algorithm is executed several times using different initial field 

radii, whilst all the other parameters are kept the same. For function (1), the radius is 

initialized at 1.5 and 0.1. For function (2) and (3), it is set to respectively 1.0 and 0.2, and 0.3 

and 0.03. Figure 8 shows how the radius evolves as the search proceeds. The plots in Figure 8 

show two trends, which can be summarised as follows: the field radius self-adapts at the 

beginning, then reaches a relatively steady value, and finally fluctuates around this value. 

Figures 8 (e) and (f) show that the field radius estimation method is also applicable to 

multi-dimensional problems. From this group of tests, it can be concluded that the radius 

estimation method makes the radius adaptive and less dependent on the preset initial value. 

However, the final phase of fluctuations indicates there is still room for enhancing the radius 

estimation accuracy. 
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Figure 7. functions for estimating field radius (a) function 1; (b)function (2) 
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 (c) (d) Evolution of field radius
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Figure 8. Evolution of the field radius during the optimisation process, (a)(c)(e) The 

algorithm starts with a large field radius for each function; (b)(d)(f) The algorithm starts with 

a small field radius for each function. 

 

6. Evaluation of the Bees Algorithm for MMO  



This section tests the proposed performance on optimising MMO problems. The purpose 

is to underline the Bees Algorithm’s efficiency for MMO, rather than focusing on its 

superiority to other algorithms. 

6.1 Experimental setup 

To evaluate the performance of the proposed algorithm, some commonly used 

multimodal functions of various characteristics, such as irregular landscape, symmetric or 

equal distribution of optima, unevenly spaced optima, multiple global optima in the presence 

of multiple local optima, are employed as given in Table 6. 

Table 6. Benchmark functions for evaluating the performance of the algorithm 

f1: Two-peak trap (1 global optima/1 local optima) 
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f2: Central two-peak trap (1/1) 
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f3: Five-uneven-peak-trap (2/3) 
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f4: Equal maxima (5/0) 
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f5: Decreasing maxima (1/4) 
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f6: Uneven maxima (5/0) 
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f8: Himmelblau’s function (4/0) 
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f10: Shekel’s foxholes (1/24) 
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f12: 1D inverted Vincent function (6/0) 

f13: 2D inverted Vincent function (36/0) 

f14: 3D inverted Vincent function (216/0) 
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The performance of Bees Algorithm for MMO is compared with that of r2psols, r3psols, 

r2psolhcls, r3psolhcls and IWO-δ-GSO. In the experiments, the parameter settings are 

matched as closely as possible with those used by the other algorithms under comparison. 



However, due to the different mechanisms of the algorithms, some of the parameters are 

dimensionality depended, that is, nre=2·(D+1), nrb=D+1 and stlim=5·D. The initial ngh is 

correlated with the search range: ngh=2·range/ns. Table 7 lists the other parameter settings 

for the experiments. 

Table 7. Initial colony size, initial field radius and search resolution 

No. ns nr rad resolution 

f1-f3 20 5 2 0.05 

f4-f7, f9 20 5 0.02 0.000001 

f8 20 5 0.02 0.005 

f10 20 20 3 0.00001 

f11 20 150 0.2 0.05 

f12 40 10 0.2 0.0001 

f13 150 50 0.2 0.001 

f14 300 400 0.2 0.001 

6.2 Results and discussion 

The success rate and average number of optima found are recorded and presented in 

Table 8 and Table 9 respectively, and again p-values are given in Table 10 to show the 

statistical significance of the performance differences between the compared algorithms and 

the proposed Bees Algorithm (with confidence level of 95%) in the number of optima. Some 

p-values cannot be obtained because the compared and the proposed algorithm can both reach 

100% success rate in finding the optima. The best performance is reported in boldface. As 

can be seen from Table 8, the proposed Bees Algorithm and the IWO-δ-GSO generally 

perform better than others. The functions f1, f2, f7 and f10 are the easiest, and all the algorithms 

can find the optima. The r3psolhcls is the only algorithm that cannot reach 100% success rate 

in finding the 5 optima of the function f4, and the corresponding p-value of 0.0112 (below 

0.05) indicates the proposed Bees Algorithm significantly differs from r3psolhcls. For 

function f6, all the algorithms except r2psols can find the 5 optima with 100% success rate, 



and the p-value of 0.0346 suggests the difference between the results is significant. For 

functions f3, f5 and f12, the proposed algorithm and IWO-δ-GSO show a distinctive advantage 

over the other algorithms, since they are capable of locating all the optima with 100% success 

rate while the other algorithms cannot. Furthermore, the p-values indicate that the differences 

in results are statistically significant, except for the r2psolhcls on function f12. The success 

rate and the number of optima found show that the proposed Bees Algorithm outperforms the 

other algorithms on function f8, and the corresponding p-values imply the results difference is 

significant except for the IWO-δ-GSO. However, the data from the three tables display the 

inferior performances of the IWO-δ-GSO, r3psols and r3psolhcls to the Bees Algorithm, 

r2psols and r2psolhcls on the function f9. For f11, even though r2psolhcls generates the highest 

success rate, the corresponding p-values suggest all the algorithms except the r3psols produce 

statistically similar results. On functions f13 and f14 all algorithms fail to achieve a non-zero 

success rate. However, the average number of optima found, and the respective p-values, 

imply that the proposed Bees Algorithm and IWO-δ-GSO produce statistically resembling 

results, and that they outperform the other algorithms except for r3psols on f13. 

Table 8. Success rate 

No. BA 

(%) 

r2pso 

ls(%) 

r3pso 

ls(%) 

r2pso 

lhcls(%) 

r3pso 

lhcls(%) 

IWO-δ-GSO 

(%) 

f1 100 100 100 100 100 100 

f2 100 100 100 100 100 100 

f3 100 52 36 80 48 100 

f4 100 100 100 100 96 100 

f5 100 16 4 64 16 100 

f6 100 96 100 100 100 100 

f7 100 100 100 100 100 100 

f8 100 76 64 68 72 88 

f9 100 100 96 100 96 60 

f10 100 100 100 100 100 100 



f11 70 64 52 72 60 - 

f12 100 92 96 96 92 100 

f13 0 0 0 0 0 0 

f14 0 0 0 0 0 0 

Table 9. Average number of optima found 

No. BA r2psols r3psols r2psolhcls r3psolhcls IWO-δ-GSO 

f1 2.00 2.00 2.00 2.00 2.00 2.00 

f2 2.00 2.00 2.00 2.00 2.00 2.00 

f3 5.00 3.96 3.24 4.72 3.92 5.00 

f4 5.00 5.00 5.00 5.00 4.96 5.00 

f5 5.00 1.98 1.24 4.52 2.80 5.00 

f6 5.00 4.96 5.00 5.00 5.00 5.00 

f7 1.00 1.00 1.00 1.00 1.00 1.00 

f8 4.00 3.76 3.60 3.68 3.72 3.88 

f9 2.00 2.00 1.96 2.00 1.96 1.60 

f10 25.00 25.00 25.00 25.00 25.00 25.00 

f11 17.70 17.56 17.36 17.72 17.60 - 

f12 6.00 5.92 5.96 5.96 5.88 6.00 

f13 30.70 26.64 26.92 27.28 27.44 29.60 

f14 105.20 77.20 76.28 78.40 77.99 102.60 

Table 10. p-values showing statistical significance 

No. r2psols r3psols r2psolhcls r3psolhcls IWO-δ-GSO 

f1 - - - - - 

f2 - - - - - 

f3 < 0.0001 < 0.0001 0.0005 <0.0001 - 

f4 - - - 0.0112 - 

f5 < 0.0001 < 0.0001 0.0057 < 0.0001 - 

f6 0.0346 - - - - 

f7 - - - - - 

f8 0.0326 0.0025 0.0135 0.0130 0.1331 

f9 - 0.0453 - 0.0210 <0.0001 

f10 - - - - - 

f11 0.0972 0.0005 0.7715 0.1504  

f12 0.0002 0.0449 0.0503 0.0068 - 

f13 0.0017 0.5718 0.0115 0.0023 0.3415 

f14 0.0118 0.0235 0.0094 0.0340 0.8240 

 

6.3 Associated diagrams showing bees’ distributions in search space 

Function f1 has two peaks, of which one is global and the other is local. Figure 9 shows 

a simulation run of the proposed Bees Algorithm for MMO on f1 starting from 50 bees. The 



initial population is much larger than the necessary for finding only two optimal solutions. 

Most of the members in the colony become redundant and are removed. After 123 function 

evaluations, the bees get attracted towards the global optimum at x=20, and the local 

optimum at x=0. Finally both peaks are located by the bees. 
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 (a) initialisation (b) at 123 evaluations 

Figure 9. Distribution of individuals in the search space during the evolution process for f1 
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 (a) initialisation (b) at 220 evaluations 

Figure 10. Distribution of individuals in the search space during the evolution process for f2 
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 (a) initialisation (b) at 136 evaluations 

Figure 11. Distribution of individuals in the search space during the evolution process for f3 



Also function f2 has two peaks: one is the global peak and the other is the local one. 

Figure 10 shows two snapshots from a sample simulation run of the Bees Algorithm with an 

initial colony size of 50 bees, the first snapshot taken at initialisation and the other at 220 

function evaluations. 

f3 has five peaks, of which two are global and three are local. Figure 11 shows two 

snapshots of a sample run of the Bees Algorithm on f3 at initialisation and after 136 function 

evaluations. 
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 (a) at 205 evaluations (b) at 571 evaluations 

Figure 12. Distribution of individuals in the search space during the evolution process for f4 
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 (a) at 208 evaluations (b) at 575 evaluations 

Figure 13. Distribution of individuals in the search space during the evolution process for f6 
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 (a) at 208 evaluations (b) at 558 evaluations 

Figure 14. Distribution of individuals in the search space during the evolution process for f5 

Functions f4 and f6 have five global peaks. The peaks of f4 are evenly spaced, whereas 

the peaks of f6 are unevenly spaced. Figure 12 and Figure 13 show two stages in a sample run 

on f4 and f6 respectively. It shows that the Bees Algorithm is able to find all the global and 

local peaks of f4 and f6 using very few function evaluations. 

Functions f5 and f7 have one global peak and four local peaks. The peaks in f5 are evenly 

spaced, whereas in f7 they are unevenly spaced. Figure 14 and Figure 15 show a sample run of 

the Bees Algorithm on f5 and f7 respectively. The above figures show the colony 

distributions of the Bees Algorithm and illustrate the algorithm’s ability to detect all the 

peaks. 

Function f8 has four global peaks. Figure 16 shows four stages of the search process of a 

simulation run of the Bees Algorithm on f8, using initially 50 bees, and sampled at: 

initialisation, after 495 evaluations, 1361 evaluations and 1736 evaluations. 

Function f10 has 25 evenly spaced peaks of unequal heights, of which one is the global 

peak whilst the others are local peaks. Figure 17 plots the evolution of the search process on 

function f10 at the initialisation stage, after 2191 function evaluations, 5735 function 

evaluations and 8253 function evaluations. Also on this function the algorithm locates all the 



peaks successfully.  
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 (a) at 209 evaluations (b) at 630 evaluations 

Figure 15. Distribution of individuals in the search space during the evolution process for f7 
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 (a) initialisation (b) after 495 evaluations 
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 (c) after 1361 evaluations (d) after 1736 evaluations 

Figure 16. Distribution of individuals in the search space during the evolution process for f8 
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 (a) initialisation (b) after 2191 evaluations 
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 (a) after 5735 evaluations (b) after 8253 evaluations 

Figure 17. Distribution of individuals in the search space during the evolution process for f10 

For visualisation reasons only a part of the benchmark functions showing how the bees 

distribute in the optimising process are illustrated. The results clearly indicate the high 

efficiency of the Bees Algorithm in solving MMO problems. The Bees Algorithm exhibits 

good explorative and exploitative abilities of locating global and local peaks. At the same 

time, the Bees Algorithm needs very few function evaluations to locate the optima. The speed 

of the Bees Algorithm is likely due to its adaptive colony size, in which surplus bees are 

removed.  

7. Conclusion 

This paper has proposed an evolutionary optimisation technique based on the basic Bees 

Algorithm for solving MMO problems. Some fundamental concepts of the basic Bees 

Algorithm are retained, such as the mechanism of combining exploration and exploitation, 



and the “waggle dance” which allocates foragers according to the fitness of the discovered 

flower patches. The basic Bees Algorithm has been improved by adding several new 

procedures, which are also partly inspired by the honeybees’ natural behaviour. The 

experiments proved the ability of the proposed algorithm to solve MMO problems. This 

stems from the capability of the Bees Algorithm to adjust the number of individuals 

according to the complexity of the search space. This ability is also enhanced by the proposed 

local search method called balanced search technique (BST), which guides the foragers 

towards the fitness gradient whilst still retaining some randomness for explorative purposes. 

The HV is executed in the global search stage to detect good solutions in yet uncharted 

regions of the search space. The experimental results show that the proposed Bees Algorithm 

is competitive for the MMO problems compared with other algorithms. 

A first step to extend the current work may be to stabilise the field radius. Currently, its 

fluctuation around an estimated value may degrade the accuracy of locating optimal solutions 

in the search space. Secondly, the BST can be further studied or modified for other 

optimisation problems like find one global optimum or tracking a dynamic optimum. Finally, 

a very important future research issue would be to develop a tool for estimating the ratio of 

the number of scouts in fields to the number of random scouts. The partition in scouts directly 

determines how the algorithm balances between exploitative and explorative search. The 

former decides the accuracy and speed of convergence when searching around an identified 

solution and the latter affects the ability of exploring potential spaces. 
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