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Abstract 22 

Amplitude decay and phase delay of oscillating temperature records measured at two vertical 23 

locations in near-surface sediments can be used to infer transient water fluxes, thermal 24 

diffusivity and sediment scour/deposition. While methods that rely on the harmonics-based 25 

analytical heat transport solution assume a steady-state water flux, many applications have 26 

reported transient fluxes, but ignored the possible violation of this assumption in the method. 27 

Here, we use natural heat tracing as an example to investigate the extent to which changes in the 28 

water flux, and associated temperature signal non-stationarity, can be separated from other 29 

influences. We systematically scrutinize the assumption of steady-state flow in analytical heat 30 

tracing and test the capabilities of the method to detect the timing and magnitude of flux 31 

transients. A numerical model was used to synthesize the temperature response to different step 32 

and ramp changes in advective thermal velocity magnitude and direction for both a single-33 

frequency and multi-frequency temperature boundary. Time-variable temperature amplitude and 34 

phase information were extracted from the model output with different signal processing 35 

methods. We show that a worst-case transient flux induces a temperature non-stationarity, the 36 

duration of which is less than 1 cycle for realistic sediment thermal diffusivities between 0.02-37 

0.13 m2/d. However, common signal processing methods introduce erroneous temporal 38 

spreading of advective thermal velocities and significant anomalies in thermal diffusivities or 39 

sensor spacing, which is used as an analogue for streambed scour/deposition. The most time-40 

variant spectral filter can introduce errors of up to 57 % in velocity and 33 % in thermal 41 

diffusivity values with artifacts spanning ±2 days around the occurrence of rapid changes in flux. 42 

Further, our results show that analytical heat tracing is unable to accurately resolve highly time-43 

variant fluxes and thermal diffusivities and does not allow for the inference of scour/depositional 44 

processes due to the limitations of signal processing in disentangling flux-related signal non-45 

stationarities from those stemming from other sources. To prevent erroneous interpretations, 46 

hydrometric data should always be acquired in combination with temperature records. 47 
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1. Introduction 48 

Many measured signals that fluctuate over time exhibit amplitude decay and phase shifting over 49 

space caused by time-varying natural processes, for example: seismic wave propagation [Best et 50 

al., 1994], depth profiles of soil moisture [Wu et al., 2002], groundwater levels [Cuthbert, 2010] 51 

and seafloor temperature depth profiles [Goto et al., 2005]. In water-saturated near-surface 52 

aquatic systems natural heat has become a popular tracer to quantify vertical water fluxes 53 

[Anderson, 2005; Rau et al., 2014]. This is due to the presence of daily temperature fluctuations 54 

on the earth’s surface [Stallman, 1965], increasing interest in surface-groundwater exchange 55 

fluxes, and developments in measurement technology to miniaturize and automate sensors 56 

[Constantz, 2008]. In particular, analytical approaches to invert water fluxes from multi-level 57 

temperature records have received much attention and are now common practice. Constantz 58 

[2008] correctly predicted that heat tracing will elevate the significance of streambed research to 59 

a field of “streambed science”. 60 

Few publications in this field of research have sparked as much follow-on research as Suzuki’s 61 

[1960] and Stallman’s [1965] original presentation of the analytical solution to the 1D 62 

convective-conductive heat transport equation with a sinusoidal temperature boundary at the top 63 

and a constant temperature boundary at infinite depth. Stallman’s [1965] model is an extension 64 

to the harmonically-forced solution developed by Carslaw and Jaeger [1959], allowing for 65 

movement of water by including the first order spatial derivative of temperature. As such, it 66 

could be a mathematical description for many physical processes that are gradient driven and 67 

adhere to a simplified homogeneous linear second order differential equation. 68 

Stallman’s [1965] analytical solution has inspired various method developments and 69 

applications. Goto et al. [2005] successfully estimated sediment thermal regimes and the steady-70 

state vertical water flux near a hydrothermal mound at the ocean floor. Hatch et al. [2006] 71 

dissected the original analytical solution to estimate time variable fluxes from the amplitude 72 

damping and the phase shifting, both contained in the temperature signal over depth. Keery et al. 73 

[2007] calculated streambed vertical fluxes using the amplitude damping feature of the 74 

temperature-depth record. They extracted the daily sinusoidal component from noisy field 75 

records using Dynamic Harmonic Regression (DHR) [Young et al., 1999; Taylor et al., 2007]. 76 

McCallum et al. [2012] recombined the two sinusoid features, amplitude and phase, to arrive at 77 

two unknowns, streambed thermal diffusivity and advective thermal velocity. Luce et al. [2013] 78 

revisited the original differential equation and combined the information contained in amplitude 79 

and phase to derive explicit analytical solutions for sensor spacing or streambed thermal 80 
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diffusivity as well as advective thermal velocity. These papers contain a wealth of methods that 81 

can be readily applied to estimate streambed thermal regimes and vertical water fluxes. 82 

Further investigated were the impact of parameter uncertainty and non-ideal conditions (such as 83 

sediment heterogeneity and a 2D flow field) on the flux results [Lautz, 2010; Shanafield et al., 84 

2011; Roshan et al., 2012; Cuthbert and Mackay, 2013; Irvine et al., 2015]. The increasing 85 

popularity of analytical heat tracing methods has led to the development of algorithms that 86 

automate the flux quantification from temperature records, namely Ex-Stream [Swanson and 87 

Cardenas, 2011] and VFLUX [Gordon et al., 2012]. These methods are implicitly geared towards 88 

quantifying flux time series. 89 

What is often overlooked or implicitly assumed in papers that apply methods to quantify fluxes 90 

and thermal diffusivities from field temperature records is the fact that the original analytical 91 

solution is based on the assumption of steady-state flow. This assumption is in contrast to the 92 

aim of understanding natural processes that are commonly transient in nature. While Lautz 93 

[2012] experimented in the laboratory with transient fluxes and found that diurnally forced 94 

analytical solutions are able to offer sub-daily fluxes in reasonable agreement with the known 95 

fluxes of the experiments, McCallum et al. [2012] concluded from field studies that rapid 96 

changes in hydraulic forcing (i.e. floods) lead to erroneous fluxes due to violation of the method 97 

assumptions. Furthermore, a reversal in the flux direction, as expected during flood events (e.g. 98 

the nature of the flood hydrograph as well as return flow of bank storage), complicates the 99 

system’s thermal response (i.e. memory effect). We suggest that this will lead to potentially 100 

flawed flux estimates when quantified using heat tracing methods based on the assumption of 101 

harmonic temperature data. This scenario and its implications on heat tracing have not been 102 

comprehensively investigated. However, testing the reliability of heat tracing under highly 103 

transient flux scenarios is a crucial prerequisite for its further application in advancing process 104 

understanding. 105 

The aim of this paper is to explore how accurately flux transients can be determined with 106 

methods based on harmonic features that are embedded in temperature records (analytical heat 107 

tracing).  We systematically test a) the streambed thermal response time to flux transients, and b) 108 

the accuracy of the water flux, thermal diffusivity and sediment scour/deposition time series 109 

inverted with analytical heat tracing. We demonstrate that near-surface sediment has a particular 110 

thermal response time to sudden flux transients, i.e. quantifiable time between flux-related 111 

thermal disturbance and return to stationarity. Further, we distinguish between the basic thermal 112 

response to a harmonic driver and impacts caused by extraction of fixed-frequency harmonic 113 
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components that stem from general non-stationarity and transients in vertical fluxes, including 114 

reversals. Finally, we provide guidance under which conditions the quantification of time-115 

variable water flux, thermal diffusivity or sediment scour/deposition from temperature records in 116 

combination with diurnally forced analytical solutions are reliable. Our results are generic and 117 

could be useful to other areas of geophysics that utilize time-frequency transformation or 118 

amplitude and phase extraction of periodically fluctuating signals to quantify natural processes 119 

or properties. 120 

2. Methodology 121 

2.1. Harmonically forced analytical solutions  122 

This investigation is based on the 1D conductive-convective heat transport equation which is 123 

discussed in detail in a number of papers [e.g., Suzuki, 1960; Stallman, 1965; Anderson, 2005; 124 

Constantz, 2008; Rau et al., 2014] and it will therefore not be stated here again. Rather, we focus 125 

on the analytical methods derived from the original solution by Suzuki [1960] and Stallman 126 

[1965]. An analytical solution for the propagation of a harmonic temperature signal with depth is 127 

given as [Goto et al., 2005] 128 

(1)  ( )
2 2

i i
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1 i
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Here, T  is the temperature in the sediment at depth z  [L] below the surface, and t  [T] is the 132 

time. The subscript i  represents individual harmonic frequency components with a total of n 133 

components. iA  is the temperature amplitude [K], and iP  is the period [T] of the harmonic 134 

component i  (frequency 1/=f P  or angular frequency 2 /= Pω π ). The parameter of interest 135 

is the 'advective thermal velocity' tv  [L/T], as it is proportional to the vertical flux (see further 136 

below). D  [L2/T] is the effective thermal diffusivity but without the influence of thermal 137 

dispersivity as this has been found insignificant for fluxes smaller than ~10 m/d [Rau et al., 138 

2012a]. However, Rau et al. [2012b] reported that D  can be underestimated due to additional 139 

thermal spread originating from transverse temperature gradients when the solution requires the 140 

dimensionality to be reduced to 1-D, even in materials that are considered homogeneous. 141 
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Equation 1 follows the principle of superposition (Fourier’s theorem), which is inherent to the 142 

linear heat transport differential equation, and allows isolation of the signal’s different sinusoidal 143 

components [Goto et al., 2005]. 144 

The following reviews and summarizes the general approach that is used to quantify vertical 145 

fluxes using Equation 1. Options for extracting amplitude and phase of the diel temperature 146 

harmonic from noisy temperature time series with different signal processing methods will be 147 

discussed later. The advantage of a harmonic signal is that it has two distinct features, amplitude 148 

and phase, which allows solving for two unknowns. For a pair of temperature sensors located at 149 

different depths ( z  positive upwards, negative downwards, 2 1z z< ) the temperature amplitude 150 

ratio rA  and phase shift Δφ  (in radians or days) are defined as [Stallman, 1965; Hatch et al., 151 

2006] 152 

(3)   2

1

=r
AA
A

 153 

(4)   2 1Δ = −φ φ φ  154 

Stallman [1965] reported that the sinusoidal temperature signal dampens and shifts phase over 155 

depth (Figure 1). 156 

Hatch et al. [2006] used both features, amplitude ratio and phase shift, separately to solve for the 157 

vertical advective thermal velocity 158 
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When using Equations 5-6 the disadvantage is that the thermal diffusivity must be known before 161 

calculating velocities as it significantly influences the results [Hatch et al., 2010]. Equations 5-6 162 

were field tested and results by the two equations were found to differ significantly from each 163 

other despite relying on the same thermal parameters [Rau et al., 2010]. 164 

Luce et al. [2013] revisited Stallman’s [1965] original solution and found that amplitude and 165 

phase can be combined and expressed as dimensionless velocity as 166 

(7)   ( )
Δ

= − rln A
η

φ
. 167 
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The combined information in Equation 7 is the ratio between the advective ( tv ) and the 168 

diffusive ( dv ) thermal velocity, as 169 

(8)   
( )

2
*

2

1
22 1

−= = =
+

t

d

v Pev
v

η
η η

. 170 

Conveniently, Pe  is the thermal Péclet number indicating dominance of diffusive ( Pe 1< ) or 171 

convective conditions ( Pe 1> ). Equation 7 is useful to determine the direction and change of 172 

water velocity simply from temperature amplitude and phase information without any further 173 

parameters, such as sensor spacing or thermal diffusivity [Luce et al., 2013]. 174 

The damping depth dz  of the sinusoid is determined as [Goto et al., 2005; Luce et al., 2013] 175 

(9)   =d
DPz
π

. 176 

This is the depth at which the temperature amplitude is damped to 1 e  of its original value. 177 

Assuming a constant sensor spacing ( Δz ), the thermal diffusivity can be calculated using [Luce 178 

et al., 2013] 179 

(10)   
( )( )

2

2 2

2 ΔD
Δr

z
P ln A z

πη=
+

 180 

It is noteworthy that results from this equation are equivalent to that published by McCallum et 181 

al. [2012]. They reported that the thermal diffusivity calculated using field data can exceed 182 

physically possible values during periods when the stream stage rapidly changes (transient flux 183 

conditions). While they suggested that the method may break down during such conditions, they 184 

did not investigate its limitations in correctly resolving parameters over the duration of transient 185 

conditions. 186 

Analogously, assuming a constant thermal diffusivity ( D ), the sensor spacing ( Δz ) is 187 

determined as [Luce et al., 2013; Tonina et al., 2014] 188 

(11)   ( )2 2Δ
Δ

2
+

= r
d

ln A
z z

φ
η

 189 

Interestingly, Luce et al. [2013] and Tonina et al. [2014] have used this to quantify sediment 190 

scour/depositional processes, indicated by a time variable sensor spacing, based on field data 191 

obtained during a period of transient stream discharge. However, they did not consider the 192 
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possible limitations that transient fluxes can impose on methods based on the diurnal heat 193 

forcing. Here, it is important to note that equations 10 and 11 are exactly the same and can either 194 

quantify sediment thermal diffusivity ( D ) or scour/depositional processes inferred from sensor 195 

spacing ( Δz ). 196 

Finally, the advective thermal velocity is determined using [Luce et al., 2013] 197 

(12)   
( )

( ) ( )( )
2

2 2 2

2 Δ 1
v

1 Δ

−
=

+ +
t

r

z

P ln A z

π η

η
. 198 

Equation 13 is the final step to quantify the Darcy flux ( q ) from advective thermal velocity as 199 

(13)   ( )1
 

= + − 
 

v
s
v
w

t
c
c

q vε ε  200 

where additional sediment properties are required: ε  is the porosity of the sediment, v
sc  and v

wc  201 

are the volumetric heat capacities of the solids and water, respectively. Equation 13 is stated here 202 

for sake of completeness, but will not be used further to quantify the Darcy flux, since this is not 203 

the aim of the paper. Instead, we let the advective thermal velocity, tv , represent the convective 204 

conditions (vertical flux magnitude and direction). In this paper we use Equations 3-12 to invert 205 

fluxes from temperature data that has been generated by a numerical model described in the next 206 

section. 207 

2.2. Numerical modeling 208 

In this paper a transient numerical model was used to generate the thermal response ( )T z, t  to 209 

step and ramp changes in the water velocity (i.e. worst case transient scenario). The conceptual 210 

model is a diurnally forced water saturated near-surface system (i.e. like a streambed). The 211 

approach is an analogue to any real-world transient flux signal, as this can be thought of as 212 

multiple discrete-time steps with variable magnitudes and durations. 213 

COMSOL Multiphysics V5 [COMSOL, 2014] was used as the numerical solver for the 214 

conductive-convective heat transport equation in a one-dimensional domain, resembling the 215 

vertical extent of a near-surface hydrologic system. For all simulations a sinusoidal temperature 216 

signal with period P 1=  day and amplitude of 3 °C at a mean of 20 °C was applied at the top of 217 

the domain. The bottom of the domain was held at a constant temperature of 20 °C at a large 218 

enough distance (30 m) to have no further effect on the simulated temperatures in the upper 1 m 219 
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used in the analysis. The initial condition was T = 20 ºC across the whole model domain. The 220 

mesh increased in size from 4 mm at the upper boundary to 1 cm at the base of the domain. The 221 

absolute solver tolerance was set to 51 10−⋅  ºC with a relative tolerance of 91 10−⋅ , small enough 222 

to ensure that the model output was no longer sensitive to changes in these values. The 223 

numerical models were accurate to within ~0.0001 °C against the range of analytical models 224 

during steady velocity periods. 225 

Each simulation was conducted for a total time of 30 days with a constant advective thermal 226 

velocity assigned to the first 10 days, followed by a step change in advective thermal velocity 227 

and another 20 days of simulation. Temperature records were generated at 96 time steps per day 228 

(15 min time step) at the top boundary and at the depths: 0.02 m, 0.05 m, 0.1 m, 0.2 m, 0.3 m, 229 

0.5 m, 0.75 m and 1 m (see dashed horizontal lines in Figure 1). The large number of depths 230 

allowed investigation of both up- and downward flow by evaluating data from sensor locations 231 

at depths where the temperature signal was not damped beyond recognition (temperature 232 

variations well above the limits of typical field instrument resolution, typically 0.001-0.01 ºC). 233 

The following transient advective thermal velocity scenarios were simulated in separate sub 234 

cases: 235 

1. 0 m/d followed by a downward step change: -0.01, -0.1, -0.5, -1 and -5 m/d,  236 

2. 0 m/d followed by an upward step change: 0.01, 0.1, 0.5, 1 and 2 m/d, 237 

3. Reversal step change from -1 m/d downwards to 1 m/d upwards, and from 1 m/d 238 

upwards to -1 m/d downwards, 239 

4. Linear increase from 0 to -1 m/d within a time of 0.5, 1, 2 and 4 days. 240 

The velocity reversals are particularly interesting as the thermal signal is transported downwards 241 

and then upwards (or vice versa) by the water flux by convection while conducting 242 

simultaneously depending on the temperature-depth gradient. The linear streambed velocity 243 

increases represent the likely responses to different hydrograph characteristics, for example fast 244 

flux transient caused by flash flooding, or slow flux transients due to snow melt. 245 

To illustrate the influence of the thermal diffusivity on the results, all cases were simulated for 246 

physically realistic minimum and a maximum thermal diffusivity as reported in the literature 247 

[i.e., Shanafield et al., 2011; McCallum et al, 2012]. The numerically simulated temperature time 248 

series were first processed using different signal extraction methods, and then Equations 3-12 249 

were used to invert for time series of transient velocities and thermal diffusivities. To provide 250 

quantifiable measures of the suitability of heat tracing during transient velocities we calculate 251 
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the maximum error and the root-mean-square error (RMSE) between the modeled and inverted 252 

advective thermal velocity and diffusivity data. Finally, we test how well signal processing 253 

techniques can distinguish between temperature signal non-stationarity caused by flux transients 254 

and other processes by repeating the first set of model simulations with a previously measured 255 

and published temperature record [Rau et al., 2010] as the upper boundary. 256 

2.3. Extraction of harmonic amplitudes and phases from temperature records 257 

A prerequisite to the calculation of water flux and thermal diffusivity are temperature time series 258 

measured by sensors in at least two different depths of the water-saturated sediment. From these 259 

measurements the strongest frequency component, the daily frequency [Stallman, 1965; Hatch et 260 

al., 2006; Keery et al., 2007], is commonly extracted. Here, we evaluate the capability and 261 

accuracy of the four most commonly used signal processing techniques that offer time-262 

dependent amplitude and phase extraction. To obtain amplitude and phase data from the 263 

sinusoidal component embedded in typically noisy field data a transformation of data from the 264 

time domain into the frequency domain is needed. 265 

2.3.1. Harmonic peak identification 266 

As a benchmark for the results obtained from different signal processing methods the peak 267 

amplitudes and timings were directly identified from the model output. This is only appropriate 268 

when the signal consists of a single harmonic frequency as was required by Equations 3-12 and 269 

as used for the numerical model. The sampling frequency will limit how accurately peaks 270 

(minima and maxima) can be determined. This means that amplitudes and phases may not be 271 

optimally detected as any particular minima or maxima may not occur exactly at the sampling 272 

time. We apply an algorithm that uses the neighboring values around the peaks to find the exact 273 

magnitude and timing with 2nd order polynomial regression. This approach results in a best 274 

possible peak time-resolution offering 2 samples per day for peaks. We refer to this approach as 275 

“peak picking”. 276 

2.3.2. Windowed Fourier Transform (WFT) 277 

The most obvious method is the discrete Fourier transform (DFT) and its computational 278 

representation, the fast Fourier transform (FFT). A common approach to obtain frequency 279 

information is to apply the FFT to a fixed time window that is shifted along the complete record 280 

resulting in the windowed Fourier transform (WFT). This approach was suggested by Keery and 281 

Binley [2007] and successfully used by Cuthbert et al. [2011]. 282 
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WFT offers the advantage of being able to identify signal non-stationarity, as a measure of 283 

transient fluxes, in the time domain. However, it is well known that the WFT has a constant 284 

frequency resolution due to the fact that the window size used in the time domain defines the 285 

resolution in the frequency domain [Oppenheim and Schafer, 1989]. This means that the window 286 

size must have an appropriate amount of samples so that the frequency resolution can capture 287 

information at 1 cpd. This amounts to window sizes that are multiples of samples per day (one 288 

cycle based on daily fluctuations). Further, the minimum window size must be one harmonic 289 

cycle in the time domain as otherwise the discrete samples in the frequency domain do not 290 

coincide with the desired frequency. While increasing the window size will reduce the artifacts 291 

from spectral leakage, this will also diminish the ability to accurately detect the exact timing of 292 

changes in the water flux. Since the focus is on determining transient fluxes the minimum 293 

window size, a 1 day window with 96 samples (for our sampling interval of 15 min), was used. 294 

To maximize the frequency-time information the window was continuously shifted by 1 sample 295 

at a time. This approach is equivalent to a moving rectangular window. While different window 296 

shapes will change the extracted amplitude-phase relationship, we focus on avoiding any side 297 

effects arising from window functions. The amplitude and phase information, given as the length 298 

and angle of the complex FFT output, were assigned to the midpoint of the time window. 299 

Amplitudes and phases were then used to quantify fluxes and thermal diffusivities with 300 

Equations 3-6, 10 and 12. 301 

2.3.3. Zero-phase (forward-backward) filtering 302 

A slightly different amplitude and frequency extraction technique was suggested by Hatch et al. 303 

[2006]. Their attempt of recovering the full daily harmonic component in the time domain 304 

deployed a windowed filter. The first step is similar to that previously explained for WFT, but 305 

then the frequency spectrum is multiplied with a band-pass window centered on 1 cpd to retain 306 

the daily frequency and cancel the lower and higher components. This is equivalent to a time-307 

domain convolution of the signal and filter kernel but is often computationally easier. This 1 cpd 308 

frequency record is subsequently inverted back to the time domain. Here, the choice of window 309 

will have an effect on the spectral leakage, and the Tukey window was suggested because it 310 

provides an optimization between maintaining the gain for the desired frequency and optimizing 311 

the fade of side-band components [Harris, 1978]. The window size (filter order) must be 312 

multiples of days to allow accurate sampling of the 1 cpd frequency. Since manipulating the 313 

amplitude information in the frequency domain will inevitably also modify the phase 314 

information, a forward-backward filter (e.g., Matlab’s filtfilt function implemented in the Signal 315 
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Processing Toolbox) must be deployed to allow an exact cancelation of the phase error 316 

introduced when filtering in the forward direction only [Hatch et al., 2006]. 317 

Again, while an increasing window size will result in increasing filter stability it also reduces the 318 

temporal resolution (i.e. makes it harder to accurately identify flux transients). A minimum filter 319 

order of 384 (= 4 days at 15 min sampling intervals) was determined to result in a stable time-320 

domain output. The filter output in the time domain must undergo “peak picking” before fluxes 321 

can be calculated [Hatch et al., 2006]. 322 

2.3.4. Continuous Wavelet Transform (CWT) 323 

One significant limitation of the Fourier transform is the Heisenberg–Gabor limit, the 324 

relationship between resolution in frequency and time domain [Havin and Jöricke, 1994]. 325 

However, time-varying amplitude and phase information, as measured for time-varying flux and 326 

thermal diffusivity, implies that the signal is non-stationary. The continuous wavelet transform 327 

(CWT) appears to be better suited for extracting time-variant frequency domain features from 328 

temperature records. Onderka et al. [2013] successfully tested the application of CWT in 329 

analytical heat tracing. Pidlisecky and Knight [2011] use CWT to derive infiltration rates from 330 

1-D resistivity records. For a useful practical guide to the CWT the interested reader is referred 331 

to Torrence and Compo [1998]. Further, Grinsted et al. [2004] offer an excellent practical 332 

overview of the wavelet transforms and its application to geophysical time–series.  333 

Here, we adopt the same approach as was deployed by Onderka et al. [2013] using the Morlet 334 

mother wavelet because of its close alignment with the harmonic waveform. In the time domain 335 

this wavelet is a superposition of a harmonic and the Gauss function with maximum weight 336 

given to the center of the window in the time domain. The wavelet can be stretched or 337 

compressed depending on the desired frequency to be analyzed. We used the CWT implemented 338 

in Matlab by Erickson [2014]. 339 

2.3.5. Dynamic Harmonic Regression (DHR) 340 

Keery et al. [2007] used Dynamic Harmonic Regression (DHR) to extract the diel harmonic 341 

from discrete-time temperature records measured at multiple depths in the sediment. DHR was 342 

developed by Young et al. [1999] as an extension to Fourier analysis that is particularly suitable 343 

for non-stationary signals. The technique is a data based mechanistic approach that features 344 

time-variable spectral coefficients that estimate signal amplitude and phase information [Vogt et 345 

al., 2010]. DHR is readily implemented in Matlab as the CAPTAIN toolbox [Taylor et al., 2007] 346 

and is a state-of-art choice of filter for a non-stationary signal [Young et al., 1999]. For best 347 
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compatibility with recent research we implemented DHR in the same way as Keery et al. [2007], 348 

Vogt et al. [2010] and in VFLUX [Gordon et al., 2012]. The reader is therefore referred to these 349 

papers for further details. Noteworthy is the recommendation for an optimum sampling 350 

frequency of 12 samples per day, as over- and under-sampling can cause incorrect signal 351 

identification by the DHR algorithm [Gordon et al., 2012].  352 
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3. Results and discussion 353 

3.1. Properties of field temperature records and the harmonically-forced analytical 354 

solution 355 

As a first point it is vital to consider the characteristics of temperature signals measured in 356 

sediments. It is apparent from a number of existing studies that the temperature signal is 357 

dominated by the diel and, if the record is long enough, annual frequency [i.e., Hatch et al., 358 

2006; Keery et al., 2007; Wörman et al., 2012]. However, the record typically contains other 359 

frequency components that are often referred to as noise. The annual and diel components are 360 

controlled by the continuous celestial movements, and thus can be considered harmonics with 361 

precisely known cycles (e.g., 86,400=dielP  s). More complicated to determine are the “noisy” 362 

components which will depend on various natural factors, for example the local climate, site and 363 

seasonal specific details (i.e. shading) and sensor noise. 364 

The Fourier Theorem stipulates that a continuous function can be decomposed into an infinite 365 

series of individual harmonics with different amplitudes and phases. In practice, temperature 366 

measurements are recorded digitally as discrete samples in time. Therefore, the signal can be 367 

decomposed into a finite series of harmonics using the Discrete Fourier Transform (DFT). 368 

However, it is important to consider that each of the components identified by the DFT is a 369 

stationary harmonic, and that the resolution in the time domain will also determine the frequency 370 

domain resolution [Oppenheim and Schafer, 1989]. 371 

Also noteworthy here is the fact that the differential heat transport equation is of linear nature. 372 

This means that the sediment depth response to any temperature signal at the surface is the sum 373 

of the individual harmonics that form part of the original signal, but each weighted according to 374 

Equation 1 [Goto et al., 2005]. Importantly, the weighting depends on the signal frequency (375 

1/=f P , note iP  in Equation 1) and the water flux, which translates into exponentially damped 376 

amplitudes and linearly shifted phases (Figure 1). In other words, the water flux modulates the 377 

depth propagation of harmonics. Quantifying the vertical flux from the properties of individual 378 

harmonics, i.e. using the amplitude damping and phase shifting, is exactly what heat tracing 379 

methods intend to achieve. In essence, the sediment acts as a frequency filter where faster 380 

frequencies are damped quicker and slower frequencies propagate further as a function of the 381 

vertical flux [Hatch et al., 2006]. This phenomenon has been exploited to calculate thermal 382 

diffusivity and a steady-state vertical flux from temperature spectra [Wörman et al., 2012]. It is 383 

clear that diel amplitudes and phases cannot simply be selected from unfiltered temperature 384 
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records, as has been previously done [Fanelli and Lautz, 2008; Lautz, 2010], because the “noise” 385 

which consists of inherently different frequencies distorts the diel signal in a depth and flux 386 

dependent way. Extraction of amplitude and phase information with signal processing 387 

techniques is therefore a crucial component of heat tracing with diurnally forced analytical 388 

solutions. 389 

In the context of heat tracing it is important to remember that stationary signals require that their 390 

statistical properties –  here, the features describing a sinusoidal wave –  do not change over time 391 

[Oppenheim and Schafer, 1989]. When this is considered in relation to Equation 1, it becomes 392 

clear that when a hypothetically stationary temperature harmonic (i.e., a temperature sinusoid at 393 

the upper boundary) propagates over depth its stationarity is maintained only if the vertical water 394 

flux is in steady-state ( tv const=  in Equation 1). Importantly, any transients in the water flux 395 

(advective thermal velocity ( )tv f t=  in Equation 1) will transform a previously stationary 396 

harmonic into a non-stationary signal. Figure 2 illustrates this point using a step change in the 397 

water flux as a worst case transient for a pure harmonic (a) and actual temperature (b) data 398 

obtained from Rau et al. [2010]. In essence, any flux transient, equivalent to a time-change in the 399 

advective thermal velocity ( tv ) in Equation 1, will influence the stationarity of the temperature-400 

time signal (see also Figure 1) and thus add to any existing non-stationary features already 401 

embedded in the temperature signal (Figure 2b). 402 

In reality many field studies that develop and apply analytical heat tracing to gain 403 

hydrogeological process understanding are interested in the changes in water flux over time. In 404 

other words, they rely on the fact that the analytical heat tracing can detect flux transients [e.g., 405 

Hatch et al., 2006; Keery et al., 2007; Lautz et al., 2010; Rau et al., 2010; Swanson and 406 

Cardenas, 2010; Vogt et al., 2010; Jensen and Engesgaard, 2011; Munz et al., 2011; McCallum 407 

et al., 2012; Luce et al., 2013; McCallum et al., 2014; Tonina et al., 2014; Gariglio et al., 2014]. 408 

Here, we test whether flux transients can be quantified using analytical methods and determine 409 

their behavior when the temperature signal becomes non-stationary caused by transient fluxes. 410 

From a signal processing perspective it is useful to investigate how accurately the onset of 411 

sudden signal non-stationarity can be delineated and attributed to a cause, such as changes in the 412 

water flux implicitly expressed in the temperature records.  413 
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3.2. System response to sudden water flux transients 414 

It is important to understand the thermal modulation of transient fluxes before proceeding with 415 

the analysis of signal amplitude and phase extraction methods, and their subsequent impact on 416 

the quantification of thermal diffusivities or sediment scour/deposition and the temporal fluxes. 417 

This provides the foundation for a quantitative assessment of the possible artifacts that signal 418 

processing imposes on the physical processes contained within temperature harmonics. 419 

How long does it take for a harmonic temperature signal to return to stationarity when affected 420 

by a sudden change in flux, e.g. a step change? Figure 3a shows the sediment thermal response 421 

to sudden advective thermal velocity transients. This is defined as the difference between the 422 

numerically modeled temperature response to a velocity step change and the stationary 423 

temperature signals that were calculated with Equations 1-2 for the two different steady-state 424 

velocities that the step consists of. The thermal response is shown for two different depths and a 425 

minimum, average and maximum thermal diffusivity (as was used by Shanafield et al. [2011] 426 

and McCallum et al. [2012]). After an initial temperature jump (sharp non-stationarity) caused 427 

by the velocity step it is clear that the underlying thermal response resembles the characteristic 428 

exponential relaxation described by the generic equation ( )exp /t τ− , where τ  is the response 429 

time [T]. The magnitude of the temperature non-stationarity induced by the velocity step 430 

decreases from approx. 2.3 °C to 0.2 °C (for a boundary amplitude of 3 °C) with increasing 431 

thermal diffusivity (Figure 3a). The relaxation time τ  for 0.075avgD =  m2/d is approx. 0.15 432 

days, but this depends on the speed of propagation (velocity magnitude and depth of 433 

measurement) and the sediment thermal diffusivity. Figure 3a reveals that the minimum thermal 434 

diffusivity causes the largest initial temperature jump but also the shortest thermal response time 435 

(~0.04 days for a spacing of 0.1 m). 436 

Not surprisingly, the sediment thermal response will also depend on the timing of the velocity 437 

transient in relation to the phase of the upper harmonic temperature boundary. Figure 3b shows 438 

an example of the velocity step change with the onset occurring at 8 different times shifted by 439 

0.125 days ( / 4π  for 1f =  cpd). Again, the sediment thermal response at depth was calculated 440 

as the difference between the temperature output from the numerical model and the analytical 441 

solution. Interestingly, the magnitude of the thermal response ranges between ~0.1 °C and 1.4 °C 442 

for the step at 0.125 d and 0.375 d, respectively, and with shape of the sediment thermal 443 

response suggesting a more complex function compared to just an exponential relaxation. 444 

Nevertheless, the perturbation decays over time as expected. 445 
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In summary, a water flux step change causes a sudden propagation of non-stationarity in the 446 

temperature signal over depth followed by gradual return to stationarity over time. This is due to 447 

the previously stationary temperature-depth harmonic being moved downwards or upwards by 448 

the sudden change in water flux before stationarity is reached again. For the velocity used in this 449 

example and for realistic thermal diffusivities ( 0.02 0.13D< <  m2/d) the sediment response 450 

time is 0.04 0.24τ< <  days. Importantly, it is evident that the temperature non-stationarity 451 

caused by a worst-case transient velocity (step change) diminishes within one harmonic cycle (1 452 

day). 453 

3.3. How do different signal extraction methods perform when the signal is non-454 

stationary? 455 

Figure 2b suggests that the temperature non-stationarity caused by a transient water flux is 456 

superimposed on temperature signal non-stationarities caused by other factors (see earlier 457 

discussion). While the importance of correctly extracting amplitudes and phases was established 458 

earlier, it is vital to reveal how different signal extraction techniques respond to non-stationarity 459 

caused by only the transient water flux, since these transients are of main interest.  Hatch et al. 460 

[2006] discussed the possible impact of signal filter edge effects on the fluxes and suggested that 461 

the effect of filtering should be further investigated. While different authors have used various 462 

different signal processing techniques [Hatch et al., 2006; Keery et al., 2007; Cuthbert et al., 463 

2011; Onderka et al., 2013], their impact on the flux results have mostly been assumed 464 

negligible, and were neither comprehensively investigated nor quantified. 465 

Here, we raise the question: How accurate are different signal processing techniques in 466 

delineating non-stationary harmonic features (e.g. amplitudes and phases) caused by transient 467 

fluxes when they are buried in a “noisy” signal? This can be answered by comparing the 468 

response of signal extraction techniques to a sudden non-stationarity. Figure 4 illustrates the 469 

response of four different signal processing techniques (WFT, filtfilt, CWT and DHR; see 470 

methods section for details) to the non-stationarity of an otherwise harmonic temperature signal 471 

caused by a step change in advective thermal velocity. Figures 4a, 4c, 4e, 4g show the extracted 472 

amplitudes and 4b, 4d, 4f, 4h the phases at different depths with time relative to the non-473 

stationarity. Since both amplitude and phase are combined to invert the vertical velocity and 474 

thermal diffusivity (see Equations 7-12) it is essential to inspect both separately. 475 

Figure 4 demonstrates the following features: 476 

 The four signal processing techniques demonstrate different responses to non-stationarity 477 
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 While the extracted signal amplitudes are generally smooth, the phase data can exhibit 478 

significant artifacts, e.g. oscillations (Figure 4b,d,f,h) 479 

 The response to signal non-stationarity is an erroneous temporal spreading (“smearing”) over 480 

time, with both the amplitude and phase responding before the actual velocity transient has 481 

occurred 482 

 Significant “smearing” occurs for a minimum of 1 cycle for WFT (Figure 4a,b), and 483 

maximum time of ~3 cycles for filtfilt (Figure 4c,d) 484 

 The WFT methods shows strong oscillations in particular for phase data where the signal to 485 

noise ratio is low, e.g. for the deepest observation points (Figure 4b) 486 

In general, the above observations highlight that signal processing can strongly impact the 487 

quantification of vertical fluxes and thermal diffusivities during transient changes. 488 

3.4. Quantification of transient fluxes and thermal diffusivities 489 

The previously presented amplitude and phase data (Figure 4) were used to derive amplitude 490 

ratios (Equation 3) and phase shifts (Equation 4) based on two observation points located at 491 

different depths. Then, the velocities and thermal diffusivities were quantified from Equations 7-492 

12 and compared with those used as input to the numerical model. This was done with amplitude 493 

and phase data extracted using all four signal processing techniques (Figure 4). Figure 5 494 

summarizes the vertical velocities (a, c, e, g) and thermal diffusivities (b, d, f, h) for different 495 

velocity step changes, 0 to -1 m/d (a & b), 0 to 1 m/d (c & d), reversal from -1 m/d to 1 m/d (e & 496 

f) and reversal from 1 m/d to -1 m/d (g & h). As a best-case benchmark the results from picking 497 

amplitudes and phases straight from the simulated temperature data (which is possible in this 498 

case since a sinusoidal temperature boundary is used), are also shown. We emphasize that this 499 

approach presents the best possible time resolution that can be achieved from methods that rely 500 

on a harmonic signal, as a sinusoid only has 2 features per cycle (amplitudes and phases at 501 

maximum and minimum). 502 

Figure 5 shows significant artifacts in vertical velocities and thermal diffusivities that stem from 503 

quantifying the heat tracing derived velocity over a step change in the modeled water velocity. 504 

Best results are achieved when peak picking is applied to unfiltered harmonic temperature data 505 

(red squares in Figure 5) showing only a small deviation from the modeled velocity. The errors 506 

between modeled and inverted velocity are caused by the streambed’s non-stationary thermal 507 

response, as was discussed earlier (Section 3.2, Figure 3). However, this approach can only be 508 
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used when the temperature signal is a pure harmonic (stationary) and must not be applied to 509 

noisy real-field measurements. 510 

Being deduced from the previously shown amplitude and phase data (Figure 4) the velocity and 511 

diffusivity results are also “smeared” across ~4-5 cycles, approximately centered at the time at 512 

which the transient velocity occurred (Figure 5). It is noteworthy that for downward velocity 513 

steps the thermal diffusivity is overestimated, and it is underestimated for upward velocity steps. 514 

Note that sensor spacing (Equation 11) is prone to the same anomaly because it originates from 515 

reformulating the thermal diffusivity (Equation 10). Figures 6 and 7 show the same calculation 516 

for different velocity step sizes in both directions and found that the response becomes 517 

increasingly smeared and delayed for large velocity steps. Interestingly, the results in Figures 5, 518 

6 and 7 also indicate that for velocity steps up to ±1 m/d the “smearing” is independent of either 519 

the velocity step magnitude or direction, even for velocity reversals. Further, results show that 520 

for velocity transients exceeding -5 m/d (Figure 6) and 2 m/d (Figure 7) the response shifts 521 

forward in time and the error between modeled and inverted advective velocity increases 522 

significantly. 523 

These results demonstrate that signal processing techniques, and not the assumption of steady-524 

state flux inherent to the analytical solution (Equation 1), is the culprit responsible for inaccurate 525 

detection of transient fluxes quantified from harmonically forced analytical solutions. This is due 526 

to the uncertainty principle (Heisenberg-Gabor limit) based on fixed resolution in both time and 527 

frequency domain inherent to any signal filtering that relies on the Fourier transform [Havin and 528 

Jöricke, 1994]. 529 

While the scenarios presented in Figures 5-7 resemble a worst case caused by highly transient 530 

hydrographs (e.g. flash floods, dam releases), streams that are dominated by snowmelt typically 531 

experience slower flux transients. Figure 8 shows the response of heat tracing to different rates 532 

of velocity change (an analogue of the hydrograph slope assuming no change of hydraulic 533 

conductivity over time) modeled as a linear increase of the advective thermal velocity from 0 to -534 

1 m/d within 0.5, 1, 2 and 4 days. A summary of the match between modeled and inverted 535 

advective thermal velocities and diffusivities can be found in Tables 1 and 2, respectively, for 536 

the four different filtering methods and the four different rates of velocity change (Figure 8) as 537 

well as the step change (first row in Figure 5). Here, it is interesting to note that the velocities 538 

inverted without applying any signal processing methods directly from the temperature 539 

amplitudes and phases (red markers) in all cases closely resemble the actual velocities used to 540 

drive the numerical model (Figure 8 first column, RMSE < 0.031 ºC in all cases). In contrast 541 
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inverted thermal diffusivities (or sensor spacing) are more sensitive to flux transients, with 542 

values generally underestimated and with decreasing errors for a decreasing rate of velocity 543 

change (Figure 8 second column). The time decay of the error is in agreement with the 544 

streambed thermal response evaluated in Figure 3. 545 

Figure 8 further illustrates the capability of the different signal processing methods to delineate 546 

different degrees of signal non-stationarity. As expected, the less transient the better the response 547 

of signal processing methods, indicated by the degree of matching between modeled and 548 

inverted velocity (decreasing RMSE in Table 1). It is apparent that DHR is the overall best 549 

performing (most time-variant) method with inverted and modeled velocities matching the 550 

closest (smallest RMSE in Tables 1 and 2). By contrast, CWT shows the slowest response to 551 

velocity transients (highest RMSE in Tables 1 and 2). Interestingly, thermal diffusivities inverted 552 

after applying the signal processing methods are consistently overestimated during the velocity 553 

transient. Further, it is noteworthy that there remains a significant error in the inverted velocities 554 

(max. 0.06 m/d for DHR) and diffusivities for a velocity ramp that spans 4 harmonic cycles. This 555 

proves that heat tracing results are increasingly affected by the signal processing methods under 556 

increasing transient advective velocities (see RMSE values in Tables 1 and 2). Sudden flux 557 

transient can cause errors of up to 57 % in velocity (Table 1) and 37 % in thermal diffusivity 558 

(Table 2) estimates even when DHR, the most time-variant spectral filter, is used. Inaccuracies 559 

in the inverted results persist for up to ±2 days around the occurrence of sudden flux transients 560 

(Figures 5 and 8). The mildest case of velocity transient studied here (-1 m/d velocity change in 561 

4 days: 0.25dv dt =  m/d2) introduces an error of ~6 % in velocity (Table 1) and ~4 % in 562 

thermal diffusivity (Table 2) with inaccuracies during ±1 days of the start and end of the velocity 563 

change (Figures 8 and first row in Figure 5). These errors are larger for all other signal 564 

processing methods and rates of velocity change studied. 565 

McCallum et al. [2012] have reported spurious thermal diffusivities in their field investigation 566 

during highly transient flow conditions, e.g. dam releases and floods. Further, they found that 567 

water flux calculated by heat tracing reacted before the change in hydraulic gradients. Both 568 

observations are consistent with the erroneous delineation of transient fluxes caused by signal 569 

processing as illustrated in this paper (see Figures 5 and 6). It has previously been suggested that 570 

sub-cycle resolution for vertical fluxes can be obtained [Lautz, 2012]. Here, we demonstrate 571 

that, while signal processing techniques offer sub-cycle resolution values for amplitudes and 572 

phases, the smoothing of the inverted fluxes across sudden transients (and oscillations in the case 573 

of phase data) may not resemble the actual transient flux. It is therefore not recommended to 574 
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trust flux and thermal diffusivity or sediment scour/deposition results during times when fluxes 575 

are expected to be transient (e.g. floods). This suggests that hydraulic head data should be 576 

interpreted together with temperature data in order to assess transient conditions; otherwise the 577 

use of heat tracing based on harmonic signals becomes untrustworthy. 578 

The above discussion raises the question as to which signal processing technique performs best 579 

under transient flux conditions. Figure 5 suggests that there is no simple answer, as there appears 580 

to be a trade-off between the distortion of the magnitude and the duration of the flux and 581 

diffusivity estimates. The most suitable approach will depend on the individual circumstances 582 

and whether the focus lies on estimating the magnitude or timing of transient fluxes. 583 

3.5. Biased process estimates caused by a non-stationary temperature boundary 584 

While the previous discussion revealed that signal processing techniques hamper the accurate 585 

time-resolution of quantified fluxes and thermal diffusivities or sediment scour/deposition when 586 

the water flux is transient, the influence of non-stationarity in the field temperature records has 587 

so far been neglected but must also be considered. Rau et al. [2010] measured the temperatures 588 

at the bottom of the stream column and at several depths within the streambed sediment with a 589 

sensor spacing of 0.15 m at 3 different horizontal locations within a small perennial stream in 590 

Australia over a 3-month period in 2007. Here, we use a 30-day subset of the uppermost 591 

temperature data from location C (see Rau et al. [2010]) as a real-field boundary condition for 592 

our numerical model. Figure 9a shows the multi-level temperature time series obtained from 593 

numerical modeling using a velocity step change and the measured surface water temperature as 594 

the boundary condition [Rau et al. 2010]. Here, the non-stationarity is present in the system due 595 

to both natural causes (e.g. weather changes, site specific shading, sensor noise, see 3.1 earlier) 596 

and water flux imposed by the flux step. The challenge for the accurate detection of amplitudes 597 

and phases is to maximize the extracted signal induced by the change in the water flux and to 598 

minimize the “noise” with frequencies other than diel in the forcing temperature data. 599 

Figures 9b and 9c show vertical velocities and thermal diffusivities quantified with Equations 10 600 

and 12 after applying the different signal processing techniques outlined in the methods section. 601 

The results clearly show that general temperature non-stationarity significantly ‘leaks’ into the 602 

velocity results. The WFT is revealed as the worst performing technique with apparent velocity 603 

variations of similar magnitude to the actual velocity step that is to be identified. This is due to 604 

the shortness of the 1-day window selected to maximize the detection of the timing of the 605 

velocity transients. Increasing the window would increase the method’s accuracy during steady 606 
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velocity periods, but at the expense of reducing its ability to accurately delineate the step change. 607 

The technique with best performing amplitudes and phase extraction is the zero-phase forward-608 

backward filter (filtfilt in Matlab), originally proposed by Hatch et al. [2006]. However, this 609 

method still smooths the velocity transient (Figure 9b), and produces an apparent jump in 610 

thermal diffusivity (Figure 9c), caused by the window length. By contrast DHR, which has been 611 

attributed with robust detection of harmonics embedded in non-stationary signals [Vogt et al., 612 

2010; Gordon et al., 2012], exhibits significant noise in our test (Figures 7b and 7c). Our results 613 

confirm what McCallum et al. [2012] had observed in their field application, mainly that heat 614 

tracing results should not be trusted during times when the flux is expected to be transient. We 615 

suggest that thermal diffusivity jumps in field data indicate times when the vertical flux is highly 616 

transient or when erosion-depositional processes occur. However, as both would occur during 617 

transient conditions it would be difficult to disentangle real changes in sensor spacing (as a 618 

proxy for scour/depositional processes) from anomalies induced by transient velocities (Figures 619 

5-8). 620 

Figure 9 also demonstrates that there is a lower limit to the detection of velocity changes. This 621 

limit depends on the signal-to-noise ratio, the ratio between temperature signal non-stationarity 622 

caused by the transient water flux and other sources of non-stationarity. Fourier based signal 623 

processing methods are prone to leakage between different frequencies. Leakage can obscure the 624 

harmonic signal of interest, depends on the filter parameters and is difficult to quantify. The 625 

forcing temperature may contain many simultaneous sources of non-stationarity with different 626 

frequencies and magnitudes buried in the diel temperature records (e.g. caused by the local 627 

climate, seasonal shading, surface flow, etc.). Therefore, the detectability of transient flux 628 

magnitudes will depend on the strength of non-stationarity from other sources. In some cases it 629 

may become impossible to disentangle the diel frequency from other sources of non-stationarity. 630 

Our results illustrate that while signal processing is mandatory to extract harmonic amplitude 631 

and phases its limited ability to deal with signal non-stationarity thwarts the accurate delineation 632 

of transient fluxes and thermal diffusivities or sediment scour/deposition. 633 

McCallum et al. [2012] observed that the thermal diffusivities calculated from heat tracing can 634 

temporarily exceed any physically plausible limits. Further, they warned that this could be due to 635 

violated boundary conditions for the analytical solution. Here, we show that the apparent 636 

“jumps” in thermal diffusivity originate from signal processing artifacts caused by transient 637 

water fluxes that impose sudden non-stationarity on the underlying temperature signal. These 638 
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signal features are too fast for methods that make use of Fourier based time-frequency 639 

transformation and are thus incorrectly delineated. 640 

In a different study, Luce et al. [2013] proposed that streambed scouring could be inferred from 641 

quantifications of apparent variation in sensor spacing zΔ , rather than thermal diffusivity. 642 

Tonina et al. [2014] tested the quantification of time-variant scour and deposition with analytical 643 

heat tracing in combination with DHR and Equations 9-11. While they tested the method’s 644 

capability by manually changing the amount of sediment above the buried temperature sensor 645 

during times when the flux was relatively steady, naturally occurring sediment movement 646 

typically occurs when the stream discharge is high. This implies transient stream discharge 647 

conditions which are also the main driver for transient vertical fluxes. Gariglio et al. [2014] 648 

attributed highly variable thermal diffusivities with values exceeding physically plausible limits, 649 

as calculated during times of transient river discharge using DHR, to sediment scour/deposition. 650 

We point out that quantifying naturally occurring sediment movement, such as scour and 651 

depositional processes, using analytical heat tracing may be a challenging proposition. This is 652 

because a) the derivation for sensor spacing is the same but rearranged equation as that for 653 

thermal diffusivity (Equations 10 and 11) and results are prone to artifacts as illustrated earlier, 654 

and b) the natural example presented in Luce et al. [2013] suggests that the water flux was 655 

transient as indicated by the fluctuating river discharge data. Flux and diffusivity artifacts arising 656 

from signal non-stationarity, which are to be expected during transient discharge conditions 657 

when sediment movement likely occurs simultaneously, could thus easily be mistaken for 658 

scour/depositional processes. We demonstrate that heat tracing based on harmonic signals 659 

becomes increasingly unsuitable to quantify vertical fluxes, thermal diffusivities or sediment 660 

scour/deposition from temperature data under increasingly transient flow conditions. 661 

Sediment temperature data reported in the literature and acquired during highly transient 662 

hydraulic events (e.g. floods) at the system boundary exhibit high non-stationarity in regards to 663 

harmonic components (e.g. see Barlow et al. [2009]; Mutiti and Levy [2010]). We expect that 664 

the risk of leakage due to signal time-frequency transformation, and associated impact on 665 

amplitude and phase data, will contribute considerable uncertainty to the delineation of transient 666 

fluxes, thermal diffusivities or sediment scour/deposition. Furthermore, flux transients often 667 

occur on time scales less than one harmonic cycle (e.g. duration of flood peak, dam releases or 668 

the onset or cessation of near-stream groundwater pumping). Consequently, to quantify highly 669 

transient fluxes and thermal diffusivity or sediment scour/deposition under such conditions we 670 

recommend that numerical approaches be deployed [e.g. Holzbecher, 2005; Voytek et al., 2013], 671 
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or that methods based on signal processing techniques offering improved delineation of transient 672 

processes from frequency-domain data are deployed or developed.  673 
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4. Conclusion 674 

A thorough analysis of Stallman’s [1965] analytical solution reveals that changes in the vertical 675 

water flux induce non-stationarity in the temperature signal during its propagation. The severity 676 

of non-stationarity depends on the magnitude of the flux transient. A simulated worst case water 677 

velocity transient (step change from 0 to -1 m/d with harmonic amplitude of 3 ºC) triggers an 678 

abrupt transition to non-stationarity in the sediment temperature signal. The response (difference 679 

between modeled temperature and analytical solution assuming steady-state velocity) depends 680 

on the thermal diffusivity and the onset of the velocity step change relative to the phase of the 681 

harmonic temperature boundary. The maximum response is ~2.3 ºC and return to stationarity 682 

occurs within 1 harmonic cycle (= 1 day) for physically plausible sediment thermal diffusivities 683 

in the range of 0.02-0.13 m2/d. 684 

Inverting transient vertical fluxes and thermal diffusivities from temperature records using 685 

analytical heat tracing relies either on the transformation of the signal from time to frequency 686 

domain, or extraction of time-variable amplitude and phase information of a fixed-frequency 687 

harmonic. Both are only possible with signal processing techniques. We benchmarked the ability 688 

of four commonly used signal processing methods (windowed Fourier transform (WFT), 689 

forward-backward zero phase filter (filtfilt), continuous wavelet transform (CWT) and dynamic 690 

harmonic regression (DHR)) to delineate signal non-stationarity implicit in the temperature-time 691 

signal. This was done by numerically simulating the transient advective thermal velocity with a 692 

harmonic temperature boundary and comparing the known to the inverted velocities obtained by 693 

the signal processing and the analytical solution. All the signal processing techniques were 694 

shown to offer poor time-domain resolution of frequency-domain features, and to erroneously 695 

spread amplitude and phase information across up to approx. 4 harmonic cycles (4 days). There 696 

is a technique and parameter dependent trade-off between magnitude and duration of the 697 

response to abrupt signal non-stationarity. 698 

In essence, our analysis shows that the ability to accurately resolve flux transients with analytical 699 

heat tracing is currently limited by the signal processing, rather than the assumption of steady-700 

state flow inherent to Stallman’s [1965] analytical solution. This is because local signal 701 

stationarity is assumed for each extracted amplitude and/or phase value. The signal processing 702 

response appears to be independent of the advective thermal velocity step size, including 703 

reversal, for steps smaller than ±1 m/d. The match between modeled and inverted velocities 704 

improves with decreasing rates of velocity change. Implications on heat tracing are that: a) a 705 

sudden sharp transient in apparent velocity appears smoothed and earlier than the hydraulic 706 
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driver, and b) an apparent thermal diffusivity overshoot (undershoot) for a downward (upward) 707 

velocity change with values that can exceed physically plausible limits. The latter is caused by 708 

signal processing methods introducing phase artifacts originating from response to signal non-709 

stationarity. While the thermal diffusivity anomaly can be used as an indication of a flux 710 

transient (including direction), the quantified flux and diffusivity values or sensor spacing 711 

(sediment scour/deposition) should not be trusted during that time. 712 

Real-world temperature records contain non-stationarities caused by a range of different 713 

superimposed factors, such as abrupt hydrologic or meteoric changes, or anthropogenic 714 

disturbances. We applied the commonly used heat tracing techniques to numerically simulated 715 

streambed temperatures with the model driven by previously presented surface water 716 

temperature data [Rau et al., 2010] as the upper boundary. Inversion of fluxes and thermal 717 

diffusivities from the simulated temperatures reveals that, besides the erroneous temporal 718 

spreading of the flux transient (time-smearing), there are anomalies in the diffusivity results that 719 

originate from the signal processing techniques. The forward-backward zero-phase filter was 720 

identified as the best-performing amplitude and phase extraction method causing the least 721 

artifacts, but limited to producing 2 flux results per day. 722 

Our results have significant implications for the practical application of inverting water fluxes, 723 

thermal diffusivities or sensor spacing (scour/deposition) from temperature data using 724 

increasingly popular methods that are based on harmonically forced analytical solutions. While 725 

these techniques are useful to estimate fluxes during times when hydraulic drivers indicate 726 

steady-state conditions, attention must be paid during transient conditions. This suggests that, 727 

when highly transient fluxes are to be calculated from temperature records, hydraulic heads 728 

should be monitored alongside temperature data, and that either numerical methods or new 729 

signal processing methods extracting features in the time domain must be applied. Besides the 730 

implications for heat tracing in near-surface water systems, our results point out that the 731 

response of signal processing techniques to non-stationary data must be carefully considered 732 

when time-varying physical processes are inferred from frequency-domain information in other 733 

geophysical datasets.  734 
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Figure captions 880 

Figure 1: Damping of amplitude (a) and shifting of phase (b) with depth for a sinusoid with 881 

frequency of 1 cpd calculated using Stallman’s [1965] analytical solution. Shaded areas 882 

represent ranges based on effective thermal diffusivities minD 0.02= m2/d, avgD 0.075=  m2/d 883 

and  maxD 0.13=  m2/d as reported in the literature [Shanafield et al., 2011; McCallum et al., 884 

2012]. Dashed horizontal lines show the depths at which temperature time-series were output 885 

from the numerical model. 886 

Figure 2: a) An example of multi-level temperature harmonics in response to a step change in 887 

vertical water velocity as output from the numerical model. Here, ∆  refers to sensor spacing of 888 

0, 0.05, 0.2 and 0.4 m from the top of the sediment plotted with increasing intensity of black 889 

color. The data serves to illustrate that a stationary harmonic is transformed into a non-stationary 890 

harmonic through a transient in the vertical water velocity. b) Modeled multi-level temperature 891 

data using real sediment temperature measurements at the streambed surface (from Rau et al. 892 

[2010]) as a boundary for the same velocity as in a). 893 

Figure 3: a) The thermal response to a transient water velocity: The temperature difference 894 

between numerically modeled and analytically calculated harmonics due to a step change in 895 

velocity from 0 to -1 m/d for minD 0.02= m2/d, avgD 0.075=  m2/d and  maxD 0.13=  m2/d at 896 

sensor spacing of 0.1=z  and 0.2=z  m. b) Same as a) but for the step change occurring at 8 897 

different times (separated by 0.125 d or / 4π ) relative to the start of the harmonic temperature 898 

signal used as boundary condition at 0=z  m (shown on right axis, with 0.075=avgD  m2/d and 899 

sensor spacing 0.2=z  m. 900 

Figure 4: Amplitude and phase response of common signal extraction methods (rows from top to 901 

bottom: WFT, filtfilt, CWT and DHR) to the non-stationarity introduced by a step velocity 902 

increase. Line color becomes lighter with increasing depth. Left column contains amplitudes, 903 

right column contains phases. Note that the values obtained from filtfilt (c and d) are plotted 904 

with dots whereas the lines are shown for visual improvement. 905 

Figure 5: Vertical advective thermal velocities (left column: a, c, e, g) and thermal diffusivities 906 

(right column: b, d, f, h) inverted using amplitudes and phases from peak picking applied to raw 907 

data (red markers) as well as after applying 4 different signal processing methods (blue markers) 908 

to the model temperature output. The different cases are in rows from top to bottom: 0 to -1 m/d 909 
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(a-b), 0 to 1 m/d (c-d), -1 m/d to 1 m/d (e-f), 1 m/d to -1 m/d (g-h). Refer to Figures 6 and 7 for 910 

different velocity steps. 911 

Figure 6: Downward advective thermal velocities (left column: a, c, e, g) and thermal 912 

diffusivities (right column: b, d, f, h) inverted using amplitudes and phases from peak picking 913 

applied to raw data (red markers) as well as after applying 4 different signal processing methods 914 

(blue markers) to the model temperature output. The different cases are in rows from top to 915 

bottom: 0 to -0.01 m/d (a-b), 0 to -0.1 m/d (c-d), 0 m/d to -0.5 m/d (e-f), 0 m/d to -5 m/d (g-h). 916 

Figure 7: Upward advective thermal velocities (left column: a, c, e) and thermal diffusivities 917 

(right column: b, d, f) inverted using amplitudes and phases from peak picking applied to raw 918 

data (red markers) as well as after applying 4 different signal processing methods (blue markers) 919 

to the model temperature output. The different cases are in rows from top to bottom: 0 to 0.1 m/d 920 

(a-b), 0 to 0.5 m/d (c-d), 0 m/d to 2 m/d (e-f). 921 

Figure 8: Vertical advective thermal velocities (left column: a, c, e, g) and thermal diffusivities 922 

(right column: b, d, f, h) inverted using amplitudes and phases from peak picking applied to raw 923 

data (red markers) as well as after applying 4 different signal processing methods (blue markers) 924 

to the model temperature output. The different scenarios are a linear change of advective thermal 925 

velocity from 0 to -1 m/d over a total time period of (in rows from top to bottom): 0.5 days (a-b), 926 

1 day (c-d), 2 days (e-f) and 4 days (g-h). 927 

Figure 9: a) Temperature output obtained from the numerical model at different depths (0, 0.05, 928 

0.2 and 0.4 m from the top of the sediment) using measured surface water temperature data as 929 

the top boundary (from Rau et al. [2010]). b) Advective thermal velocities and c) thermal 930 

diffusivities inverted after the data has been processed with 4 different amplitude and phase 931 

extraction methods. 932 

  933 
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Table captions 934 

Table 1: Summary of maximum error and root mean square error (RMSE) calculated from 935 

modeled and inverted advective thermal velocities using unfiltered and filtered temperature data 936 

for the same magnitude velocity transients (0 to -1 m/d) but for different rates of velocity 937 

change. The values in this table represent a quantification of the results in Figure 8a, 8c, 8e, 8g 938 

and Figure 5a. 939 

Table 2: Summary of maximum error and root mean square error (RMSE) calculated from 940 

modeled and inverted thermal diffusivities using unfiltered and filtered temperature data for the 941 

same magnitude velocity transients (0 to -1 m/d) but for different rates of velocity change. The 942 

values in this table represent a quantification of the results in Figure 8b, 8d, 8f, 8h and Figure 5b. 943 
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Rate of velocity 
change /dv dt  [L/T2] 

Max. thermal velocity error [m/d] RMSE [ºC] 
No filter WFT filtfilt CWT DHR No filter WFT filtfilt CWT DHR 

-0.25 -0.03 0.12 0.11 0.18 0.06 0.011 0.050 0.055 0.090 0.020 
-0.5 -0.05 0.21 0.23 0.36 0.12 0.015 0.069 0.098 0.130 0.030 
-1 -0.08 0.40 0.35 0.56 0.23 0.019 0.098 0.134 0.167 0.049 
-2 -0.13 0.75 0.53 0.70 0.31 0.031 0.134 0.181 0.193 0.067 
-∞ -0.04 0.99 0.50 0.83 0.57 0.011 0.208 0.177 0.247 0.134 

 1 

Table 1: Summary of maximum error and root mean square error (RMSE) calculated from modeled and inverted advective thermal velocities 2 
using unfiltered and filtered temperature data for the same magnitude velocity transients (0 to -1 m/d) but for different rates of velocity change. 3 
The values in this table represent a quantification of the results in Figure 8a, 8c, 8e, 8g and Figure 5a. 4 



Rate of velocity 
change /dv dt  [L/T2] 

Max. thermal diffusivity error [m2/d] RMSE [ºC] 
No filter WFT filtfilt CWT DHR No filter WFT filtfilt CWT DHR 

-0.25 -0.004 0.014 0.001 0.018 0.003 0.002 0.006 0.001 0.011 0.002 
-0.5 -0.008 0.030 0.005 0.032 0.006 0.003 0.010 0.002 0.014 0.002 
-1 -0.012 0.063 0.010 0.044 0.013 0.004 0.014 0.004 0.018 0.004 
-2 -0.021 0.097 0.012 0.049 0.017 0.005 0.018 0.005 0.020 0.005 
-∞ 0.000 0.156 0.014 0.056 0.025 0.000 0.031 0.006 0.026 0.008 

 1 

Table 2: Summary of maximum error and root mean square error (RMSE) calculated from modeled and inverted thermal diffusivities using 2 
unfiltered and filtered temperature data for the same magnitude velocity transients (0 to -1 m/d) but for different rates of velocity change. The 3 
values in this table represent a quantification of the results in Figure 8b, 8d, 8f, 8h and Figure 5b. 4 
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