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           Fig. 1. Schematic representation of the pilot plant for optimization of cleaning-in-place protocol (CIP). 
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ABSTRACT 14 

Cleaning of food fouling deposits in processing equipment is costly and time consuming. 15 

Fouling deposits form as a result of adhesion of species to the surface and cohesion between 16 

elements of the material. Cleaning can result from either or both adhesive and cohesive 17 

failure. In this study, the aim was to investigate the removal kinetics of an adhesive material 18 

and to design a novel cleaning in place (CIP) protocol for these kinds of materials at industrial 19 

scale to reduce environmental impact of cleaning processes. It was detected that different 20 

variables controlled the cleaning process in removal of adhesive deposit. Temperature was not 21 

found as a significant variable in the initial stage of cleaning. Velocity of cleaning water 22 

controlled the cleaning at this stage when top layers of the deposit were removed by fluid 23 

mechanical removal due to breakdown of weak cohesive interaction. In the later cleaning 24 

stage, both velocity and temperature significantly contributed to cleaning, which suggested 25 

that both hydrodynamic forces and rheological changes are needed to overcome adhesion 26 

forces between the deposit and surface. Hence, a novel “two step CIP protocol” was proposed 27 

due to existence of different mechanisms in cleaning. When compared with conventional one 28 

step CIP protocols currently used in the processing plants, the proposed CIP protocol reduced 29 

the energy consumption by 40 % without decreasing the cleaning efficiency. 30 

Keywords: Cleaning in place, optimisation, adhesive material, pilot scale experiments, 31 

response surface methodology 32 
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1. Introduction 33 

Fouling, the unwanted build-up of deposits on a surface is a significant problem in many 34 

different industries. As a result, regular cleaning of production equipment is needed. Fouled 35 

deposits result in pressure drop and reduce the efficiency of processing equipment, increasing 36 

operating costs. Moreover, fouling may compromise product quality by cross contamination, 37 

which reveals the necessity for effective cleaning procedures. In many industries, cleaning is 38 

performed by a cleaning-in-place (CIP) procedure. This involves the circulation of hot 39 

cleaning fluids through a closed system of pipes and heat exchangers without dismantling any 40 

component from production line.  41 

For effective cleaning, a considerable amount of water and energy is consumed at 42 

industrial scale applications, which requires process optimisation. Especially, water is an 43 

important material since it provides material flow (Koroneos et al., 2005). However, the 44 

conditions used in CIP are far from optimal. This is both because cleaning is still poorly 45 

understood (Fryer and Asteriadou, 2009) and significant brand damage may occur if 46 

contaminated product reaches the market. Cleaning has considerable economic and 47 

environmental impact (Jeurnink, and Brinkman, 1994) as it consumes substantial resources 48 

(Cole, 2011): 49 

• high water and possible cleaning chemical usage  50 

• energy usage to heat, pump the water and operate equipment during cleaning 51 

Increasing fuel costs and legislative pressures towards zero emission processes make 52 

optimisation of cleaning protocols crucial. Process optimisation makes reduction in water and 53 

energy consumption possible at industrial scale, which would result in reduced economic and 54 

environmental costs such as cleaning utilization of cleaning agents (Kirby et al., 2003; 55 

Pettigrew et al., 2015). Therefore; one of the most important aims of cleaning research should 56 

be to minimise cleaning costs and the amount of effluent released during cleaning. 57 
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There are two steps to achieve this: 58 

i) to understand and explore the mechanisms of cleaning and identify how process 59 

variables affect cleaning,  60 

ii) to optimise the process in terms of water, energy used and time spent during cleaning. 61 

Processing of fluid foods at an industrial scale is consisted of a complex series of 62 

sequential and simultaneous batch/continuous processes. This is why proper analysis of these 63 

processes chains in challenging step in terms of monitoring and optimising process efficiency 64 

(Pettigrew et al., 2015). In this respect, any cleaning process must overcome both the (i) 65 

cohesive forces that bind elements of deposit together, as well as (ii) adhesion forces between 66 

the deposit and surface. Many food and personal care processes involve the removal of 67 

product (such as pastes and creams) that forms layers thicker than 1 cm on the surfaces of 68 

tanks and vessels and can completely fill pipework.  69 

In previous work (Palabiyik et al., 2014), a number of kinetic processes were observed in 70 

the cleaning of a viscoelastic material (toothpaste) from a fully filled straight pipe. Three 71 

stages were identified; (i) a short “core removal stage” of product recovery, before water 72 

breaks through the filled pipe, (ii) “a film removal stage” when there is a continuous wavy 73 

annular film of material on the wall, and (iii) “a patch removal stage” in which the material is 74 

present as patches on the wall. These stages were found in the cleaning of other yield stress 75 

materials, such as hand cream and ketchup. Core removal displaced about 50 % of the 76 

material in the tube. In the film removal stage, where cleaning disrupted the cohesive forces 77 

between deposit elements, ca.  95 wt% of the remaining deposit film was removed, largely as 78 

chunks of material. In the patch removal stage, adhesive forces between deposit elements and 79 

surface governed cleaning.  Removal of deposit was slow; around half of the total cleaning 80 

time was spent in this stage to remove the remaining 5 wt% of the deposit.  81 

Toothpaste was used as a model deposit; little work has been done on this type of fluids, 82 
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as previous studies have generally focused on cleaning of deposits formed after heat treatment 83 

(Christian and Fryer, 2006; Liu et al., 2007). Also, cleaning is anticipated to depend on the 84 

material rheology for this kind of deposits (Fryer and Asteriadou, 2009). Results may well be 85 

appropriate for the cleaning of a wide range of yield stress materials in the food and personal 86 

care industries, where products are commonly of complex rheology. Existence of these 87 

different stages suggests that cleaning might be optimised by applying different cleaning 88 

conditions in each region. General practice in CIP is to circulate hot water rapidly throughout 89 

the process; however, this may not be the best practice.  90 

It is important to carry out experiments at an appropriate scale – since, for cleaning, scale-91 

up rules are not known (Fryer and Asteriadou, 2009). Response Surface methodology (RSM) 92 

is a suitable method to use as it can reveal general trends from the minimum number of 93 

experiments. It is a very effective tool in the statistical modelling and optimisation studies 94 

(Baş and Boyaci, 2007; Velioğlu et al., 2010). Many response surface problems involve the 95 

analysis of several responses. To perform a simultaneous consideration of multiple responses, 96 

an appropriate response surface model should be built for each response at the first step. 97 

Following this, a set of operating conditions that optimises the response should be estimated 98 

(Montgomery, 2001). In this respect, some of the variables are aimed to be maximised and 99 

some to be minimised. However, a competition occurs between these responses in many 100 

cases; namely, improving one response may lead another response to deteriorate. Several 101 

approaches have been developed to overcome this.  Constrained optimisation may be used, or 102 

different response surfaces superimposed to identify optima. Alternatively, a desirability 103 

function, which combines all the responses into one measurement, could be used. This has 104 

three advantages: (i) different scaled responses can be compared, (ii) different responses can 105 

be simply and quickly transformed to a single measurement, and (iii) it is possible to 106 

simultaneously use qualitative and quantitative responses (Harrington, 1965; Derringer and 107 
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Suich, 1980).  108 

The main aim of this work was to find an CIP protocol with a lower environmental 109 

footprint compared to conventional CIP protocols in food and chemical processing plants. 110 

Some previous works suggest advantages of applying different CIP procedures such as 111 

pulsing cleaning chemicals (Christian and Fryer, 2006) or pulsed flows (Blel et al., 2009).  112 

The following issues are addressed; 113 

• to determine the degree to which cleaning depends on temperature and velocity; 114 

• to detect how this dependence changes during cleaning and; 115 

• to perform CIP optimisation by using the multiple response optimisation (MRO) 116 

technique of response surface methodology. 117 

 118 

2. Materials and methods 119 

2.1. Materials and pilot plant  120 

Toothpaste was supplied by GSK (Brentford, UK). It is a Herschel–Bulkley fluid with 121 

an apparent yield stress of 92 Pa and is shear thinning according to (based on a model fit):  122 

 123 

    σ = 92 + 0.55(γ)0.78           (1) 124 

 125 

where σ and γ are shear stress (Pa) and shear rate (s-1), respectively (Cole et al., 2010). 126 

A pilot plant system at industrial scale was used to simulate a CIP set-up to monitor the 127 

cleaning procedure of toothpaste from pipe work. Industrially, cleaning fluid is generally 128 

recirculated or recycled to allow a more efficient use of resource. In this case, water was not 129 

recycled to allow quantification of the amount of water consumed during cleaning. The 130 

experiments were conducted in a pilot plant system previously used in cleaning studies at 131 

University of Birmingham (Cole et al., 2010). 132 
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A schematic of the pilot plant system is illustrated in Fig. 1. A centrifugal pump 133 

(Variflow centrifugal pump, 3 bar, 5.5 kW) being capable of transferring up to 20 m³/h (3.1 134 

m/s) water was used to pump water around the system. The test section used in this work was 135 

0.5 m long pipe with a 0.0477 m ID and 1.6 mm wall thickness. The instrumentation used 136 

were: 137 

• in-line inductive conductivity probes (conductivity and temperature, LMIT 08: Ecolab 138 

Ltd.), flow meters (Promag 51P, Endress-Hauser, from Ecolab Ltd.) at the inlet and outlet of 139 

the system  140 

• two turbidity meters at outlet; Kemtrak TC007, (Kemtrak ab) and Optek TF16 (Optek-141 

Danulat GmbH).  142 

In this study, the Optek turbidity meter was used to monitor cleaning process over time 143 

since it was calibrated to provide greater detail at the lower end of the cleaning experiment. A 144 

reading of ‘3 ppm’ on the Optek turbidity meter was selected as the end-point of cleaning for 145 

proper comparison. In the early stages of cleaning the sensor saturated, but at the 3 ppm mark,  146 

visual examination showed the pipe to be completely clean or with only a few tiny islands of 147 

deposit, with <0.1 % of the starting weight remaining. The same cleaning procedure was 148 

applied as in previous work (Cole et al., 2010). 149 

 150 

2.2. Determination of cleaning times, energy and water consumption during cleaning 151 

In the previous study (Palabiyik et al., 2014), a short pulse of cold and fast water was 152 

found as the best core removal condition. In the present study, water at 20 °C and 16 m3/h (2.5 153 

m/s) was used in the initial 2 s to remove the core of the material from the fully filled 154 

pipework. It was then important to identify when patch removal began. Visual observation 155 

and the online turbidity meter were compared. The glass pipe after the test section was used to 156 

follow the process, and the point where particles of removed material could no longer be seen 157 
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(the end of film removal) was usually close to the point where the turbidity meter generally 158 

started to be unsaturated. For simplicity, the flow was divided into two regions; Region 1 for 159 

which the sensor saturated, and Region 2 for which it did not saturate.  160 

Typical cleaning behaviour and cleaning regions are shown in Fig. 2. Data shows the 161 

response of the turbidity meter at 70 °C and 11.2 m3/h (1.75 m/s) water flow. The cleaning 162 

rate was initially very high, and the turbidity meter was saturated up to 125 s, the duration of 163 

Region 1. Then, the response decreased exponentially until the end of cleaning. This stage 164 

was defined as Region 2 and lasted 90 s. For each cleaning stage, water and energy 165 

consumption were calculated using: 166 

V Qt= / 3600                (2) 167 

where V (m3) was volume of the water used during cleaning, Q (m3/h) was the volumetric 168 

flow rate and t (s) was time for each region. Energy consumption was calculated by addition 169 

of hydraulic energy to drive the pump and thermal energy to heat the cleaning water: 170 

 171 

p

Vρgh
E Vρc T

ε
= + ∆                                                (3) 172 

 173 

where E was energy consumed in megajoule (MJ), ρ (kg/m3) the density of water, g (9.81 174 

m/s2) the acceleration due to gravity, h (m) was the friction head loss component of the 175 

system, ε was pump efficiency, cp (4185.5 J/kgK) was heat capacity of water and ∆T (K) was 176 

temperature difference (temperature of cleaning water – datum temperature). ε was found 177 

from the pump performance chart as 0.64. h was calculated as 30 m by finding the maximum 178 

rate of flow rate of fluid that could be pumped in the pilot plant. Datum temperature was the 179 

average ambient temperature (17 °C), and 20 °C was selected for the minimum temperature 180 

for experiments. Pumping energy ranged between 0.3 % and 5 % of the total energy 181 

consumption in cleaning experiments.  182 
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 183 

2.3. Experimental design and statistical analysis 184 

In the response modelling, multiple linear regression analysis was used and the following 185 

second-order polynomial equation of function xi was fitted for each factor assessed at each 186 

experimental point. 187 

2 2 2 2
2

0
1 1 1 1

ˆ i i ii i ij i j
i i i j i

i j

y E x x x xβ β β β
= = = = +

<

− = + + +∑ ∑ ∑∑ ,                                                                   (4) 188 

whereŷwas the estimated response; β0 was the average value of the response at the centre 189 

point of the design, β1, β2, β12, β11 and β22 were linear, interaction and quadratic terms, 190 

respectively and E was the statistical error term.  191 

Models were built to describe the effect of independent variables (cleaning water 192 

temperature and flow rate) on the cleaning time, energy and water consumption for both film 193 

removal (Region 1), patch removal (Region 2) and the combined total cleaning stages (the 1st 194 

+ 2nd regions). A 2-factor-5-level Central Composite Rotatable Design (CCRD) with two 195 

replicates at the centre point was used. The two factors, levels and experimental design in 196 

terms of coded and uncoded (actual values) can be seen in Table 1. The CCRD is an optimal 197 

design that allows calculation of a model, with a minimum number of experiments. It consists 198 

of 2kfactorial points (coded as ±1 notation), augmented by 2k axial points (±α,0,0,…,0), 199 

(0,±α,0,…,0), (0,0,±α,…,0),…,( (0,0,0,…,±α) located at a specified distance α from the centre 200 

in each direction on each axis defined by the coded factor levels. n0 is each centre point 201 

(0,0,…0).  k is the number of factors. The relationship between coded and actual values of 202 

variables was calculated using: 203 

 204 

( )
( )

max min

max min

, ,

, ,

− 0.5 +
=

0.5 −
i i i

i

i i

z z z
x

z z
                        (5) 205 
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 206 

where z was the actual variable, the subscripts min and max referred to the minimum (27 ºC 207 

and 7.86 m3/h (1.2 m/s), respectively) and maximum values (63 ºC and 14.54 m3/h (2.3 m/s), 208 

respectively) and x was the coded variable. In this study, rotatability was selected; the design 209 

is rotatable if the variance of the response is constant for all variables at a given distance from 210 

the design centre. The CCD is rotatable if: 211 

 212 

4α 2= k               (6) 213 

 214 

The best fitting models were determined using multiple linear regressions with backward 215 

elimination regression (BER) where insignificant factors and interactions were removed from 216 

the models and only variables significant at P<0.01, P<0.05 and P<0.1 levels were selected 217 

for the model. 218 

 219 

2.4. Multiple response optimisation (MRO) 220 

The operating conditions, x providing the “most desirable” response values can be found 221 

by multiple response optimisation. Different desirability functions di(Y i) can be used 222 

depending on whether a particular response Yi is to be maximized and minimised (Derringer 223 

and Suich, 1980). 224 

Let Li, Ui and Ti be the lower, upper and target values, respectively, desired for response 225 

Y i. If a response is to be maximized, then its individual desirability function is with the 226 

exponent s that determines how significant it is to hit the target value. For s = 1, the 227 

desirability function increases linearly towards Ti which indicates  a large adequate value for 228 

the response; for s < 1, the function is convex, and for s > 1, the function is concave (Eren and 229 

Kaymak-Ertekin, 2007): 230 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

10 
 

 231 

Τ

0                              ( ) < 

( ) −( )      ( )  
−

1                              ( ) > 

i i

s

i i
i i i i i

i i

i i

ŷ x L

ŷ x L
ˆ ˆd y  L y x Τ         

L

ŷ x Τ

ìïïïï æ öï ÷ï ç ÷= £ £çí ÷ç ÷ï çè øïïïïïî

                    (7) 232 

 233 

If a response is to be minimised, then its individual desirability function is with Ti, which 234 

indicates a small adequate value for the response:  235 

Τ

1                             ( ) < 

( ) −( )      ( )  
−

0                             ( ) > 

i i

s

i i
i i i i i

i i

i i

ŷ x T

ŷ x U
ˆ ˆd y  T y x U         

U

ŷ x U

ìïïïï æ öï ÷ï ç ÷= £ £çí ÷ç ÷ï çè øïïïïïî

        (8) 236 

 237 

Having computed for each response variable, desirability values were combined into a 238 

single desirability index, D. For this purpose, each response was transformed in a 239 

dimensionless function, the partial desirability function, di, which reflects the desirable ranges 240 

for each response. The desirable ranges varies from zero to one (least to most desirable). The 241 

global desirability function D is the weighted geometric mean of n individual desirability 242 

functions (all transformed responses) [Eq. (9)]. The simultaneous objective function is a 243 

geometric mean of all transformed responses (Lewis et al., 1999; Myers and 244 

Montgomery,1995): 245 

 246 

( )n
31 2

=1

1 2 3

      

= ...

=  
ip

i

i

i

pp p

n

i

p

p

pi
D d d d d

d
1

1å

åé ù
ê ú
ê ú
ê úë û

´ ´ ´ ´

Õ
                                          (9) 247 

where pi was the weighting of the i th term, and was normalized in order that 
=1

=1n

ii
på . By 248 
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weighting of partial desirability functions, it is possible to enable the optimisation process to 249 

take the relative importance of each response into consideration. Allowing the examination of 250 

the form of the desirability function, it is permitted to find the region where the function is 251 

close to 1 and to determine the compromise optimum conditions.  252 

In the present study, multiple response optimisation were separately conducted for each 253 

stage, with parameters;  254 

• Region 1 : “film removal ”; first cleaning time - FCT; first energy consumption -255 

FEC; first water consumption - FWC,  256 

• Region 2: “patch removal stage”; second cleaning time - SCT; second energy 257 

consumption - SEC; second water consumption-  SWC ) and  258 

• Total cleaning: ; total cleaning time - TCT; total energy consumption -TEC; total 259 

water consumption - TWC.  260 

In each stage the aim was to minimise cleaning time, energy and water usage. The same 261 

importance was applied to each response during the optimisation analysis. The modelling 262 

procedure and optimisation methodology by RSM is diagrammed in Fig. 3. The 263 

computational work was performed using a statistical package, Design-Expert version 7.0 264 

(Stat-Ease Inc., Minneapolis, USA).  265 

 266 

3. Results and discussion 267 

3.1. Interpretation of the RSM model fit 268 

Table 1 shows the coded and actual levels of the experimental factors (independent 269 

variables). The experiments were run in a random order to minimise the effect of 270 

uncontrollable variables. Tables 2, 3 and 4 show the ANOVA results used to evaluate the 271 

significance of the constructed quadratic models. Model terms were used after the 272 

insignificant ones were eliminated, and other statistical parameters were obtained using 273 
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backward elimination regression (BER) procedure. The fits for the models were significant 274 

(P>0.05), indicating that the fitted models could describe the variation of the data. 275 

Residual analysis, R2 (coefficient of determination), adj-R2 (adjusted R2), pred-R2 276 

(predicted R2) and adequate precision (adeq-precision) values were used to check the 277 

adequacy of the models (Tables 2-4). The R2 values generally ranged between 0.790 and 278 

0.988, indicating that the models generated were adequate. An adequate precision value 279 

greater than 4 is desirable. In practice, values between 9.24 and 24.0 were found (Tables 2-4) 280 

which indicated that these models could be used to navigate the design space. Results in 281 

Tables 2-4 show; 282 

• (R2) values for time, energy and water consumption were 0.921, 0.912 and 0.936 when 283 

variables (temperature and flow rate) were fitted to data for the total cleaning process.  284 

• However, when variables were fitted to Regions 1 and 2 separately, R2 values for time, 285 

energy and water consumption increased (to 0.988, 0.906 and 0.975, respectively for Region 286 

2).  287 

The model thus gave a better description of cleaning when Regions 1 and 2 were 288 

considered separately. This suggested that Regions 1 and 2 had different cleaning kinetics, 289 

and that both have to be considered in an optimum CIP protocol. 290 

 291 

3.2. The effect of temperature and flow rate  292 

3.2.1. Cleaning times 293 

The effects of temperature and flow rate values on the cleaning times in Region 1 are 294 

presented in Tables 2-4. Results clearly revealed that linear effects of the temperature were 295 

significant (P<0.01) in all stages (Tables 2-4). Fig. 4 illustrates these effects as response 296 

surfaces. Fig. 4-a shows that at high flow rates (16 m3/h-2.5 m/s), increasing the temperature 297 

has little effect on cleaning times in Region 1. In this case, breakage of cohesive bonds in the 298 
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deposit controls cleaning; data suggests that beyond some flow velocity these bonds are weak 299 

enough to be broken by flow, so further increase in temperature has little effect. However, 300 

temperature had a considerable impact in the cleaning time in Region 2 in Fig. 4-b. At any 301 

flow rate, increasing temperature decreased the cleaning time. These results implied that the 302 

adhesive bonds that must be broken to remove the final layers of deposit are temperature 303 

sensitive. This is in agreement with the work of Akhtar et al. (2010) who found that toothpaste 304 

showed higher adhesive than cohesive forces. Whey protein deposits (Liu et al., 2006) and 305 

yeast (Goode, 2011) were also found to have this behaviour. For all of these deposits, cleaning 306 

occurred through removal of chunks initially, and the last stages of removal was the limiting 307 

step (Goode, 2011; Bird and Fryer, 1991). 308 

For the effect of flow rate, cleaning times were significantly (p<0.01) influenced by flow 309 

velocity in all regimes (Tables 2-3). From the Fig. 4 (a, b and c), the cleaning times (FCT, 310 

SCT and TCT) can be observed to decrease with flow rate at each stage. 311 

These results again showed different kinetics in the two regions, therefore different cleaning 312 

protocols should used in each stage for optimisation, this will be discussed in section 3.3.  313 

To improve the accuracy of the regression model equations, their insignificant (p>0.1) factors 314 

and interactions were removed from the models using BER. They were generated to predict 315 

effects of the processing variables in Fig. 4 and calculated: 316 

 317 

ŷ(first cleaning time, FCT) = 1611 –19.62(T) –100.2(FR) + 1.297(T)(FR)                       (10) 318 

ŷ(second cleaning time, SCT) = 2.404 –35.57(T) – 191.6(FR) + 1.052(T)(FR)                                    (11) 319 

                                    + 0.17(T)2 + 4.85(FR)2 320 

ŷ(total cleaning time, TCT) = 3148 –39.75(T) – 183.3(FR) + 2.349(T)(FR)                            (12) 321 

 322 

where T (°C) was the temperature and FR (m3/h) was the flow rate. 323 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

14 
 

 324 

3.2.2. Energy consumption 325 

Tables 2-4 show the effects of temperature and flow rate on energy consumption in 326 

cleaning. Significant (p<0.01) linear effects of temperature were observed for energy 327 

consumption in Region 1. Energy usage in this stage increased as the temperature of the 328 

cleaning water increased. As temperature did not help cleaning in this stage, as noted above, 329 

increased temperature of the cleaning water caused energy waste. However, in Region 2, an 330 

increase in the temperature did not have a clear effect on the energy consumption (SEC) 331 

(Table 3 and Fig 4-e), which indicated the complexity of the cleaning process in Region 2. 332 

Figure 4-e shows that raising temperature to 50 °C increased the energy usage, and a further 333 

increase above 50 °C reduced energy usage especially at the highest flow rate. Hence, results 334 

implied that there was a threshold temperature value above which adhesive bonds of the 335 

deposit were weakened so that they could be easily removed. Thus, energy usage was reduced 336 

by improved cleaning efficiency at high temperatures.  337 

FEC, SEC and TEC were (p<0.01) influenced by flow rate (Tables 2-4). Fig. 4 (d, e and 338 

f), showed that these values decreased with flow rate at each stage, indicating that energy 339 

waste can be decreased with increasing flow rates. Again this showed the importance of flow 340 

rate in the whole cleaning process. 341 

The second order regression model equations, after insignificant (p>0.1) factors were 342 

removed, were as follows:  343 

ŷ(first energy consumption, FEC) = 69.41 + 1.406(T) – 5.187(FR)                                         (13) 344 

ŷ(second energy consumption, SEC) = 129.7 + 3.183(T) – 20.95(FR) –  0.036(T)2 + 0.727(FR)2                 
345 

(14) 346 

ŷ(total energy consumption, TEC) = 60.07+ 7.35(T) – 9.83(FR)– 0.067(T)2                                       (15) 347 

where T (°C) was the temperature and FR (m3/h) was the flow rate. 348 
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 349 

3.2.3. Water consumption 350 

As can be seen from tables 2-4, linear effects of temperature were found significant 351 

(P<0.01) on water consumption at all stages. Fig. 4-g showed that water usage in Region 1 352 

could be slightly reduced by increasing the temperature at the highest flow rate (16 m3/h-2.5 353 

m/s). Whereas in Region 2, Fig 4-h showed that increased temperature of cleaning water 354 

decreased the water consumption regardless of the flow rate. This result indicated that 355 

increasing temperature levels at this region would be advantageous for the environmental 356 

impact due to less amount of water released during cleaning. 357 

FWC, SWC and TWC were significantly (p<0.01; 0.05) influenced by flow (Tables 2-4). 358 

From Fig. 4 (g, h and i), it was seen that the water consumption values (FWC, SWC and 359 

TWC) decreased with flow rate at each stage. The second order regression model equations 360 

after insignificant (p>0.1) factors and interactions were removed from the models were: 361 

 362 

ŷ(first water consumption, FWC) = 1922 – 13.81(T) – 52.96(FR)                                        (16) 363 

ŷ(second water consumption, SWC) = 2944 – 62.98(T) – 41.19(FR) + 0.43(T)2                                                        (17)                                                      364 

ŷ(total water consumption, TWC) = 5285 – 98.13(T) – 94.14(FR) + 0.666(T)2                                      (18) 365 

where T (°C) was the temperature and FR (m3/h) was the flow rate. 366 

 367 

Similar trends between second cleaning region and total cleaning profile in figures 4-b 368 

and 4-c, 4-e and 4-f, 4-h and 4-i importantly illustrated that Region 2 was the dominating 369 

stage which generally comprised 60-70 % of the total cleaning time, and mechanisms in the 370 

removal of the last patches of deposit were the limiting processes in overall cleaning. 371 

 372 

3.3. Finding an optimum CIP protocol 373 
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In this study, the multiple response optimisation (MRO) technique was separately applied 374 

for stage 1 (FCT, FEC, FWC), stage 2 (SCT, SEC, SWC) and total cleaning stage (TCT, TEC, 375 

TWC). For optimisation, desirability functions of RSM were used to obtain the resultant 376 

optimum operating conditions with the minimisation of the values for each stage (Eq. 9). The 377 

desirability values (D) for the minimisation were calculated to be 0.897, 0.998 and 0.910 for 378 

stage 1, stage 2 and total cleaning stages, respectively, indicating that all responses or factors 379 

were inside acceptable desirability ranges. By applying desirability function method, three 380 

solutions were obtained for each optimisation process (minimisation). 381 

For the most desirable solutions for the minimisation of each response variable (time, 382 

energy and water consumption) at each removal stage, the following conditions should be 383 

applied: 384 

• 20 ºC and 16 m3/h (2.5 m/s) in region 1. At this circumstance, the solution had the 385 

lowest value of FCT (42.6 s), FEC (22.6 MJ) and FWC (727.4 L) values to get the 386 

optimum CIP protocol. 387 

• 70 ºC and 16 m3/h (2.5 m/s) in region 2 which induced the lowest value of SCT (39.1 388 

s), SEC (25.2 MJ) and SWC (108.9 L) values according to response surface models. 389 

• For the conventional CIP system (without applying different conditions throughout the 390 

cleaning process), 70 ºC and 16 m3/h (2.5 m/s) should be used for the total cleaning. 391 

At this circumstance, the solution had the lowest value of TCT (64.5 s), TEC (89.2 392 

MJ) and TWC (178.2 L) values. This result confirmed the conditions used in the 393 

conventional CIP protocol. As known, current practice in industrial CIP operations is 394 

to use hot and fast water throughout the cleaning process.  395 

 396 

3.4. Validation of the optimum CIP protocol  397 

In this part, three CIP protocols were tested at the pilot scale pipe work to validate 398 
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whether the optimum CIP protocol determined by MRO technique would provide savings in 399 

real applications. These were: 400 

i) cold conventional CIP protocol - 20 °C water at 16 m3/h (2.5 m/s) was used for the 401 

overall cleaning. This kind of flow (high-velocity water at ambient temperature) is often used 402 

in the pre-rinse stage of CIP operations. Cold CIP was chosen to figure out the water saving 403 

when the optimum CIP procedure is used instead of cold CIP.  404 

ii) hot conventional CIP protocol - 70 °C water at 16 m3/h (2.5 m/s) was used for the 405 

overall cleaning. Hot high-velocity water is generally applied in the industry. It was selected 406 

to enable comparison of the energy usage between the hot CIP and optimum CIP protocols. 407 

iii) the novel two-step CIP protocol – water at 20 °C - 16 m3/h (2.5 m/s) was used in 408 

region 1 and water at 70 °C - 16 m3/h (2.5 m/s) was used in region 2 as determined in section 409 

3.3. The experiment was done by starting cleaning with water flow at 20 °C - 16 m3/h (2.5 410 

m/s). When the turbidity meter began to unsaturate, pump was stopped immediately. Then, 411 

water at 70 °C at the flow rate of 16 m3/h (2.5 m/s) was pumped to the system until the 412 

turbidity meter reached to 3 ppm. 413 

Fig. 5 showed the measurements on the turbidity meter for the three CIP protocols. It 414 

illustrated that  415 

• comparable cleaning times were obtained in the hot (100 s) and the optimum CIP (126 416 

s) protocols, 417 

• in the optimum CIP protocol, water at 20 °C was applied up to 73 s at which 418 

unsaturation started. Right after the application of water at 70 °C, turbidity reading 419 

saturated again during the time elapse between 73 and 106 s due to increase in the 420 

removal rate induced by hot water. Then, a very quick region 2 was observed after 421 

106th s (20 s), which validated the generated response surface models by showing the 422 

temperature sensitivity of this region, 423 
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• the cold CIP protocol caused ca. 100 % (265 s) increase in cleaning time as compared 424 

to the optimum CIP protocol, mainly due to long cleaning time spent in region 2. 425 

Fig. 6 shows the results obtained from the tested CIP protocols in terms of cleaning time 426 

(s), energy (MJ) and water (L) consumption. The hot CIP protocol was observed to result in 427 

great reductions (at least 75 %) in terms of cleaning time and water consumption, as compared 428 

to the cold CIP protocol. This showed the advantage of applying hot and high-velocity water 429 

(2.5 m/s-16 m3/h) in conventional CIP procedures. However, the hot CIP protocol caused the 430 

highest energy consumption amongst the tested CIP protocols, i.e. almost quadrupled the 431 

amount of energy consumed in the cold CIP protocol.  432 

The optimum CIP protocol notably reduced the amount of waste water and cleaning time 433 

by ca. 50 % and 53 %, respectively, compared to the cold CIP protocol. Moreover, 39 MJ less 434 

energy (ca. 40 %) was consumed in the optimum CIP protocol, compared to the hot CIP 435 

protocol. From the results, it can be deduced that in water starved areas, the hot CIP protocol 436 

should be used in cleaning operations in plants. However, sustainability is increasingly 437 

important and one of the major areas where optimisation is sought is in energy usage. 438 

Therefore, the optimum CIP protocol has a big advantage over conventional CIP protocols as 439 

the results imply that it can substantially decrease the carbon footprint and fuel costs of 440 

cleaning processes in plants where adhesive products are manufactured. 441 

 442 

4. Conclusion 443 

The increasing need to reduce water consumption and emissions in manufacturing 444 

industries demands the improvement of cleaning operations in the food industry. In this study, 445 

two different cleaning stages were identified by the turbidity meter and visual observations. 446 

Although velocity had considerable effects at both stages (stages 1 and 2), the effect of 447 

temperature was not found influential on the cleaning time and water consumptions in stage 1, 448 
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especially at high flow rates. Consequently, increase in temperature of cleaning water used in 449 

stage 1 increased the energy consumption. However, in stage 2, both temperature and velocity 450 

significantly contributed to cleaning due to the strong adhesive forces of the deposit and 451 

increase in these variables reduced the energy consumption during cleaning.    452 

After determination of the kinetics of the two cleaning stages and how cleaning of the 453 

deposit would depend on temperature and flow rate, a novel two step CIP protocol was 454 

designed using MRO technique. The optimum CIP protocol reduced the amount of waste 455 

water and cleaning time by ca. 50 % and 53 %, respectively, compared to the cold one step 456 

CIP protocol. In addition, the energy consumption was reduced by ca. 40% compared to the 457 

hot one step CIP protocol during cleaning.  458 

As a result, this work demonstrated how to evaluate the effect of process conditions on 459 

cleaning of a specific deposit. By this, it is possible to design better CIP protocols, which can 460 

be applied to target any similar industrial process in order to substantially decrease the 461 

environmental footprint of processing plants during cleaning.  462 

 463 
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Figure captions 551 

Fig. 1. Schematic representation of the pilot plant. 552 

 553 

Fig. 2. Typical cleaning behaviour that showed decreasing dirt particle concentration in 554 

effluent water. It was measured with turbidity meter at ppm level. Turbidity reading was 555 

obtained during the cleaning of toothpaste at 70 °C and 11.2 m3/h-1.7 m/s from a pilot scale 556 

straight pipe (0.5 m and 0.0477 m ID).  557 

 558 

Fig.3. Steps of modelling and optimisation by CCRD of RSM.  1. time, 1. energy and 1. water 559 

indicate cleaning time, energy and water consumptions at stage 1 which ends when turbidity 560 

meter unsaturates. 2. time, 2. energy and 2. water indicate cleaning time, energy and water 561 

consumptions at stage 2 which starts after turbidity meter become unsaturated. Total time, 562 

total energy and total water indicate cleaning time, energy and water consumptions during the 563 

total cleaning process without considering the individual cleaning stages.  564 

 565 

Fig.4. Response surface plots of different cleaning stages influenced by varying temperature 566 

and flow rate values of water applied during cleaning. Effect of temperature and flow rate on 567 

(a) FCT, (b) SCT, (c) TCT, (d) FEC, (e) SEC, (f) TEC, (g) FWC, (h) SWC and (i) TWC 568 

values.  569 

 570 

Fig. 5. Readings for dirt particle concentration in effluent water (ppm) obtained during three 571 

tested (cold, hot and optimum) CIP protocols (flow rate was 16 m3/h in all systems).  572 

 573 

Fig. 6. Cleaning time, water and energy consumptions measured at three tested (cold, hot and 574 

optimum) CIP protocols (flow rate was 16 m3/h in all systems). In cold CIP protocol (grey), 575 

water was used at 20 °C and in hot CIP protocol (black), water was used at 70 °C during the 576 

whole cleaning (without changing conditions at stage 1 and 2). In optimum CIP procedure 577 

(white), water at 20 °C was used at stage 1 and at 70 °C at stage 2. 578 

 579 
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 585 

 586 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

24 
 

 587 

Fig. 1. Schematic representation of the industrial scale pilot plant. 588 
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 604 
Fig. 2. Typical cleaning behaviour that showed decreasing dirt particle 605 
concentration in effluent water. It was measured with turbidity meter at ppm 606 
level. Turbidity reading was obtained during the cleaning of toothpaste at 70 °C 607 
and 11.2 m3/h-1.7 m/s from a pilot scale straight pipe (0.5 m and 0.0477 m ID).  608 
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 622 
Fig.3. Steps of modelling and optimisation by CCRD of RSM.  1. time, 1. energy and 1. water indicate cleaning 623 
time, energy and water consumptions at stage 1 which ends when turbidity meter become unsaturated. 2. time, 2. 624 
energy and 2. water indicate cleaning time, energy and water consumptions at stage 2 which starts after turbidity 625 
meter unsaturates. Total time, total energy and total water indicate cleaning time, energy and water 626 
consumptions during the total cleaning process without considering the individual cleaning stages.  627 

 628 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  
 
 

Performing  of preliminary studies to determine acceptable ranges  
 

Selection of order of polynomial model 
 

Determination of the analysis points by Central Composite 
Rotatable Design (CCRD) 

 

Performing of experiments at designed analysis points 
 

Model fitting of responses by RSM 
 

Conduction of statistical analysis of model fitting 
 

Selection of response parameters used  
to control and optimization according to BER  
(backward elimination regression) procedure 

 

Modeling of the selected responses byRSM  

Multiple Response Optimization (MRO) 
for three different stages using desirability functions  

 

Determination of optimum ranges of temperature and flow rate to obtain  
minimum and maximum response values for each stage 

Response variables  
of  the CIP operation  
for the cleaning of  
a model deposit 

 
MRO1 MRO2 MRO3 

Stage 1 
(1st region) 

Stage 2 
(2nd  region) 

Total cleaning time 
(1st + 2nd regions) 

  Cleaning time (s) 
1. time 
(FCT) 

2. time 
(SCT) 

Total time 
(TCT) 

  Energy consumption (mJ) 
1. Energy 

(FEC) 
2. Energy 

(SEC) 
Total Energy 

(TEC) 

 Water consumption (l) 
1. water 
(FWC) 

2. water 
(SWC) 

Total water 
(TWC) 

 

(MJ) 

Modelling of the selected responses by RSM 

1. energy 
(FEC) 

2. energy 
(SEC) 

Total energy 
(TEC) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

27 
 

 629 
Fig.4. Response surface plots of different cleaning stages influenced by varying temperature and flow rate values of 630 
water applied during cleaning. Effect of temperature and flow rate on (a) FCT, (b) SCT, (c) TCT, (d) FEC, (e) SEC, 631 
(f) TEC, (g) FWC, (h) SWC and (i) TWC values. 632 
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 633 
Fig. 5. Readings for dirt particle concentration in effluent water (ppm) obtained 634 
during three tested (cold, hot and optimum) CIP protocols (flow rate was 16 m3/h in 635 
all systems).  636 
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 645 

Fig. 6. Cleaning time, water and energy consumptions measured at three tested 646 
(cold, hot and optimum) CIP protocols (flow rate was 16 m3/h in all systems). In 647 
cold CIP protocol (grey), water was used at 20 °C and in hot CIP protocol (black), 648 
water was used at 70 °C during the whole cleaning (without changing conditions at 649 
stage 1 and 2). In optimum CIP procedure (white), water at 20 °C was used at 650 
stage 1 and at 70 °C at stage 2. 651 
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Table 1  669 
Second-order design matrix indicating the levels of coded and actual for two variables  670 

Runs 

Coded levels of variables  Actual level of variablesa 

Temperature 

(X1) 
Flow rate 
(X2)  

Temperature 
(°C) 

Flow rate 
(m3/h) 

Factorial points      
1 –1 –1  27.0 7.86 

2   1 –1  63.0 7.86 

3 –1   1  27.0 14.54 

4   1   1  63.0 14.54 
      Axial points      

5 –α (–1.414)   0  19.5 11.20 

6 +α (+1.414)   0  70.5 11.20 

7    0 –α  (–1.414)  45.0 6.48 

8    0 +α  (+1.414)  45.0 15.92 
      Center points      

9   0   0  45.0 11.20 

10   0   0  45.0 11.20 

 a Temperature and flow rate values are those values of the water used during cleaning. 671 
 672 
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Table 2 701 
Mean values of first cleaning time (FCT), first energy consumption (FEC) and first water consumption (FWC), the 702 
significance of the regression models (F values) and the effects of temperature (b1) and flow rate (b2) on FCT, FEC and 703 
FWC measured at stage 1 704 

   1st stage   F values and effect of independent variables 

 
Independent 

variables 
 

Dependent 
variables 

 

   
FCT  FEC  FWC 

Runs 
Temp. 
(°C) 

Flow rate 
(m3/h) 

FCT 
(s) 

FEC 
(MJ) 

FWC 
(L) 

 
Source of 
variance 

 
 DF F  DF F  DF F 

Factorial  
points 

    Model  3 17.68a  2 37.25a  2 13.17a 
          Linear          

1  27.0 7.86 670 74.92 1463     b1  1 14.37a  1 50.74a  1 17.50a 
2  63.0 7.86 280 123.2 611.3     b2  1 33.45a  1 23.77a  1 8.85b 
3  27.0 14.54 168 34.90 681.3    Cross          

4  63.0 14.54 90 73.69 365.8     b12  1 5.21c  - BERd  - BERd 

                  

Axial  
points 

      Quadratic          

         b11  - BERd  - BERd  - BERd 

5  19.5 11.20 332 22.64 1033     b22  - BERd  - BERd  - BERd 

6  70.5 11.20 145 104.3 451.1  Residual  6   7   7  

7  45.0 6.48 403 92.09 727.6  lack of fit  5 38.56  6 5.70  6 26.09 

8  45.0 15.92 102 57.37 453.3  pure error  1   1   1  

        Total model  9   9   9  

Center  
points 

         R2 e   0.898   0.914   0.790 
      adj-R2 f   0.848   0.890   0.730 

9  45.0 11.20 198 78.31 618.8     pred-R2 g   0.587   0.813   0.514 

10  45.0 11.20 215 84.65 668.9  adeq pre h   11.73   15.49   9.240 

a p≤ 0.01. 705 
b p≤ 0.05. 706 
c p≤ 0.1. 707 
d BER, the removed variable by “backward elimination regression” procedure. 708 
e R2, coefficient of determination. 709 
f adjusted R2. 710 
g predicted R2. 711 
h adequate precision. 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 
 720 
 721 
 722 
 723 
 724 
 725 
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Table 3 726 
Mean values of SCT, SEC and SWC, F values and the effects of temperature and flow rate on SCT, SEC and SWC 727 
measured at stage 2 728 

  2nd stage   F values and effect of independent variables 

 
Independent 

variables 
 

Dependent 
variables 

 

   
SCT  SEC  SWC 

Runs 
Temp. 
(°C) 

Flow rate 
(m3/h) 

SCT 
 (s) 

SEC 
(MJ) 

SWC 
(L) 

 
Source of 
variance 

 
 DF F  DF F  DF F 

Factorial  
points 

    Model  5 63.01a  4 12.09a  3 77.24a 
         Linear          

1  27.0 7.86 623 69.66 1360     b1  1 172.7a  1 0.20b  1 198.3a 
2  63.0 7.86 180 79.18 393.0     b2  1 108.8a  1 26.37a  1 19.49a 
3  27.0 14.54 232 48.19 940.9     Cross          

4  63.0 14.54 42 34.39 170.7     b12  1 15.28c  - BERe  - BERe 

                  

Axial  
points 

         Quadratic          

         b11  1 13.47c  1 8.59c  1 13.92a 

5  19.5 11.20 438 29.87 1363     b22  1 12.75c  1 4.11d  - BERe 

6  70.5 11.20 35 25.17 108.9  Residual  4   5   6  

7  45.0 6.48 384 87.75 693.3  lack of fit  3 111.4  4 61.69  5 100.4 

8  45.0 15.92 83 46.68 368.9  pure error  1   1   1  

        Total model  9   9   9  

Center  
points 

         R2 f   0.988   0.906   0.975 
       adj-R2 g   0.972   0.831   0.962 

9  45.0 11.20 140 55.37 437.5     pred-R2 h   0.911   0.626   0.926 

10  45.0 11.20 145 57.09 451.1  adeq pre i   21.70   10.51   23.97 

a  p ≤ 0.01. 729 
b The term was a hierarchical term added after BER (backward elimination regression) process. 730 
c  p ≤ 0.05. 731 
d  p ≤ 0.1. 732 
e BER, the removed variable by “backward elimination regression” procedure. 733 
f R2, coefficient of determination. 734 
g adjusted R2. 735 
h predicted R2. 736 
i adequate precision. 737 

 738 

 739 

 740 

 741 

 742 

 743 
 744 
 745 
 746 
 747 
 748 
 749 
 750 
 751 
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Table 4 752 
Mean values of TCT, TEC and TWC, F values and the effects of temperature and flow rate on TCT, TEC and TWC 753 
measured at stage 2 754 

  Total cleaning stage (1st + 2nd regions)   F values and effect of independent variables 

 
Independent 

variables 
 

Dependent 
variables 

 

   
TCT  TEC  TWC 

Runs 
Temp. 
(°C) 

Flow rate 
(m3/h) 

TCT 
 (s) 

TEC 
(MJ) 

TWC 
(L) 

 
Source of 
variance 

 
 DF F  DF F  DF F 

Factorial  
points 

    Model  3 23.37a  3 20.67a  3 29.29a 
         Linear          

1  27.0 7.86 1293 144.6 2823     b1  1 30.25a  1 17.94a  1 68.75a 
2  63.0 7.86 460 202.4 1004     b2  1 34.69a  1 33.78a  1 14.38a 
3  27.0 14.54 400 83.09 1622     Cross          

4  63.0 14.54 132 108.1 536.4     b12  1 5.16c  - BERd  - BERd 

                  

Axial  
points 

         Quadratic          

         b11  - BERd  1 10.30b  1 4.74c 

5  19.5 11.20 770 52.51 2396     b22  - BERd  - BERd  - BERd 

6  70.5 11.20 180 129.5 560.0  Residual  6   6   6  

7  45.0 6.48 787 179.8 1421  lack of fit  5 76.54  5 9.20  5 32.28 

8  45.0 15.92 185 104.1 822.2  pure error  1   1   1  

        Total model  9   9   9  

Center  
points 

         R2 e   0.921   0.912   0.936 
         adj-R2 f   0.882   0.868   0.904 

9  45.0 11.20 360 141.8 1120     pred-R2 g   0.723   0.717   0.812 

10  45.0 11.20 338 133.7 1056  adeq pre h   12.82   12.36   14.77 

a  p ≤ 0.01. 755 
b  p ≤ 0.05. 756 
c  p ≤ 0.1. 757 
d BER, the removed variable by “backward elimination regression” procedure. 758 
e R2, coefficient of determination. 759 
f adjusted R2. 760 
g predicted R2. 761 
h adequate precision. 762 

 763 

 764 
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> Cleaning in place protocol was optimised in terms of cleaning inputs  

 

> A two step cleaning in place protocol was proposed for industrial cleaning processes  

 

> The first was application of water at ambient temperature in the 1st step  

 

> The second was application of hot water in the 2nd step at the same velocity  

 

> The proposed protocol remarkably decreased energy consumption and waste water amount 

 


