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Primary biliary cirrhosis (PBC), a classic autoimmune liver disease, is characterised by a progressive T cell
predominant lymphocytic cholangitis, and a serologic pattern of reactivity in the form of specific anti-
mitochondrial antibodies (AMA). CD4+ T cells are particularly implicated by PBC's cytokine signature,
the presence of CD4+ T cells specific to mitochondrial auto-antigens, the expression of MHC II on injured
biliary epithelial cells, and PBC's coincidence with other similar T cell mediated autoimmune conditions.
CD4+ T cells are also central to current animal models of PBC, and their transfer typically also transfers
disease. The importance of genetic risk to developing PBC is evidenced by a much higher concordance
rate in monozygotic than dizygotic twins, increased AMA rates in asymptomatic relatives, and dispro-
portionate rates of disease in siblings of PBC patients, PBC family members and certain genetically
defined populations. Recently, high-throughput genetic studies have greatly expanded our under-
standing of the gene variants underpinning risk for PBC development, so linking genetics and immu-
nology. Here we summarize genetic association data that has emerged from large scale genome-wide
association studies and discuss the evidence for the potential functional significance of the individual
genes and pathways identified; we particularly highlight associations in the IL-12-STAT4-Th1 pathway.
HLA associations and epigenetic effects are specifically considered and individual variants are linked to
clinical phenotypes where data exist. We also consider why there is a gap between calculated genetic risk
and clinical data: so-called missing heritability, and how immunogenetic observations are being trans-
lated to novel therapies. Ultimately whilst genetic risk factors will only account for a proportion of
disease risk, ongoing efforts to refine associations and understand biologic links to disease pathways are
hoped to drive more rational therapy for patients.

© 2015 Published by Elsevier Ltd.

1. Introduction

secondary cholestasis, and which arises on the background of
combined genetic and environmental risks. Further mechanistic

Primary biliary cirrhosis (PBC) is an idiopathic autoimmune
chronic liver disease characterised by the progressive loss of small
intrahepatic bile ducts with resultant cholestasis and progressive
fibrosis [1]. One in 1000 women over the age of 40 liver have PBC
[2], and there remains only one licensed therapy — ursodeoxycholic
acid. Failure to respond to this treatment puts patients at risk of
progressive ductopenia and fibrosis, which ultimately requires liver
transplantation to avoid death from liver failure. Current disease
models envisage an immune-driven biliary injury, resulting in
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insights should illuminate better therapeutic options for patients.
Herein we consider the immunogenetic basis for PBC and the po-
tential for this new knowledge to translate into improved disease
management.

1.1. PBC is a typical autoimmune disease with a T-cell signature

The phenotype of PBC is typical for autoimmune disease, char-
acterized by strong female predisposition, with a high proportion
(~53%) of patients having at least one coincident autoimmune
condition [3,4] (Table 1), and most affected individuals manifesting
detectable autoantibodies against the E2 component of the pyru-
vate dehydrogenase enzyme found on the inner mitochondrial
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Table 1
Coincidence of other autoimmune disease with PBC.

Probable or definite co-incident condition Number (%); n = 160

Sjogren syndrome 40 (25)
Autoimmune thyroid disease 37 (23)
Rheumatoid arthritis 27 (17)
Scleroderma 12 (8)
Raynaud's phenomenon 38 (24)
Systemic lupus erythematosus 2(1)
Autoimmune thrombocytopenic purpura 2(1)
Pernicious anemia 6(4)
All conditions 84 (53)

Adapted from Watt et al. [3].

membrane [5]. These ‘anti-mitochondrial antibodies’ (AMA) are
both sensitive and specific for diagnosis and prediction of the dis-
ease and are usually present at high titer [6]. Other autoantibodies
are also frequent among PBC patients, including antibodies with
highly specific anti-nuclear antibody reactivity [1].

Pathologically, PBC is characterised by a progressive lympho-
cytic cholangitis centered on smaller intrahepatic bile ducts, often
associated with the presence of granulomata in the liver. Autoan-
tibodies against the components of mitochondria are densely
localized to the apical surface of biliary epithelial cells (BEC) [7] and
are associated with apoptosis [8]. A similar staining pattern may be
seen on salivary epithelium in PBC patients with coincident sicca
syndrome [9]. As is consistent with involvement of the adaptive
immune system, the immune infiltrate is predominantly comprised
of CD4+ T cells, with lesser increases in cytotoxic (CD8+) Tcells [10]
(Fig. 1). Numbers of CD4+ T cells are also increased in the hilar
lymph nodes and the liver. Importantly, CD4+ [11] and CD8+ [12] T
cells specific to mitochondrial auto-antigens have been demon-
strated in the peripheral blood, livers and liver-draining lymph
nodes of affected patients, while not detected in either healthy
controls or patients with other liver diseases. Both MHC class I and
II proteins are also expressed on BECs of PBC patients and thought
to present antigen to cytotoxic CD8+ and helper CD4+ T cells,
respectively [13—15].

Fig. 1. CD4+ T cells dominate the inflammatory infiltrate of PBC. Explanted PBC liver
specimen stained with rabbit anti-CD4 (clone ab133616, Abcam, UK) and revealed with
alkaline phosphatase red kit (Vector laboratories, UK); hematoxylin counterstain; x20
magnification.

The cytokine signature associated with PBC is also indicative of
immune system activation with a Th1/Th17 bias. Analysis of RNA
expression in explanted PBC liver samples has consistently revealed
skewing of the cytokine profile with reduced IL-10 (a predomi-
nantly Th2 cytokine) and increased interferon gamma (IFNy; a Th1
cytokine) in comparison to chronic hepatitis C explants [16,17].
Levels of serum IL-18 — which acts to release IL-12 and activate the
Th1 pathway — and IFNYy are also elevated in PBC patients relative
to levels detected in healthy controls and chronic viral hepatitis
patients [18,19]. Immunohistochemical studies support these ob-
servations, with PBC liver samples showing strong staining for IFNy
and IL12RB2 with a shift to increased IL-23 and Th-17 staining in
later disease [20]. Ratios of circulating Th17:regulatory T cells (Treg)
[21] as well as levels of serum IgM and numbers of IgM-producing
plasma cells in the liver are also frequently increased in PBC pa-
tients [22].

1.2. Immunogenetic observations from animal models of
autoimmune cholangitis

There is no animal model that completely reproduces the hu-
man PBC phenotype, a situation that may relate to limitations in
deriving animal models and/or the highly complex combination of
environmental and genetic factors and pathogenic pathways
associated with biliary injury. Among the mouse strains now used
as models for PBC are a number of strains with deficiencies in Treg.
One example is the Scurfy mouse, in which a mutation in the
master transcription factor of Treg, FOXP3, results in the complete
absence of Treg. These mice manifest peri-biliary lymphocytic
infiltrate, liver damage and AMA production on a background of
multi-system autoimmunity [23]. Similar disease phenotypes arise
in mice expressing a dominant negative TGFBII under the control of
the CD4 promoter [24] and in IL2Ro. "/~ mice, both of which have
significant deficits in Treg function [25]. In one other murine model
of PBC, a mutation that impairs function of the biliary epithelial cell
and lymphocyte anion exchanger AE2 is associated with reductions
in the numbers of Treg and variable periportal infiltrates with AMA
[26].

Other murine models of PBC also highlight the importance of T
cells in disease pathogenesis. Interruption of selected chromosomal
regions on chromosomes 3 and 4 of the non-obese diabetic mouse,
for example, yields mice that develop intra- and extrahepatic
inflammation and dilation along with variable AMA for which
biliary disease can be transferred by the mutant T cells or prevented
by T cell depletion [27]. Similarly, CD4+ T cells from mice in which
AMA production is triggered by immunization with the bacterium
Novosphingobium aromaticivorans, can also transfer the disease
phenotype to other mice [28].

A further insight from animal models is the complexity of the
processes which lead to emergence of autoimmune disease. In one
mouse model, for example, in which the xenobiotic 2-octynoic acid
is used to induce production of anti-mitochondrial antibodies,
development of the phenotype requires both the highly immuno-
genic complete Freud's adjuvant and an autoimmune-prone
NOD.1101 background [29].

Manipulation of immunologic pathways has also been of help in
refining the relative importance of different signaling cascades to
PBC-like phenotypes. For example, deletion of IL-12p40 from
IL2Ra-deficient mice worsens cholangitis and fibrosis without ev-
idence of shift to Th2 polarized responses that are thought to be
associated with fibrosis [30]. Similarly, dominant negative TGFj
mice develop increased fibrosis with deletion of 12p35 [31], but,
conversely, cholangitis in these mice is reduced by co-deficiency of
IL-12p40 [32].
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1.3. Clinical support for a strong genetic component to PBC

A significant etiologic role for genetic factors in PBC is supported
by epidemiological evidence. PBC has the highest concordance in
monozygotic twins of any autoimmune disease: 63% in one small
series as compared to a risk in dizygotic twins close to the popu-
lation level of <0.5% with no concordance between the 8 pairs
studied [33]. Zygosity was carefully confirmed in each pair.
Intriguingly, ages of presentation and presenting symptoms were
similar among concordant twins and two of the discordant twins
had other major autoimmune conditions.

The increased risk of other autoimmune conditions in PBC pa-
tients and their family members also points towards a genetic basis
for disease that overlaps with the genetic factors underpinning
other autoimmune diseases (Table 1). Risk for expressing AMA and
for developing disease is also increased in first-degree relatives
[34,35]. and a disproportionate number of PBC patients have rela-
tives with the disease at the point of diagnosis [2,36]. Sibling
relative risk of the disease was calculated at 10.5 [37] in a UK series
and 10.7 in the USA [38]. Numbers of individuals affected by PBC are
also abnormally high in selected ethnically defined sub-
populations [39,40] and in selected families within well-
characterised comprehensive healthcare systems [35,41].

2. Immunogenetic observations in PBC

High throughput genetic studies have transformed our under-
standing of the genes conferring risk for autoimmune diseases
including PBC. Such studies involve the comparison of large cohorts
of individuals with and without the disease trait. Each group is
genotyped for a very large number of individual single nucleotide
variants (SNV) which are selected from those sufficiently prevalent
in the general population to power subsequent statistical associa-
tion analyses. In the case of genome wide association studies
(GWAS), these traits are chosen from sequencing efforts to dissect
the genome, while in more focused studies, such as the Immu-
nochip analyses [42], a targeted selection of SNVs is used for the
study. In the case of the Immunochip, for example, SNVs implicated
in immune pathways and other autoimmune diseases as well as
rarer SNVs are used to allow finer-resolution analysis of loci of
interest.

The analyses of large scale GWAS-derived datasets enables
identification of individual variants disproportionately associated
with a disease or disease trait and, by extension, risk loci and
candidate genes within or near such loci [43]. The power and lack of
bias given the hypothesis-free nature of such studies has revolu-
tionized the approach to disease gene discovery and enabled a
move away from candidate gene studies and primary focus on
either gene array technology or whole exome genome sequencing
strategies.

A key confounder in GWAS is the potential for false positives
because of the multiple comparisons inherent to the analysis. Thus,
careful adjustments for such comparisons is mandatory as well as
the replication of associations in separate validation cohorts.
Further, GWAS-identified risk variants are, by definition, more
frequent in the population than is the disease per se [44]. With
these caveats in mind, PBC research has benefited from several high
quality GWAS [45—48], meta-analyses of these datasets [49,50],
and two more focused Immunochip studies [51,52]. The majority of
these studies have focused on populations of Caucasian origin with
two associations (POU2AF1 and TNFSF15) unique to the Japanese
population. In Caucasians many variants associated with PBC at or
below genome-wide significance levels (p < 5 x 10~%) have been
identified and these are summarized in Fig. 1 and Table 2. This
number will increase with larger, and higher resolution, studies.

Notably, there is a high degree of overlap between the known PBC
risk variants and those associated with other autoimmune
conditions.

3. The HLA gene variants associated with PBC

The HLA region, on the short arm of chromosome 6 contains
many genes related to the adaptive immune response. Key amongst
these are the HLA-A, HLA-B and HLA-C genes, which are associated
with the production of MHC class I and the HLA-D genes, which are
associated with MHC class IL. Class I proteins are primarily involved
with the presentation of shorter processed fragments of intracel-
lular antigen to cytotoxic CD8+ T cells, while MHC class II proteins
present extracellular antigen to CD4+ T helper cells. Variations in
the large and highly polymorphic HLA locus on chromosome 6 have
been long associated with PBC [53]. Initial studies linked the
DRB*08:01 allele group with disease risk, but the populations
explored in these studies were relatively small [e.g. Ref. [54]].

More recently, analysis of a much larger sample of PBC in the
Italian population confirmed an association of risk for PBC with the
HLA-DR alleles B1*08 and B1*02 and an apparently protective effect
of B1*11 and B1*13 [55]. These observations have been clarified by
subsequent GWAS and Immunochip work, and a set of robust HLA
associations now exists (Table 3), albeit primarily related to Euro-
pean Caucasian populations concerned and also the choice of var-
iants examined on the Immunochip [42].

In terms of understanding PBC pathogenesis, it is possible that
specific HLA variants either confer an overall predisposition to
autoimmune disease or result in altered immune responses to
specific environmental antigens. Although these possibilities
require further investigation, recent exciting work has shown that T
cells with the risk-conferring HLA DRB1*08:01 genotype shown
high-affinity responses to specific pyruvate dehydrogenase E2
subunit peptides, response that did not develop in the presence of
the protective DRB1%11:01 allele [56].

4. Non-HLA gene associations
4.1. T cell activation and the IL-12 pathway

Among the HLA genes associated with risk for PBC are a number
of genes associated with CD4+ T cell activation, especially with IL-
12-JAK-STAT4 signaling, a pathway promoting Th1 T cell polar-
isation (Summarized as Fig. 3). IL-12 is a heterodimeric molecule
made up of the two subunits, p35 and p40, encoded by the IL12A
and IL12B genes respectively. The latter protein also hetero-
dimerizes with IL-23p19 to form IL-23, a key signaling component
in the Th-17 pathway. The IL-12 receptor is also encoded by two
genes, IL12RB1, which is constitutively expressed, and IL12RB2
which is upregulated by interferon-y (IFNy) to act as a positive
feedback loop in antigenic stimulation. The tyrosine kinase 2
(TYK2) protein is key to both IL-12 and IL-23 receptor signaling.
Variants in these genes are also associated with other autoimmune
diseases and in systemic lupus erythematosus appear to influence
IFNy production [57]. STAT4 deficient mice show impaired Th1
polarization and a defect in effector cytokine production that can
block the development of autoimmune diabetes [58,59]. Another
gene of interest iSTNFAIP3, which encodes a zinc finger protein with
the ability to modify ubiquitination states and inhibit the NF«kB and
STAT pathways as well as the functioning of some TNF receptors
[60]. Deficiency confers excess TNF sensitivity in mice and early
cachexia and death. The SOCS1 protein also implicated by genetics
in PBC, has a regulatory effect on both NFkB and JAK-STAT pathways
including STAT4 [61].
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Table 2
Risk loci associated with PBC identified by high-throughput genetic studies.

Locus GWAS of PBC Canadian/Italian/US iCHIP [51] UK iCHIP [52] Candidate gene(s)
Study SNV/RA OR p-value Peak SNV/RA OR p-value SNV/RA OR p-value

1p36 [50] rs3748816/C 133 3.15E-08 rs10910108/G 1.15 1.81E-03 rs10797431/A 1.15 1.44E-05 MMEL1

1p31 [45] rs3790567/A 1.51 2.76E-11 1s72678531/C 1.68 2.66E-23 1s72678531/G 1.61 2.47E-38 IL12RB2

1931 [47] rs12134279/T 1.34 2.06E-14 rs1539414/A 1.26 3.46E-06 rs2488393/A 1.28 4.29E-12 DENND1B

2q12 [49] rs12712133/A 1.14 5.19E-9 IL1R1, IL1RL2

2q32 [47] rs10931468/A 1.5 2.35E-19 rs3024921/A 1.75 4.45E-11 rs3024921/A 1.62 2.59E-18 STAT4, STAT1

2936 [49] 1s4973341/C 0.82  234E-10 CCL20

3p24 [47] rs1372072/A 1.2 2.28E-08 rs1025818/G 1.2 3.53E-05 rs1025818/G 1.13 1.89E-04 PLCL2

3q13 [47] 1s2293370/G 135 2.53E-11 rs1131265/G 1.42 4.49E-09 1s2293370/G 1.39 6.84E-16 CD80

3q25 [45] rs6441286/G 1.54 2.42E-14 rs9877910/T 1.47 1.02E-17 1s2366643/A 135 3.92E-22 IL12A

4p16 [49] rs11724804/A 122 9.01E-12 DGKQ

4q24 [47] rs7665090/G 1.26 4.06E-12 rs7665090/G 1.18 1.00E-04 rs7665090/C 1.26 8.48E-14 NFKB1

5p13 [47] rs860413/A 13 1.02E-11 rs700172/A 1.27 1.63E-06 rs6871748/A 13 2.26E-13 IL7R

5q21 [49] 1s526231 0.87  1.14E-08 C50rf30

5933 [49] rs2546890 0.87 1.06E-10 IL12B

6p21 [45] 1s2856683/C 1.75 1.78E-19 rs7775055/C 3.71 1.11E-33 1s7774434/C 1.57 1.30E-48 HLA region

6q23.3 [49] rs6933404 1.18 1.27E-10 TNFAIP3, OLIG3

7pl4 [47] 1s6974491/A 125  444E-08  rs17259795/T 124  1.19E-05  rs73112661/G 122  169E-07  ELMOI1

7q32 [50] rs10488631/C 1.57 8.66E-13 rs10488631/C 1.56 2.52E-12 rs35188261/A 1.52 6.52E-22 IRF5

9p32 [48] 1s4979462/T 157  1.85E-14

11q13 [47] rs538147/G 1.23 2.06E-10 rs694739/A 1.18 2.85E-04 rs694739/A 1.18 1.96E-07 RPS6KA4

11923 [47] rs6421571/C 137 2.69E-12 rs7117261/C 1.46 3.18E-10 rs80065107/A 1.39 7.20E-16 CXCRS5, DDX6

11923 [48] rs4938534/A 1.38 3.27E-08 POU2AF1

12p13 (47] 1s1800693/G 122 1.80E-09  rs1860545/T 12 527E-05  rs1800693/G 127  1.18E-14  TNFRSFI1A,LTBR

12q24 rs11065979/A 1.2 2.87E-09 SH2B3

13q14 1s3862738/G 1.33 2.18E-08 TNFSF11

14924 [47] rs911263/T 1.29 1.76E-11 rs911263/A 1.25 3.43E-06 rs911263/T 1.26 9.95E-11 RAD51B

14q32 [47] rs8017161/A 1.22 2.61E-13 TNFAIP2

16p13 [47] 1s12924729/G 1.29 2.95E-12 rs413024/T 1.31 2.29E-08 rs12708715/G 1.29 2.19E-13 SOCS1, CLEC16A

16924 [47] rs11117432/G 131 4.66E-11 1s35703946/G 1.27 6.10E-04 rs11117433/G 1.26 1.41E-09 IRF8

17q12 [50] rs11557467/G 0.72 3.50E-13 rs907091/C 1.29 3.43E-09 rs17564829/G 1.26 6.05E-14 ORMDL3, IKZF3

17q21 rs17564829/G 1.25 2.15E-09 MAPT

19p12 1s34536443/G 1.91 1.23E-12 TYK2

19q13 [111] rs3745516/A 1.46 7.97E-11 SPIB

22q13 [47] rs968451/T 1.27 1.08E-09 rs715505/C 141 9.58E-12 1s2267407/A 1.29 1.29E-13 SYNGR1

Risk loci for PBC that have achieved genome-wide level of significance (p < 5 x 10~%) in at least one study. GWAS, genome-wide association study; iCHIP, Illumina immu-
noarray association study; OR, odds ratio; RA, risk allele; SNV, single nucleotide variant.

Adapted from Mells and Hirschfield [112].

4.2. CD80

CD80 (also known as B7.1) is an inducible co-stimulatory
molecule on antigen-presenting cells. CD80 and the constitutively
expressed CD86, together B7, provide a signal to the T cell CD28
receptor which amplifies T-cell antigen receptor signaling. By
contrast, another T cell receptor, CTLA4, acts as a higher affinity

Table 3
HLA associations in PBC.

competitor to CD28 to reduce T cell immune responses. Deficiency
of CD80 results in a reduced plasma cell mediated humoral

response to immunization [62].

4.3. IL7Ra/CD127

IL-7 is necessary for both T and B lymphocyte development and

Risk conferring
HLA-DQA1*04:01-HLA-DQB1*04:02-HLA-DRB1*08:01-HLA-B*39:05

HLA-DRB1*04:04-HLA-DQB1*03:02

HLA-DRB1*14-HLA-DPB1*03:01

HLA-DRB1*08:03-HLA-DQB1*06:01

HLA-DRB1*04:05-HLA-DQB1*04:01

Protective
HLA-DQB1*06:02-HLA-DRB1*15:01-HLA-DQA1*01:02-HLA-B*07:02
HLA-DQB1*03:01-HLA-DRB1*11:01-HLA-DQA1*05:01-HLA-DRB1*11:04

HLA-DRB1*13:02- HLA-DQB1*06:04
HLA-DRB1*11:01-HLA-DQB1%03:01

[51,52]

N. Am, UK, Ital

[51,52]

N. Am, UK, Ital

[113]
Ital

[95,114] Jap, Chin

[95] Jap

[51,52]

N. Am, UK, Ital

[51,52,114]

N. Am, UK, Ital, Chin

[95] Jap
[95] Jap

* Dense SNV analysis and subsequent conditional analysis of this HLA haplotype in the Italian cohort has suggested that risk-conferring/protective effects
are predominantly due to variants in HLA-DRB1 with associated linkage disequilibrium [113].

Data from a relatively small study of Chinese support observations in that population, but require confirmation [114].
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Fig. 2. PBC shares risk loci with multiple other autoimmune diseases. Circos plot [110] of gene variants associated with PBC and other selected autoimmune conditions in high-
throughput genetics studies and their meta-analyses. Note that significant pleiotropy exists with some loci implicated in multiple conditions and variable HLA associations a
universal feature. PBC = primary biliary cirrhosis; AA = alopecia areata; AIH = autoimmune hepatitis; AS = ankylosing spondylitis; ATD = autoimmune thyroid disease;
JIA = juvenile idiopathic arthritis; MG = myasthenia gravis; MS = multiple sclerosis; Narc = narcolepsy; PSC = primary sclerosing cholangitis; Pso = psoriasis; RA = rheumatoid
arthritis; Scl = scleroderma; Sjo = Sjogren's syndrome; SLE = systemic lupus erythematosus; TIDM = type 1 diabetes mellitus; UC = ulcerative colitis; Vit = vitiligo. Only validated

associations at p < 5 x 10~% are included; supporting citations available at request.

also for maintenance of T cell populations in the periphery. Mice
deficient in IL-7R have markedly reduced thymic and splenic
lymphoid cellularity [63]. IL-7R mutations represent one of a het-
erogeneous group of genetic lesions that cause Omenn syndrome, a
condition characterized by reduced variation in the T cell repertoire
with immune dysregulation, autoimmunity and a graft-versus host
disease phenotype [64]. IL-7R is induced upon T cell positive se-
lection and controls thymic CD8+ lineage specification and pe-
ripheral naive T-cell homeostasis [23] while also having a role in
myeloid cell differentiation [24]. IL7R expression is generally
reduced in Treg cells compared to other T cells [65].

4.4. Other T cell associated genes

IKZF3 encodes Ikaros family zinc finger protein 3, also known as
Aiolos. The gene is one of a family of hematopoietic transcription
factors and is involved in lymphocyte development and prolifera-
tion, especially in B cells [66]. A link to autoimmunity is implied by

the lupus-like syndrome that develops in IKZF3 knock-out mice
[67]. Subsequent work has also linked this protein to Th17 devel-
opment through an interaction with the IL2 receptor, disruption of
which underlies PBC in one mouse model of disease ([68]; see
above).

SH2B3 encodes a member of the SH2B adaptor proteins known
as SH2B3 or Lnk, and maps to a widely shared autoimmune disease
locus. Lnk is involved in multiple growth factor and cytokine
signaling pathways, is a negative regulator of T cell activation, tu-
mor necrosis factor and Janus kinase 2 and 3 (JAK2/3) signaling and
is required for normal hematopoiesis. Mice deficient in SH2B3 have
greater levels of activated T cells and a tendency to autoimmunity
[69].

4.5. B cell development, signaling and migration

In addition to genes encoding proteins such as IL7R and IRFs,
expressed in T as well as B cells, results of genetic studies have
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Fig. 3. Schematic representation of CD4+ T cell activation by antigen presenting cells and the IL-12/STAT4 pathway. Antigen activates APC through TLR, which in turn produce IL-12
after phosphorylation of IRF5. Antigen is presented to CD4+ T cells by HLA Il with co-stimulation via CD80 and 86 to CD28. There is competitive inhibition of this co-stimulation by
CTLA4. IL-12 activates a cascade of signaling factors including NFKB and STAT4 to promote the production of Th1-type cytokines including TNFa and IFNy; the transcription factor
IRF8 is involved. IL7R supports lymphocyte development. There is positive feedback from Th1 cytokines to APCs. Red text denotes confirmed risk associations with PBC; blue text
putative associations. Arrows denote positive effects; barred lines denote negative effects. APC = antigen-presenting cell; CD = cluster of differentiation; CTLA4 = Cytotoxic T
lymphocyte antigen 4; HLA Il = human leucocyte antigen class II; [FN-y = interferon-y; IFNyYR = interferon-y receptor; IL-12 = interleukin-12; IL-12RB1/2 and IL-12 receptor
subunits 1 and 2; IL7R = interleukin-7 receptor; IRF5 and IRF8 = interferon response factors 5 and 8; JAK2 = Janus kinase 2; Lck = lymphocyte-specific protein tyrosine kinase;
NFKB = nuclear factor kappa-light-chain-enchancer of activated B cells; PKC = protein kinase C; SOCS1 = suppressor of cytokine signaling 1; STAT4 = signal transducer and activator
of transcription 4; TCR = T-cell receptor; TLR = Toll-like receptor; TNFAIP3 = tumor necrosis factor alpha-induced protein 3; TNFRSF1a = Tumor necrosis factor receptor superfamily
1a; TNFo. = tumour necrosis factor alpha; TYK2 = Tyrosine kinase 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

identified a number of PBC risk loci containing genes that imply a
role for B cells in PBC. CD80, for example, is key in the germinal
center focused humoral response to immunization and the che-
mokine receptor, CXCRS5, is involved in the migration of both T and
B cells to sites of antibody production along gradients of CXCL13.
CXCRS5 is constitutively expressed on mature B cells and induced on
T follicular helper cells in response to antigen [70] and its deficiency
is associated with impaired germinal center responses.

POU2AF1 also known as Oct binding factor 1 (OBF1), is a tran-
scription factor involved in the transcription of a number of B cell
specific proteins. Mice deficient for this protein have a reduced B
cell repertoire, striking reductions in class-switched immuno-
globulins and disordered germinal center formation [71].

4.6. TNF ligands and receptors

TNFRSF1A encodes a member of the tumor necrosis factor
family of receptors. It is predominantly expressed on antigen-

presenting cells and represents a major receptor for tumor necro-
sis factor alpha (TNFa). Activation of this receptor can cause
apoptosis through activation of NFkB and mutations leading to its
constitutive activation are associated with periodic fever syndrome
[72].

Loci containing two TNF receptor ligands have also been asso-
ciated with risk for PBC. These proteins include TNFSF15 (or TNF-
like ligand TL1A) which encodes a vascular endothelial growth
inhibitor primarily expressed on endothelia with little expression
in the liver (http://proteinatlas.org). Ligation with its cognate re-
ceptor DR3, which is chiefly expressed on lymphocytes, may induce
apoptosis, but is also associated with costimulation, mucosal hy-
perplasia and autoimmune inflammation [73]. TNFSF11, or receptor
activator of nuclear factor kappa-B ligand (RANKL) or TNF-related
activation-induced cytokine (TRANCE) is also a TNFR ligand. This
protein plays a major role in NFkB mediated control of osteoclast
activity, but also has activity as a dendritic cell survival factor
through the control of apoptosis. Deficiency results in impaired
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lymphocyte differentiation [74].
4.7. Other signaling molecules

The transcription factor NFkB plays important roles in both the
innate and adaptive immune system [61,75], influencing both B and
T cell activation downstream of the antigen receptors and its pro-
moting inflammatory responses. NFkB1 encodes the p50 subunit of
NFkB by way of a precursor p105 and NFkB-deficient mice show
many immune defects including susceptibility to various bacteria
and impaired induction of lymphocyte antibody responses and
proliferation [76].

IRF5 and IRF8 encode two members of the interferon response
factor family: a set of transcription factors central to the control of
type 1 interferon production and response [77]. IRF5 is ubiquitously
expressed, upregulated by type 1 interferons and is activated by
Toll-like receptor ligation so as to promote downstream tran-
scription of IL6, IL12 and TNFa. IRF8 is key to generating Th1 type
responses and is induced by IFNy. Its deficiency in mice confers
susceptibility to intracellular infection [78].

CCL20 is a chemoattractant for lymphocytes, and to a lesser
degree, neutrophils and is strongly expressed in the liver [79]. In
human alcoholic hepatitis, its expression has been linked to disease
severity, and in mouse models of hepatitis, its silencing ameliorates
inflammation and production of pro-fibrotic mediators [80]. CCR6
— the receptor for CCL20 — has been reported as being important
for the positioning of pathogenic Th17 T cells in the inflamed liver,
particularly in PBC liver, in which CCR6 concentrates around bile
ducts [81].

4.8. Other genes

A number of other variants within genes involved in key
immunological pathways have been suggested by GWAS data, but
not attained genome-wide significance. An example is CTLA4 which
encodes a protein expressed on T cells and which competes with
CD28 for binding to CD80 and CD86, thus reducing pro-effector
signaling through CD28 (Fig. 1) [82,83]. Also of interest, but not
yet of proven significance, is ICOSL, the cognate ligand of inducible
costimulator or ICOS (Fig. 2). ICOS is a member of the CD28 family
that is minimally expressed on unactivated T cells, but is rapidly
upregulated after stimulation through the T-cell receptor and CD28.
Excessive ICOS expression is associated with multi-system auto-
immunity [84].

It is likely that an increasing number of risk-affecting variants
will be identified as the numbers of participants in genetic studies
increases and additional meta-analyses are performed.

5. Epistasis, missing heritability and selection pressure

In the majority of instances the odds ratios for any individual
risk variant associated with PBC are modest and close to or lower
than 1.5 (Table 2). Calculations of the risk for disease conferred by
all the known PBC susceptibility alleles together suggest these al-
leles account for only 5.3% of the heritable risk for this disease [85].
This low number may relate, at least in part to limitations to GWAS
studies such as frequency of the studied variants and sample size
[44]. It is also possible that shared environmental traits and gene-
environmental interactions inflate perceived heritability or that
the gap between calculated and observed heritability may be
partially explained by epistasis. In epistatic interactions, the effects
of one variant may be dependent on the presence and effects of one
or more other variants. One example of such interactions in PBC, is
the risk-conferring epistatic interaction between the 1p31
(IL12RB2) and 7q32 (IRF5) loci [51]. A potential risk-amplifying

interaction between CTLA4 and TNFea variants has also been re-
ported [83].

6. Epigenetics

A necessary corollary to the discordance seen in some mono-
zygotic twins is the influence of epigenetic factors. Several envi-
ronmental factors have been proposed and these are well reviewed
elsewhere [86]. Specific epigenetic observations may however
partly explain a deficiency in our understanding of the genetic basis
of PBC to date: the lack of an explanation for female predominance,
including the lack of identified risk loci on the X chromosome. A
major observation was that rates of X chromosome monosomy in
peripheral leukocytes — i.e. the presence of a single X chromosome
in a usually diploid cell — are higher in PBC patients than hepatitis C
or healthy controls after correction for age, with which monosomy
correlates [87]. Subsequent similar observations have been made in
other autoimmune diseases and the observation that autoimmu-
nity is significantly more common in patients with constitutive
monosomy X: Turner's syndrome [88,89]. Intriguingly, there is also
an increased rate of Y chromosome loss in men with PBC [90].

In healthy women, one X chromosome homologue is inactivated
by heterochromatin packaging, DNA methylation, reduced histone
acetylation and other mechanisms resulting in gene silencing. In
PBC, it has been demonstrated that while X inactivation appears to
be random, there is preferential loss in cells with X monosomy in
contrast to that seen in health [91]. In related work, the methylation
states of genes that escape modification in X chromosome inacti-
vation to variable degrees were examined in monozygotic PBC twin
pairs. In the small number of samples that were available to pro-
cess, no significant differences in methylation status were
observed. A further epigenetic observation of particular interest
given the role of CD40-CD40L in T:B cell interactions (Fig. 4) is that
there is reduced methylation of CD40L promoter regions amongst
PBC patients compared with controls and that this correlates with
serum IgM [92].

Two studies have reported microRNA expression in PBC. Build-
ing on their work describing the anion exchanger 2 (AE2) deficient
mouse [26], one group have described upregulated microRNA-506
(miR-506) — which downregulates AE2 — in PBC BECs by in situ
hybridization and also by BEC culture with anti-miR506 increasing
AE2 activity [93]. A second group work from PBC and control
explant liver samples demonstrated down-regulation of miR-122a
and miR-26a with upregulation of miR-328 and miR-299-5p [94].
All of these microRNAs are implicated in key mechanisms in PBC
pathogenesis including apoptosis and the response to oxidative
stress and are therefore worthy of further investigation.

7. Relating immunogenetic observations to clinical
phenotypes

As summarized above, multiple HLA haplotypes have been
associated with risk for PBC and also with specific phenotypes. A
study of Japanese patients, for example, has reported an association
of the HLA DRB1*04:05 and DRB1*08:03, alleles with presence of
anti-gp210 and anti-centromere antibodies, respectively, which are
in turn associated with rapidly progressing disease and with con-
current systemic sclerosis and portal hypertension, respectively.
Presence of the rs9277535 variant at the HLA-DPB1 locus in PBC
patients has also been associated with expression of anti-sp100
antibodies [50] and in Japanese PBC patients, the DRB1*09:01-
DQB1*03:03 haplotype has been associated with increased ten-
dency for progression to need for transplantation [95], an associ-
ation not yet confirmed in European populations.
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Fig. 4. Schematic representation of T-cell:B-cell interaction demonstrating genes with variants associated with PBC Antigen binds B-cell receptor triggering multiple events
including the suppression of apoptosis by BCL-xL in a mechanism involving the phosphorylation of IKZF3. B-cell receptor signaling is also partly mediated by the transcription factor
SPIB and PLCL2; the former is involved with differentiation and the latter controls subsequent proliferation. B cells present antigen to T cells on MHC class II. Multiple co-stimulatory
molecules promote both B cell activation and continued T cell activation: ICOS-ICOSL, CD28-CD80/CD86, CD40L-CD40. IL7R is involved in the development of both T and B cells. A
number of other factors key to B cell development and survival are associated with PBC risk (IRF5, IRF8, NFKB and POU2AF1). CXCR5 guides both B and T cell positioning along
CXCL13 chemokine gradients and facilitates migration to germinal centres. Red text denotes confirmed risk associations with PBC; blue text putative associations. Arrows denote
positive effects; barred lines denote negative effects. BCR = B-cell receptor; IL-4 = interleukin-4; IL7R = Interleukin-7 receptor; ICOS(L) = inducible co-stimulator (ligand);
PLCL2 = phospholipase C-like 2 protein; TCR = T-cell receptor; IRF5 & 8 = interferon regulatory factors 5 & 8; SPIB = Spi-B; NFKB = nuclear factor kappa-light-chain-enhancer of
activated B cells; POU2AF1 = POU class 2 associating factor 1; IKZF3 = Ikaros family zinc finger protein 3; CXCR5 = chemokine (C-X-C motif) receptor 5.

7.1. Non-HLA associations

Development of biliary cirrhosis weeks after initiating IFNy
therapy has been reported in one patient with IL-12 deficiency-
related tuberculosis [96] and in a second patient with tuberculosis
and autoantibodies to IFNYy, unspecified non-specific cholangitis
developed together with multi-system autoimmunity following
[FNy treatment [97]. Unfortunately, the patients' autoantibody
profiles or hepatic histology were not reported for these patients
and while IL-12 deficiency in the first case may be relevant to the
phenotypes, another and more likely possibility is that exogenous
interferon induced the autoimmunity [98]. Variants at the IL12A
locus do appear, however, to have some effect on the risk of PBC
recurrence after transplantation, although the immunosuppression
regime chosen is also relevant to this development [99].

As mentioned above, the association of CXCR5 variants with PBC
risk points to the involvement of both B and T cells destined to
migrate to germinal centers. Consistently, numbers of peripheral T-
follicular helper (Tfh) cells have been reported in PBC as compared
with control and autoimmune hepatitis subjects. Such elevations in
Tth were also correlated with lack of biochemical response to UDCA
[100,101]. Of related interest is the observation that expression of
the CXCR5 ligand, CXCL13, is upregulated in the spleens of PBC
patients, but not in spleens of patients with chronic viral hepatitis
[102].

A variety of variants have been associated with particular dis-
ease sub-phenotypes in PBC, but most of these have not been
validated. In one study, for example, PBC susceptibility and pro-
gression was associated with specific variants in TNFa, CTLA4 and
AE2 genes [103], but these genes have been identified by subse-
quent GWAS or Immunochip data.

In follow-up studies of GWAS datasets, associations of STAT4
variation with ANA status and CTLA4 variants with anti-centromere
and gp210 have been identified in Japanese PBC patients [104] and

TNFSF15 polymorphisms have been linked to functional changes in
the gene product. Differences in mRNA and protein expression
were also seen in both PBC and healthy subjects carrying this
variant, although a link to outcome or phenotype remains unclear
[105].

8. Translating immunogenetic observations to novel
therapies

To date, a single proof-of-concept study has examined the effect
of the anti-human IL-12 and IL-23 agent ustekinumab in PBC [106]
and revealed no significant change in the primary outcome mea-
sure of serum alkaline phosphatase. By contrast, ustekinumab is
efficacious in the T-cell mediated disease psoriasis, which also has
an IL-12 signature, but IL-23 antagonism alone is also highly
effective in that disease [107].

Building on genetic observations and those seen in murine
studies [108], a trial of the CTLA4 fusion protein abatacept is now
underway in PBC patients (NCT02078882). Inhibition of CD40-
CD40L interactions is also being studied as a PBC treatment op-
tion, these proteins not being specifically highlighted by genetic
association data, but represent key players in T cell:B cell in-
teractions (Fig. 4; NCT02193360). As noted above, differences in
CD40L promoter methylation are reported in PBC [92].

9. Conclusion

PBC is a complex classical autoimmune disease with a clear
heritable component intertwined with strong environmental in-
fluences. There is also now very strong evidence linking PBC to
numerous immune pathways, especially those centering on
antigen-presentation to T cells.

PBC also remains a therapeutically challenging disease because
our increased understanding of its immune basis has not yet
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translated to marked improvements in patient care [109]. Variants
in key immunologic pathways highlight genes involved primarily in
the adaptive immune system including antigen-presenting cells, B
cells and especially T cells. Of particular note are the genes related
to the IL-12-STAT4 Th1-polarizing pathway. These data provide the
framework for further animal work, prospective analysis of patient
populations and, ultimately the discovery and/or application of
novel or repurposed therapeutic agents. Select animal studies
suggest that the gene targets identified may have hepato-protective
as well as risk effects, but further work is necessary to connect
genetic associations to clinical presentation and outcomes. The
immunogenetic future lies in larger, finer resolution, high-
throughput genetic studies coupled to careful assessment of pa-
tient characteristics and trials informed by biological studies.
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