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The development of single-step printable holographic recording techniques can enable applications

in rapid data storage, imaging, and bio-sensing. The personalized use of holography is limited due

to specialist level of knowledge, time consuming recording techniques, and high-cost equipment.

Here, we report a rapid and feasible in-line reflection recording strategy for printing surface holo-

grams consisting of ink using a single pulse of a laser light within seconds. The laser interference

pattern and periodicity of surface grating as a function of tilt angle are predicted by computation-

ally and demonstrated experimentally to create 2D linear gratings and three-dimensional (3D)

images. We further demonstrate the utility of our approach in creating personalized handwritten

signatures and 3D images. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928046]

Holograms have been the focus of enormous research in

recent years. They offer a remarkable level of spatial resolu-

tion and multiplexing capability that is not achievable with

any other image recording techniques. Their exploitation

holds potential in optical applications such as three-

dimensional (3D) displays, smart windows, security, optical

interferometers, and biosensors.1–3 An off-axis hologram is

typically recorded by projecting an interference pattern con-

sisting of scattered light from an object with a coherent refer-

ence wave. The recorded image can be replayed using a

mono/polychromatic light source to reconstruct the wave-

front by means of diffraction.4–6 The historical recording of

permanent images in photosensitive media is based on multi-

beam interference and wet chemistry involving silver halides

or photoresists to create volumetric or surface gratings.7–11

In the case of surface gratings, the master hologram may be

copied through embossing by surface stamping.12–15 In sur-

face holograms recorded in photoresist, the main limitation

is the high cost involved in preparing the master hologram,

which limits the utilization of holography for personalized

applications. In silver-halide volume holograms, the image

needs to be copied using laser light, followed by develop-

ment and fixing steps. Alternatively, photopolymers

(Polaroid DMP-128) maybe utilized to record holograms.

However, this method requires an additional step of exposure

to regular light of uniform intensity to stabilize the holo-

gram. Furthermore, wet processing is required to control the

colour and bandwidth of the hologram. Holograms can also

be recorded by complex methods such as E-beam lithogra-

phy (EBL)16 and focussed ion beam (FIB) milling,17 which

are still low-throughput, labour-intensive, and costly. To

overcome these limitations, direct laser interference pattern-

ing (DLIP) in split-beam off-axis mode has been utilized to

ablate surface gratings. Laser pulses (275–300 mJ/cm2) were

utilized to ablate a range of materials including polymers,

aluminium zinc oxide, nickel, and steel.18–20 This ablation

setup can be integrated with an optical head with variable

spatial period from 0.40 to 3.75 lm at a working distance of

35 mm. In another approach, a frequency-quadrupled diode-

pumped solid-state laser (6 ns, 266 nm, 20 mJ) allowed direct

interference ablation of light-emitting fluorene polymer

ADS133YE to create gratings that were 5 mm in diameter.21

Ti:sapphire laser with regenerative amplification (130 fs,

800 nm) was also utilized to create surface gratings in poly-

methyl methacrylate (PMMA).22 In these approaches, the

laser pulse was split into two beams that are focused by two

identical lenses and then symmetrically aligned to be inci-

dent on the sample. This approach also known as off-axis in-

terference requires accurate interferometric alignment of

laser beams and limits the use of 3D objects in laser ablation

mode due to the significant decrease in the intensity of laser

light after beam splitting. Hence, the ability to print 2D gra-

tings and/or 3D images with the use of a single laser pulse in

an optically flexible mode using low-cost materials for rapid

production to achieve personalized holograms remains a

challenge.

Here, we show a rapid, single-pulse laser ablation strat-

egy to print 2D and 3D surface holograms within seconds. We

first computationally design the recording of surface gratings

for in-line “Denisyuk” reflection holography in ablation

mode. The diffraction characteristics of surface gratings are

evaluated computationally for various diffraction angles as

the grating hologram is illuminated with violet, green, and red

light. We then fabricate holograms by using a high-energy

nanosecond pulsed laser. We analyze the post-ablation effects

through characterizing their optical properties by topographi-

cal imaging and angular-resolved measurements using reflec-

tion spectrophotometry. Finally, we further demonstrate the

applications of our laser ablation methodology by showing

2D surface and 3D coin holograms. Laser ablation can be

employed to produce various surface holograms based on a

variety of complex surfaces and photo-absorption materials,

offering the potential for the production of optical devices.

a)Q. Zhao and A. K. Yetisen contributed equally to this work.
b)Author to whom correspondence should be addressed. Electronic mail:

h.butt@bham.ac.uk.
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The surface holograms were recorded based on

“Denisyuk” reflection interference in ablation mode (Figure

1(a)). 150 nm thick ink (Lumocolor, Staedtler) was depos-

ited on a PMMA substrate by spin coating at 2100 rpm for

3 s. A Nd-yttrium-aluminum-garnet pulsed laser with a

second-harmonic generator (5 ns, 350 mJ @ 532 nm, 10 Hz,

thermally stabilized with wavelength separation) was used

to print the surface gratings in Denisyuk reflection mode.

The ink was patterned through a single 5 ns (�10 mJ) laser

pulse (10 Hz, Q-switch delay¼ 400 ls) directed toward the

recording media tilted (a) from the horizontal plane. In a

single 5 ns exposure, the ablated spot area was 1 cm2. We

utilized a single pulse strategy to record the holograms.

Producing a grating over an area of 1 cm2 required 5 ns. To

create images of larger samples, multiple laser exposures

were required to cover 5 cm2 by manually moving a XY

translation stage. Therefore, using a laser operating at

10 Hz, ablated regions were not limited by the laser pulse,

but the speed of the XY translation stage. The use of robotic

XY translation stages can increase the ablation area. A

reflecting object (i.e., mirror) was placed normal to the laser

incidence beam under the recording medium. The reflected

beam and the incident beam travelling in opposite directions

interfered and created a standing wave, which created a per-

iodic constructive interference. The ink was then ablated at

a periodicity related to the incident wavelength of the laser

beam

y ¼ y1 þ y2 ¼ A cos 2p �t� x

k

� �
þ A cos 2p �tþ x

k

� �

¼
����2A cos 2p

x

k

���� cos 2p�t; (1)

where y1 and y2 represents the incident (reference) and

reflected (object) laser beam propagations, respectively. The

standing wave oscillates in time but has spatial dependence

(propagation direction) which is stationary, and the construc-

tive interfering peak occurs at intervals of approximately k/2.

However, as the substrate is tilted from horizontal, the perio-

dicity can be controlled by the tilt angle. We simulated the 2D

intensity distribution of the standing wave as a function of tilt

angle by finite difference time domain (FDTD) method.

FIG. 1. Laser ablation holography in

Denisyuk “reflection” mode. (a)

Schematic of laser setup for recording

surface ink holograms. (b) 2D intensity

distribution image of single laser beam

interference. (c) Simulated optical in-

tensity profile plots at plane of 0� and

90�, respectively. (d) Simulated plots

of interfering intensity profile at tilt

planes of 15�and 30�, respectively.

FIG. 2. Images of recorded linear sur-

face gratings. (a) Environmental scan-

ning electron microscope image of the

surface grating. Scale bar¼ 5 lm. (b)

AFM characterization showing thick-

ness and spacing of surface ink-

grating. Scale bar¼ 3 lm.
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Figure 1(b) shows the interference intensity distribution

by a laser beam (k¼ 532 nm), the resultant intensity alter-

nated from peak to valley uniformly, indicating well-ordered

grating pattern. Figure 1(c) illustrates the intensity profile

across the planes of 0�and 90�. There was uniform spacing

of �266 nm (k/2) at 90� while no varying optical intensity

was observed at plane of 0�, and thus no fringes will be

formed when the sample is ablated normal to the incident

beam. Optical intensity distribution in other tilt planes was

also simulated as shown in Figure 1(d). The value of perio-

dicity is

K ¼ k
2 sin a

; (2)

where a is the tilt angle of sample from the surface plane,

and k is the incident wavelength. By changing the tilt angle,

the spacing of holographic grating can be controlled. The

gratings periods were 3052, 1532, 1028, and 777 nm at tilt

angles of 5�, 10�, 15�, and 20�, respectively.

Figure 2(a) shows an environmental electron scanning

microscope (ESEM) image of the fabricated gratings with a

periodicity of �2.6 lm, which is in agreement with Eq. (2).

FIG. 3. Diffraction model of the sur-

face gratings. (a) Sketch of simulation

geometry for ink-based grating. (b)

Far-field diffraction pattern by shining

red laser (636 nm) on the grating. (c)

Diffraction intensity profile plots

across the hemispherical boundary as a

function of angle in response to three

incident wavelengths.

FIG. 4. Optical characterization of the

surface gratings by angular-resolved

measurements. Diffraction patterns

obtained on the screen of the

integrating-sphere by shining (a) red

(k¼ 632 nm), (b) green (k¼ 532 nm),

and (c) violet (k¼ 405 nm) light sour-

ces directed perpendicularly to the sur-

face grating. Scale bar¼ 5 mm.

Diffraction spectra as a function of

rotation degree at (d) red (k¼ 636 nm),

(e) green (k¼ 532 nm), and (f) violet

light (k¼ 405 nm). (g) Correlation

between the angles of the simulated

and experimental diffraction peaks.

041115-3 Zhao et al. Appl. Phys. Lett. 107, 041115 (2015)
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The periodicity of the grating was further supported by AFM

characterization showing �150 nm average depth of ink

layer (Fig. 2(b)).

The diffraction pattern of the ablated grating was simu-

lated by means of finite element method (FEM) using

COMSOL Multiphysics, a Ø32 lm hemispherical boundary

was modeled to show diffraction pattern by far-field projec-

tion. Three different wavelengths (405, 532, and 632 nm)

were induced to illuminate the ink-based grating at a normal

incidence. The dimensions of grating were modeled accord-

ing to the ESEM and AFM data. The 2D geometry model for

grating is shown in Figure 3(a).

Figure 3(b) shows the diffraction pattern in response to

red light, and four symmetrical diffraction orders were

observed. Figure 3(c) illustrates the simulated angular-

resolved spectra for 632, 532, and 405 nm light. Five diffrac-

tion orders were visualized by violet and green light, and the

diffraction angles increased as the incident light was shifted

to longer wavelength for the same order. The simulated dif-

fraction spectra showed that the grating had four orders

under red light (6�, 22�, 33�, and 51�), five orders under

green light (14�, 27�, 40�, 47�, and 60�), and five orders

under violet light (6�, 13�, 23�, 30�, and 41�).
The diffraction spectra of ink surface hologram were

measured using a semitransparent integrating sphere setup.

The sample was illuminated vertically by red, green, and vio-

let monochromatic light sources and diffraction spots were

projected on the screen of the hemisphere as shown in

Figures 4(a)–4(c).

Multiple diffraction orders were observed corresponding

to each incident wavelength; this was due to the large spac-

ing which distributed the incident light energy into different

diffraction orders. In addition, the diffraction spots situated

symmetrically from the center of hemisphere, with violet dif-

fracted at lower angle and red at higher angle, which is in

agreement with the simulated model.

To assess the diffraction angles and efficiency as a func-

tion of wavelength, angular-resolved measurements were

conducted. The structure for holding sample and light source

was supported by a stepping motor, which was capable of

rotating from �90� to 90� of the normal/zeroth order with 1�

increments. An optical power meter was placed in front of

the 3D rotational stage to capture the diffraction spots.

Figures 4(d)–4(f) display the diffraction intensity for the

three wavelengths as a function of rotation angle. A symmet-

rical number of peaks were observed on each side of the

non-diffracted zeroth order although there was less than 1

lW distinction (<0.1%) in peak intensity between each

sides. The diffraction spectra showed that the grating had

four orders under red light (12�, 24�, 38�, and 56�), five

orders under green light (10�, 20�, 30�, 42�, and 63�), and

five orders under violet light (7�, 14�, 22�, 29�, and 39�).
Figure 4(g) shows the correlation between angles of the

measured and simulated diffraction peaks. The presented

model allowed predicting the diffraction angles with R2 val-

ues of 0.99, 0.95, and 0.99 for red, green, and violet light,

respectively. The decrease in the prediction ability for the

green-violet light region may be attributed to absorption of

light by the ink in this region. A weak diffraction intensity

for fifth order was captured at green and violet lasers inci-

dence. The experimental diffraction efficiencies were calcu-

lated by adding all scattered spots in transmissive and

reflective directions. For example, in the sample illuminated

by 405 nm wavelength, the total diffraction efficiency was

8.43% by adding ten (five spots from each side of normal)

transmissive spots in forward direction and ten reflective

spots in backward direction. For the diffraction efficiency,

�55% and �45% contributed to transmissive and reflective

diffractions, respectively.

We demonstrate the application of nanosecond laser

ablation by presenting a holographic 2D signature and a 3D

coin image. Figure 5(a) shows a handwritten signature holo-

gram. The signature was handwritten on a PMMA substrate

and then patterned by laser ablation. In recording holograms

greater than 1 cm2, multiple exposures were required to

ablate the sample surface in different areas using a XY linear

translation stage to cover the signed region. The diffracted

image was polychromatic when illuminated with a white

light source. This holographic signature may be applied to

personalizing and authenticating certain kinds of autograph.

Figures 5(b) illustrates a 3D coin hologram, which was fabri-

cated by the setup provided in Figure 1(a). However, in this

case, the object was replaced by a coin to enable the infor-

mation of coin to be recorded. The diffracted image showed

3D vision disparity from different perspectives; however,

monochromatic virtual coin images could be reconstructed

when illuminated with a laser beam.

In conclusion, we developed a technique to print surface

gratings using single laser ablation holography in Denisyuk

reflection mode. The grating spacing that would be written

into the printable ink was predicted by computational simu-

lation at tilt angles of 15�, 30�, and 90�. The periodicity was

finally designed to be �3 lm by tilting the substrate 5� from

the surface plane. ESEM and AFM images confirmed the

morphology and spacing of a well-ordered holographic gra-

ting, where the periodicity was in agreement with the simu-

lated model. In the present work, a simplified model was

utilized to predict the profile of the surface holograms based

FIG. 5. Surface holograms recorded by

single nanosecond laser interference. (a)

Ink-based holographic signature. (b) 3D

holographic coin. Scale bars¼ 5 mm.

041115-4 Zhao et al. Appl. Phys. Lett. 107, 041115 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

147.188.224.215 On: Thu, 12 Nov 2015 14:59:29



on the grating equation. More accurate simulations can be

created by accounting the contribution of the refractive index

and absorption of the light by the ink, and the internal reflec-

tion from the air-ink and PMMA-ink interfaces. We also

demonstrated a methodology recording images with a signa-

ture and a 3D coin. Our strategy of ns laser interference re-

cording of surface holograms is efficient and feasible to

fabricate a variety of surface holograms, ranging from flat

transparencies to curved or arbitrary opaque substrates (sili-

con-based or metallic coating). The presented approach may

be applicable for printing responsive materials holograms

and sensors. They also hold potential for integration with

smart phone applications for the interpretation and verifica-

tion of colorimetric data. These holograms are easy-to-fabri-

cate, and low-cost, showing potential in numerous optical

devices for personalized identification, security, data storage,

and 3D artworks.

H.B. thanks the Leverhulme Trust for research funding.

The authors thank Jeff Blyth, Christopher R. Lowe, and

Yunuen Montelongo for their help toward this work.
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