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Abstract 

Direct application of histone-deacetylase-inhibitors (HDACis) to dental pulp cells (DPCs) 

induces chromatin changes, promoting gene expression and cellular-reparative events. We have 

previously demonstrated that HDACis (Valproic acid, Trichostatin A) increase mineralization in dental 

papillae-derived cell-lines and primary DPCs by stimulation of dentinogenic gene expression. Here, we 

investigated novel genes regulated by the HDACi, suberoylanilide hydroxamic acid (SAHA), to identify 

new pathways contributing to DPC differentiation. SAHA significantly compromised DPC viability only 

at relatively high concentrations (5µM); while low concentrations (1µM) SAHA did not increase 

apoptosis. HDACi-exposure for 24h induced mineralization-per-cell dose-dependently after 2 weeks; 

however, constant 14d SAHA-exposure inhibited mineralization. Microarray analysis (24h and 14d) of 

SAHA exposed cultures highlighted that 764 transcripts showed a significant >2.0-fold change at 24h, 

which reduced to 36 genes at 14d. 59% of genes were down-regulated at 24h and 36% at 14d, 

respectively. Pathway analysis indicated SAHA increased expression of members of the matrix 

metalloproteinase (MMP) family. Furthermore, SAHA-supplementation increased MMP-13 protein 

expression (7d, 14 d) and enzyme activity (48h, 14d). Selective MMP-13-inhibition (MMP-13i) dose-

dependently accelerated mineralization in both SAHA-treated and non-treated cultures. MMP-13i-

supplementation promoted expression of several mineralization-associated markers, however, HDACi-

induced cell migration and wound healing were impaired. Data demonstrate that short-term low-dose 

SAHA-exposure promotes mineralization in DPCs by modulating gene pathways and tissue proteases.  

MMP-13i further increased mineralization-associated events, but decreased HDACi cell migration 

indicating a specific role for MMP-13 in pulpal repair processes. Pharmacological inhibition of HDAC 

and MMP may provide novel insights into pulpal repair processes with significant translational benefit. 
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Introduction 

The balance between the cellular enzymes, histone deacetylases (HDACs) and histone 

acetyltransferases (HATs), controls chromatin conformation and regulates transcription. Predominant 

HDAC activity results in the removal of acetyl groups from the histone tails within the nucleosome, 

leading to a condensed chromatin conformation and reduced transcription, while HAT activity has the 

opposite effect leading to an open, transcriptionally active chromatin structure (Bolden et al., 2006). 

There are 18 identified mammalian HDACs, which are categorized into four classes functioning via zinc-

dependent or independent mechanisms (Gregoretti et al., 2004). Class I (-1, -2, -3, -8) are zinc-dependent, 

ubiquitously distributed and expressed in the cell nucleus (Marks and Dokmanovic, 2005), while class II 

(-4, -5, -6, -9, -10) are also zinc-dependent, but demonstrate tissue-restricted expression and shuttle 

between the nucleus and cytoplasm (Verdin et al., 2003; Marks, 2010). Class III HDACs, known as 

sirtuins, are not zinc-dependent, instead requiring coenzyme nicotinamide adenine dinucleotide (NAD+) 

for function (Haigis and Guarente, 2006), while there is currently only one class IV member, HDAC -11 

(Villagra et al., 2009). A recent analysis of HDAC expression in human dental pulp tissue demonstrated 

that HDAC-2 and -9 were expressed in some pulp cell populations and strongly expressed in 

odontoblasts, the formative cells for mineralized dentin, while HDAC-1, -3 and -4 were only relatively 

weakly expressed within pulp tissue (Klinz et al., 2012), highlighting the tissue-specific expression of 

class I and II of HDAC.  

Histone deacetylase inhibitors (HDACi) are epigenetic-modifying agents that alter the 

homeostatic enzyme balance between HDACs and HATs leading to an increase in acetylation and 

transcription. The increased gene expression induces pleiotropic cellular effects, altering cell growth 

(Marks and Xu, 2009), increasing cell differentiation (Schroeder and Westendorf, 2005), reducing 

inflammation (Shuttleworth et al., 2010) and modulating stem cell lineage commitment (Mahmud et al., 

2014). A range of natural and synthetic HDACi, including valproic acid (VPA), butyric acid, trichostatin 

A (TSA) and suberoylanilide hydroxamic acid (SAHA), have been investigated with SAHA being the 
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first HDACi to gain United States Food and Drug Administration (FDA) approval for anti-cancer 

treatment (Grant et al., 2007). Increasingly, the positive transcriptional effects of HDACi are also being 

investigated in fields such as bone engineering (De Boer et al., 2006), and organ regeneration (de Groh et 

al., 2010).  Traditionally, pan-HDACi (such as VPA, TSA and SAHA), which are active against Class I 

and II HDACs, have been investigated experimentally (Schroeder et al., 2007; Marks, 2010; Jin et al., 

2013).  

Within dental pulp research, a range of HDACis have been demonstrated to promote 

differentiation and increase mineralization dose-dependently, in both a dental-papilla derived cell-line 

(Duncan et al., 2012; Kwon et al., 2012) and primary dental pulp cell (DPC) populations at relatively low 

concentrations (Duncan et al., 2013; Jin et al., 2013; Paino et al., 2014). An HDACi-induced expression 

of specific dentinogenic-marker genes was demonstrated, which may drive the increase in mineralization 

(Duncan et al., 2012; Kwon et al., 2012). Other studies have identified the down-regulation of specific 

class I HDACs, -3 (Jin et al., 2013) and -2 (Paino et al., 2014) in mineralizing pulp cells. At present, no 

study has characterized the transcript regulation and novel pathways responsible for the HDACi-induced 

promotion of pulp mineralization using high-throughput approaches.  

The matrix metalloproteinases (MMPs) are a family of host-derived zinc-dependent 

endopeptidases (Nagase and Woessner Jr, 1999). MMPs can not only degrade practically all 

proteinaceous extracellular matrix components (Verma and Hansch, 2007), but are also an important link 

to a host of tissues processes including angiogenesis, differentiation and chemotaxis by improving the 

bioavailability of growth factors through cleavage (Hannas et al., 2007; Borzi et al., 2010). MMPs have 

been shown to be central to normal and pathological remodelling processes in various mineralization-

associated tissues, including bone (Paiva and Granjeiro, 2014), cartilage (Krane and Inada, 2003) and 

periodontal tissues (Ravanti et al., 1999). Recently, certain MMPs have generated significant interest 

within restorative dentistry with MMP-2 being identified in increased quantity in defensive reactionary 

dentine (Charadram et al., 2012) while MMP-13 (collagenase-3) expression increased during dental 

wound reparative processes (Suri et al., 2008; Yoshioka et al., 2013).  
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From a translation perspective, the identification of regulators that control lineage commitment 

and differentiation is paramount to the development of cell-based regenerative strategies. A complex 

HDAC-mediated control of bone remodelling and repair processes is emerging involving intricate 

epigenetic-control of a series of pathways (Bradley et al., 2011). MMP-13 activity may be particularly 

important in this process as it demonstrates relatively high expression in pulp tissue (Palosaari et al., 

2003; Sulkala et al., 2004), has increased expression during mineralization (Winchester et al., 1999; Suri 

et al., 2008) and repressed-transcription by HDAC-4 in an mineralizing osteoblastic cell-line (Shimizu et 

al., 2010). Notably, microarray studies have demonstrated an HDACi-induced modulation of MMPs in 

mineralizing bone-derived cell cultures (Schroeder et al., 2007). Here for the first time, we investigate 

whether the clinically-approved HDACi, SAHA, could induce regenerative processes in primary DPC 

cultures with high-throughput transcriptional analyses being undertaken to identify novel genes and 

potential pathways activated.  As transcriptomic analysis identified a significant role for several MMPs in 

the pulp reparative process; a subsequent aim of this study was to analyse the specific novel role of MMP-

13 and its interaction with HDACi in modulating regenerative events in DPC cultures. 

 

Materials and methods 

Primary cell isolation and culture. Primary DPCs were isolated from the extirpated pulp tissue of freshly 

extracted rodent incisor teeth using enzymatic disaggregation (Patel et al., 2009). Briefly, teeth were 

dissected from male Wistar Hannover rats aged 25-30 days and weighing 120-140 g. Pulp tissue was 

extirpated, minced and transferred into Hank’s balanced salt solution (Sigma-Aldrich, Arklow, Ireland) 

prior to incubation at 37°C, 5% CO2 for 30 min (MCO-18AC incubator, Sanyo Electric, Osaka, Japan). 

Cells were transferred to an equal volume of supplemented α-MEM (Biosera, East Sussex, UK) 

containing 1% (w/v) penicillin/streptomycin (Sigma-Aldrich) and 10% (v/v) foetal calf serum (FCS) 

(Biosera). Single cells were obtained by passing through a 70 µm cell sieve (BD Biosciences) prior to 

centrifugation and re-suspension in 1 ml supplemented α-MEM. DPCs were expanded under standard 

culture conditions to passage 2 for use in all subsequent experiments.  
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Pharmacological inhibitor preparation. A 5 mM stock solution of the HDACi, SAHA (N-hydroxy-N′-

phenyl-octanediamide) (Sigma-Aldrich), in dimethyl sulfoxide (DMSO) was diluted in phosphate 

buffered saline (PBS) (Sigma-Aldrich) prior to further dilution to experimental concentrations (0.25 µM - 

5 µM) with supplemented α-MEM. A 5 mM stock solution of the MMP-13 specific inhibitor (MMP-13i) 

(Pyrimidine-4,6-dicarboxylic acid, Bis-[4-fluoro-3-methyl-benzylamide])  (Santa Cruz Biotechnologies, 

Heidelberg, Germany) in dimethyl sulfoxide (DMSO) was diluted to experimental concentrations (0.5 

µM - 10 µM) in supplemented α-MEM. 

 

Cell growth and viability analysis. DPCs were initially seeded 1 x 10
5
 cells per well [6-well plates 

(Sarstedt, Wexford, Ireland)] for 72 h. For experimental day 0, cells were cultured in supplemented α-

MEM for a further 24 h prior to harvest. SAHA (0.25, 0.5, 1, 3 and 5 µM) was added to the supplemented 

α-MEM at day 0. Control samples did not contain SAHA supplementation. Trypan blue (Sigma-Aldrich) 

staining (n=4) was used to assess cell viability.  Thereafter 1 and 2 µM MMP-13i alone or in combination 

with SAHA were assessed for effects on DPC growth and viability under mineralizing conditions.  Cells 

were seeded as previously described and at 72 h (experimental day 0), mineralizing medium 

(supplemented α-MEM including 50 µg/ml ascorbic acid, 0.1 µM dexamethasone and 10 mM β-

glycerophosphate) was applied for a further 1 and 4 days. As 24 h HDACi culture had previously been 

demonstrated in induce mineralization at 14 days (Duncan et al., 2013), SAHA (1 µM) was added to the 

mineralizing medium, at day 0, for the initial 24 h only, while the MMP-13i was supplemented in cultures 

throughout. In the 5 day group, the SAHA/MMP-13i-supplemented mineralizing medium was replaced 

after 24 h with MMP-13i-supplemented mineralization media for a further 4 days. Control cultures were 

in mineralizing medium either without HDACi or MMP-13i. Three independent experiments (n=3) were 

performed in triplicate for time points and combinations of SAHA and 1 µM, 2 µM MMP-13i, 

respectively.  
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Live-Dead staining assay. DPCs were seeded at a density of 5 x 10
3
 in clear bottom black 96-well plates 

(Corning, NY, USA) for 24 h. At 24 h (experimental day 0), the cells were cultured in mineralizing 

medium for 24 or 48 h (experimental day 1 and 2) prior to harvest. SAHA (0.25, 0.5, 1, 3 and 5 µM) was 

added to the medium at day 0. Control cultures contained mineralization α-MEM without SAHA, while 

1% saponin (Sigma-Aldrich) was applied for 10-15 min to verify cell death. At experimental end-points, 

cultures were washed twice in PBS prior to incubation with Live/Dead™ reagents, 4 µM ethidium 

homodimer-1 (EthD-1) and 2 µM calcein AM (Life Technologies, Paisley, UK) (Murphy et al., 1998).  

Fluorescent signals were quantified spectrophotometrically (Tecan Genios Spectrophotometer, Unitech, 

Dublin, Ireland). Four independent experiments (n=4) were performed in triplicate for each HDACi 

concentration. 

 

Flow cytometry (FC). FC detection (BD FACSCanto II, BD Biosciences) of annexin V (AV) binding and 

propidium iodide (PI) staining (Annexin V-FITC Kit, BD Bioscience) was performed to assess viability 

and apoptosis. Cells (1 x 10
5
 per well in 6-well plates) were cultured in supplemented α-MEM for 24 h, 

prior to addition of SAHA (1 µM) for a further 24 h. The experimental SAHA concentration and 24 h 

time point was selected from the results of the cell growth, live/dead and mineralization assays and 

represented the end of the DPCs exposure to the HDACi. Untreated cells in supplemented α-MEM served 

as the negative control and cells in supplemented α-MEM with 6 µM camptothecin (Sigma-Aldrich) were 

used as a positive control to confirm apoptosis. Cells were detached (trypsin/EDTA), washed twice with 

PBS and suspended in a 1 x AV binding buffer (BD Bioscience). A 100 µl aliquot of the cell suspension 

(1 x 10
5
) was incubated at room temperature with 5 µl FITC-AV and 5 µl PI for 15 min. Thereafter, 400 

µl of 1 x AV binding buffer was added and cells analysed by FC within 1 h. Excitation was performed at 

488 nm and the emission filters used for AV-FITC and PI were 530/530 nm and 585/545 nm, 

respectively. Data were analysed using FC software (FloJo, Tree Star, OR, USA) and the PI staining 
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intensity plotted against FITC intensity. Four independent experiments (n=4) were performed with 10,000 

cell events measured for each experimental/control group. 

 

Mineralization assays. Cells were seeded (5 x 10
4 

per well
 
in 6-well plates) and cultured in supplemented 

α-MEM for 72 h. At 72 h (day 0), DPCs were supplemented with mineralizing medium with SAHA 

(0.25, 0.5, 1, 3 and 5 µM) for the initial 24 h or for 14 days. In the 24 h HDACi-exposure cultures, 

SAHA-supplemented mineralizing medium was removed after 24 h, prior to culture with an HDACi-free 

mineralizing medium for a further 13 days, while in the 14 day HDACi-exposure samples SAHA 

supplemented the mineralizing medium throughout. The 14 day time-point was selected as rat DPCs in 

mineralizing culture require this time to secrete mineral that can be discriminatively measured 

quantitatively by alizarin red staining (Duncan et al., 2013). Control samples were in mineralizing 

medium without SAHA with medium changes every 3 days. For analysis, cultures were washed 3 times 

for 5 minutes in PBS and fixed in 10% formaldehyde for 15 min, washed with distilled water and finally 

stained with 1.37% (w/v) alizarin red S (Millipore, Cork, Ireland) (pH 4.2) for 15 min at room 

temperature. Excess stain was removed by washing with distilled water; the residual stain was solubilised 

in 10% (v/v) acetic acid (Millipore). Stain intensity was quantified spectrophotometrically at 405 nm 

(Gregory et al., 2004) (Tecan Genios Spectrophotometer, Unitech). Mineral production per cell data for 

all concentrations of SAHA were subsequently calculated based on parallel experiments whereby viable 

cells were counted following Trypan blue staining. Four independent mineralization and cell count 

experiments (n=4) were performed in triplicate for both 24 h and 14 day SAHA exposures, respectively. 

To assess the effects of 1 and 2 µM MMP-13i +/- SAHA on DPC mineralization, a similar 

protocol to that described above was applied. At 72 h, the DPCs were cultured (day 0) in a mineralizing 

medium with the addition of MMP-13i (1 µM or 2 µM) alone or in combination with 1 µM SAHA. DPCs 

were cultured with SAHA for only the initial 24 h, prior to culture with an HDACi-free mineralizing 

medium for a further 13 days, while MMP-13i was supplemented in cultures for the 14 day experimental 
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period. The control samples contained DPCs cultured in mineralizing medium in the presence and 

absence of SAHA. Three independent experiments (n=3) were performed in triplicate for all 

combinations of SAHA and MMP-13i, respectively. 

 

RNA, cDNA and labelled cRNA preparation. Cells were seeded (6 x 10
4 
cells per well) in a 6-well culture 

dish in supplemented α-MEM for 72 h. At 72 h (experimental day 0), cells were either cultured for 24 h 

in supplemented mineralizing medium containing 1 µM SAHA prior to harvest (24 h samples) or 

incubated with an HDACi-free mineralizing medium for a further 13 days (experimental day 14). 

Medium was changed every 3 days in the 14 days group. Control samples contained cells cultured in 

mineralizing medium without SAHA. Cultures were detached (trypsin/EDTA), homogenized [T10 basic 

S2-Ultra-Turrax tissue disrupter (IKA, Staufen, Germany)] and RNA extracted using the RNeasy mini kit 

(Qiagen, West Sussex, UK)and quantified spectrophotometrically (Nanodrop 2000, Thermo Fisher 

Scientific).  For microarray samples, a 75 ng aliquot of total RNA was labelled with Cyanine 3-CTP or 

Cyanine 5-CTP using the Two-Color Low Input Quick Amp labeling Kit (Agilent Technologies, Cork, 

Ireland) according to the manufacturer’s instructions. Briefly, RNA was converted to cDNA with an oligo 

dT-promoter primer and Affinity-Script-RT (Agilent Technologies), prior to experimental/control groups 

being labelled with Cy5 or Cy3 and transcribed to cRNA (Agilent Technologies). The labelled and 

amplified cRNA was purified as previously described using the RNeasy mini kit (Qiagen) and Cy3, Cy5 

concentration, RNA absorbance 260/280 nm and cRNA concentrations determined 

spectrophotometrically (Nanodrop 2000, Wilmington, DE, USA). This enabled specific activity and target 

yields to be calculated prior to microarray experimentation. 

 

Gene expression microarray and data analysis. The Agilent 4 x 44k v3 whole rat genome oligonucleotide 

gene expression microarray (Agilent Technologies) was used to analyse the transcript profiles of SAHA 

treated (1 µM) and untreated DPC cultures at both 24h and 14 days. The microarray analyses were 
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performed on quadruplicate independent DPC cultures (n=4) at both time-points. A total of 825 ng of 

labelled cRNA from each sample (treated and untreated) was loaded onto an individual array according to 

the manufacturer’s instructions and co-hybridised at 65°C for 17 h, washed and scanned in GenePix- 

Personal 4100A, Pro 6.1 (Axon, Molecular Devices, CA, USA) at a resolution of 5 µm. Raw data were 

exported to GeneSpring GX12 and signals for each replicate spot were background corrected and 

normalized using Lowess transformation. Log2 fluorescent intensity ratios were generated for each 

replicate spot and averaged. Genes that were differentially expressed (>2.0 fold) in the SAHA group 

relative to control were identified after passing a t-test (p<0.05), post-hoc test (Storey with Bootstrapping) 

with a corrected q value of 0.05. Genes in the expression data sets were first ‘ranked’ based on Log2 

values from highest to lowest for both groups at both time points, prior to hierarchical clustering being 

used to group gene expression in each condition using the default settings in Genespring GX12. Gene 

Ontology (GO) was evaluated using Go-Elite (http://www.genmapp.org/go_elite) (Salomonis et al., 

2009), which is designed to identify a minimal non-redundant set of biological Ontology terms or 

Pathways to describe a particular set of genes or metabolites. Subsequent pathway analysis was 

undertaken using Pathvisio (http://www.pathvisio.org/) (van lersel et al., 2008; Kelder et al., 2012), which 

uses an over-representation analysis, only reporting on GO terms and pathways with a z score >2, a 

permutation p<0.01, and three or more regulated genes for the pathway. Microarray data have been 

submitted to Gene Expression Omnibus (GEO), accession number: GSE67175. 

 

cDNA synthesis and quantitative RT-PCR analysis. For quantitative validation, DPCs were cultured and 

harvested at 24 h and 14 days in an identical protocol to microarray analysis above. MMP-13i 

supplemented cultures were harvested at 24 h and 5 days. Briefly, at experimental day 0 (72 h), the cells 

were cultured in supplemented mineralizing medium containing 2 µM MMP-13i and harvested at 24 h 

and 5 days. Two control groups contained cells cultured in mineralizing medium in both the presence and 

absence of 24 h 1 µM SAHA. This time point coincided with both the SAHA microarray data and the 

MMP-13i cell growth study. RNA was isolated as described above, converted to single-stranded cDNA 
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using the TaqMan™ reverse transcriptase kit and 50 µM random hexamers (Life Technologies), prior to 

cDNA concentrations being determined spectrophotometrically at 260 nm (Nanodrop 2000, Thermo 

Fisher Scientific).  

The q-RT-PCR analysis was performed for rat genes using specific primers (Invitrogen, Life 

Technologies, Thermo Scientific, Paisley, UK). The primer sequences, product sizes and the accession 

number are listed in Table 1. Synthesised cDNA was amplified in a reaction containing; 12.5 µl SYBR 

Green Fast PCR reagent (Applied Biosystems), 1 µl Forward /Reverse primer, 8 µl DEPC-treated water 

and 100 ng of template cDNA. PCRs were performed using the Applied Biosystems 7500 Fast Real-Time 

PCR thermal cycler (Applied Biosystems) and subjected to a designated number of amplification cycles 

(40 cycles), where a typical cycle was 95°C for 3 secs and 60°C for 30 secs. Real-time PCR data were 

normalized to β-actin, and fold change in gene expression was obtained using the formula 2
((Ctctrl - Ctβ-actin) - 

(Ctexp - Ct-actin))
, where Ct is the threshold cycle, ctrl is the control and exp is the experimental samples. Four 

independent experiments (n=4) were performed for each target gene in triplicate at both 24 h and 14 days 

to validate the microarray data. Three independent experiments (n-3) were carried out in triplicate for the 

MMP-13i experimental gene targets. 

 

Enzyme-Linked Immunosorbent Assay (ELISA). Cells were seeded (6 x 10
4
 per well) in 6-well plates and 

cultured in supplemented α-MEM for 72 h. At 72 h, the DPCs were cultured (day 0) in a mineralizing 

medium with addition of 1 µM SAHA for the initial 24 h of culture. Cells were harvested at experimental 

days 1, 7, 14, and 21 for analysis. The HDACi-supplemented mineralizing medium was removed after 24 

h prior to culture with an HDACi-free mineralizing medium for a further 6, 13 or 20 days. The 

quantification of the MMP-13 protein was investigated at 3 time-intervals, prior to the 21 day 

mineralization end point. Control culture samples did not contain SAHA supplementation. Subsequently, 

medium was aspirated and cultures washed twice in ice cold PBS (pH 7.4), prior to the addition of 300 µl 

lysis buffer containing mammalian protein extraction reagent (M-PER) (Thermoscientific Pierce, 
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Rockford, IL, USA) halt protease inhibitor (Thermoscientific Pierce) and 1 mM phenylmethylsulfonyl 

fluoride (PMSF) (Thermoscientific Pierce). A Bradford dye-binding method (Bio-Rad, Hemel 

Hempstead, Hertfordshire, UK) was used for normalisation. Total MMP-13 levels were analysed by 

quantitative sandwich ELISA technique (Cusabio, Wuhan, Hubei Province, China) according to the 

manufacturer’s instructions and absorbance measured at 450 nm with the correction wavelength set at 570 

nm. Results were calculated from a standard curve. Three independent experiments (n=3) were performed 

in triplicate for each experimental concentration and time interval. 

 

MMP-13 Enzyme Activity Assay. The specificity of the MMP-13 inhibitor was determined by addition of 

0 (control), 0.5, 1, 2, 5 and 10 µM MMP-13i to samples containing 100 ng/ml of recombinant MMP-9 

and MMP-13, which was diluted in assay buffer to a final dilution ratio of 1:100 (AnaSpec, San Jose, 

CA). A 96-well plate format was used with the Sensolyte™ 490 MMP-13 fluorimetric assay kit as per the 

manufacturer’s instructions (Anaspec). Zymogens or pro-MMP-9 and 13 were activated immediately 

prior to experimentation by incubation with 1 mM 4-aminopheylmercuric acetate (APMA) for 40 mins 

(MMP-13) and 1 hour (MMP-9) at 37°C. Diluted samples were incubated for 45 minutes in a black 96-

well plate (Perkin Elmer, Waltham, MA, USA) prior to the fluorescent intensity being measured by a 

spectrophotometer (Tecan Genios Spectrophotometer) at 360 nM (excitation) and 465 nM (emission).  

To measure MMP-13 activity in DPCs, cultures were seeded (6 x 10
4
 cells per well) in a 6-well 

culture plate. At 72 h (experimental day 0), the cells were cultured for 24 h in supplemented mineralizing 

medium either containing 1 µM SAHA or 2 µM MMP-13i or a combination of both. Active MMP-13 

activity was analysed at 2 time-points (48 h and 14 days) to reflect an early and late time point to coincide 

with the gene expression data. In the 48 h group and 14 day group, the HDACi-supplemented 

mineralizing medium was removed after 24 h prior to culture with an SAHA-free mineralizing medium 

for further 24 h or 13 days. In the MMP-13i samples the inhibitor supplemented the culture for the 

duration of the experiment. Two control groups consisting of supplemented α-MEM and supplemented 
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mineralizing medium. At the designated time-point, the medium was aspirated and the cell monolayer 

gently washed twice in ice cold PBS (pH 7.4), prior to the addition of 300 µl lysis buffer containing M-

PER (Thermoscientific Pierce), halt protease inhibitor (Thermoscientific Pierce) and 1 mM PMSF 

(Thermoscientific Pierce). Harvested cells were collected. The Bradbury dye-binding method (Bio-Rad, 

Hemel Hempstead, Hertfordshire, UK) was used to equalize total protein concentrations in samples.  

A 96-well plate format was used as before with the Sensolyte™ 490 MMP-13 fluorimetric assay 

kit according to the manufacturer’s instructions (Anaspec). Briefly, the pro-MMP-13 zymogen was 

activated immediately prior to experimentation in all samples by incubation with 1 mM APMA for 40 

mins at 37°C.  Fluorescent intensity was measured by a spectrophotometer (Tecan Genios 

Spectrophotometer) at 360 nM (excitation) and 465 nM (emission). For calculation of MMP-13 activity, 

each measurement was background-corrected to the average of the substrate controls. As the FRET 

substrate in the  Sensolyte™ 490 MMP-13 kit can also be cleaved by MMP-1, -2, -3, -8, and -12 the 

MMP-13 specific inhibitor group was used to ascertain the effect of MMP-13 alone. Three independent 

experiments (n=3) were performed in triplicate for each experimental concentration at both time intervals. 

 

Chemotaxis Transwell assay. To measure vertical DPC migration, 30 µl of supplemented α-MEM 

(without FBS) or control solutions were added into wells of a 96-well micro-chemotaxis plate with a 8 

µm-pore size (NeuroProbe, Receptor Technologies, Warwick, UK) [43]. DPCs (3x10
4
) were seeded in 

wells of the upper chamber. Test solutions examined supplemented α-MEM (without FBS) containing 1 

and 3 µM SAHA, 1 and 2 µM MMP-13i and both 1 µm SAHA and 2 µM MMP-13i.  DPCs in the SAHA 

test solutions were exposed to SAHA in culture for 3 h prior to seeding in the assay chamber. Control 

solutions included a negative control of supplemented α-MEM (without FBS) and a positive control of α-

MEM medium containing 10% FCS. The micro-chemotaxis plate was incubated at 37°C in 5% CO2 in air 

for 3 h to allow cell migration. Centrifugation was used to collect cells from the under-surface of the filter 

from the pores onto the bottom of the 96-well plate and 1mg/ml calcein AM (Life Technologies, Dun 
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Laoghaire, Ireland) was added to each well at a final dilution ratio of 1:250 for 30 minutes to label cells 

prior to fluorescence measurement with a spectrophotometer (Tecan Genios Spectrophotometer) at 

excitation 486 nM and emission of 540 nM. Readings were converted to cell numbers using standard 

curves of known cell numbers (Smith et al., 2012).  Three independent experiments (n=3) were performed 

in triplicate for each experimental group. 

 

Scratch wound healing assay. To assess horizontal migration, DPCs were seeded at a density of 6 x 10
4
 in 

6-well plates and cultured in supplemented α-MEM until confluent. Cells were starved for 24 h in 

supplemented α-MEM medium without FBS, prior to a carefully placed scratch wound being made 

through the confluent monolayer using light pressure and a 200µl pipette tip (0 h). DPCs were washed 

with PBS to remove cell debris and incubated with mineralizing medium in the presence and absence of 1 

µM SAHA and 2µM MMP-13i for 24 h. At 0 h and 24 h, images of the scratched monolayer cultures 

were captured (Primovert, Carl Zeiss, Cambridge, UK). Data were quantified by measuring each wound 

closure area using ImageJ software (ImageJ, USA) and expressing as a percentage relative to the wound 

closure area in the control medium. Three independent experiments (n=3) were performed in triplicate for 

each experimental group. 

 

Statistical Analyses. One-way analysis of variance (ANOVA) and Tukey’s post-hoc tests were used for 

experiments to determine the influence of HDACi and MMP-13i concentration (p<0.05) on the cells 

using SigmaStat 14.0 software (SPSS, IL, USA). The statistical significance of the qRT-PCR data was 

assessed using Student’s t-test. Microarray gene expression and pathway analysis were assessed as 

previously described. 
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Results 

Short-term SAHA treatment promotes mineralization without loss of cell viability, while long-term SAHA 

inhibits differentiation. Previous dental pulp cell experimentation has shown that pan-HDACi 

(Trichostatin A and Valproic acid) can exert anti-proliferative effects at relative high concentrations, but 

at relatively low concentrations can promote mineralization dose-dependently (Duncan et al., 2012; 

Duncan et al., 2013). To investigate the cellular effects of SAHA (Grant et al., 2007), the effects of low 

doses of SAHA on primary DPC growth, viability, apoptosis and mineralization were investigated. While 

DPC numbers were decreased (reduced up to 45%) at 24 h by the higher experimental concentrations of 3 

and 5 µM SAHA (p=0.012/p<0.001), compared with HDACi-free control cultures, at a SAHA 

concentration of 1 µM there was no significant effect on growth (Fig. 1A). Furthermore, cell viability 

investigated by both Trypan blue exclusion and live/dead staining demonstrated no significant loss of 

viability at 24 h (p>0.140/ p>0.275) at the low dose SAHA concentrations applied. A relatively small 

(~10%) but significant loss of viability at 5 µM SAHA was demonstrated by live/dead staining compared 

with the control at 48 h (p=0.003) (Fig. 1B). Consistent with previous HDACi experimentation (Duncan 

et al., 2013), 14 d mineralizing cultures exposed to an initial 24 h dose of SAHA, demonstrated 

significant dose-dependent increases in mineralization per cell at all concentrations >0.5 µM (p<0.046) 

applied, compared with HDACi-free control cultures (Fig. 1C). Notably, samples in which the HDACi 

was replenished every 3 days for the duration of the 14 d mineralization experiment demonstrated the 

opposite effect, with mineralization per cell inhibited at all concentrations >0.5 µM SAHA (p<0.013). 

This finding is supported by a recent in vivo animal study, which reported that the HDACi dosage regime 

may be as critical in promoting a positive mineralization response (Xu et al., 2013). From the growth, 

viability and mineralization data, 1 µM SAHA was selected for further flow cytometry (FC) and gene 

expression analysis as it was the highest mineralization promoting concentration not to induce DPC 

growth arrest at 24 h. Viable cell numbers data assessed by FC (Fig. 1D) were not significantly affected at 

1 µM SAHA (p=0.058), while no significant increase in early or late apoptosis was detected following 24 

h SAHA exposure (Fig. 1E-F). 
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SAHA significantly altered DPC gene expression at relatively early and late mineralization inducing 

time-points. To determine the molecular mechanisms whereby 1 µM SAHA accelerates mineralization 

effects, we performed microarray analyses. Based on previous work (Duncan et al., 2013), we 

hypothesized that 24 h SAHA treatment would reprogram gene expression at a relatively early time-point 

and accelerate the differentiation process up to 14 days. Subsequently, we isolated mRNA from primary 

DPCs cultured in mineralizing medium at 24 h, the end of SAHA exposure, and 14 d. At 24 h, of the 

23,347 genes analysed, SAHA significantly increased the expression >2-fold of 314 transcripts and 

suppressed the expression of 450 genes, representing alteration of only 3.3% of the array 

oligonucleotides, while only 23 transcripts were similarly up-regulated and 13 down-regulated at 14 d 

(Fig. 2A and 2B). The top 40 SAHA most up- and down-regulated genes at 24 h are listed in Tables 2 & 3 

and the top 20 up- and down-regulated genes at 14 d in Tables 4 & 5. The observed gene expression 

patterns demonstrate that although SAHA-induced transcriptional change, more genes were suppressed 

than induced at 24 h and the expression changes were of a relatively modest level. Notably, similar levels 

of differential gene expression have been reported in other HDACi high-throughput transcriptomic studies 

(Schroeder et al., 2007; Boudadi et al., 2013). Interestingly, although selected mineralization-associated 

transcripts are significantly upregulated only at 24 h (MMP-9, 2.99-fold; Adrenomdeullin, 3.4-fold), 

Ameloblastin was upregulated at 14 days only (1.72-fold) and MMP-13 at both time points (2.45-fold 24 

h; 1.6-fold 14 d) (Fig. 2C).  

 

SAHA-induced genes within the matrix metalloproteinase family and endochondral ossification related 

pathway in DPC s. To identify potential pathways that are affected by SAHA exposure in primary DPCs 

under mineralizing conditions, the microarray gene expression dataset was subjected to pathway analysis 

using Go-Elite and Pathvisio analysis software. Bioinformatic analysis indicated that the endochondral 

ossification pathway and the matrix metalloproteinase family (Fig. 2D) were significantly induced by 
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SAHA exposure in DPCs at 24 h (Table 6). Specifically, four up-regulated genes (MMP-9, 2.99-fold; 

MMP-13 2.45-fold; Ctsl1, 2.24-fold; Plat, 1.93-fold) playing critical roles in removal and organisation of 

extracellular matrix were identified. From this select group of genes, MMP-13 was of particular interest 

as it was previously reported that the Class II HDAC-4 repressed MMP-13 transcription in a mineralizing 

cell-line (Shimizu et al., 2010). Furthermore a potential role for MMP-13 in human pulp cell 

differentiation has been proposed (Suri et al., 2008; Yoshioka et al., 2013). As a result, a panel of 20 

genes of interest, including MMP-13 and MMP-9, were selected for confirmatory qRT-PCR analysis 

(Table 1). A range of transcripts was selected based on their levels of differential regulation, their 

potential roles in mineralization processes and pathways (e.g endochondral ossification). The 

confirmatory analysis corroborated the microarray data (Table 7). Notably, at 24 h, SAHA-induced 

significant increases in MMP-9 (2.76-fold, p=0.011), MMP-13 (2.19-fold, p=0.043), as well as expression 

of several up-regulated mineralization genes which have been reported as significant markers of dental 

pulp mineralization, including Nestin (1.82-fold, p=0.005), IBSP (2.38-fold, p=0.005), BMP-4 (2.79-fold, 

p=0.015) and Adrenomedullin (3.06-fold, p=0.047) (Fig. 3A and 3B).  

 

MMP-13 protein expression and enzyme activity are increased in mineralizing DPC cultures and further 

increased by low-dose SAHA. To further analyse the interaction of SAHA and MMP-13, DPCs were 

cultured under mineralizing conditions in the presence and absence of SAHA for 24 h, prior to HDACi-

free incubation for up to 21 days. The aim of this time-course assay was to examine the expression and 

activity of MMP-13 protein during DPC proliferation, differentiation, and mineralization; it has 

previously been shown (Winchester et al., 1999; Suri et al., 2008) that MMP-13 expression increases 

during the DPC differentiation before reducing later during mineralization. The influence of HDACi on 

MMP-13 expression over the same time period has not been previously investigated. Overall in this study, 

MMP-13 protein expression, measured by quantitative ELISA, demonstrated a peak level at 7 days in all 

groups (supplemented medium, mineralizing medium, mineralizing medium/SAHA), which reduced at 14 
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days and returned at 21 days to baseline levels. Although there were no significant differences in MMP-

13 protein levels at 24 h (p>0.728) in any group, by 7 days a significant increase was evident in 

mineralizing cultures in the absence (p=0.044) and presence of 1 µM SAHA (p=0.02), compared with 

non-mineralizing control cultures (Fig. 4A). The addition of SAHA to mineralizing cultures resulted in a 

significant increase in MMP-13 expression at 7 days compared with the mineralizing medium control 

(p=0.034). At 14 days, there was also a significant increase in the expression of MMP-13 protein levels 

for the SAHA samples, compared with both the supplemented medium group (p=0.03) and the 

mineralizing medium group (p=0.029).  At the late mineralization stage of 21 days, there were no 

significant differences between any groups and MMP-13 expression returned to baseline levels.   

To determine whether changes in active MMP-13 enzyme activity reflected increased gene and 

protein expression, we used a commercial fluorogenic activity assay and selective pharmacological 

inhibition to block MMP-13 activity. Experimental MMP-13i concentrations were established initially by 

reference to previously published studies (Toriseva et al., 2007; Nishimura et al., 2012; Lei et al., 2013). 

An in vitro experiment was also undertaken to confirm enzyme activity inhibition and specificity. MMP-

13i resulted in an 87% reduction of MMP-13 activity at a concentration of 1 µM and 93% reduction at 2 

µM (Fig. 4B), however, for all inhibitor concentrations >0.5 µM, activity was significantly reduced 

(p<0.0001). At the same concentrations the MMP-13i had no significant effect on MMP-9 activity 

(p=0.709) (Fig. 4B). Subsequently, a fluorogenic activity assay was utilized to assess MMP-13 activity in 

DPCs cultured in supplemented medium, mineralizing medium and SAHA-augmented mineralizing 

medium. The selected times for analysis (48 h, 14 d) were similar to microarray gene expression data, 

however, 48 h samples were more discriminative than 24 h, at which there no increase in enzyme activity 

(data not shown); a finding supported by previous experimentation (Lei et al., 2013). MMP-13 activity 

significantly increased in the extracts of DPC cell pellets at both 48 h and 14 days, both in the presence of 

mineralizing medium (48 h, p=0.009; 14 d p<0.0001) and mineralizing medium + SAHA (48 h, 

p<0.0001; 14 d p<0.0001) compared with a supplemented control (Fig. 4C/D), confirming that MMP-13 
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activity as well as protein expression was increased in mineralizing cultures. When comparing only the 

groups cultured in mineralizing conditions, the addition of SAHA significantly increased activity over 

HDACi-free cultures at 48 h (p=0.042) and 14 days (p=0.041), supporting the transcriptomic and ELISA 

data. The addition of a specific MMP-13i reduced enzyme activity compared with inhibitor-free 

mineralizing cultures, but not significantly at 48 h (p=0.09) (Fig. 4C) and 14 days (p=0.131) (Fig. 4D). 

Notably, a significant reduction in MMP-13 activity was evident when a MMP-13i was added to the 

SAHA mineralizing cultures at both 48 h (p=0.048) and 14 days (p=0.001). Interestingly, the addition of a 

MMP-13i reduced the enzyme activity to levels below that of the mineralizing culture controls. 

 

MMP-13 inhibition promotes mineralization in dental pulp cells in both the presence and absence of 

SAHA at concentrations not reducing cell growth or viability. As previous data demonstrated that 1 µM 

SAHA increased both mineralization and mineralization-associated transcript levels, we hypothesised that 

specific inhibition of MMP-13 would inhibit DPC mineralization. To investigate the mineralizing effect 

of MMP-13, a repeat of the previous 14 day SAHA mineralization experiment in the presence or absence 

of a selective MMP-13i was performed. The MMP-13i concentrations selected (1 and 2 µM) were chosen 

based both on the previous results of the enzyme activity assays and a cell growth assay which 

demonstrated that DPC growth was only significantly inhibited (reduced by 15%) at 24 h in the samples 

containing a combination of 1 µM SAHA and 2 µM MMP-13i (p=0.01), compared with HDACi-free 

mineralizing control cultures (Fig. 5A). Other groups containing SAHA alone or in combination with 1 

µM MMP-13i demonstrated no significant effect on growth (p>0.128).  At 5 days, the results differed 

with significant growth inhibition evident for all three HDACi-containing cultures, SAHA alone 

(p=0.005), SAHA + 1 µM MMP-13i (p=0.002) and SAHA + 2 µM MMP-13i (p=0.004) compared with 

mineralizing control cultures. Notably, in the absence of SAHA both 1 and 2 µM MMP-13i did not 

significantly inhibit DPC growth (p>0.974). DPC viability, assessed by Trypan blue exclusion, was not 

significantly affected by any of the concentrations of MMP-13i used in this study (results not shown). As 
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the MMP-13i was not shown to affect growth or viability, both concentrations were investigated in a 

mineralization assay in the presence and absence of 1 µM SAHA. 

In both the presence and absence of SAHA, MMP-13 inhibition increased matrix mineralization 

dose-dependently (Fig. 5B), with significant increases in mineralization evident in the SAHA-free group 

with 2 µM MMP-13i (p=0.12) and in the SAHA group in combination with 1 and 2 µM MMP-13i (p=-

0.016/p=0.001), respectively.  As a dose-dependent MMP-13i-induced mineralization response in DPCs 

was observed with Alizarin red staining, further analysis of differentiation was assessed by analysis of 

gene expression for several mineralization-associated transcripts (Fig. 5Ci-v). The transcripts were 

selected based on the results of this studies validatory RT-PCR, with a focus on HDACi-induced genes 

demonstrated to have a role in the dental pulp mineralisation process; BMP-4 (Duncan et al., 2012), 

Adrenomedullin (Musson et al., 2010), Osteopontin (Duncan et al., 2013), MMP-9 (Wu et al., 2015) and 

IBSP (Gopinathan et al., 2013). At 24 h MMP-13 inhibition significantly increased IBSP (p=0.003) and 

MMP-9 (p=0.014) transcript levels, while at 5 days IBSP (p=0.035), ADM (p=0.036) and Osteopontin 

(p=0.011) levels were increased compared with the mineralizing medium control (Fig. 5Ci-v). 

Furthermore, combinations of SAHA and MMP-13i in culture also significantly increased expression of 

BMP-4 (p=0.041), IBSP (p=0.048), ADM (p=0.002), Osteopontin (p=0.015) and MMP-9 (p=0.014) at 24 

h and BMP-4 (p=0.001), IBSP (p=0.002), ADM (p=0.013), Osteopontin (p=0.002) and MMP-9 (p=0.003) 

at 5 days compared with the mineralizing medium control.  

 

MMP-13 specific inhibition suppresses SAHA-enhanced dental pulp cell migration. Wound healing in the 

damaged dental pulp involves the migration of progenitor cells to the site of injury (Yoshiba et al., 1996). 

HDACis, including SAHA, have previously been shown to increase migration in various cell types (Lin et 

al., 2012), while MMP-13 is known to regulate cell migration through its action on cell phenotype (Lei et 

al., 2013). Subsequently, we hypothesised that two low concentrations of HDACi (1, 3 µM) would 

stimulate migration of DPCs in a transwell migration assay and that inhibition of MMP-13 activity may 

reduce this effect. Using transwell migration and wound healing scratch assay, primary DPC migration 
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was investigated in vitro following 3 h SAHA treatment. The transwell assay demonstrated a significant 

increase in primary DPC migration of 24% and 38% in the presence of 1 µM (p=0.007) and 3 µM 

(p<0.001) SAHA, respectively, compared with the negative control (Fig. 6A). No significant increase in 

cell migration compared with the control was evident after the addition of 1 µM (p=0.157) or 2 µM 

(p=0.253) MMP-13i in the absence of SAHA. The combination of 2 µM MMP-13i and 1 µM SAHA 

significantly suppressed the SAHA-induced migration (p=0.013). These data indicate that MMP-13 

expression may be partly responsible for the enhanced cell migratory effects demonstrated. These results 

were further corroborated by the wound healing ‘scratch’ assay in DPC monolayers (Fig. 6B), which 

demonstrated significantly enhanced DPC migration in the presence of 1 µM SAHA (p=0.049) compared 

with the control, while notably the addition of 2 µM MMP-13i (p=0.999) alone or in combination with 1 

µM SAHA (p=0.945) had no significant effect on wound healing (Fig. 6C-D). 

 

Discussion 

Dental pulp tissue has the ability to repair by the migration of a progenitor cell population to the 

injury site and their differentiation into odontoblast-like cells by the defensive process of reparative 

dentinogenesis (Smith et al., 2008). Dentistry exploits these regenerative capabilities clinically using a 

range of restorative procedures, however, there is a need to improve the clinical success of these 

treatments and develop novel pulp regenerative tissue engineering strategies (Murray et al., 2007). 

Several in vitro studies have indicated that HDACis offer the potential to promote regenerative processes 

by increasing differentiation of dental pulp cell populations (Duncan et al., 2011; Duncan et al., 2012; Jin 

et al., 2013; Paino et al., 2014). In this study, we for the first time characterised epigenetically-modified 

gene expression events that occur in SAHA-treated DPCs, identifying up-regulated pathways and key 

mediators. Our novel data indicates that SAHA modulates pulpal MMP expression, specifically 

increasing the activity of MMP-13, which is partly responsible for modulating mineralization and DPC 

migratory events. 
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Previous DPC experimentation using different HDACi (VPA, TSA) demonstrated acceleration of 

matrix mineralization (Duncan et al., 2013; Jin et al., 2013; Paino et al., 2014) and in the present study, 

the initial hypothesis that SAHA did not induce significant anti-proliferative, apoptotic or necrotic effects, 

but could stimulate in vitro mineralization was confirmed. The importance of the HDACi-concentration 

on mineralization is also highlighted, with the observed dose-dependent increase consistent with previous 

studies utilising osteoblast (Cho et al., 2005), dental-papilla derived cell lines (Duncan et al., 2012; Kwon 

et al., 2012) and primary DPCs (Duncan et al., 2013). As HDACi-induced mineralization was accelerated 

over a relatively narrow range of low SAHA concentrations, it is critical that optimal concentration 

parameters are established for each individual HDACi. Supporting previous results using VPA and TSA 

(Duncan et al., 2012), SAHA induced mineralization (>2-fold increase) in cultures supplemented with 24 

h SAHA, prior to HDACi-free culture for the remainder of the 14 day experiment. Notably, extension of 

the SAHA supplementation (14 days, changed every 3 days) inhibited mineralization deposition and 

highlighting the critical importance of HDACi-treatment duration. This finding could help explain the 

paradoxical findings that HDACis stimulate osteogenic mineralization in vitro (Sakata et al., 2004; Cho et 

al., 2005; Schroeder and Westendorf, 2005; De Boer et al., 2006), but long-term in vivo oral VPA 

administration in humans (Nissen-Meyer et al., 2007), or 3-4 week systemic administration in mice 

(McGee-Lawrence et al., 2011) results in overall bone loss. It was previously proposed that the bone loss 

was due to a reduction in immature osteoblast numbers in vivo, while in vitro mature osteoblast 

populations were resistant to the detrimental effects of HDACi (McGee-Lawrence and Westendorf, 

2011), however, it was recently demonstrated in mice that reducing the frequency of in vivo SAHA 

administration (from daily to every 3 days) resulted in no animal weight loss or cell toxicity (Xu et al., 

2013). Our results highlight that limiting the HDACi-exposure, as well as establishing optimal 

concentration levels, is critical to avoid possible the HDACi-induced mesenchymal stem cell toxicity 

referred to in previous studies (Xu et al., 2013). 

Despite recent advances, the mechanisms driving dentine matrix mineralization and HDACi-

induced promotion of pulp cell mineralization remain to be elucidated. This study clearly demonstrates 
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the SAHA induced differential expression of several novel genes in primary rat DPCs cultured under 

mineralizing conditions at early (24 h) and later time points (14 d). Furthermore, the involvement of many 

of the identified transcripts has not previously been identified in HDACi microarray studies (Tables 2-5). 

The observed differences are likely to be attributable to the cell type (i.e. rat primary DPCs have not 

previously been studied in this context), the mineralizing conditions and the relatively short duration of 

SAHA exposure (24 h). Similarly to previous HDACi high-throughput array studies, genes were both 

induced and suppressed by SAHA (LaBonte et al. 2009; Dudakovic et al., 2013), however, notably at 24 

h more genes were suppressed, highlighting tissue-dependent differences in HDACi-induced effects. Only 

a relatively small number (3.3%) of SAHA induced genes showed a significant >2.0-fold transcriptional 

change at 24 h, which reduced to 0.15% at 14 days, demonstrating that 24 h SAHA-induced effects are 

generally reversible and do not persist through to the mineralization stage (Fig. 2A). The labile nature of 

histone tail acetylation has been shown in other recent microarray studies in non-mineralizing cultures 

(Boudadi et al., 2013), but may also be a particular feature of the binding characteristics of the particular 

HDACi (Lauffer et al., 2013). SAHA and other hydroxamate-containing HDACi have been described as 

having short-residence times compared with other benzamide-containing inhibitors (Lauffer et al., 2013). 

By logical extrapolation, it is therefore to be expected that various HDACis are likely to differentially 

affect the expression of different genes due to variations in potencies, binding characteristics and 

specificities (Schroeder et al., 2007; Khan et al., 2008; Lauffer et al., 2013. However, SAHA was selected 

for this study due to its FDA clinical approval (SAHA=voronostat, Zolinza™), frequent experimental use 

and positive mineralization-inducing action compared with other HDACis (Kwon et al., 2012). Indeed, 

comparison of our data with the nearest equivalent set of osteogenic gene array data (Schroeder et al., 

2007), shows a similar pattern of expression, despite differences in cell type (preosteoblasts vs primary 

DPCs), treatment time (18 h vs 24 hr) and HDACi (TSA, MS-275 vs SAHA). Notably, several genes 

identified as potentially responsible for osteoblast maturation (Schroeder et al., 2007) were also 

upregulated in the current study, such as the apical membrane phosphoprotein, Slc9a3r1 (Fig. 2C) and  

glutathione S-transferase alpha 4 (Table 2), while other common cell cycle genes were down-regulated 
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including Cyclin A1, Cyclin B2 and Polo-like kinase 1 and 4 (Table 3). Indeed, if a range of HDACi-

specific gene array studies are compared there is significant overlap in the differentially expressed genes 

identified (see final column in Tables 2-5). The SAHA induced down-regulation of cell cycle associated-

genes (Cyclin A1, B2) was supported by reduced DPC growth at 5 days (Fig. 5A), while, DPC 

mineralization was increased concomitantly (Figs 1C & 5B); supporting a theory that SAHA reduced the 

proliferation of DPCs, while promoting cell differentiation.  

Gene expression microarray, pathway and qRT-PCR analyses identified the up-regulation of 

several members of the MMP family (notably MMP-9, MMP-13) (Fig. 2D) as well as other key genes 

responsible for degradation of extracellular matrix, such as Ctsl-1 and Plat and other tissue proteases, 

including ADAMTS 9 and 5. It has recently been noted in vivo that tissue inhibitor of matrix 

metalloproteinase 1, (TIMP-1), MMP-3 and MMP-13 expression can be upregulated in DPCs in vivo 3 

days after cavity preparation in rodent teeth and the authors highlighted a potential role in pulp repair 

(Yoshioka et al., 2013). In our study, although MMP-3 expression was not increased by HDACi, TIMP-1 

gene expression was increased at 24h by SAHA (1.6-fold at 24 h). Furthermore, our pathway and gene 

expression analysis (both microarray and RT-PCR) indicated that 1 µM SAHA up-regulated the 

expression of MMP-13 and a range of other proteolytic signalling molecules (Fig. 2D). The expression of 

a range of MMPs has previously been demonstrated to be induced by HDACi in various cell types (Mayo 

et al, 2003; Schroeder et al., 2007 Lin et al., 2012), but not specifically linked to modulation of the 

mineralization process. In addition, it was previously reported that HDAC-4 repressed MMP-13 gene 

expression in bone (Shimizu et al., 2010) and in a subsequent studies, that parathyroid activation of 

MMP-13 transcription required HAT activity (Lee and Partridge, 2010) and was negatively regulated by 

SIRT-1 (Fei et al., 2015), highlighting an interaction between HDACs/HAT, mineralization and MMP-13. 

While it is accepted that other MMP members may have important roles (e.g. MMP-9, MMP-2) in 

mineralization, previous findings prompted us to examine the interaction between SAHA and MMP-13 in 

order to characterise an as yet unidentified role for MMP-13 in pulp matrix mineralization. We show here 

that MMP-13 protein expression is increased in mineralizing DPCs and further increased in the presence 
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of SAHA. Furthermore, after the addition of a selective MMP-13 antagonist, there was increased 

expression of several mineralization-associated genes (BMP-4, IBSP), as well as MMP-13 enzyme 

activity at early and late time-points. This highlights a central role for MMP-13 in modulating 

mineralization processes in the pulp supporting a previous proposal (Suri et al., 2008).  

A possible explanation for this less straightforward observation is that MMP-13 inhibition 

increased matrix calcification in mineralizing cultures in the presence or absence of SAHA. MMP-13 

expression has been linked to the promotion of regenerative responses (Toriseva et al., 2007) and 

differentiation (Lei et al., 2013) in certain cell types, however, it has been reported in other tissues that 

MMP-13 inhibition can stimulate increased differentiation (Wu et al., 2002b; Nishimura et al., 2012).  

Within this and other studies (Winchester et al., 1999; Suri et al., 2008), MMP-13 protein expression was 

increased in mineralizing cultures and here we showed a further increase in the presence of SAHA. 

Logically, it might have been expected that inhibiting a collagenase, such as MMP-13, would reduce 

matrix mineralization, however, paradoxically mineralization was increased with selective MMP-13 

inhibition. It can be speculated that this may result from a feedback mechanism in which MMP-13 

expression facilitates an ordered deposition of mineral, thus preventing the formation of excessive or low 

quality mineral (Staines et al., 2014). This theory is supported by the results of MMP-13 knockout mice 

experimentation in which ossification is delayed and collagen accumulates in growth plate regions 

(Yamagiwa et al., 1999; Inada et al., 2004), as well as an impaired bone healing and remodelling after 

fracture (Behonick et al., 2007). Additionally, it is likely that tissue proteases, including MMP-13, have 

broader reparative roles in the pulp cleaving bioactive growth factors or releasing dentine matrix proteins 

from the matrix to stimulate cell migration and promote differentiation (Ortega et al., 2003) (Fig. 7). In 

this study, the promotion of mineralization processes by HDAC and MMP-13 inhibitors is supported by 

RT-PCR, as mineralization-associated gene expression was enhanced at two time-points, including a 

further increase in MMP-9 expression, a transcript identified by gene expression analysis as being 

significantly upregulated by SAHA alone at 24 h. Although not specifically investigated in this study, it 

has been previously demonstrated by others that MMPs and their inhibitors may form part of an intricate 
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network of support, feedback and synergy; regulating the activity of other MMPs (Ortega et al., 2003). 

Indeed, MMP-9 and MMP-13 have been previously reported to act synergistically in their effects on bone 

remodelling and development (Engsig et al., 2000) and may act similarly within dental pulp tissue. 

Dental pulp healing after injury has classically been described as a two-stage process (Schröder, 

1985), initially involving vascular and defence cell proliferation, migration and adhesion aiming to 

eliminate the injurious microbial irritant. Thereafter, wound repair proceeds with proliferation, migration 

and adhesion of various cells including progenitor or stem cells, which will differentiate under the 

influence of various bioactive molecules to odontoblast-like cells to produce reparative tertiary dentine 

(Smith et al., 1995; Smith et al., 2002; Smith et al., 2008). Cancer studies investigating neoplastic cell 

migration have demonstrated that even at low concentrations, a range of HDACi can increase cell 

migration; this finding was attributed to the epigenetic activation of gene transcription, tumour-

progressive genes and a change in cell phenotype in HDACi treated cells (Lin et al., 2012). 

Mechanistically, HDACi-enhanced cell migration has been shown to activate a range of transcripts 

including chemokine receptors, integrins, glycodelin, and the serine protease urokinase plasminogen 

activator (UPA) (Lin et al., 2005; Mori et al., 2005; Uchida et al., 2007; Pulukuri et al., 2007). Within the 

current study, at 24 h UPA was not significantly increased in expression, however, other studies have 

reported that MMPs released from tumour cells are crucial not only for tissue degradation in vivo, but also 

cell migration observed in vitro (Liotta et al., 1980; Laurenzana et al., 2013). Interestingly, it appears that 

in regenerating tissues MMP-13 activity is central to cell migration, playing an important role in skeletal 

muscle repair and myoblast migration (Lei et al., 2013), and cutaneous wound healing (Wu et al., 2002a; 

Hattori et al., 2009). In addition, pathological expression of MMP-13 has been attributed to increased 

growth and metastatic invasion capacity of squamous cell carcinoma in vivo (Ala-aho et al., 2004). 

However, HDAC inhibition demonstrates conflicting results with regard to cell migration with some 

studies reporting a significant increase in cell migration in vitro (Uchida et al., 2007; Spallotta et al., 

2013), while others reporting the opposite effect (Laurenzana et al., 2013). The rationale for these 

differences could be cell type-dependent, but this may also be a concentration effect with higher doses of 
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HDACis generally being shown to reduce cell migration (Uchida et al., 2007). Within the present study, 

low concentrations of SAHA dose-dependently increased DPC migration, in both cell monolayer and in 

transwell migration assays, an effect which was blocked by a selective MMP-13 inhibitor. Potentially, the 

HDACi-induced increase in MMP-13 expression could further enhance migration in vivo by promoting 

cleavage of growth factors or release of matrix proteins and increase chemotaxis (Ortega et al., 2003; 

Paiva and Granjeiro, 2014). DPC migration effects have translational relevance, as SAHA could be 

applied to the exposed pulp surface during vital pulp treatment; this could induce MMP-13 expression, 

potentially promoting the migration of dental progenitor cells from the centre of the pulp to the wound 

surface for differentiation into odontoblast-like cells during reparative dentinogenesis.  

HDACi have been shown to promote mineralization responses by the induction of a range of 

genes in osteoblast cultures (Schroeder et al., 2007).  Here we report that histone deacetylation promotes 

DPC mineralization and induces MMP-13 expression and activity at both early and late time-points, while 

MMP-13 also mediates a SAHA-induced increase in DPC migration. From a translational perspective the 

promotion of tissue-repair processes was evident after a 24 h dose of topical SAHA, highlighting the 

potential benefit of topical HDACi application to damaged dental pulps during regenerative vital pulp 

treatment. 
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Figure legends 

Fig. 1. Short-term SAHA application did not significantly reduce primary DPC proliferation, viability and 

apoptosis at low concentration, while mineralization was promoted dose-dependently. (A) SAHA 

supplemented DPC cultures for 24 h at a range of concentrations and cell numbers were ascertained by 

Trypan blue exclusion. The addition of SAHA significantly reduced primary cell growth at 3 and 5 µM, 

but not 1 µM. (B) The same SAHA concentrations as in (A) were analysed after 24 h and 48 h by a 

live/dead staining fluorogenic assay to analyse DPC viability and necrosis. Short-term SAHA 

supplementation (24 h, 48 h) significantly reduced cell viability only at higher (5 µM) SAHA 

concentrations after 48 h. (C) SAHA concentrations (0.25 - 5 µM) supplemented the mineralizing 

medium for 24 h or 14 days at the initiation of the experiment. The mineral production for SAHA is based 

on quantification of Alizarin Red S stain extracted from each experimental well and corresponding cell 

counts. Short-duration SAHA (24 h) accelerated mineralization per cell in DPCs dose-dependently at 14 

days, while prolonged SAHA exposure inhibits differentiation and prevents matrix calcification. (D) 

Effects of 1 µM SAHA on DPC apoptosis and viability in DPCs. FC images for control (no HDACi) (E) 

and 1 µM SAHA (F) after Annexin V-PI staining. Viable cells were observed in the left lower quadrant, 

early apoptotic cells in the right lower quadrant and late apoptotic cells in the right upper quadrant and 

charted as % total number of cells. A negative control (No SAHA) and a selected candidate concentration 

of 1 µM SAHA was investigated by FC at 24 h. All charted data are represented as mean ±SEM. For all 

experimentation, four independent experiments (n=4) were performed in triplicate for each HDACi 

concentrations. In the FC experimentation, 10,000 cell events were measured for each 

experimental/control group (n=4). Statistically significant differences (p<0.05) between the experimental 

and control are marked by an asterisk (*) or (**). 

 

Fig 2.  The effects of short-term low dose SAHA on relatively early and late stage gene expression under 

mineralizing conditions. (A) A time-course plot (1 day and 14 days) generated in GeneSpring GX12 

showing all altered genes (normalised intensity values) in the SAHA-supplemented DPC cultures 

compared with HDACi-free control cultures. Red lines indicate up-regulated genes and blue indicates 

down-regulated transcripts in the 24 h data. (B) Number of genes demonstrating >2 fold change after 

addition of SAHA. Heat maps showing gene expression along with a list of selected mineralization-

associated genes (C) and MMPs/TIMPs (D) expressed by DPCs at 24 h and 14 days in SAHA-

supplemented media compared with HDACi-free control cultures. All gene expression array experiments 

based on four biologically independent experiments (n=4). 
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Fig 3. Confirmatory gene expression using quantitative real-time-PCR. To validate microarray results, 

representative transcripts were quantified by qRT-PCR in untreated and SAHA-treated DPCs. (A) 

Selected up-regulated genes and (B) down-regulated genes at 24 h and (C) up- and down-regulated genes 

at 14 days expressed as fold increase over control. Error bars represent mean ± SEM of 4 independent 

experiments carried out in triplicate. Students t-test was used to ascertain statistical significance of 

experimental compared with control samples. 

 

Fig 4. The effects of SAHA on MMP-13 protein expression and enzyme activity. (A) Cell lysates from 

selected time points (1, 7, 14 and 21 days) were normalised using a Bradford dye-binding method and 

total MMP-13 protein levels quantified for each time point. MMP-13 production was analysed by ELISA. 

(B) A range of MMP-13i concentrations were added to samples of recombinant MMP-9, -13 and enzyme 

activity was measured fluorogenically for each inhibitor concentration. MMP-13 activity was blocked 

dose-dependently, but MMP-9 was not significantly altered. All experimental MMP-13i concentrations 

tested significantly decreased MMP-13 enzyme activity. (C/D) The effects of SAHA and a 

pharmacological MMP-13i on MMP-13 enzyme activity in mineralizing DPCs. DPCs were cultured in 

mineralizing medium ± SAHA/MMP-13i and compared with mineralizing and non-mineralizing control 

cultures at 48 h (C) and 14 days (D). MMP-13 activity (measured fluorogenically) increased in 

mineralizing culture and in the presence of SAHA at both experimental time-points. As the commercial 

FRET substrate was preferentially, but not exclusively cleaved by MMP-13, the selective MMP-13 

inhibition was used to analyse the role of MMP-13. Selective MMP-13 inhibition significantly reduced 

enzyme activity in the SAHA cultures.  Error bars represent SEM of three independent experiments 

carried out in triplicate. Significant difference p<0.05, denoted by asterix (*) between experimental group 

and normal medium control, symbol (^) between experimental group and mineralizing medium control 

and symbol (‡) between mineralizing medium + SAHA and mineralizing medium + SAHA + MMP-13i. 

 

Fig 5. The effects of a selective MMP-13i on primary DPC proliferation, mineralization and gene 

expression. (A) A selective MMP-13i supplemented SAHA and HDACi-free cultures for 24 h and 5 days 

at two concentrations (1 and 2 µM). Viable cell numbers ascertained by Trypan blue exclusion and cell 

counting. (B), In vitro calcification of DPCs under mineralizing conditions in the presence and absence of 

1 and 2 µM MMP-13i compared with SAHA supplemented and HDACi-free control groups. Alizarin red 

staining was used to demonstrate calcium deposits at 14 days and results presented as a fold increase in 

mineralization over the respective controls. (C) DPCs were cultured in mineralizing medium in the 
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presence or absence of 1 µM SAHA and 2 µM MMP-13i for 24 h and 5 days. mRNAs were isolated, 

reverse transcribed and amplified using real-time PCR with primers for (i) BMP-4, (ii) IBSP, (iii) 

Adrenomedullin, (iv) Osteopontin and (v) MMP-9 an compared to a supplemented mineralization control. 

The relative levels of mRNAs were normalized to β-actin and then expressed as fold stimulation over 

control. For all experiments, the error bars represent SEM of three independent experiments performed in 

triplicate. Asterix (*), p<0.05 and (**), p<0.005. 

 

Fig 6. The effects of SAHA and MMP-13 activity on dental pulp cell (DPC) migration. (A) Vertical 

migration of DPCs measured by transwell migration assay at 37°C for 3 h. Positive control (supplemented 

medium and 10% FCS), 1 µM and 3 µM SAHA had a statistically significantly greater effect on cell 

migration compared with the negative control. MMP-13i (1 and 2 µM) and SAHA in combination with 2 

µM MMP-13i was not significantly different compared with the negative control, indicating the MMP-13 

may be partly responsible for the migratory effects of DPCs). (B) Quantitative data from (C/D) showing 

cell migration in response to HDACis. (B) Horizontal migration of DPCs by wound healing scratch assay. 

The effect roles of 1 µm SAHA on the migration and motility of rat DPCs quantified from 24 hour scratch 

assay. Cells were treated with 1 µM SAHA for 24 h and a scratch made in the confluent cell monolayer. 

Images were obtained at 0 (Ci-iv) and 24 h post wounding (Di-iv). Values are mean ± SEM for 3 

independent experiments carried out in triplicate. Asterisks (*) show significant differences compared 

with control (p<0.05). Scale bars indicate 100 µm. 

 

Fig 7. Overview schematic illustration highlighting the potential roles of MMP-13 is reparative 

dentinogenesis. (A) HDACi (SAHA) applied topically to exposed damaged pulp tissue, accelerates 

mineralization processes (and the expression of a range of mineralization-associated transcripts) and 

increases expression of MMP-13 in pulp cells. The expression of MMP-13 is central to the control of 

mineralization processes and the activation of a range of bioactive molecules by cleavage. These 

molecules could potentially promote angiogenesis, mineralization and cell migration. Increased MMP-13 

expression has also been shown in inflamed dental DP cell lines (Zhang et al., 2013), which may have 

additional implications for dental pup healing. (B) Dental progenitor cells migrate from vasculature in 

central pulp under influence of bioactive molecules to injury site. Thereafter, the progenitor cells 

differentiate into odontoblast-like cells.  MMP-13 may directly influence this recruitment process by 

increasing cell migration or by cleavage of matrix-bound dentin matrix proteins to increase chemotaxis 

and differentiation. Additionally MMP-13 (and other MMP collagenases) will breakdown extracellular 
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matrix further increasing migration and stimulating repair. C, Fossilised dentine matrix proteins leach into 

the pulp as a result of caries (Smith et al., 2008) or restorative materials (Schröder, 1995; Tomson et al., 

2007) to promote reparative events. Growth factors released by MMP-cleavage (including MMP-13) 

further stimulate reparative response.   
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Table 1 Primer sequences used for primary rat pulp gene expression analyses  

 

 

 

Gene Primer sequence (5' → 3') Size 

bps 

NCBI Accession 

number 

β-Actin 

 

(F)-AGCCATGTACGTAGCCATCC 

(R)-ACCCTCATAGATGGGCACAG 

115 NM_031144 

Disabled homolog 1 (Drosophila)  

Dab1  

(F)- CCAGGTCAAGTCCACAGAGT 

(R)- TCAGGTTTTCGGGAGGGTAC 

106 NM_153621 

T-cell differentiation protein (Mal2) (F)- CTACGATGGTTGTGAAGCCG 

(R)- ACTGTCGGTTTCCAAGGAGT 

155 NM_198786 

RAS guanyl releasing protein 3 

(calcium and DAG-regulated) 

(Rasgrp3) 

(F)- CCTCTTGGTTCTGGCCTGTA 

(R)- GTCCAGGTCTCGGTGTCTAG 

 

148 NM_001108009 

Ameloblastin (Ambn) (F)-GAAAACCCGGCTCTCCTTTC 

(R)- ATTCAGGGGTGATCAGTGGG 

157 NM_012900 

Keratin 18 (Krt18) (F)- CTGGGGCCACTACTTCAAGA 

(R)- GCGGAGTCCATGAATGTCAC 

184 NM_053976 

Eph receptor A3 (Epha3) (F)- ATATGCTCCTCTCACTGCCC 

(R)- CGTGGGATGGGTAGGAGATC 

185 NM_031564 

Matrix metalloproteinase  13 

(Mmp13) 

(F)- AAGTGTGACCCAGCCCTATC 

(R)- GGGAAGTTCTGGCCAAAAGG 

147 NM_133530 

Matrix metalloproteinase  9 (Mmp9) (F)- AAACATGCTGAAACCGGACC 

(R)- GAGGGATCATCTCGGCTACC 

118 NM_031055 

Glutathione S-transferase alpha 4 

(Gsta4) 

(F)- ACAGCTGGAGTGGAGTTTGA 

(R)- GTGTCAGTAGCATCCCGTCT 

127 NM_001106840 

Rap2 interacting protein (Rap2ip) (F)- GCAGCATCGAGAACATGGAG 
(R)- TCTGGTAGTTCGGTTGTCCC 

131 NM_198758 

Tetraspanin 13 (Tspan13) (F)- CGGAGAGTATGCTGGAGAGG 

(R)- TTCTCGTCAAAGGAAAGCGC 

148 NM_001013244 

Adrenomedullin (Adm) (F)- ATGTTATTGGGTTCGCTCGC 

(R)- GGACGCTTGTAGTTCCCTCT 

123 NM_012715 

Spindle and kinetochore associated 

complex subunit 1 (Ska1) 

(F)- GGCCAGAGGAGGATCTTGAG 

(R)- TCCTGACCTTGTGCTTGCTA 

125 NM_001106134 

Minichromosome maintenance 

complex component 10 (Mcm10) 

(F)- GCATAACCTCCACTGGCATG 

(R)- ATTCCATCCCGTTCCCACTT 

135 NM_001107366 

Histone cluster 1, H1b (Hist1h1b) (F)- GTCTCCCGCCAAGAAGAAGA 

(R)-GCCAATGCCTTCTTCAGAGC 

147 NM_001109417 

Integrin-binding sialoprotein (IBSP) (F)- CAGTTATGGCACCACGACAG 

(R)- CATACTCAACCGTGCTGCTC 

116 NM_012587 

Transforming growth factor, beta 2 

(TGFβ2) 

(F)- TACCCGAGTCTAAGGTTGGC 

(R)-GGAAGGGACGAAGGACAGAA 

123 BC100663 

Bone morphogenic protein-4 (BMP-

4) 

(F)- CAAGCGTAGTCCCAAGCATC 

(R)- GGCCACGATCCAATCATTCC 

115 NM_012827 

 

Nestin 

 

(F)- CTGCAGAAGAGGACCTGGAA 

(R)- CATCCACAGACCCTAGCGAT 

129 NM_012987 

 

Osteopontin (spp1) 
 

(F)- CTGAAGCCTGACCCATCTCA 
(R)- TCGTCGTCATCATCGTCCAT 

143 NM_012881 
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Table 2 Top 40 known genes induced by SAHA in mineralizing rat DPC cultures at 24 h. References 

are for previous studies that reported up-regulation of the transcript or protein in cells or other cell 

systems by an HDACi (*). 

 

Gene Gene name Fold 

change 

t-test with 

Storey 

Up-regulation Reported 

Reference* 

Rap2 interacting protein  Rap2ip 8.9 2.13E-05  

Glutathione S-transferase alpha 4  Gsta4 8.2 2.65E-04 Schroeder et al., 2007 

Majumdar et al., 2012 

Tubulin, beta 2B class IIb  Tubb2b 7.9 0.00234 LaBonte et al.,  2009 

Monoacylglycerol O-acyltransferase 2 Mogat2 7.1 0.006320  

Brain expressed, X-linked 1  Bex1 7.0 6.39E-04 Foltz et al., 2006  
Fischer et al., 2007 

Phospholamban  Pln 6.3 2.94E-06  

Transmembrane protein 35 Tmem35 5.1 6.32E-05  

Coronin, actin binding protein 1A  Coro1a 5.0 3.37E-04 Moore et al., 2004 

Cell death-inducing DFFA-like effector a Cidea 4.8 1.96E-04  

Tetraspanin 13  Tspan13 4.8 4.12E-04  

Pentraxin 3, long Ptx3 4.6 0.01514  

Membrane-spanning 4-domains, subfamily A, member 14 Ms4a14 4.5 0.00328  

Kinesin family member C2  KIFC2 4.4 3.09E-04  

S100 calcium binding protein A1  S100a1 4.2 1.23E-04 Pryzbylkowski et al., 2008 

Disabled homolog 1 (Drosophila)  Dab1 4.1 0.01277 Noh et al., 2009 

Reticulon 1 Rtn1 4.1 4.72E-04 Fazi et al., 2009 

Cyclohydrolase I feedback regulator Gchfr 4.0 0.00414  

Angiopoietin-like 4  Angptl4 3.9 0.00126 Poulaki et al., 2009 

Secretogranin V  Scg5 3.8 0.00139 Bracker et al., 2009 

Integral membrane protein 2A  Itm2a 3.7 7.58E-04  

Alcohol dehydrogenase 1 (class I)  Adh1 3.7 7.58E-04  

Immunoglobulin superfamily, member 10  Igsf10 3.7 0.00171  

Adrenergic, beta-3-, receptor  Adrb3 3.6 0.00325  

GLI pathogenesis-related 1  Glipr1 3.6 3.49E-04  

Small nuclear ribonucleoprotein polypeptide N  Snrpn 3.6 0.01421 Suzuki et al., 2002 

Uroplakin 1B  Upk1b 3.5 0.00587 Milutinovic et al., 2007 

Chromobox homolog 7  Cbx7 3.4 0.00104  

Aldehyde oxidase 1  Aox1 3.4 8.74E-05  

Adrenomedullin Adm 3.4 1.45E-05 Poulaki et al., 2009 Majumdar 

et al., 2012 

CD302 molecule  Cd302 3.4 6.67E-04  

Brain expressed, X-linked 4 Bex4 3.3 0.00797  

Cholinergic receptor, muscarinic 4  Chrm4 3.3 7.30E-04 Ooi et al., 2006 

SATB homeobox 1  Satb1 3.2 0.00794  

Tctex1 domain containing 1  Tctex1d1 3.2 0.00136  

Sulfite oxidase  Suox 3.2 9.10E-06 Lee et al., 2004 

Cytochrome b-561  Cyb561 3.1 8.52E-04  

Ephrin1 Efna1 3.1 7.42E-05 Poulaki et al., 2009 

Sphingosine-1-phosphate receptor 1 S1pr1 3.1 3.96E-04 Nguyen-Tran et al., 2014 

Adrenergic, beta-2-, receptor, surface Adrb2 3.0 7.36E-04 Foltz et al., 2006 

Matrix metalloproteinase 9 Mmp9 3.0 4.46E-04 Mayo et al., 2003 
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Table 3 Top 40 known genes suppressed by SAHA in mineralizing rat DPC cultures at 24 h. 

References are for previous studies that reported down-regulation of the transcript or protein in cells 

or other cell systems by an HDACi (*).  

 

Gene Gene name Fold 

change 

t-test with 

Storey 

Down-regulation 

Reported Reference* 

Spindle and kinetochore associated complex subunit 1  Ska1 -97.2 1.12E-04  

Minichromosome maintenance complex component 10  Mcm10 -15.7 0.00957 Li and Li, 2008 

DDB1 and CUL4 associated factor 15 Dcaf15 -15.2 0.00924  

MIS18 kinetochore protein homolog A (S. pombe) Mis18a -11.4 0.00919  

Stathmin 1 Stmn1 -10.1 0.00301 Milli et al., 2008 

PDZ binding kinase  Pbk -9.3 6.57E-04  

Cyclin A2  Ccna2 -8.7 4.30E-04 Schroeder et al., 2007 

LaBonte et al., 2009, 

Majumdar et al., 2012 

Koutsounas et al., 2013 

Histone cluster 1, H1b  Hist1h1b -7.8 3.17E-04  

Cyclin B1  Ccnb1 -7.6 0.00323 Schroeder et al., 2007 

Kinesin family member 2C  Kif2c -7.4 5.37E-05 Dudakovic et al., 2013 

PHD finger protein 19 Phf19 -7.3 1.64E-04  

Antigen identified by monoclonal antibody Ki-67  Mki67 -7.1 2.43E-04 Majumdar et al., 2012  

Liu et al.,  2013 

Microtubule-associated, homolog (Xenopus laevis)  Tpx2 -6.7 0.00401  

Ribonucleotide reductase M2  Rrm2 -6.7 0.01415  

Polo-like kinase 1  Plk1 -6.7 0.00152 Lee et al., 2004 

Schroeder et al., 2007 

Polo-like kinase 4  Plk4 -6.7 0.01458 Schroeder et al.,  2007 

Suppressor APC domain containing 2  Sapcd2 -6.7 1.32E-04  

Urocortin 2 Ucn2 -6.5 0.00291  

Topoisomerase (DNA) II alpha  Top2a -6.3 0.00116  

Cell division cycle associated 3  Cdca3 -6.1 8.93E-04 Majumdar et al., 2012 

Protein regulator of cytokinesis 1  Prc1 -6.1 0.00235 Majumdar et al., 2012 

Ubiquitin-conjugating enzyme E2C Ube2c -6.1 0.00175  

IQ motif containing GTPase activating protein 3  Iqgap3 -6.0 0.01027  

Centromere protein F  Cenpf -6.0 0.00641  

Sperm associated antigen 5 Spag5 -5.9 7.62E-04  

Cell division cycle 20 homolog (S. cerevisiae)  Cdc20 -5.8 0.00454 Majumdar et al., 2012 

Microtubule associated serine/threonine kinase-like  Mastl -5.8 0.00195  

Kinesin family member C1  Kifc1 -5.7 1.38E-04  

Asp (abnormal spindle) homolog, microcephaly associated 

(Drosophila) 

Aspm -5.7 0.00153 

 

Dudakovic et al., 2013 

Epithelial cell transforming sequence 2 oncogene  Ect2 -5.7 9.54E-04  

Centrosomal protein 55  Cep55 -5.6 0.00190  

Kinesin family member 20B  Kif20b -5.6 0.00303  

Protein regulator of cytokinesis 1  Prc1 -5.6 4.66E-04  

Kinesin family member 20A  Kif20a -5.5 0.00222 LaBonte et al., 2009, 

Majumdar et al., 2012 

Ubiquitin-conjugating enzyme E2T (putative)  Ube2t -5.4 8.76E-04 Schroeder et al., 2007 

MMS22-like, DNA repair protein  Mms221 -5.4 2.01E-04  

ASF1 anti-silencing function 1 homolog B (S. cerevisiae)  Asf1b -5.4 0.00170  

GINS complex subunit 1 (Psf1 homolog)  Gins1 -5.3 4.08E-04  

Transforming, acidic coiled-coil containing protein  Tacc3 -5.3 0.00238  

Rattus norvegicus histone cluster 2, H3c2  Hist2h3c2 -5.2 3.40E-05  
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Table 4 Top 20 known genes induced by SAHA in mineralizing rat DPC cultures at 14 days. 

References are for previous studies that reported up-regulation of the transcript or protein in cells or 

other cell systems by an HDACi. 

 

 

 

 

 

 

 

 

 

 

Gene Gene 

name 

Fold 

change 

t-test with 

Storey 

Up-regulation Reported 

Reference* 

Inositol polyphosphate-4-phosphatase, type II Inpp4b 3.7 0.00732  

Disabled homolog 1 (Drosophila)  Dab1 3.6 0.00163 Koutsounas et al., 2013 

BCL2 interacting protein harakiri  Hrk 2.9 0.00391  

T-cell differentiation protein 2  Mal2 2.8 0.00442  

Glutamate receptor, ionotropic, kainate 4 Grik4 2.8 0.00484  

Aquaporin 3 Aqp3 2.5 9.34E-04  

Purinergic receptor P2X, ligand-gated ion channel, 2  P2rx2 2.4 0.00207  

RAS guanyl releasing protein 3 (calcium and DAG-regulated)  Rasgrp3 2.3 0.00204 Moore et al., 2004 

Solute carrier organic anion transporter family, member 4a1  Slco4a1 2.1 0.00696  

Agmatine ureohydrolase (agmatinase)  Agmat 2.1 0.00548  

Catenin (cadherin-associated protein), delta 2  Ctnnd2 2.0 0.00436  

Cd5 molecule-like  Cd5l 2.0 0.00124  

Coiled-coil domain containing 67  Ccdc67 1.9 0.00276  

Prolyl 4-hydroxylase, alpha polypeptide I  P4ha1 1.9 0.00242  

S100 calcium binding protein A11 (calizzarin)  S100a11 1.9 9.81E-04  

Ameloblastin Ambn 1.9 5.35E-04  

Tenascin C  Tnc 1.8 0.0014  

EF-hand domain family, member D1  Efhd1 1.8 6.01E-04  

Thy-1 cell surface antigen  Thy1 1.8 2.52E-04  

Cytoplasmic FMR1 interacting protein 2  Cyfip2 1.8 0.00417  
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Table 5 Top 20 known genes suppressed by SAHA in mineralizing rat DPC cultures at 14 days. 

References are for previous studies that reported down-regulation of the transcript or protein in cells 

or other cell systems by an HDACi (*). 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Gene 

name 

Fold 

change 

t-test with 

Storey 

Downegulation 

Reported Reference* 

Keratin 18  Krt18 -2.8 0.001  

Olfactory receptor 1749  Olr1749 -2.5 2.96E-04  

Eph receptor A3  Epha3 -2.4 0.008 Poulaki et al., 2009 

G protein-coupled receptor 137C  Gpr137c -2.1 0.00265  

Vomeronasal 1 receptor 68  Vom1r68 -2.1 0.00598  

Myosin light chain kinase  Mylk -2.0 0.00359  

Olfactory receptor 777  Olr777 -1.9 0.00885  

G-protein signalling 4 Rgs4 -1.9 0.002  

Interphotoreceptor matrix proteoglycan 1  Impg1 -1.9 0.00428  

Transmembrane 4 L six family member 20  Tm4sf20 -1.9 4.37E-04  

Somatostatin receptor 2  Sstr2 -1.9 0.00214  

Forkhead box A3  Foxa3 -1.9 0.00163  

Purkinje cell protein 4 , transcript variant 1 Pcp4 -1.9 0.00311  

Aldehyde dehydrogenase 1 family, member A2 Aldh1a2 -1.9 0.00668  

Zinc finger and BTB domain containing 38 Zbtb38 -1.8 0.00175  

Upper zone of growth plate and cartilage matrix associated Ucma -1.8 6.97E-04  

Cytochrome P450, family 4, subfamily a, polypeptide 8  Cyp4a8 -1.8 0.00131  

Leucine rich repeat neuronal 2  Lrm2 -1.8 0.00422  

Signal transducer and activator of transcription 6 Stat6 -1.8 0.00733  

Protamine 2 (Prm2) Prm2 -1.8 0.00151  

Insulin-like growth factor binding protein 3  Igfgp3 -1.8 1.38E-04  
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Table 6 Over-represented pathways (genes > 2 fold) at 24h, analysed using GoElite software. In order 

to remove falsely over-represented pathways results were filtered by the number genes changed (>2), 

Z Score (>1.96), and PermuteP (<0.05). These pruned results minimize redundant terms and 

pathways. Over-represented upregulated pathways marked with asterisk (*). 

 

 

 

 

 

 

 

 

Gene Number 

changed 

% changed z-score PermuteP 

Cell cycle 17 39 11.9 0.0001 

DNA Replication 11 41 9.8 0.0001 

G1 to S cell cycle control 13 31 9.0 0.0001 

Mismatch repair 3 50 5.75 0.0005 

Homologous recombination 4 36                       5.48 0.0005 

Hedgehog Signalling Pathway 3 25 3.71 0.0035 

Matrix Metalloproteinases* 3 16.7 2.75 0.0085 

Endochondral Ossification* 4 12.9 2.55 0.0085 
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Table 7 A comparison of cDNA gene expression microarray and validatory qRT-PCR at 24 h and 14 

days. n=4 for both sets of experiments. 

 

Gene Fold change cDNA microarray (24h) Fold change RT-PCR (24h) 

Adm 3.4 3.06 

BMP-4 1.9 2.79 

Dab1 4.13 5.17 

Gsta4 8.21 14.5 

Hist1h1b -7.83 -13.0 

IBSP 2.2 2.38 

Krt18 -2.8 -2.75 

Mcm10 15.72 -14.3 

Mmp9 3.0 2.76 

Mmp13 2.45 2.19 

Nestin 1.1 1.82 

Rap2ip 8.9 14.91 

Rasgrp3 1.3 1.15 

Ska1 -97.2 -72.5 

TGFβ2 2.78 3.76 

Tspan13 4.84 6.35 

Gene 
 

Fold change cDNA microarray (14d) Fold change RT-PCR (14d) 
 

Ambn 1.88 1.72 

Epha3 -2.4 -2.06 

Krt18 -2.8 -2.65 

Mal2 2.83 2.73 

Mmp13 1.61 1.05 

Rasgrp13 2.33 2.32 

Spp-1 1.1 1.29 
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