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Abstract

The asymptotic local power of least squares based fixed-T panel unit root tests
allowing for a structural break in their individual effects and/or incidental trends of
the AR(1) panel data model is studied. Limiting distributions of these tests are derived
under a sequence of local alternatives and analytic expressions show how their means
and variances are functions of the break date and the time dimension of the panel.
The considered tests have non-trivial local power in a N−1/2 neighborhood of unity
when the panel data model includes individual intercepts. For panel data models
with incidental trends, the power of the tests becomes trivial in this neighborhood.
However, this problem does not always appear if the tests allow for serial correlation
in the error term and completely vanishes in the presence of cross section correlation.
These results show that fixed-T tests have very different theoretical properties than
their large-T counterparts. Monte Carlo experiments demonstrate the usefulness of the
asymptotic theory in small samples.

JEL classification: C22, C23

Keywords: Cross section correlation, strong factors, incidental trends, bias correc-
tion, fixed T

a :School of Economics and Granger Centre for Time Series Econometrics, Univer-
sity of Nottingham. University Park, Nottingham NG7 2RD, UK. Tel: +441159515480.
E-mail: ioannis.karavias@nottingham.ac.uk.

b :Department of Economics, Athens University of Economics & Business. E-mail:
etzavalis@aueb.gr
∗ :Corresponding author

The authors would like to thank the Editor Esfandiar Maasoumi, an Associate
Editor, two anonynous referees, Tassos Magdalinos and Robert Taylor for their helpful
comments.

1



1 Introduction

There is recently growing interest in developing panel data unit root tests allowing for a break

in their deterministic components, namely in their individual effects and/or individual linear

trends (see, Carrion-i-Silvestre et al. (2005), Harris et al. (2005), Karavias and Tzavalis

(2014a, 2014b), Chan and Pauwels (2011), Bai and Carrion-i-Silvestre (2009), Hadri et al.

(2012) and Pauwels et al. (2012)). As is aptly noted by Perron (1989) in the single time-

series literature, not accounting for a break point in the level and/or deterministic trend of

economic series can lead to a unit root test which can hardly reject the null hypothesis of

unit root from its alternative of stationarity. Panel unit root tests suffer from this problem

too. But, despite the many panel unit root tests proposed in the literature, to our knowledge,

there has been no attempt of studying the behaviour of these tests theoretically.

This paper constistutes the first work in this direction. It investigates the power prop-

erties of fixed-T panel unit root tests that allow for structural breaks. These tests are

appropriate for panels with few time series observations and many cross-section units, often

met in practice (see, e.g., Baltagi (2008)). The asymptotic theory employed considers the

time dimension (T ) as fixed and the cross section one (N) as going to infinity. In particular,

the focus is in the asymptotic local power of two tests proposed in Karavias and Tzavalis

(2014a) and in Karavias and Tzavalis (2014b). The first test generalizes the Harris and

Tzavalis tests (1999) to allow for a common break, and will be henceforth denoted as HT.

The second test (denoted as KT ) allows, in addition to structural breaks, for serial correla-

tion in the error term of the individual series of the panel.1 One of the contributions of this

paper is that it extends these tests to the case of cross sectionally dependent errors, so that

1Note that a version of the KT test for the case of no structural breaks has been suggested by Kruiniger
and Tzavalis (2002), and Moon and Peron (2004) for the case that T is large.
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we can study their power properties in a more general setting.

Both the above tests are based on the within groups estimator of the autoregressive

coeffi cient of the AR(1) panel data model, which is just the least squares (LS) estimator

on the transformed AR(1) model. This transformation is necessary for the removal of the

individual deterministic terms and the initial conditions of the series, but it renders the LS

estimator inconsistent as it induces correlation between the lagged dependent variable and

the error term. The HT and KT tests correct for this inconsistency of the LS estimator (for

simplicity, we will also use the term bias) in different ways. The HT test corrects for the

bias of both the numerator and denominator, while the KT test corrects only for the bias

of the numerator. This bias correction is fundamentally different in the fixed-T and large-T

settings. As we show in the paper, it is the main source of the distinct and superior behaviour

of the fixed-T tests over the large-T ones, for short panels. In the large-T setting, Moon and

Perron (2004) show how the bias of the numerator is a function of a long run variance, which

they estimate using kernel estimators that, as they note, have bad small sample properties.

The KT test however corrects for the bias using a fixed T non-parametric estimator based

on the covariance matrix estimation method of Abowd and Card (1989) and Arellano (1990,

2003). This method is consistent across the N dimension of the panel and has good small

sample properties.

The paper makes a number of contributions into the literature of panel data unit root

tests, which have practical implications. First, it shows that, for the standard panel data

model with IID errors and individual intercepts, the HT test has higher asymptotic local

power than the KT test. This can be attributed to the fact that the HT test does not

require a consistent estimator of the variance of the error term, compared to the KT test.

The HT test is invariant to this nuisance parameter, as it adjusts the LS estimator for its
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inconsistency of both its numerator and numerator. Second, as with panel unit root tests

that do not allow for a break, the HT and KT tests have trivial asymptotic local power

if incidental trends are included in the deterministic components of the AR(1) panel data

model. The allowance for a break in the deterministic components of this panel data model

does not save these tests from this problem.

Third, when short term serial correlation of arbitrary form is permitted, the KT test can

increase its power and, for the panel data model with incidental trends, it has non-trivial

asymptotic local power. This is important because large-T panel unit root tests have trivial

power in the natural N−1/2T−1 neighbourhood of unity, when incidental trends are present

(see Moon et al. (2007)). This rise of the power can be attributed to the interaction between

the serial correlation parameters and the fixed T non-parametric estimator of the bias.

Finally, the paper extends the two tests for the case that the error term has a strong

factor structure. It is shown that both the HT and KT tests have good power properties

for the panel data model with individual intercepts. However, for the model with incidental

trends, only the KT test is found to have non-trivial power. This finding is in sharp contrast

with the large-T case of the KT test, which has trivial local power for panels with a large

cross section dimension. It is shown that this power comes from the way the LS estimator is

bias corrected which is different than in the large-T case. The above results are confirmed

through a Monte Carlo experiment. This exercise also provides small sample results on the

power performance of the tests and shows the usefulness of the asymptotic approximation.

The paper is organized as follows: Section 2 presents the assumptions on the data gener-

ating process required by the HT and KT tests. Section 3 derives the limiting distributions

of the tests for NIID errors. For the KT test allowing for serial correlation effects, this is

done in Section 4. Section 5 considers the case of cross section dependence. Section 6 carries
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out the Monte Carlo exercise. Section 7 concludes the paper. All proofs are given in the

appendix.

2 Models and Assumptions

Consider the following AR(1) dynamic panel data models allowing for a common structural

break in their deterministic components (individual effects and/or individual linear trends)

at time point λ, for all individual units of the panel i:

M1: yi = a
(1)
i e(1) + a

(2)
i e(2) + ζ i, i = 1, 2, .., N ,

M2: yi = a
(1)
i e(1) + a

(2)
i e(2) + β

(1)
i τ (1) + β

(2)
i τ (2) + ζ i, i = 1, ..., N

where

ζ i = ϕζ i,−1 + ui,

ϕ ∈ (−1, 1], yi = (yi,1, ..., yi,T )′ and yi,−1 = (yi,0, ..., yi,T−1)
′ are T×1 vectors, ui = (ui,1, ..., ui,T )

is the T ×1 vector of error terms ui,t, ai and βi denote the individual effects and slope coeffi -

cients of the linear (incidental) trends of the panel. In particular, ai is defined as ai = a
(1)
i if

t ≤ T0 and ai = a
(2)
i if t > T0, while e(1) and e(2) are T × 1-column vectors defined as

follows: e(1)t = 1 if t ≤ T0 and 0 otherwise, and e(2)t = 1 if t > T0 and 0 otherwise. Slope

coeffi cients βi are defined as βi = β
(1)
i if t ≤ T0 and βi = β

(2)
i if t > T0, while τ (1) and τ (2) are

T × 1-column vectors defined as follows: τ (1)t = t if t ≤ T0, and zero otherwise, and τ
(2)
t = t

if t > T0, and zero otherwise. Throughout the paper, we will denote the set of possible dates

that the break can occurs with Iλ and the break fraction with λ = T0/T, i.e. λ ∈ Iλ.
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The above models nest in the same framework both the null hypothesis of unit roots in

ϕ, i.e., ϕ = 1, and its alternative of stationarity, ϕ < 1. They can be written in a non-linear

form as follows:

yi = ϕyi,−1 + (1− ϕ)(a
(1)
i e(1) + a

(2)
i e(2)) + ui, i = 1, 2, ..., N and

yi = ϕyi,−1 + ϕβ
(1)
i e(1) + ϕβ

(2)
i e(2) + (1− ϕ)(a

(1)
i e(1) + a

(2)
i e(2)) + (1− ϕ)(β

(1)
i τ (1) + β

(2)
i τ (2)) + ui,

respectively. The “within group” least squares (LS) (known also as least squares dummy

variables (LSDV)) estimator of autoregressive coeffi cient ϕ of the models can be written as

follows:

ϕ̂(λ) =

(
N∑
i=1

y′i,−1Q
(λ)yi,−1

)−1( N∑
i=1

y′i,−1Q
(λ)yi

)
,

where Q(λ) is the T ×T “within”transformation (annihilator) matrix of the individual series

of the panel yi,t. Q(λ) is defined as Q(λ) = I − X(λ)
(
X(λ)′X(λ)

)−1
X(λ)′, where X(λ) =(

e(1), e(2)
)
for model M1 and X(λ) =

(
e(1), e(2), τ (1), τ (2)

)
for model M2. I denotes the

T ×T identity matrix. The within transformation of the data wipes off the individual effects

and/or incidental trends of the panel, as well as its initial conditions yi,0, but it results in

an inconsistent estimator because it induces correlation between the transformed error and

the transformed lagged dependent variable. Thus, fixed-T panel unit root tests based on it

must rely on a correction of estimator ϕ̂(λ) for its inconsistency (asymptotic bias) (see, e.g.,

Harris and Tzavalis (1999, 2004)). To study the asymptotic local power of these tests, define

the autoregressive coeffi cient ϕ as ϕN = 1− c/
√
N . Then, the hypotheses of interest become

H0: c = 0 and Ha: c > 0,
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where c is the local to unity parameter. The limiting distributions of the tests based on

LSDV estimator ϕ̂(λ) will be derived under the sequence of local alternatives ϕN , by making

the following general assumptions:

Assumption A: (a1) {ui}, i ∈ {1, 2, ..., N}, constitutes a sequence of T×1 independent

random vectors with means E(ui) = 0 and all mixed 4+δ moments are finite. (a2) E(uiu
′
i) =

Γi with γi,ts = E(ui,tui,s) = 0 for t < s and s = t+pi + 1, ..., T , where pi denotes the order of

serial correlation for each i and pi ≤ pmax. (a3) Define Γ̄ = (1/N)
∑N

i=1 Γi for which it holds

that limN(N Γ̄)−1Γi = limN

(∑N
i=1 Γi

)−1
Γi = 0 and also assume that matrix Γ = limN Γ̄ is

positive definite. (a4) The error terms ui,t is independent of a
(1)
i , a

(2)
i and yi,0, for all i, and

V ar(yi,0) < +∞.

Assumption B: pmax = [T/2− 2]∗ for model M1 and

pmax =


T
2
− 3 if T is even and T0 = T/2,

min{T0 − 2, T − T0 − 2} otherwise


for model M2, where [.]∗ denotes the greatest integer function.

Assumption C: (b1) β(1)i and β(2)i are sequences of independent random variables with

finite 4+δ moments. They are also independent from ui. (b2) limN max(E(β
(j)2
i ))/(Nβ̄

(j)2
) =

0, where β̄(j)2 = (1/N)
∑N

i=1E(β
(j)2
i ) for j = 1, 2. Also, β(j)2 = limN β̄

(j)2 is finite.

Assumption D: The break fraction λ ∈ Iλ = {2/T, 3/T, ....., (T − 1)/T} for model M1

and λ ∈ Iλ = {2/T, 3/T, ..., (T − 2)/T} for model M2.

Assumption A enables us to derive the limiting distribution of the fixed-T panel data

unit root tests of Karavias and Tzavalis (2014a) for Γi = σ2i I. These tests (denoted as HT )

extend those of Harris and Tzavalis (1999) for the case of a common break in the deterministic
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components of modelsM1 andM2. It also allows the derivation of this limiting distribution

for Karavias’and Tzavalis (2014b) fixed-T panel data unit root test (denoted as KT ), which

allows for a structural break under heteroscedasticity and serial correlation of error terms

ui,t, for both models M1 and M2. Condition (a1) states that ui is mean zero and that,

element-wise, all possible 4 + δ moments of it are finite. Condition (a2) allows ui,t to have

different types of heteroscedasticity and serial correlation across the cross section units and

the time dimension of the panel. However, there is a common bound to the order of serial

correlation (see also Assumption B). If Γi = σ2I for all i, then (a2) is consistent with the

assumption of Karavias and Tzavalis (2014a) panel data unit root tests, considering the

simpler case of ui ∼ NIID(0, σ2I).

Condition (a3) states that no individual variance of ui,t is big enough to dominate the rest.

This is an assumption required by the Lindeberg-Feller CLT. Finally, condition (a4) imposes

independence between the parameters of the series of the panel yi,t and the innovations.

It also implies that V ar(yi,0) < +∞ which is consistent with assumptions like constant,

random and mean stationary initial conditions yi,0. Covariance stationarity of yi,0, implying

V ar(yi,0) = σ2/ (1− ϕ2N) (see Kruiniger (2008) and Madsen (2010)) is not considered. This

is because, as is also aptly noted by Moon et al. (2007), this assumption implies that

V ar(yi,0) → ∞ when ϕN → 1, which means that the variance of the initial condition

increases with the number of cross-section units. This is not meaningful for cross-section

data sets.

Assumption B determines the maximum allowable order of serial correlation because of

its interaction with the structural break. We chose to restrict the order of serial correlation

and let the break date free, rather than the opposite. Finally, Assumption C is relevant

only for the case of the KT test for model M2. Conditions (c1) and (c2) guarantee that
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β
(1)
i and β

(2)
i , which appear in the estimator of the bias correction, obey the Lindeberg-

Feller CLT. Assumption D determines the possible break points. An advantage of the HT

and KT tests is that the trimming of the sample depends on the deterministic specification

of the panel data models M1 and M2, and it is less severe than that assumed by single

time series unit root tests allowing for breaks, i.e. for M1, Iλ = {2/T, 3/T, ....., (T − 1)/T}

and, therefore, only the first and last dates are trimmed out as opposed to the {0.15, 0.85}

interval, advocated in Andrews (1993).

To study the asymptotic local power of the tests, we will rely on the slope parameter,

denoted as k, of local power functions of the form

Φ(za + ck),

where Φ is the standard normal cumulative distribution function and za denotes the α-level

percentile. Since Φ is strictly monotonic, a larger k means greater power for the same value

of c. If k is positive, then the tests will have non-trivial power. If it is zero, they will have

trivial power, which is equal to a, and, finally, if c < 0 they will be biased.

3 The limiting distribution of the tests if ui ∼ NIID(0, σ2I)

This section presents the limiting distribution of the HT and KT test statistics under the

sequence of local alternatives ϕN = 1 − c/
√
N when ui ∼ NIID(0, σ2I). This is a special

case of Assumption A where pmax = 0. The assumption of normality is made only for

convenience, because in this case we can calculate the analytic formula of theHT test statistic

variance. For ease of exposition, it is also assumed that β(j)i are IID. This is a special case
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of Assumption C. As mentioned before, the HT test corrects both the numerator and the

denominator of the LS estimator ϕ̂(λ) for its inconsistency, while the KT test corrects only

the numerator of ϕ̂(λ). This enables the KT test to be easily extended to allow for more

general dependence structures of error term ui.

3.1 Model M1

For model M1, the HT test allowing for a break is based on the following statistic:

Z
(λ)
HT = V

(λ)−1/2
HT

√
N(ϕ̂(λ) − 1−B(λ)),

where B(λ) = p lim(ϕ̂(λ) − 1) = tr(Λ′Q(λ))/tr(Λ′Q(λ)Λ) is the inconsistency of LS estimator

ϕ̂(λ) under null hypothesis H0: c = 0, where Λ is a T ×T dimension matrix having unities at

its lower than its main diagonals and zeroes elsewhere. V (λ)
HT = 2tr(A

(λ)2
HT )/tr(Λ′Q(λ)Λ)2, with

A
(λ)
HT = (1/2)(Λ′Q(λ) + Q(λ)Λ) − B(λ)(Λ′Q(λ)Λ), is the variance of the limiting distribution

of the corrected for its inconsistency LS estimator ϕ̂(λ), i.e.
√
N(ϕ̂(λ) − 1−B(λ)). The KT

test is based on the following statistic:

Z
(λ)
KT = V

(λ)−1/2
KT δ̂

(λ)√
N

(
ϕ̂(λ) − 1− b̂(λ)

δ̂
(λ)

)
,

where b̂(λ)/δ̂
(λ) ≡ σ̂2tr(Λ′Q(λ))/

(
1
N

∑N
i=1 y

′
i,−1Q

(λ)yi,−1

)
is a consistent estimator of the bias

of ϕ̂(λ) based on a consistent estimator of the bias of the numerator, namely σ̂2tr(Λ′Q(λ)), di-

vided by δ̂
(λ)
which is the denominator of ϕ̂(λ). V (λ)

KT = 2σ4tr(A
(λ)2
KT ), withA(λ)KT = (1/2)(Λ′Q(λ)+

Q(λ)Λ−Ψ(λ)−Ψ(λ)′), is the variance of the limiting distribution of
√
Nδ̂

(λ)
(
ϕ̂(λ) − b̂(λ)/δ̂(λ) − 1

)
and Ψ(λ) is a T ×T dimension matrix having in its main diagonal the corresponding elements
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of matrix Λ′Q(λ) and zeros elsewhere.

In implementing the KT test statistic, note that a consistent estimator of σ2 under H0:

c = 0 is given by σ̂2 =
[
1/
(
tr(Ψ(λ))N

)]∑N
i=1 tr(Ψ

(λ)∆yi∆y
′
i), where ∆yi = yi−yi,−1. Matrix

Ψ(λ) implies that tr(Ψ(λ)) = tr(Λ′Q(λ)). It is designed so as, in adjusting the numerator of the

estimator ϕ̂(λ) for its inconsistency, some sample information is left to test the null hypothesis.

In particular, Ψ(λ) has two properties. First, it restricts the estimator (1/N)
∑N

i=1 ∆yi∆y
′
i,

which constitutes a consistent estimator of σ2I based on all the available sample information,

to its main diagonal.2 This restriction uses information coming only from contemporaneous

observations and, because there is no information about σ2 in the off-diagonal elements of

σ2I, it preserves then consistency of the estimator. Second, matrix Ψ(λ) weights the diagonal

elements of (1/N)
∑N

i=1 ∆yi∆y
′
i in the same way that are weighted by tr(Λ

′Q(λ)), mimicking

the part of the bias which is due to the within transformation matrix.

In the next theorem, we give the limiting distribution of the HT and KT test statistics

for model M1, under the sequence of local alternatives ϕN = 1− c/
√
N .

Theorem 1 For model M1, let Assumptions A and D hold and ui ∼ NIID(0, σ2I). Then,

under ϕN = 1− c/
√
N , we have

V
(λ)−1/2
HT

√
N(ϕ̂(λ) − 1−B(λ))

d−→ N (−ckHT , 1)

and V
(λ)−1/2
KT δ̂

(λ)√
N

(
ϕ̂(λ) − 1− b̂(λ)

δ̂
(λ)

)
d−→ N (−ckKT , 1) ,

2Notice that, under H0 : c = 0, we have ∆yi = ui and, thus, p lim σ̂2 =
p lim[1/(tr(Ψ(λ))N)]

∑N
i=1 tr(Ψ

(λ)∆yi∆y
′
i) = σ2tr(Λ′Q(λ))/tr(Ψ(λ)) = σ2, since tr(Ψ(λ)) = tr(Λ′Q(λ)).
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as N −→∞, where

kHT =
T (T − 2)

[
T 2(3λ2 − 3λ+ 1)− 1

]
4T 2(2λ2 − 2λ+ 1)− 8

√
T 4Φ1 + T 2Φ2 + 240

T 6R1 + T 5R2 + T 4R3 + T 2R4 + 216T − 136

and kKT =

√
3(T − 2)√

T 2(2λ2 − 2λ+ 1) + 6T + 10− 4(− 1
T
+2(λ−1)λT )
(λ−1)λ

,

where R1, R2, R3, R4 and Φ1,Φ2 are polynomials of λ defined in the appendix (see proof of

the theorem).

The limiting distributions given by Theorem 1 imply that the asymptotic local power

function of test statistics HT and KT depend on the values of slope parameters kHT and

kKT , respectively. In Table 1, we present values of these parameters, for different values of

T and λ. The results of this table indicate that the asymptotic local power behaviour of the

two test statistics is different. The HT statistic has much higher power than the KT . The

power of this statistic is much bigger when the break is in the beginning, or towards the

end of the sample, i.e., for λ = {0.25, 0.75}.3 On the other hand, the power of test statistic

KT reaches its maximum point when the break is in the middle of the sample, λ = {0.50}.

The power of statistic HT increases with T , i.e., kHT = O(T ). The power of the KT test

increases with T , but for relatively small T . As T grows large, the test has no power gains.

This can be seen from limT kKT =
√

3/
√

2λ2 − 2λ+ 1, which is independent of T . These

results can be more clearly seen by the three-dimension Figures 1 and 2, presenting values

of kHT and kKT , for different values of λ and T .

The above differences between test statistics HT and KT can be attributed to the way

3Analogous evidence is provided for single time series unit root tests allowing for breaks, based on a model
selection Bayesian approach (see Meligkotsidou et al. (2011)).
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that each of them corrects for the inconsistency of the LS estimator ϕ̂(λ). As mentioned

before, HT is based on a correction of LS estimator ϕ̂(λ) for the inconsistency of both its

numerator and denominator. On the other hand, the KT test statistic is based on an

adjustment of estimator ϕ̂(λ) only for the inconsistency of its numerator, which additionally

requires a consistent estimator of the variance of error term ui,t, σ2. The later reduces the

local power of the test. Finally, another result of Theorem 1 is that, under the sequence

of local alternatives considered, the break function parameters do not enter the asymptotic

distribution of both test statistics HT and KT . Thus, the magnitude of the break does not

affect local power of the tests. Furthermore, local power is also robust, asymptotically, to

the initial conditions of the panel yi,0, which means that their magnitudes also do not affect

the power of the test (see also Harvey and Leybourne (2005) and Harris et al. (2010)).

Scaling appropriately test statistics HT and KT by T and assuming that T ,N → ∞,

with
√
N/T → 0, it can be shown (see appendix) that, under ϕN,T = 1 − c/

(
T
√
N
)
, the

limiting distributions of the large-T versions of these statistics are given as follows:

Corollary 1 For model M1, let Assumptions A and D hold and ui ∼ NIID(0, σ2I). Then,

under ϕN,T = 1− c/
(
T
√
N
)
, we have

V
∗(λ)−1/2
HT T

√
N(ϕ̂(λ) − 1−B(λ))

L−→ N (−ck∗HT , 1) ,

and V
∗(λ)−1/2
KT δ̂

(λ)
T
√
N

(
ϕ̂(λ) − 1− b̂(λ)

δ̂
(λ)

)
d−→ N (−ck∗KT , 1) ,

as T ,N →∞, with
√
N/T → 0, where

k∗HT =
3λ2 − 3λ+ 1

4(2λ2 − 2λ+ 1)

√
Φ1

R1
and k∗KT = 0, (1)
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and

V
∗(λ)
HT =

36R1

Φ1(2λ
2 − 2λ+ 1)2

and V ∗(λ)KT /

(
p lim
N,T

δ̂
(λ)
)

=
36(2λ4 − 4λ3 + 3λ2 − λ)

12(λ− 1)λ(2λ2 − 2λ+ 1)2
,

respectively, denote the local power slope coeffi cients and the variances of the limiting distri-

butions of the large-T versions of the HT and KT test statistics.

Values of power slope coeffi cients k∗HT and k
∗
KT , for different values of λ, are reported

in Table 2. These indicate that, in contrast to the HT test, the large-T extension of test

statistic KT does not have asymptotic local power.4 Thus, the KT test can be thought of

as more appropriate for short panels. The results of the table also indicate that the large-T

extension of the HT test has less power than its fixed-T version. We have also found that

power takes its highest values in the beginning and towards the end of the sample, i.e., for

λ = {0.10, 0.90}, as with its fixed-T version. The smaller power of the large-T versions of

test statistics HT and KT , compared to their fixed-T ones, can be attributed to the faster

rate of convergence of the alternative hypotheses to the null, i.e. ϕN,T = 1 − c/
(
T
√
N
)

compared to ϕN = 1− c/
√
N (see also Harris et al. (2010)).

The test statistics given by Theorem 1 and Corollary 1 can be readily applied in practice.

To this end, for test statistic HT , first the annihilator matrix Q(λ) must be built, where Q(λ)

is a deterministic matrix based on vectors e(1) and e(2). Then, given Λ which is a fixed

matrix and Ψ(λ) which is a restricted form of Λ′Q(λ), the bias B(λ) = tr(Λ′Q(λ))/tr(Λ′Q(λ)Λ)

and matrix A(λ)HT = (1/2)(Λ′Q(λ) + Q(λ)Λ) − B(λ)(Λ′Q(λ)Λ) can be easily calculated. With

these quantities at hand, the last step is to calculate the LS estimator and the Z(λ)HT test

4Note that an analogous result has been derived by Moon and Perron (2008) for this test in the case of
no break.
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statistic. Similar steps to those above can be followed for the application of test statistic

KT . σ̂2 =
[
1/
(
tr(Ψ(λ))N

)]∑N
i=1 tr(Ψ

(λ)∆yi∆y
′
i) must also be calculated as part of b̂

(λ). δ̂
(λ)

is the denominator of the LS estimator. As a final note, if error terms ui,t are non-normal

as is the most probable case, only the formula of the variance of statistic HT changes in the

above theorems. This becomes V (λ)
HT =

[
k4
∑N

j=1 a
(λ)2
HT,jj + 2σ4tr(A

(λ)2
HT )

]
/
[
σ2tr(Λ′Q(λ)Λ)

]2
,

where A(λ)HT = [a
(λ)
HT,ij] and parameter k4 can be estimated as in Harris and Tzavalis (2004).

If the date of the break is unknown, as often assumed in practice, then to test null

hypothesis H0: c = 0 we may either estimate it as in Bai (2010) or rely on the minimum

values of the known break test statistics HT and KT over all possible break points of the

sample, denoted respectively as minλ∈IλZ
(λ)
HT and minλ∈IλZ

(λ)
KT . As shown in Karavias and

Tzavalis (2014a), the limiting distributions of these test statistics behave like the minimum of

a fixed number of correlated normal variables. The pdf of this minimum is given by Karavias

and Tzavalis (2014b). Because inverting this pdf is a numerical problem and because the

results are qualitatively similar to those of the known date break tests presented above, we

do not pursue this issue any further.

3.2 Model M2

For model M2, which additionally considers incidental trends in the deterministic compo-

nents of panel data series yi,t, the HT andKT test statistics are defined analogously to those

for model M1. Test statistic HT admits the same formulas, but now matrix Q(λ) is based

on X(λ) =
(
e(1), e(2), τ (1), τ (2)

)
. B(λ) = p lim(ϕ̂(λ) − 1) = tr(Λ′Q(λ))/tr(Λ′Q(λ)Λ) denotes the

inconsistency of LS estimator ϕ̂(λ), for model M2 and V (λ)
HT = 2tr(A

(λ)2
HT )/tr(Λ′Q(λ)Λ)2, with

A
(λ)
HT = 1

2
(Λ′Q(λ) + Q(λ)Λ) − B(λ)(Λ′Q(λ)Λ), is the variance of the limiting distribution of
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√
N(ϕ̂(λ) − 1−B(λ)).

However, for test statistic KT , σ̂2 =
[
1/
(
tr(Ψ(λ))N

)]∑N
i=1 tr

(
Ψ(λ)∆yi∆y

′
i

)
is no longer

a consistent estimator of σ2 in the case of model M2, due to the presence of individual

coeffi cients (effects) βi under null hypothesis H0: c = 0. These imply that ∆yi = β
(1)
i e(1) +

β
(2)
i e(2) + ui and it can be easily seen that

p lim
N

1

N

N∑
i=1

∆yi∆y
′
i = E(β

(1)2
i )e(1)e(1)′ + E(β

(1)2
i )e(2)e(2)′ + σ2I. (2)

To render test statistic KT invariant to nuisance parameters βi, Karavias and Tzavalis

(2014b) suggested the following estimator of σ2:

σ̂2 =
1

Ntr(Θ(λ))

N∑
i=1

tr
(
Θ(λ)∆yi∆y

′
i

)
,

with

Θ(λ) = Ψ(λ) − tr(Ψ(λ)e(1)e(1)′)

tr(M (1)e(1)e(1)′)
M (1) − tr(Ψ(λ)e(2)e(2)′)

tr(M (2)e(2)e(2)′)
M (2), (3)

where Ψ(λ) is defined as before (i.e., it is a T ×T diagonal matrix having in its main diagonal

the elements of the main diagonal of the matrix Λ′Q(λ)), M (1) = e(1)e(1)′ − diag{e(1)e(1)′, 0}

and M (2) = e(2)e(2)′ − diag{e(2)e(2)′, 0}, where diag{e(r)e(r)′, p}, r = {1, 2}, denotes two se-

lection matrices which have zeros everywhere except from their main and p upper and p

lower diagonals in which they have the elements of the matrices e(r)e(r)′. Matrices M (r),

for r = {1, 2}, select the elements of p limN(1/N)
∑N

i=1 ∆yi∆y
′
i containing individual effects

E(β
(r)2
i ). In particular, matrices M (1) and M (2) respectively select the off-diagonal elements

of the right hand side of (2) where nuisance parameters E(β
(1)2
i ) and E(β

(2)2
i ) reside. This

can be seen by noticing that p limN tr(M
(1)
∑N

i=1 ∆yi∆y
′
i)/Ntr(M

(1)e(1)e(1)′) = E(β
(1)2
i ) and
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p limN tr(M
(2)
∑N

i=1 ∆yi∆y
′
i)/Ntr(M

(2)e(2)e(2)′) = E(β
(2)2
i ). Thus, these matices are used in

the adjustment of the LS estimator ϕ̂(λ) for its inconsistency to render the limiting distrib-

ution of this estimator net of the individual effects βi.

Having defined matrices M (r), one can see that Θ(λ), given by (3), plays the same role

that Ψ(λ) does for test statistic KT in the case of model M1. However, in addition to

rendering the limiting distribution of
√
N
(
ϕ̂(λ) − 1− b̂(λ)/δ̂(λ)

)
net of the diagonal ele-

ments of σ2I (which is done through matrix Ψ(λ)), matrix Θ(λ) also makes this limiting

distribution net of individual effects E(β
(r)2
i ), for r = {1, 2}. The latter is done through

matrices
[
tr(Ψ(λ)e(1)e(1)′)/tr(M (1)e(1)e(1)′)

]
M (1) and

[
tr(Ψ(λ)e(2)e(2)′)/tr(M (2)e(2)e(2)′)

]
M (2).

Given the definition of Θ(λ), the bias adjustment function and the variance of the limit-

ing distribution of
√
N
(
ϕ̂(λ) − 1− b̂(λ)/δ̂(λ)

)
will be respectively given as follows: b̂(λ)/δ̂

(λ)
=

tr(Θ(λ)(1/N)
∑N

i=1 ∆yi∆y
′
i))/

(
1
N

∑N
i=1 y

′
i,−1Q

(λ)yi,−1

)
and V (λ)

KT = vec(Q(λ)Λ−Θ(λ)′)′Πvec(Q(λ)Λ−

Θ(λ)′), with Π̂ = (1/N)
∑N

i=1 vec(∆yi∆y
′
i)vec(∆yi∆y

′
i).

The next theorem derives the limiting distribution of test statistics HT and KT for

model M2 under the sequence of local alternatives ϕN = 1− c
√
N .

Theorem 2 For model M2, let Assumptions A, C and D hold with ui ∼ NIID(0, σ2I) and

β
(j)
i be IID, for j = 1, 2. Then, under ϕN = 1− c

√
N , we have

V
(λ)−1/2
HT

√
N(ϕ̂(λ) − 1−B(λ))

L−→ N (−ckHT , 1) and

V
(λ)−1/2
KT δ̂

(λ)√
N

(
ϕ̂(λ) − 1− b̂(λ)

δ̂
(λ)

)
d−→ N (−ckKT , 1) ,

as N →∞, where

kHT = 0 and kKT = 0.
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The results of the theorem indicate that the well-known incidental trends problem of

panel data unit root tests (see e.g. Moon et al. (2007)) also exists even if the tests allow for

a break and T is fixed. Both, the HT and KT test statistics have trivial power, for model

M2. This result also holds for the case that T grows large and is established in the next

corollary.

Corollary 2 For model M2, let Assumptions A, C and D hold with ui ∼ NIID(0, σ2I) and

β
(r)
i be IID, for r = 1, 2. Then, under ϕN,T = 1− c/

(
T
√
N
)
, we have

V
∗(λ)−1/2
HT T

√
N(ϕ̂(λ) − 1−B(λ))

L−→ N (−ck∗HT , 1) ,

and V
∗(λ)−1/2
KT δ̂

(λ)
T
√
N

(
ϕ̂(λ) − b̂(λ)

δ̂
(λ)
− 1

)
d−→ N (−ck∗KT , 1) ,

as T ,N →∞, with
√
N/T → 0, with

k∗HT = 0 and k∗KT = 0, (4)

where k∗HT and k
∗
KT denote the local power slope coeffi cients of the large-T versions of the

HT and KT test statistics.

The implementation of the test statistics given by Theorem 2 (or Corollary 2), for

model M2, follows the same steps to those for the test statistics for model M1, given

by Theorem 1 (or Corollary 1). More specifically, for test statistic HT matrix Q(λ), with

X(λ) =
(
e(1), e(2), τ (1), τ (2)

)
, must be employed. For test statistic KT , the fixed matrices

M (r), for r = {1, 2}, and Θ(λ) must be built. Then, the variance function V (λ)−1/2
KT must be

calculated, by plugging in the estimator Π̂ = (1/N)
∑N

i=1 vec(∆yi∆y
′
i)vec(∆yi∆y

′
i)
′.
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4 Power of the KT tests if error terms ui are serially

correlated

In this section, we consider the case that the variance-covariance matrix of the vector of

error terms ui has a more general form than Γ = σ2I, assumed in the previous section.

That is, we assume that Γ = [γi,ts], where γi,ts = E(ui,tui,s) = 0 for s = t + pmax + 1, ..., T

and t < s. This means that errors ui,t allow for heteroscedasticity and serial correlation

of maximum lag order p = max pi, for i = 1, ..., N . We further allow for cross-sectional

heterogeneity, by allowing the type of heteroscedasticity and serial correlation to change

with i. The order of serial correlation p, considered may differ across the units of the panel,

but we still impose the following bound for it: p ≤ pmax, which is smaller than T and is

determined in Assumption B. This assumption provides some common nuisance parameter

free moments which are exploited in the cross section dimension of the panel. We no longer

impose the IID assumption on incidental trends slope coeffi cients β(r)i , used for simplicity in

the previous section. These less restrictive assumptions enable us to investigate the combined

effects of a structural break and serial correlation in ui,t on the asymptotic local power of

panel unit root tests. As only the KT test is extended to allow for serially correlated errors

ui,t (see, e.g., Karavias and Tzavalis (2014b)), our analysis will be focused on this test.

For both models M1 and M2, the KT test statistic under the above assumptions about

ui has analogous forms to those presented in the previous section. What changes is that, in

order to take into account the p-th order serial correlation in ui,t which appears in the p-upper

and p-lower secondary diagonals of matrix Γ, the T ×T selection matrix Ψ(λ) now is defined

as having in its main diagonal and its p-lower and p-upper diagonals the corresponding ele-

ments of matrix Λ′Q(λ), and zeroes elsewhere. Similarly, M (1) and M (2), defined before, will
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have zeroes in their p-lower and p-upper diagonals (as opposed to zeroes only in their main

diagonal, assumed for the simple case of Γ = σ2I), i.e. M (r) = e(r)e(r)′ − diag{e(r)e(r)′, p}.

This is needed, because in these diagonals the trend nuisance parameters appear together

with the higher order serial correlation nuisance parameters.

For the M1 model, which assumes that X(λ) =
(
e(1), e(2)

)
, the inconsistency of LS es-

timator ϕ̂(λ) under null hypothesis H0: c = 0 and Assumptions A, B and D is given by

tr(Λ′Q(λ)Γ)/tr(Λ′Q(λ)ΛΓ), since p limN(ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ̄)/tr(Λ′Q(λ)ΛΓ̄)) = 0. This for-

mula of the inconsistency of ϕ̂(λ) indicates that in order to correct ϕ̂(λ) we need an esti-

mator of matrix Γ̄. To this end, define the following estimator: Γ̂ = (1/N)
∑N

i=1 ∆yi∆y
′
i.

Then, by Chebyshev’s Weak Law of Large Numbers, we have p limN

[
Γ̂− Γ̄

]
= 0 and,

thus, p limN

[
tr(Ψ(λ)Γ̂)− tr(Λ′Q(λ)Γ̄)

]
= 0. The last result implies that ϕ̂(λ) can be ad-

justed for its inconsistency, by defining b̂(λ) as b̂(λ) = tr(Ψ(λ)Γ̂). Then, test statistic

√
N
(
ϕ̂(λ) − 1− b̂(λ)/δ̂(λ)

)
will be centred around zero, where δ̂

(λ)
is the denominator of

ϕ̂(λ). The variance function of this statistic is given by V
(λ)
KT = 2tr

(
(A

(λ)
KTΓ)2

)
, where

A
(λ)
KT = (1/2)(Λ′Q(λ) +Q(λ)Λ−Ψ(λ) −Ψ(λ)′).

The above formula of the inconsistency of LS estimator ϕ̂(λ), i.e., tr(Λ′Q(λ)Γ)/tr(Λ′Q(λ)ΛΓ)

also holds for model M2, which assumes that X(λ) =
(
e(1), e(2), τ (1), τ (2)

)
. Under the above

assumptions andH0: c = 0, it can be shown p limN(ϕ̂(λ)−1−tr(Λ′Q(λ)Γ̄)/tr(Λ′Q(λ)ΛΓ̄)) = 0.

However, Γ̂ is an inconsistent estimator of Γ̄ due to the presence of β(r)i under the null hy-

pothesis. It can be easily shown that p limN

[
Γ̂− Γ̄− β̄(1)2e(1)e(1)′ − β̄(2)2e(2)e(2)′

]
= 0. In this

case, to adjust LS estimator ϕ̂(λ) for its inconsistency, due to nuisance parameters β(r)i and the

presence of serial correlation in ui,t (both implying p limN

[
Γ̂− Γ̄

]
6= 0), we will employ ma-

trixΘ(λ). This matrix now is based on the modified for p-order serial correlation matricesΨ(λ)

and M (r), for r = {1, 2}, defined above. Then, p limN

[
tr(M (r)Γ̂)/tr(M (r)e(r)e(r)′)− β̄(r)2

]
=
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0, for r = {1, 2} and, hence, p limN

[
tr(Θ(λ)Γ̂)− tr(Λ′Q(λ)Γ̄)

]
= 0. The last result estab-

lishes that b̂(λ) = tr(Θ(λ)Γ̂) constitutes a consistent estimator of the bias of the numera-

tor of ϕ̂(λ), and thus statistic
√
N
(
ϕ̂(λ) − 1− b̂(λ)/δ̂(λ)

)
is centred around 0. Its variance

has the same formula as before, i.e., V (λ)
KT = vec(Q(λ)Λ − Θ(λ)′)′Πvec(Q(λ)Λ − Θ(λ)′), with

Π̂ = (1/N)
∑N

i=1 vec(∆yi∆y
′
i)vec(∆yi∆y

′
i)
′.

In the next theorem, we provide the limiting distribution of test statistic KT under the

sequence of local alternatives ϕN = 1− c/
√
N , for model M1 allowing for serial correlation

in ui,t.

Theorem 3 For model M1, let Assumptions A, B, and D hold. Then, under ϕN = 1 −

c/
√
N , we have

V
(λ)−1/2
KT δ̂

(λ)√
N

(
ϕ̂(λ) − b̂(λ)

δ̂
(λ)
− 1

)
d−→ N(−ckKT , 1), for model M1,

as N →∞, with

kKT =
tr(F ′Q(λ)Γ) + tr(Λ′Q(λ)ΛΓ)− tr(Ψ(λ)ΛΓ)− tr(Λ′Ψ(λ)Γ)√

2tr((A
(λ)
KTΓ)2)

.

where F is a T×T deterministic matrix independent of the order of serial correlation, defined

in the Appendix.

The results of the theorem indicate that the asymptotic local power of the KT test now

depends also on the values of the variance-covariance parameters γi,ts, affecting the power

slope parameter kKT . This can increase, or reduce, the local power of the test depending

on the sign and form of γi,ts. To see this more clearly, in Panel A of Table 3 we present

estimates of the power slope parameter kKT assuming that error terms ui,t follow a MA(1)
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process:

ui,t = εi,t + θεi,t−1,

where εi,t ∼ NIID(0, σ2ε). Note that the table also considers the case that θ = 0 (i.e., there is

no serial correlation in ui,t), but test statistic KT allows for serial correlation of order p = 1.

This case can show if this test loses significant power if a higher order of serial correlation

p is assumed than the correct one. The results of the table also show that the KT test has

always power if θ ≥ 0. The finding that the test has power even if θ = 0, for all cases of

T0 considered, indicates that it may be applied to test for unit roots even if higher than the

correct order of serial correlation is assumed.5 As was expected, the power of the test in this

case is always less, compared to that when the correct lag order p = 0 is considered. This

happens because in this case the test exploits less moment conditions in drawing inference

about unit roots, by assuming p = 1 when θ = 0.

Another conclusion that can be drawn from the results of the table is that, when θ > 0,

the power of test statistic KT becomes bigger than that of its version which does not allow

for serial correlation ui,t, presented in the previous section (see Table 2). We have found

that this result can be mainly attributed to the presence of selection matrix Ψ(λ) in terms

tr(Ψ(λ)ΛΓ) and tr(Λ′Ψ(λ)Γ) of the function of the slope coeffi cient kKT , given by Theorem 3.

These terms have a positive effect on kKT (i.e., tr(Ψ(λ)ΛΓ) + tr(Λ′Ψ(λ)Γ) < 0) when θ > 0

and a negative effect when θ < 0 (i.e., tr(Ψ(λ)ΛΓ) + tr(Λ′Ψ(λ)Γ) > 0).6 As T increases, the

above sign effects of θ on the KT test are amplified. These power gains of the KT test for

model M1, when θ > 0, may be also attributed to the fact that a positive value of θ adds to

5We have found that this is true even for p > 1.
6The sum of traces tr(F ′Q(λ)Γ) + tr(Λ′Q(λ)ΛΓ) affects the power of the KT test, too. However, because

this constitutes a parabola function which opens upwards, its effect on kKT is almost symmetrical with respect
to the sign of θ. Thus, the relationship between kKT and θ is mainly determined by tr(Ψ(λ)ΛΓ)+tr(Λ′Ψ(λ)Γ).
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the variability of individual panel series yi,t driving further away the limiting distributions

of the test under the null and alternative hypotheses.

For model M2, the limiting distributions of test statistic KT under ϕN = 1− c/
√
N and

serially correlated error terms ui,t are given in the next theorem.

Theorem 4 For model M2, let Assumptions A, B, C and D hold. Then, under ϕN =

1− c/
√
N , we have

V
(λ)−1/2
KT δ̂

(λ)√
N

(
ϕ̂(λ) − 1− b̂(λ)

δ̂
(λ)

)
d−→ N (−ckKT , 1) ,

as N →∞, where

kKT =
tr(F ′Q(λ)Γ) + tr(Λ′Q(λ)ΛΓ)− tr(Θ(λ)ΛΓ)− tr(Λ′Θ(λ)Γ)√

V
(λ)
KT

.

The above theorem shows that, if we allow for serial correlation in ui,t, the KT test can

have non-trivial power even in the case of incidental trends. Panel B of Table 3 presents

values of kKT for the case that ui,t = εi,t + θεi,t−1. This is done for different values of θ and

T . As in Panel A, we also consider the case that θ = 0.

The results of Panel B of Table 3 indicate that, for model M2, test statistic KT has

non-trivial power only if θ < 0. If θ = 0, the test has trivial power, while, for θ > 0 the test

is biased. For θ < 0, the power of the test increases with T . For a given T, it becomes bigger

if the break point T0 is located towards the end of the sample, i.e. λ = 0.75. These results are

in contrast to those for modelM1, presented in Panel A, where the KT test is found to have

more power if θ > 0. This can be attributed to the trace terms on the power slope parameter

kKT and, in particular, tr(Θ(λ)ΛΓ) and tr(Λ′Θ(λ)Γ). Evaluations of these terms show that
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negative values of θ mitigate the power reduction effects coming from the detrending of the

individual panel series. In contrast to modelM1, this now happens only when θ < 0. To see

this more clearly, notice the identity tr(F ′Q(λ))+tr(Λ′Q(λ)Λ)+tr(Λ′Q(λ)) = 0 which holds for

all models. If p = 0 we have tr(Θ(λ)Λ)+tr(Λ′Θ(λ)) = −tr(Λ′Q(λ)) and thus, the numerator of

kKT becomes 0. However, if p > 0, then tr(Θ(λ)ΛΓ) + tr(Λ′Θ(λ)Γ) 6= −tr(Λ′Q(λ)Γ) and thus

the numerator is non-zero (see also the proof of Theorems 2 and 4).7 The above analysis

indicates that the power of the KT test can be attributed to the properties of selection

matrix Θ(λ), when p 6= 0.

To implement Theorems 3 and 4 one must first specify the deterministic matrices Ψ(λ)

and Θ(λ) which depend on the appropriate order of serial correlation. Ψ(λ) is a restricted

version of Λ′Q(λ) while Θ(λ) requires the deterministic selection matricesM (r), for r = {1, 2},

where all of these quantities are defined above. Then one must calculate estimators Γ̂ =

(1/N)
∑N

i=1 ∆yi∆y
′
i and Π̂ = (1/N)

∑N
i=1 vec(∆yi∆y

′
i)vec(∆yi∆y

′
i)
′. With these at hand,

next we can calculate b̂(λ) = tr(Ψ(λ)Γ̂) for Theorem 3 and b̂(λ) = tr(Θ(λ)Γ̂) for Theorem

4. The variances can be calculated accordingly, i.e. V̂ (λ)
KT = 2tr

(
(A

(λ)
KT Γ̂)2

)
, where A(λ)KT =

(1/2)(Λ′Q(λ)+Q(λ)Λ−Ψ(λ)−Ψ(λ)′) for Theorem 3 and V̂ (λ)
KT = vec(Q(λ)Λ−Θ(λ)′)′Π̂vec(Q(λ)Λ−

Θ(λ)′) for Theorem 4.

It is straightforward to show that kKT = O(1) in the fixed-T case and, because of the

7If p = 0,

tr(Θ(λ)Λ) = tr(Ψ(λ)Λ)− tr(Ψ(λ)e(1)e(1)′)
tr(M (1)Λ)

tr(M (1)e(1)e(1)′)
− tr(Ψ(λ)e(2)e(2)′)

tr(M (2)Λ)

tr(M (2)e(2)e(2)′)
=

= − tr(Ψ
(λ)e(1)e(1)′)

2
− tr(Ψ(λ)e(2)e(2)′)

2

= − tr(Λ
′Q(λ))

2
.

because tr(M (j)e(j)e(j)′) = 2tr(M (j)Λ) and tr(Ψ(λ)Λ) = 0.
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required scaling of test statistic KT when T is asymptotic, the test always has trivial power.

This is true for both models M1 and M2, and under serially correlated errors. In fact, the

test has zero local power in the N−1/2T−1 neighbourhood of unity. This result corresponds

to that of Moon and Perron (2004), denoted asMP , considering the case of test statistic KT

without breaks and large T . Although the two tests have the same asymptotic local power

for large T , they may have different properties in small samples. This can be attributed to

the fact that they rely on a different type of bias correction of LS estimator ϕ̂(λ). The MP

test statistic assumes that error terms ui,t are given as ui,t =
∑∞

j=0 di,jεi,t−j, subject to usual

restrictions. This structure of ui,t results in an asymptotic bias of ϕ(λ) which equals a function

of the one sided long run variance of ui,t, given as λe,i =
∑∞

l=

∑∞
j=0 di,jdi,j+l. Estimating this

long run variance requires imposing further assumptions that ensure the consistency of the

kernel estimators employed.

For test statistic KT , the bias adjustment of ϕ̂(λ) relies on selection matrices Ψ(λ), M (1)

and M (2), which have zero and non-zero diagonals based on the order of serial correlation p.

This test does not require an estimate of the long-run variance of ui,t, which may be proved

problematic in small samples (see, e.g., Moon and Perron (2004)). To see this more clearly,

consider the case of modelM1, where Ψ(λ) has its main, its p upper and its p lower diagonals

non-zero, catching all the non-zero elements of variance-covariance matrix Γ̄. Then, note

that the not-yet standardized test statistic KT can be written as follows:

δ̂
(λ)

(
ϕ̂(λ) − b̂(λ)

δ̂
(λ)
− 1

)
= δ̂

(λ)


N∑
i=1

y′i,−1Q
(λ)yi

N∑
i=1

y′i,−1Q
(λ)yi,−1

−

N∑
i=1

∆y′iΨ
(λ)∆yi

N∑
i=1

y′i,−1Q
(λ)yi,−1

− 1


=

N∑
i=1

u′i(Λ
′Q(λ) −Ψ(λ))ui, (5)
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where
(
Λ′Q(λ) −Ψ(λ)

)
is a matrix whose main diagonal, its p upper and its p lower diagonals

are zero. This means that the quadratic form u′i(Λ
′Q(λ)−Ψ(λ))ui is the sum of products of the

following form: ui,tui,t+j, where j > pmax. These products have means and variances which

are free from the serial correlation nuisance parameters. Denoting (Λ′Q(λ) − Ψ(λ)) = C(λ),

with elements C(λ) = [c
(λ)
k,j ] for k, j = 1, ..., T, the test statistic given by (5) can be written as

N∑
i=1

u′i(Λ
′Q(λ) −Ψ(λ))ui =

N∑
i=1

T∑
t=1

∑
j /∈ĉ

ui,tui,jc
(λ)
j,t ,

where ĉ = [t − pmax, t + pmax] and c
(λ)
j,t are known deterministic quantities, by construction.

The limiting distribution of this statistic can be found by applying the central limit theorem

to a scaled version of
∑N

i=1

∑T
t=1

∑
j /∈ĉ ui,tui,jc

(λ)
j,t . The following corollary gives the limiting

distribution of the non-standardised version of KT test statistic for the cases that: i) N −→

∞ and ii) N ,T −→∞, respectively, based on the above representation of
∑N

i=1 u
′
i(Λ
′Q(λ) −

Ψ(λ))ui.

Corollary 3 For model M1, let Assumptions A, B and D hold. Then, under null hypothesis

H0: c = 0, we have:

i) as N −→∞,

√
Nδ̂

(λ)

(
ϕ̂(λ) − b̂(λ)

δ̂
(λ)
− 1

)
d−→ N

(
0, 4σ4

T∑
t=1

∑
j>t

c
(λ)2
j,t

)

and ii) as N ,T −→∞ jointly,

T
√
Nδ̂

(λ)

(
ϕ̂(λ) − b̂(λ)

δ̂
(λ)
− 1

)
d−→ N

(
0, p lim

N,T

[
4σ4

T∑
t=1

∑
j>t

c
(λ)2
j,t /T

2

])
.

The results of this corollary show that the unknown nuisance long run variances, which
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appear in the Moon and Perron (2004) version of the test statistic, are replaced by the known

weights c(λ)j,t in test statistic KT . These weights are functions of known quantities, which

depend on the individual deterministic components of panel series yi,t. This feature of the

tests skips the problem of estimating the long run variance which is a diffi cult econometric

task in small samples, as noted above.

5 Common factors

In this section, we extend the HT and KT test statistics to allow for cross sectional depen-

dence in error terms ui,t taking the form of common factors. The assumption of cross section

independence may be restrictive in panel data macroeconomic studies (see, e.g., Sarafidis

and Wansbeek (2012)).

There are only a few studies examining the effect of common factors on the local power

of unit root tests. Hansen (1995), in the single time series literature, considers additional

exogenous covariates which lead to more powerful unit root tests. On the other hand, Moon

and Perron (2004), who examine the local power of a large-T version of the KT test, find

that power is unaffected by the presence of common factors in ui,t. In our analysis, we

consider the common factors to be known (observed). This is without loss of generality, as

our results would be qualitatively the same even if the common factors had to be estimated

in a first step as in Moon and Perron (2004). Our aim is to explore the impact of cross

section dependence on the power of test statistics HT and KT .

Consider the following specifications of models M1 and M2 including a single common

factor f :

M̃1: yi = a
(1)
i e(1) + a

(2)
i e(2) + ζ i, i = 1, 2, .., N , and
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M̃2: yi = a
(1)
i e(1) + a

(2)
i e(2) + β

(1)
i τ (1) + β

(2)
i τ (2) + ζ i,

with

ζ i = ϕζ i,−1 + εi,

and

εi = ξ
(1)
i f (1) + ξ

(2)
i f (2) + ui,

where f (1) = f
(1)
t if t ≤ T0, and zero otherwise, and f (2) = f

(2)
t if t > T0, and zero otherwise.8

That is, we assume that there is a common factor in errors ui,t which also undergoes a

structural break at the same time. For ξ(1)i = ξ
(2)
i , both models M̃1 and M̃2 can consider the

case that there is no break in the common factor process. Also note that the assumption that

there is only one common factor is not restrictive, and it is made only for ease of exposition.

A more general specification would be F (1)ξ
(1)
i +F (2) ξ

(2)
i , where ξ

(j)
i = (ξ

(j)
1,i , ..., ξ

(j)
K,i)

′ is a

K × 1 vector of factor loadings and F (j) = (f
(j)
1 , ..., f

(j)
K ) is a T ×K matrix of K observed

factors, for j = 1, 2.

The reduced form of the above models can be written as follows:

M̃1 : yi = ϕyi,−1 + (1− ϕ)(a
(1)
i e(1) + a

(2)
i e(2)) + ξ

(1)
i f (1) + ξ

(2)
i f (2) + ui, and

M̃2 : yi = ϕyi,−1 +
2∑
j=1

[
(1− ϕ)a

(j)
i e(j) + ϕβ

(j)
i e(j) + (1− ϕ)β

(j)
i τ (j) + ξ

(j)
i f (j)

]
+ ui.

Define Q(λ) = I − X(λ)
(
X(λ)′X(λ)

)−1
X(λ)′, where X(λ) =

(
e(1), e(2), f (1), f (2),Λf (1),Λf (2)

)
for model M̃1 and X(λ) =

(
e(1), e(2), τ (1), τ (2), f (1), f (2),Λf (1),Λf (2)

)
for model M̃2. For our

8In the presentation of our results we assume that there is a break in the factor. We do so to maintain
the focus of the structural break in this section as well. Equally, without loss of generality and with the
same results, we could have considered two factors instead of a broken one. Breitung and Eickmeier (2011)
provide the intuition that structural breaks severely inflate the number of factors.
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asymptotic results, next we make the following assumption.

Assumption E: (e1) ξ(1)i and ξ(2)i are sequences of independent random variables with

finite 4+δ moments. They are also independent from ui. (e2) limN max(E(ξ
(j)2
i ))/(Nξ̄

(j)2
) =

0, where ξ̄(j)2 = (1/N)
∑N

i=1E(ξ
(j)2
i ), for j = 1, 2. Also, ξ(j)2 = limN ξ̄

(j)2 is finite. (e3) f (1)

and f (2) are T × 1 finite, non-random vectors.

Assumption F: (f1) T > col(X(λ)), where col(·) denotes the column dimension of a

matrix. (f2) Product matrix X(λ)′X(λ) which appears in Q(λ) is invertible. (f3) Variance

function V is non-zero.

Conditions (e1) and (e2) guarantee that ξ(j)i obey the Lindeberg-Feller CLT and condition

(e3) states that the common factor can be seen as another type of deterministic component,

which is a common approach in the large-N - fixed-T panel data literature (see Sarafidis and

Wansbeek (2012)). Note that condition (e3) is weaker than that made by Moon and Perron

(2004), for their large T test. This is because in the panel data factor models, the values

of a common factor variable f are treated like a set of parameters which are removed from

the model, just like the individual intercepts and the individual linear trends. We therefore

need not assume them linear or restrict their order of integration.

Assumption F determines the maximum number of common factors and the position

of the breaks. Condition (f1) puts a limit to the number of factors that can appear in

models M̃1 and M̃2. This is common in the literature (see, e.g., Sarafidis and Wansbeek

(2012)). Violation of this assumption may lead to an invertible X(λ) which will result in

Q(λ) = 0. Condition (f2) also guarantees that Q(λ) exists. If there is no serial correlation,

the above conditions are suffi cient for the application of the HT and KT test statistics. In

the presence of serial correlation in ui,t, a case relevant only for the KT test, condition (f3)

must be satisfied as well. Since serial correlation in ui,t limits the available moments for
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estimation, condition (f3) guarantees that there are suffi cient observations before and after

the break for the identification of nuisance parameters β̄(j)2 and ξ̄(j)2, for j = 1, 2. We do

not need to assume that the variance function of the limiting distribution of the adjusted

for its inconsistency LS estimator ϕ̂(λ) is known. An easy way to check this condition

will be presented below. Overall, Assumption F is more general than Assumptions B and

D. Assumptions E and F accommodate both models M̃1 and M̃2. The following theorem

derives the limiting distribution of statistic HT under the sequence of local alternatives

ϕN = 1− c/
√
N for model M̃1, as N diverges to infinity.

Theorem 5 Let Assumptions A, E and F hold for model M̃1 and ui ∼ NIID(0, σ2I).

Then, under ϕN = 1− c/
√
N , we have

V
(λ)−1/2
HT

√
N(ϕ̂(λ) − 1−B(λ))

d−→ N (−ckHT , 1)

as N −→∞, with

kHT =
tr(F ′Q(λ)) + tr(Λ′Q(λ)Λ)− 2B(λ)tr(F ′Q(λ)Λ)√

2tr(A
(λ)2

HT )

where B(λ) = p limN(ϕ̂(λ) − 1) = tr(Λ′Q(λ))/tr(Λ′Q(λ)Λ), V (λ)
HT = 2tr(A

(λ)2
HT )/tr(Λ′Q(λ)Λ)2,

with A(λ)HT = 1
2
(Λ′Q(λ) +Q(λ)Λ)−B(λ)(Λ′Q(λ)Λ), and F is defined in the Appendix.

To calculate the value of kHT , given by the above theorem, we have considered various

types of processes for f (1) and f (2). Panel A of Table 4 contains the average kHT , denoted

k̄HT for 5000 realizations, if ft is generated by process ft = ρft,−1 + ηt, where ρ = 0.8 and

ηt ∼ NIID(0, 1). We see that the HT test statistic has reasonable power. This power is

however lower than that for model M1, without a common factor f . An explanation of this
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result could be that the existence of common factor f reduces variation of the individual

series of the panel, and thus the information available in the sample. Mathematically, for

the HT test, less power comes from the large dimension of X(λ); every factor increases it by

two and a broken factor, like in our case, increases it by four.

Summing up, our findings indicate that the existence of a factor f in the error terms ui,t

is what determines the magnitude of power of statistic HT , for model M̃1. This is verified

by using as common factors f various processes, even non-stationary ones.

The limiting distribution of statistic HT under ϕN = 1 − c/
√
N for model M̃2, where

X(λ) =
(
e(1), e(2), τ (1), τ (2), f (1), f (2),Λf (1),Λf (2)

)
, is given next. This theorem shows that

the power of the HT test in the case of incidental trends remains trivial. The presence of

common factor f does not change this result.

Theorem 6 Let Assumptions A, E and F hold for model M̃2 and ui ∼ NIID(0, σ2I).

Then, under ϕN = 1− c/
√
N , we have

V
(λ)−1/2
HT

√
N(ϕ̂(λ) − 1−B(λ))

d−→ N (−ckHT , 1)

as N −→∞, with

kHT = 0,

where B(λ) = p lim(ϕ̂(λ)−1) = tr(Λ′Q(λ))/tr(Λ′Q(λ)Λ), V (λ)
HT = 2tr(A

(λ)2
HT )/tr(Λ′Q(λ)Λ)2, with

A
(λ)
HT = 1

2
(Λ′Q(λ) +Q(λ)Λ)−B(λ)(Λ′Q(λ)Λ), and F is defined in the Appendix.

To study the effects of cross-section dependence (presence of common factor f) on the

power of test statistic KT , we consider the more general version of it allowing for serial

correlation in error terms ui,t. Before presenting our main results, next we make all necessary
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definitions to derive the liming distribution of the KT test statistic for models M̃1 and M̃2.

For model M̃1, the inconsistency of ϕ̂(λ) is given as tr(Λ′Q(λ)Γ)/tr(Λ′Q(λ)ΛΓ), where Q(λ)

is based on X(λ) =
(
e(1), e(2), f (1), f (2),Λf (1),Λf (2)

)
. The estimator Γ̂ is inconsistent, with

p limN

[
Γ̂− Γ̄− ξ̄(1)2f (1)f (1)′ − ξ̄(2)2f (2)f (2)′

]
= 0, since under null hypothesis H0: c = 0 we

have ∆yi = ξ
(1)
i f (1) + ξ

(2)
i f (2) + εi. To adjust Γ̂ and, hence, ϕ̂(λ) for their inconsistency, we

will rely on selection matrices M (j)
f = f (j)f (j)′ − diag(f (j)f (j)′, p), for j = 1, 2. These enable

us to identify nuisance parameters ξ(j), as p limN

[
tr(M

(j)
f Γ̂)/tr(M

(j)
f f (j)f (j)′)− ξ̄(j)2

]
= 0,

for j = 1, 2. Given matrix M (j)
f , selection matrix Θ(λ) now becomes:

Θ(λ) = Ψ(λ) − tr(Ψ(λ)f (1)f (1)′)

tr(M
(1)
f f (1)f (1)′)

M
(1)
f −

tr(Ψ(λ)f (2)f (2)′)

tr(M
(2)
f f (2)f (2)′)

M
(2)
f ,

with p limN

[
tr(Θ(λ)Γ̂)− tr(Λ′Q(λ)Γ̄)

]
= 0. Statistic

√
N
(
ϕ̂(λ) − b̂(λ)/δ̂(λ) − 1

)
, where b̂(λ) =

tr(Θ(λ)Γ̂), is centred around 0 and its variance is given as V (λ)
KT = vec(Q(λ)Λ−Θ(λ)′)′Πvec(Q(λ)Λ−

Θ(λ)′), with Π̂ = (1/N)
∑N

i=1 vec(∆yi∆y
′
i)vec(∆yi∆y

′
i)
′.

For model M̃2, matrix Q(λ) is based on X(λ) = (e(1), e(2), τ (1), τ (2), f (1), f (2),Λf (1),Λf (2)).

Γ̂ is an inconsistent estimator of Γ̄ (due to the presence of nuisance parameters β(j)i and ξ(j)i ,

for j = 1, 2) with p limN

[
Γ̂− Γ̄− β̄(1)2e(1)e(1)′ − β̄(2)2e(2)e(2)′ − ξ̄(1)2f (1)f (1)′ − ξ̄(2)2f (2)f (2)′

]
=

0, since under H0: c = 0 we have ∆yi = β
(1)
i e(1) + β

(2)
i e(2) + ξ

(1)
i f (1) + ξ

(2)
i f (2) + εi. To adjust

Γ̂ for its inconsistency due to nuisance parameters β(j)i and ξ(j)i , we will rely on selection ma-

trices M (j) = e(j)e(j)′− diag{e(j)e(j)′, p} and M (j)
f = f (j)f (j)′− diag(f (j)f (j)′, p), which imply

p limN

[
tr(M (j)Γ̂)/tr(M (j)e(j)e(j)′)− β̄(j)2

]
= 0 and p limN

[
tr(M

(j)
f Γ̂)/tr(M

(j)
f f (j)f (j)′)− ξ̄(j)2

]
=

0. Given these definitions, selection matrix Θ(λ) now becomes

Θ(λ) = Ψ(λ) −
2∑
j=1

tr(Ψ(λ)e(j)e(j)′)

tr(M (j)e(j)e(j)′)
M (j) −

2∑
j=1

tr(Ψ(λ)f (j)f (j)′)

tr(M
(j)
f f (j)f (j)′)

M
(j)
f ,
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with p limN

[
tr(Θ(λ)Γ̂)− tr(Λ′Q(λ)Γ̄)

]
= 0, and then the appropriate definitions of b̂(λ) and

V
(λ)
KT will apply as above.

9 The next theorem gives the limiting distributions of tests statistic

KT for models M̃1 and M̃2 assuming serially correlated ui,t.

Theorem 7 Let Assumptions A, E, and F hold for models M̃1 and M̃2. Then, under

ϕN = 1− c/
√
N we have

V
(λ)−1/2
KT δ̂

(λ)√
N

(
ϕ̂(λ) − b̂(λ)

δ̂
(λ)
− 1

)
d−→ N(−ckKT , 1),

as N →∞, with

kKT =
tr(F ′Q(λ)Γ) + tr(Λ′Q(λ)ΛΓ)− tr(Θ(λ)ΛΓ)− tr(Λ′Θ(λ)Γ)√

V
(λ)
KT

,

where matrices Q(λ), Θ(λ) are appropriately specified for each model.

Panels A and B of Table 4 present average values of kKT , denoted k̄KT , for models M̃1

and M̃2, respectively, when errors terms ui,t are IID, over 5000 repetitions. As before, ft

is generated as ft = ρft,−1 + ηt, where ρ = 0.8 and ηt ∼ NIID(0, 1). The results of Panel

A indicate that the presence of common factor f leads to power reduction for model M̃1.

The values of k̄KT are all positive, but smaller than the case without common factor f . In

contrast, Panel B indicates that the inclusion of factor f in model M̃2 leads to non-trivial

power of the KT test. This result was rather expected after the findings of Section 4, which

considers the case of the KT test allowing for serial correlation in ui,t. The power of the test

9To check condition (f3) it is suffi cient to check that the denominators in Θ(λ), which are based on
quantities known to the researcher, are different than 0, i.e. tr(M (j)e(j)e(j)′) 6= 0 and tr(M (j)

f f (j)f (j)′) 6= 0.

These denominators represent the number of elements the selection matrices M (j) and M (j)
f choose so that

they estimate β̄
(j)2

and ξ̄
(j)2

. If they are equal to zero, this means that there are zero elements available for
M (j) and M (j)

f and therefore the corresponding β̄
(j)2

and ξ̄
(j)2

cannot be identified.
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can be attributed to the interaction between individual trends and common factors in the

bias adjustment of the LS estimator ϕ̂(λ). This result is notably different than that in the

large-T case, where the test is robust to the effects of common factors (see, e.g., Moon and

Perron (2004)).

To implement Theorems 5, 6 and 7 one must first specify the annihilator matrix Q(λ)

which contains factors f (1), f (2), i.e. for Theorem 7, Q(λ) = I − X(λ)
(
X(λ)′X(λ)

)−1
X(λ)′

where X(λ) =
(
e(1), e(2), τ (1), τ (2), f (1), f (2),Λf (1),Λf (2)

)
. Then, the HT test can be applied

as before. For the KT test, the steps are also similar to those of the previous section, but

care must be taken to appropriately specify Θ(λ) because it is influenced by both the number

of factors and by the order of serial correlation. It must be made sure that Θ(λ) exists as

described in footnote 9. Γ̂ and Π̂ can be estimated as in the previous sections.

Summing up, the results of this section indicate that cross section correlation in error

terms ui,t affects the power performance of the HT and KT test statistics, if T is fixed. The

tests are not robust to the presence of a common factor in ui,t, as in the large-T case. For

the large-T case, it can be easily seen that test statistics HT and KT have zero local power,

for both models M̃1 and M̃2.

6 Monte Carlo results

In this section, we conduct a Monte Carlo study to examine if the asymptotic local power

functions of the HT and KT test statistics, implied by the results of the previous section,

provide good approximations of their small sample ones. This is done based on 5000 repeti-

tions and for different values of N and T , often met in microeconomic and macroeconomic

studies, i.e., N = {100, 300, 1000} and T = {8, 10, 12, 15, 20, 50, 100, 200, 300}. For each iter-
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ation, we calculate the size of the tests at 5% level (i.e., for c = 0) and their power (i.e., for

c = 1). This is done separately for the cases that ui,t ∼ NIID(0, 1) and ui,t = εi,t + θεi,t−1,

with θ ∈ {−0.8,−0.5, 0, 0.5, 0.8}. The nuisance parameters of the models are set to the

following values: yi,0 = 0, a(j)i = 0 and β(j)i = 0, for all i.

Table 5 presents the results of our simulation study for the case that ui,t ∼ NIID(0, 1).

The last column of the tables gives the theoretical values (TV ) of the power function and

the nominal size of the tests, at a = 5%. For model M1, the results indicate that both the

HT and KT tests have size and power values which are very close to their theoretical ones.

Furthermore, the results confirm that the HT test has more power towards the beginning

and the end of the sample, while the KT test has more power in the middle. As was also

predicted by the theory, the HT test has higher power than the KT test. The small sample

power of this test is very close to that predicted by its asymptotic local power function (see

column TV ) even for small N (e.g., N = 100). However, this is not always true for the KT

test, which needs very high N in order its power to converge to its theoretical value. For

model M2, the results of Table 5 indicate that, for large N , both HT and KT tests have

trivial power, as it was expected. However, in small samples (e.g., N = 100), both tests have

some non-trivial power. This can be obviously attributed to second, or higher, order effects

of the true power function, which cannot be approximated by the first-order approximation

considered in our analysis. Note that, for model M2, the KT test has slightly higher small

sample power than the HT .

Tables 6 and 7 present the results of our simulation study for the KT test statistic

allowing for serial correlation in error terms ui,t, assuming ui,t = εi,t + θεi,t−1. This is done

for models M1 and M2, and T ∈ {8, 10}. The maximum order of serial correlation allowed

by the KT test is set to p = 1, which matches that of the MA process of ui,t. The results
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of these tables are also consistent with theory. For model M1, the KT test has significant

power when θ > 0. As N increases, this power converges quite fast to its theoretical value,

reported in the last column of the table. Note that both the theoretical and small sample

values of the power function of the KT test statistic are higher than their corresponding

values in the absence of serial correlation (see Table 5). This is also consistent with the

theory. It can be attributed to the serial correlation effects of ui,t on the power function

of the test, discussed in the previous section. For negative values of θ, the test has also

significant power. This happens for λ = {0.75}, as was predicted by the theory.

For modelM2, the results of Table 7 indicate that theKT test statistic has smaller power

than for model M1. As was expected by the theory, the power of the test is non-trivial if

θ < 0. The KT test has also some small sample power if θ > 0, which qualifies its use

in practice. As was argued before, this power can be attributed to second, or higher, order

effects of the true power function, which are not captured by our asymptotic approximations.

Finally, another conclusion which can be drawn from the results of our simulation study

reported in Tables 6 and 7 is that, when θ < 0, a break towards the end of the sample

increases the power of the KT test. When θ > 0, the power of the test is maximized at

the middle of the sample. These results apply to both models M1 and M2. They are also

consistent with the theoretical results reported in Table 3.

Table 8 presents the results of the tests for models M̃1 and M̃2 including a common factor

in error terms. This factor ft is generated as before (see Section 5), i.e., ft = ρft,−1 + ηt,

with ρ = 0.8 and ηt ∼ NIID(0, 1). The slope coeffi cients of this factor ξ(j)i are set to zero,

i.e., ξ(j)i = 0, for all i and j. The results of the table clearly indicate that both the size and

power of the HT and KT test statistics are close to their theoretical values, for all cases of

N , T and λ considered. For model M̃1 both tests have non-trivial power, while for model
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M̃2 only the KT test has non-trivial power, which is in accordance to our theoretical rsults

of Section 5.

Finally, Table 9 shows how good the large-T approximations the HT and KT tests

statistics, given by Corollaries 1 and 2, are for a variety of different values of N and T .

In particular, we consider the following cases of N and T : N = {10, 20, 50} and T =

{50, 100, 200, 300}, often used in macroeconomic studies. The results of the table indicate

that, for model M1, the HT test statistic is a bit oversized when T is much larger than

N . For instance, the size of the test is equal to 0.07, for N = 10, T = 300 and λ = 0.5.

As N increases, the size of the test tends to its nominal value of 0.05. The power of the

test is also close to its theoretical values, with the approximation becoming better as N

increases. The KT test statistic displays similar behaviour to that of HT , but it is a bit

undersized for large T and very small N . Consistently with the theory, the KT test does not

have power anywhere. For model M2, this result holds for both HT and KT test statistics.

When T becomes large, both the HT and KT tests have trivial power. The quality of the

approximations seems to be unaffected by the relative position of the break in the sample.

7 Conclusions

This paper analyses the asymptotic local power properties of least-squares based fixed-T

panel unit root tests allowing for a structural break in the deterministic components of the

AR(1) panel data model, namely its individual effects and/or slope coeffi cients of its indi-

vidual linear (incidental) trends. This is done by assuming that the cross-section dimension

of the panel data models (N) grows large.
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The paper derives the limiting distributions of the panel unit root test proposed in Kar-

avias and Tzavalis (2014a) (denoted HT ) under local alternatives. This is studied together

with the test of Karavias and Tzavalis (2014b), denoted as KT, which allows for a structural

break and serial correlation in the error terms of the AR(1) panel data model. In this paper,

we have extended the above tests to allow for cross section dependence. Both of these tests

are based on the least squares dummy variables estimator of the autoregressive coeffi cient of

the AR(1) panel data model, which is corrected for its inconsistency due to the deterministic

components of the panel, the cross section dependence and/or serial correlation effects of the

error term.

The results of the paper lead to a number of conclusions. First, they show that, for the

standard AR(1) panel data model with white noise error terms and individual effects, both

the HT andKT tests have significant asymptotic local power. The HT test has much higher

power than the KT test. This can be attributed to the fact that, in order to adjust for the

inconsistency of the least squares estimator, the KT test requires consistent estimation of

the variance of the error term. The HT test does not depend on this nuisance parameter,

as it adjusts the least squares estimator for both the inconsistency of its numerator and

denominator, and thus the variance of the error terms is cancelled out. The HT test is

found to have more power when the break is towards the beginning or the end of the sample,

while the KT test has more power when the break is towards the middle of the sample.

Second, both the HT and KT tests have asymptotically trivial power in the case that

the AR(1) allows also for incidental trends. The allowance for a common break in the

slope coeffi cients of the incidental trends does not change the behaviour of the tests. This

problem does not always exist for the KT test extended for serial correlation of the error

terms. In this case, the paper presents circumstances that the KT test has non-trivial
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power. In particular, this happens when the error terms follow a MA(1) procedure with

negative serial correlation. The power of the KT in this case can be attributed to the effects

of the serial correlation of error term on the adjustment of the least squares estimator of

the autoregressive coeffi cient for its inconsistency, upon which the KT test is based on. In

contrast to large-T panel data unit root tests, the power function of fixed-T tests depends

on the values of nuisance parameters capturing serial correlation effects which can affect the

asymptotic (over N) power of the tests.

Third, we find that the existence of a common factor in the error terms changes the

behaviour of the tests. For the model with intercepts, the presence of the common factor

reduces the power of both the HT and KT tests. For the model with trends, the HT has

trivial power, while the KT has positive. Fourth, we compare our results to those of the

large-T literature and we show that the desirable properties of the KT test presented in this

paper, i.e. non-trivial power for the case with incidental trends, are derived from the fixed-T

estimator of the bias of the within groups estimator.

The above results are confirmed through a Monte Carlo simulation exercise. This exercise

has shown that the empirical probabilities of rejection are very close to their theoretical

values, which means that the asymptotic theory provides a good approximation of small

sample results of fixed-T panel data unit roots. The above findings suggest that there are

several theoretical arguments in favour of the use of fixed T tests in practice, especially in

the case where incidental trends are in the model.
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7.1 Appendix

In this appendix, we provide proofs of the theorems and the corollary presented in the main

text of the paper.

Proof of Theorem 1: First, we derive the limiting distribution of the HT test statistic,

under the sequence of local alternatives ϕN = 1−c/
√
N . Define vectorw = (1, ϕN , ϕ

2
N , ..., ϕ

T−1
N )′

and matrix

Ω =



0 . . . . . 0

1 0 .

ϕN 1 . .

ϕ2N ϕN . . .

. . . . .

. . 1 0 .

ϕT−2N ϕT−3N . . ϕN 1 0


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Under null hypothesis H0: c = 0, we have Ω = Λ. The first order Taylor expansions of Ω

and w yields

Ω = Λ + F (ϕN − 1) + op(1) and (6)

w = e+ f(ϕN − 1) + oP (1), (7)

respectively, where F = (dΩ/dϕN) |c=0 and f = (dw/dϕN) |c=0. Based on the above

definitions of w and Ω, vector yi,−1 can be written as

yi,−1 = wyi,0 + ΩX(λ)γ
(λ)
i + Ωui, (8)

where γ(λ)i = (a
(1)
i (1 − ϕN), a

(2)
i (1 − ϕN))′ = (1 − ϕN)(a

(1)
i , a

(2)
i )′. Using last relationship of

yi,−1, the HT test statistic for model M1 can be written under ϕN = 1− c/
√
N as follows:

√
N(ϕ̂(λ) − ϕN −B(λ)) (9)

=
√
N


1
N

N∑
i=1

y′i,−1Q
(λ)(ϕNyi,−1 +X(λ)γ

(λ)
i + ui)

1
N

N∑
i=1

y′i,−1Q
(λ)yi,−1

− ϕN −B(λ)

 ,

=
√
N


1
N

N∑
i=1

y′i,−1Q
(λ)ui

1
N

N∑
i=1

y′i,−1Q
(λ)yi,−1

−B(λ)

1
N

N∑
i=1

y′i,−1Q
(λ)yi,−1

1
N

N∑
i=1

y′i,−1Q
(λ)yi,−1

 ,

=

1√
N

N∑
i=1

y′i,−1Q
(λ)ui − 1√

N
B(λ)

N∑
i=1

y′i,−1Q
(λ)yi,−1

1
N

N∑
i=1

y′i,−1Q
(λ)yi,−1

=
(A)− (B)

(C)
. (10)

Next, we derive asymptotic results of each of quantities (A), (B) and (C), defined by (10).
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Substituting (8) in (A), we have

(A) ≡ 1√
N

N∑
i=1

y′i,−1Q
(λ)ui =

1√
N

N∑
i=1

(
yi,0w

′ + γ
(λ)′
i X(λ)′Ω′ + u′iΩ

′
)
Q(λ)ui

=
1√
N

N∑
i=1

(
yi,0w

′Q(λ)ui + γ
(λ)′
i X(λ)′Ω′Q(λ)ui + u′iΩ

′Q(λ)ui

)

Using relationships (6)-(7), we can find the following limits of the summands entering into

the last relationship of (A). First, it can be shown that

1√
N

N∑
i=1

yi,0w
′Q(λ)ui =

1√
N

N∑
i=1

yi,0(e
′ + f ′(ϕN − 1))Q(λ)ui + oP (1),

=
1√
N

N∑
i=1

yi,0e
′Q(λ)ui +

c

N

N∑
i=1

yi,0f
′Q(λ)ui + oP (1),

= oP (1), (11)

since e′Q(λ) = 0 and E(yi,0ui) = 0 by assumption (a4), and

1√
N

N∑
i=1

γ
(λ)′
i X(λ)′Ω′Q(λ)ui

=
1√
N

N∑
i=1

γ
(λ)′
i X(λ)′(Λ′ + F ′(ϕN − 1) + op(1))Q(λ)ui,

=
1√
N

N∑
i=1

γ
(λ)′
i X(λ)′Λ′Q(λ)ui +

c

N

N∑
i=1

γ
(λ)′
i X(λ)′F ′Q(λ)ui + op(1),

=
c

N

N∑
i=1

(a
(1)
i , a

(2)
i )′X(λ)′Λ′Q(λ)ui+

c2

N3/2

N∑
i=1

(a
(1)
i , a

(2)
i )′X(λ)′F ′Q(λ)ui + op(1),

= op(1), (12)
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since E(a
(λ)
i ui) = 0 by assumption (a4). Finally, we have

1√
N

N∑
i=1

u′iΩ
′Q(λ)ui =

1√
N

N∑
i=1

u′i (Λ
′ + F ′(ϕN − 1) + op(1))Q(λ)ui,

=
1√
N

N∑
i=1

u′iΛ
′Q(λ)ui −

c

N

N∑
i=1

u′iF
′Q(λ)ui + op(1),

where

c

N

N∑
i=1

u′iF
′Q(λ)ui

p→ cσ2tr(F ′Q(λ)) and (13)

√
N

(
1

N

N∑
i=1

u′iΛ
′Q(λ)ui − σ2tr(Λ′Q(λ))

)
d→ N(0, VHT,A), (14)

where VHT,A is the variance of the last limiting distribution. Based on the asymptotic results

given by equations (11)-(14), we can show that

(A) ≡ 1√
N

N∑
i=1

y′i,−1Q
(λ)ui

d→ N
(
−cσ2tr(F ′Q(λ)), VHT,A

)
. (15)

To derive asymptotic results for summand (B), write it as follows:

(B) ≡ 1√
N
B(λ)

N∑
i=1

y′i,−1Q
(λ)yi,−1

=
1√
N
B(λ)

N∑
i=1

(
yi,0w

′ + γ
(λ)′
i X(λ)′Ω′ + u′iΩ

′
)
Q(λ)

(
yi,0w + ΩX(λ)γ

(λ)
i + Ωui

)
.

By similar arguments to those applied to derive results (11)-(14), we can prove the following
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asymptotic results:

1√
N

N∑
i=1

(
y2i,0w

′Q(λ)w + yi,0w
′Q(λ)ΩX(λ)γ

(λ)
i + yi,0w

′Q(λ)Ωui

)
= op(1),(16)

1√
N

N∑
i=1

γ
(λ)′
i X(λ)′Ω′Q(λ)wyi,0+γ

(λ)′
i X(λ)′Ω′Q(λ)ΩX(λ)γ

(λ)
i +ΩX(λ)γ

(λ)
i Ωui) = op(1),(17)

1√
N

N∑
i=1

(
u′iΩ

′Q(λ)wyi,0 + u′iΩ
′Q(λ)ΩX(λ)γ

(λ)
i

)
= op(1),(18)

1√
N

N∑
i=1

u′iΩ
′Q(λ)Ωui =

1√
N

N∑
i=1

u′i(Λ
′ + F ′(ϕN − 1))Q(λ)(Λ + F (ϕN − 1))ui + op(1), (19)

where

√
N

(
1

N

N∑
i=1

u′iΛ
′Q(λ)Λui − σ2tr(Λ′Q(λ)Λ)

)
d→ N(0, VHT,B), (20)

− c

N

N∑
i=1

u′iF
′Q(λ)Λui

p→ σ2tr(F ′Q(λ)Λ), (21)

− c

N

N∑
i=1

u′iΛ
′Q(λ)Fui

p→ σ2tr(Λ′Q(λ)F ) and (22)

c2

N3/2

N∑
i=1

u′iF
′Q(λ)Fui = op(1). (23)

Based on the above results, given by equations (16)-(23), it can be shown that

(B) ≡ 1√
N
B(λ)

N∑
i=1

y′i,−1Q
(λ)yi,−1

d→ (24)

N
(
−cσ2B(λ)[tr(F ′Q(λ)Λ) + tr(Λ′Q(λ)F )], B2(λ)VHT,B

)
.

Finally, following similar arguments to the above, we can easily show that, for quantity (C),
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the following asymptotic result holds:

(C) ≡ 1

N

N∑
i=1

y′i,−1Q
(λ)yi,−1

p→ σ2tr(Λ′Q(λ)Λ). (25)

Using asymptotic results (15), (24) and (25), equation (10) implies that

√
N(ϕ̂(λ)−ϕN −B(λ))

d→ N

(
−ctr(F

′Q(λ))− 2B(λ)tr(F ′Q(λ)Λ)

tr(Λ′Q(λ)Λ)
, V

(λ)
HT

)
, (26)

or
√
N(ϕ̂(λ)−1−B(λ))

d→ N

(
−ctr(F

′Q(λ)) + tr(Λ′Q(λ)Λ)− 2B(λ)tr(F ′Q(λ)Λ)

tr(Λ′Q(λ)Λ)
, V

(λ)
HT

)
,

since tr(Λ′Q(λ)) − B(λ)tr(Λ′Q(λ)Λ) = 0. Note that the analytic formula of variance V (λ)
HT of

the last limiting distribution is the same with that of the HT test under null hypothesis H0:

c = 0, given by V (λ)
HT = 2tr(A

(λ)2
HT )/tr(Λ′Q(λ)Λ)2. This does not depend on local parameter c.

It remains the same under the null and sequence of local alternative hypotheses (see, e.g.,

Madsen (2010) and Karavias and Tzavalis (2014c)), given as V (λ)
HT = 2tr(A

(λ)2
HT )/tr(Λ′Q(λ)Λ)2.

Scaling by V (λ)−1/2
HT the above limiting distribution yields

V
(λ)−1/2
HT

√
N(ϕ̂(λ) − 1−B(λ))

d→ N (−ckHT , 1) , with (27)

kHT =
tr(F ′Q(λ)) + tr(Λ′Q(λ)Λ)− 2B(λ)tr(F ′Q(λ)Λ)√

2tr(A
(λ)2

HT )

.
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Substituting into the above formula of kHT the following identities:

tr(F ′Q(λ)Λ) = tr(Λ′Q(λ)F ) = (28)

=
6

144
(3λ2 − 3λ+ 1)T 3 − 1

12
(2λ2 − 2λ+ 1)T 2 − 1

24
T +

1

6

tr(Λ′Q(λ)Λ) + tr(F ′Q(λ)) + tr(Λ′Q(λ)) = 0, (29)

tr(F ′Q(λ)) = −T
2

6
(2λ2 − 2λ+ 1) +

T

2
− 4

6
, (30)

tr(Λ′Q(λ)) = −T − 2

2
, (31)

tr(Λ′Q(λ)Λ) =
T 2

6
(2λ2 − 2λ+ 1)− 2

6
, (32)

tr(A
(λ)2

HT ) = tr

[(
1

2
(Λ′Q(λ) +Q(λ)Λ)−B(λ)(Λ′Q(λ)Λ)

)2]
,(33)

tr
((

Λ′Q(λ) +Q(λ)Λ
)2)

=
T 2

6
(2λ2 − 2λ+ 1) + T − 7

3
, (34)

tr
((

Λ′Q(λ)Λ
)2)

=
1

90
(2λ4 − 4λ3 + 6λ2 − 4λ+ 1)T 4 (35)

+
1

36
(2λ2 − 2λ+ 1)T 2 − 7

90
,

tr
((

Λ′Q(λ) +Q(λ)Λ
) (

Λ′Q(λ)Λ
))

=
T − 2

2
, (36)

yields the results of Theorem 1, for the HT test statistic. Note that 2tr(A
(λ)2

HT ) can be

analytically written as

2tr(A
(λ)2

HT ) =
D

S
, where
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D = T 6R1 + T 5R2 + T 4R3 + T 2R4 + 216T − 136,

S = T 4Φ1 + T 2Φ2 + 240,

R1 = 40λ6 − 120λ5 + 204λ4 − 208λ3 + 162λ2 − 78λ+ 17,

R2 = −216λ4 + 432λ3 − 528λ2 + 312λ− 78,

R3 = 216λ4 − 432λ3 + 588λ2 − 372λ+ 108,

R4 = −120λ2 + 120λ− 144,

Φ1 = 240λ4 − 480λ3 + 480λ2 − 240λ+ 60 and

Φ2 = −480λ2 + 480λ− 240.

To derive the limiting distribution of the KT test under the sequence of local alternatives

ϕN = 1− c/
√
N , write

δ̂
(λ)√

N

(
ϕ̂(λ) − b̂(λ)

δ̂
(λ)
− ϕN

)
= δ̂

(λ)√
N

ϕN +

1
N

N∑
i=1

y′i,−1Q
(λ)ui

1
N

N∑
i=1

y′i,−1Q
(λ)y′i,−1

− b̂(λ)

δ̂
(λ)
− ϕN

 ,

=
√
N

(
1

N

N∑
i=1

y′i,−1Q
(λ)ui − σ̂2tr(Λ′Q(λ))

)
,

=
√
N

(
1

N

N∑
i=1

y′i,−1Q
(λ)ui −

1

N

N∑
i=1

∆y′iΨ
(λ)∆yi

)
,

=
1√
N

N∑
i=1

y′i,−1Q
(λ)ui −

1√
N

N∑
i=1

∆y′iΨ
(λ)∆yi, (37)

where ∆yi can be written as

∆yi = ui + (ϕN − 1)yi,−1 +X(λ)γ
(λ)
i . (38)
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The limiting distribution of theKT test under ϕN = 1−c/
√
N can be proved by obtaining as-

ymptotic results for the two summands entering into equation (37), i.e.,
(

1/
√
N
)∑N

i=1 y
′
i,−1Q

(λ)ui

and
(

1/
√
N
)∑N

i=1 ∆y′iΨ
(λ)∆yi, following analogous to the proof of (27) steps. The formula

of slope power parameter kKT is given as

kKT =
tr(F ′Q(λ)) + tr(Λ′Q(λ)Λ)√

2tr(A
(λ)2

KT )

. (39)

Substituting the following identities into the above formula of kKT :

tr(A
(λ)2

KT ) = tr

((
1

2
(Λ′Q(λ) +Q(λ)Λ−Ψ(λ) −Ψ(λ)′)

)2)
, (40)

tr(Ψ(λ)Λ) = tr(Λ′Ψ(λ)) = 0, (41)

2tr(A
(λ)2

KT ) = 2tr(P (λ))− 2tr(Z(λ)2), with Z(λ) =
1

2
(Ψ(λ)′ + Ψ(λ)) (42)

and P (λ) =
1

2
(Λ′Q(λ))2 +

1

2
Λ′Q(λ)Λ, (43)

tr
(
(Λ′Q(λ))2

)
= −T

2

12
(2λ2 − 2λ− 1) +

T

2
− 5

6
and (44)

tr(Z(λ)2) =
− 1
T

+ 2(λ− 1)λT

6(λ− 1)λ
− 1 (45)

yields the results of Theorem 1, for the KT test statistic.

Proof of Corollary 1: The results of the corollary and, in particular, those of equation

(1) can be derived based on analogous arguments to those applied for the proof of Theorem

1.

To obtain the analytic formula of k∗HT , given by equation (1), scale (9) by T , replace ϕN
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with ϕN,T , and apply asymptotic theory for N →∞, as in Theorem 1. Then, we will have

T
√
N(ϕ̂(λ) − ϕN,T −B(λ))

d→ N

(
−ctr(F

′Q(λ))− 2B(λ)tr(F ′Q(λ)Λ)

tr(Λ′Q(λ)Λ)
, T 2V

(λ)
HT

)
.

Multiplying with
(
T 2V

(λ)
HT

)−1/2
and using ϕN,T = 1− c/

(
T
√
N
)
, the last limiting distribu-

tion can be written as

T
(
T 2V

(λ)
HT

)−1/2√
N(ϕ̂(λ) − 1−B(λ))

d→ N

(
−c 1

T
kHT , 1

)
(46)

where kHT =
[
tr(F ′Q(λ)) + tr(Λ′Q(λ)Λ)− 2B(λ)tr(F ′Q(λ)Λ)

]
/

√
2tr(A

(λ)2

HT ) (see proof of The-

orem 1). By taking the limit for T →∞ of kHT and T 2V
(λ)
HT , (46) can be written as

T
(
V
∗(λ)
HT

)−1/2√
N(ϕ̂(λ) − 1−B(λ))

d→ N (−ck∗HT , 1) , where

k∗HT ≡ lim
T

1

T
kHT =

3λ2 − 3λ+ 1

4(2λ2 − 2λ+ 1)

√
Φ1

R1
and

V
∗(λ)
HT ≡ lim

T
T 2V

(λ)
HT =

36R1

Φ1(2λ
2 − 2λ− 1)2

.

The analytic formulas of the last two limits are derived based on the results of identities (28)-

(36). The above results have been derived by taking limits sequentially, first for N →∞ and

then for T →∞. Joint convergence in N, T requires the extra assumption that
√
N/T → 0,

see also Moon and Perron (2008). However, for c = 0 there is no need to specify the relative

rate of convergence between N and T (see Hahn and Kuersteiner (2002) and Karavias and

Tzavalis (2014a)).

Considering now the KT test, by the definition of V (λ)
KT , we have that limT V

(λ)
KT = +∞.
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To clarify how this is not a problem for the implementation of the statistic, notice that

the definition of the variance V (λ)
KT = 2tr(A

(λ)2

KT ) is made for convenience (our notation gives

weight to δ̂
(λ)
and thus to the bias correction aspect of the test) and does not correspond

exactly to the variance of
√
N(ϕ̂(λ) − 1− b̂(λ)/δ̂(λ)). Noticing that p limN δ̂

(λ)
= tr(Λ′Q(λ)Λ)

and that in the HT test, V (λ)
HT = 2tr(A

(λ)2

HT )/tr(Λ′Q(λ)Λ)2, the KT test maybe written as√
δ̂
(λ)2

/
(

2tr(A
(λ)2

KT )
)√

N(ϕ̂(λ) − 1− b̂(λ)/δ̂(λ)).

The formulas of k∗KT and V
∗(λ)
KT , given by the corollary for the large-T version of the

KT test, can be derived by following similar steps to the above. Then, using the results of

identities (40)-(45), we can obtain

k∗KT ≡ lim
T

1

T
kKT = 0 and V ∗(λ)KT ≡ lim

T
T 2V

(λ)
KT /

(
p lim

N
δ̂
(λ)
)

=
36(2λ4 − 4λ3 + 3λ2 − λ)

12(λ− 1)λ(2λ2 − 2λ+ 1)2
.

Proof of Theorem 2: To prove the theorem, we will follow analogous steps to those for

the proof of Theorem 1. We now will rely on relationships (8) and (38), where now vector

γ
(λ)
i is defined as

γ
∗(λ)
i =



(1− ϕN)a
(1)
i + ϕNβ

(1)
i

(1− ϕN)a
(2)
i + ϕNβ

(2)
i

(1− ϕN)β
(1)
i

(1− ϕN)β
(2)
i


= e∗νi + (1− ϕN)µi,

due to the presence of individual trends under ϕN,T = 1−c/
√
N , where µi = (α

(1)
i −β

(1)
i , α

(2)
i −

β
(2)
i , β

(1)
i , β

(2)
i )′, e∗ =

 1 0 0 0

0 1 0 0

 and νi = (β
(1)
i , β

(2)
i )′. The non-standardized HT test
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statistic for model M2 can be written as follows:

√
N(ϕ̂(λ) − ϕN −B(λ))

=
√
N


1
N

N∑
i=1

y′i,−1Q
(λ)(ϕNyi,−1 +X(λ)γ

∗(λ)
i + ui)

1
N

N∑
i=1

y′i,−1Q
(λ)yi,−1

− ϕN −B(λ)



=

1√
N

N∑
i=1

y′i,−1Q
(λ)ui − 1√

N
B(λ)

N∑
i=1

y′i,−1Q
(λ)yi,−1

1
N

N∑
i=1

y′i,−1Q
(λ)yi,−1

=
(A

′
)− (B

′)

(C ′)
,

where (A
′
) ≡

(
1/
√
N
)∑N

i=1 y
′
i,−1Q

(λ)ui, (B
′
) ≡ B(λ)

(
1/
√
N
)∑N

i=1 y
′
i,−1Q

(λ)yi,−1 and (C
′
) ≡

(1/N)
∑N

i=1 y
′
i,−1Q

(λ)yi,−1. As in the proof of Theorem 1, next we derive asymptotic results

of (A
′
), (B

′
) and (C

′
), using γ∗(λ)i = e∗νi + (1 − ϕN)µi. The most important ones are the

following:

√
N

(
1

N

N∑
i=1

ν ′ie
′
∗X

(λ)′Λ′Q(λ)ΛX(λ)e∗νi − tr(e′∗X(λ)′Λ′Q(λ)ΛX(λ)e∗E(νiν
′
i))

)
d→ N(0, VHT,4)

c

N

N∑
i=1

ν ′ie
′
∗X

(λ)′F ′Q(λ)Λe∗νi
p→ ctr(e′∗X

(λ)′F ′Q(λ)Λe∗E(νiν
′
i))

c

N

N∑
i=1

ν ′ie
′
∗X

(λ)′Λ′Q(λ)FX(λ)e∗νi
p→ ctr(e′∗X

(λ)′Λ′Q(λ)Fe∗E(νiν
′
i))

c

N

N∑
i=1

µ′iX
(λ)′Ω′Q(λ)ΩX(λ)e∗νi

p→ ctr(X(λ)′Λ′Q(λ)ΛX(λ)e∗E(νiµ
′
i))

c

N

N∑
i=1

ν ′ie
′
∗X

(λ)′Λ′Q(λ)ΛX(λ)µi
p→ ctr(e′∗X

(λ)′Λ′Q(λ)ΛX(λ)E(µiν
′
i))

Given these results, the proof of Theorem 2 for the test statistic HT follows immediately,
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after using the following identities:

tr(e′∗X
(λ)′Λ′Q(λ)ΛX(λ)e∗E(νiν

′
i)) = 0

tr(e′∗X
(λ)′F ′Q(λ)Λe∗E(νiν

′
i))− tr(e′∗X(λ)′Λ′Q(λ)Fe∗E(νiν

′
i)) = 0

and tr(X(λ)′Λ′Q(λ)ΛX(λ)e∗E(νiµ
′
i))− tr(e′∗X(λ)′Λ′Q(λ)ΛX(λ)E(µiν

′
i)) = 0.

The proof of the second result of the theorem, i.e., kKT = 0, can be proved by following

analogous steps to the above and using the following identities:

tr(e′∗X
(λ)′Θ(λ)ΛX(λ)e∗E(νiν

′
i))− tr(e′∗X(λ)′Λ′Θ(λ)X(λ)e∗E(νiν

′
i)) = 0

and tr(X(λ)′Θ(λ)X(λ)e∗E(νiµ
′
i))− tr(e′∗X(λ)′Θ(λ)X(λ)E(µiν

′
i)) = 0.

Proof of Corollary 2: The proof comes directly from Theorem 2 by scaling the results

with T.

Proof of Theorem 3: This can be proved by following analogous steps to the proof

of Theorem 1, for the KT test statistic, by inserting Γ̄ instead of σ2I and by using the

corresponding asymptotic theorems (see Karavias and Tzavalis (2014b) or proof of Theorem

7 for an example).

Proof of Theorem 4: This can be proved by following analogous steps to the proof of

Theorems 2 and 3, for the KT test statistic.

Proof of Theorem 5: Under the null hypothesis, model M̃1 becomes:

yi = yi,−1 + ξ
(1)
i f (1) + ξ

(2)
i f (2) + ui, (47)
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for i = 1, ..., N. Solving backwards last rlationship yields

yi,−1 = yi,0e+ ξ
(1)
i Λf (1) + ξ

(2)
i Λf (2) + Λui. (48)

The following proof is as in Karavias and Tzavalis (2014a). Equation (48) corresponds to

equation (8), under the null hypothesis and the presence of common factors. Notice that mul-

tiplying (47) and (48) withQ(λ) (based on the augmentedX(λ) =
(
e(1), e(2), f (1), f (2),Λf (1),Λf (2)

)
)

removes the nuisance parameters such that:

Q(λ)yi = Q(λ)yi,−1 +Q(λ)ui

Q(λ)yi,−1 = Q(λ)Λui. (49)

Substituting (49) in the inconsistency of ϕ̂(λ):

ϕ̂(λ) − 1 =

N∑
i=1

yi,−1Q
(λ)yi

N∑
i=1

yi,−1Q(λ)yi,−1

− 1 =

N∑
i=1

u′iΛ
′Q(λ)ui

N∑
i=1

u′iΛ
′Q(λ)ui

.

By applying standard properties of the quadratic forms:

E(u′iΛ
′Q(λ)ui) = σ2tr(Λ′Q(λ)),

E(u′iΛ
′Q(λ)Λui) = σ2tr(Λ′Q(λ)Λ)

and thus

B(λ) = p lim
N

(ϕ̂(λ) − 1) =
tr(Λ′Q(λ))

tr(Λ′Q(λ)Λ)
.
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To derive the limiting distribution under the null

√
N(ϕ̂(λ) − 1−B(λ)) =

1√
N

N∑
i=1

[
u′iΛ

′Q(λ)ui −B(λ)u′iΛ
′Q(λ)ui

]
1
N

N∑
i=1

u′iΛ
′Q(λ)ui

.

Then, p limN(1/N)
∑N

i=1 u
′
iΛ
′Q(λ)ui = σ2tr(Λ′Q(λ)Λ).Also,N−1/2

∑N
i=1

[
u′iΛ

′Q(λ)ui −B(λ)u′iΛ
′Q(λ)ui

]
=

(1/
√
N)
∑N

i=1 u
′
iA

(λ)
HTui where E(u′iA

(λ)
HTui) = 0 and V ar(u′iA

(λ)
HTui) = 2σ4tr(A

(λ)2
HT ). The result

follows from the Lindeberg-Levy CLT and the CMT. The proof of the distribution under the

local alternatives is the same with the proof of Theorem 1.

Proof of Theorem 6: Under the null hypothesis, model M̃2 becomes:

yi = yi,−1 + β
(1)
i e(1) + β

(2)
i e(2) + ξ

(1)
i f (1) + ξ

(2)
i f (2) + ui, (50)

for i = 1, ..., N. Solving backwards last relationship gives

yi,−1 = yi,0e+ β
(1)
i Λe(1) + β

(2)
i Λe(2) + ξ

(1)
i Λf (1) + ξ

(2)
i Λf (2) + Λui. (51)

Then, by multiplying with Q(λ) (based on X(λ) =
(
e(1), e(2), τ (1), τ (2), f (1), f (2),Λf (1),Λf (2)

)
)

we remove the nuisance parameters such that:

Q(λ)yi = Q(λ)yi,−1 +Q(λ)ui

Q(λ)yi,−1 = Q(λ)Λui. (52)

The proof then follows the steps of Theorem 5.
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Proof of Theorem 7: We first begin by proving some claims in the text before Theorem

7. Under null hypothesis H0:c = 0, we have ∆yi = ξ
(1)
i f (1) + ξ

(2)
i f (2) + ui. Then, Γ̂ can be

written as

Γ̂ =
1

N

N∑
i=1

∆yi∆y
′
i

=
1

N

N∑
i=1

(
ξ
(1)
i f (1) + ξ

(2)
i f (2) + ui

)(
ξ
(1)
i f (1) + ξ

(2)
i f (2) + ui

)′
=

1

N

N∑
i=1

(ξ
(1)2
i f (1)f (1)′ + ξ

(2)2
i f (2)f (2)′ + uiu

′
i + ξ

(1)
i ξ

(2)
i f (1)f (2)′ + ξ

(1)
i f (1)u′i

+ξ
(2)
i ξ

(1)
i f (2)f (1)′ + ξ

(2)
i f (2)u′i + ξ

(1)
i uif

(1)′ + ξ
(2)
i uif

(2)′)

To make the exposition simpler and without loss of generality, write the top left element

of Γ̂ as

1

N

N∑
i=1

(
ξ
(1)2
i f

(1)2
1 + u2i,1 + 2ξ

(1)
i f

(1)
1 ui,1

)
,

where E
(
ξ
(1)2
i f

(1)2
1 + u2i,1 + 2ξ

(1)
i f

(1)
1 ui,1

)
= E

(
ξ
(1)2
i

)
f
(1)2
1 +E(u2i,1) by condition (e1). Also,

by Condition (e2) it is straightforward that V ar(ξ(1)2i f
(1)2
1 +u2i,1+2ξ

(1)
i f

(1)
1 ui,1) is finite. Then,

by Chebyshev’s Weak Law of Large Numbers, we obtain the following result:

p lim
N

1

N

N∑
i=1

[
ξ
(1)2
i f

(1)2
1 + u2i,1 + 2ξ

(1)
i f

(1)
1 ui,1 − E

(
ξ
(1)2
i

)
f
(1)2
1 − E(u2i,1)

]
= 0.

The arguments used here apply to all elements of Γ̂ and thus we have that

p lim
N

[Γ̂− Γ̄− ξ̄(1)2f (1)f (1)′ + ξ̄
(2)2

f (2)f (2)′)] = 0.

Next, we will show that ξ̄(1)2 and ξ̄(2)2 can be consistently estimated. First, write tr(M (1)
f Γ̂) =
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(1/N)
∑N

i=1 ∆y′iM
(1)
f ∆yi. Then, we have

E(∆y′iM
(1)
f ∆yi) = tr

[
M

(1)
f E(∆yi∆y

′
i)
]
and

E(∆yi∆y
′
i) = E(ξ

(1)2
i )f (1)f (1)′ + E(ξ

(2)2
i )f (2)f (2)′ + Γi

by Assumption E. The above imply that tr
[
M

(1)
f E(∆yi∆y

′
i)
]

= E(ξ
(1)2
i )tr

[
M

(1)
f f (1)f (1)′

]
+

E(ξ
(2)2
i )tr

[
M

(1)
f f (2)f (2)′

]
+ tr

[
M

(1)
f Γi

]
. But since M (j)

f has zeroes in its central diagonals

wherever Γi is non-zero, we have tr
[
M

(j)
f Γi

]
= 0 and also tr

[
M

(1)
f f (2)f (2)′

]
= 0, because

the block forms that the matrices have due to the structural break. Thus, for all i, it holds

that tr
[
M

(1)
f E(∆yi∆y

′
i)
]

= E(ξ
(1)2
i )tr

(
M

(1)
f f (1)f (1)′

)
. Since variances of ∆yi∆y

′
i are finite,

for all i, by Assumptions A and E, the following results hold

p lim
N

[
tr(M

(1)
f Γ̂)− ξ̄(1)2tr

(
M

(1)
f f (1)f (1)′

)]
= 0, or

p lim
N

 tr(M
(1)
f Γ̂)

tr
(
M

(1)
f f (1)f (1)′

) − ξ̄(1)2
 = 0,

by Chebyshev’s Weak Law of Large. A similar result to the above hods for ξ̄(j)2, if j = 2.

Finally, we will show that p limN

[
tr(Θ(λ)Γ̂)− tr(Λ′Q(λ)Γ̄)

]
= 0. To this end, first note that

tr(Λ′Q(λ)Γ̄) = (1/N)
∑N

i=1 tr(Λ
′Q(λ)Γi). Also, note that tr(Θ(λ)Γ̂) = (1/N)

∑N
i=1 ∆y′iΘ

(λ)∆yi

withE(∆y′iΘ
(λ)∆yi) = tr(Θ(λ)E(∆yi∆y

′
i)) =E(ξ

(1)2
i )tr

(
Θ(λ)f (1)f (1)′

)
+E(ξ

(2)2
i )tr

(
Θ(λ)f (2)f (2)′

)
+

tr
(
Θ(λ)Γi

)
. Next note the following result:

tr
(
Θ(λ)f (1)f (1)′

)
= tr

(
Ψ(λ)f (1)f (1)′

)
− tr(Ψ(λ)f (1)f (1)′)

tr(M
(1)
f f (1)f (1)′)

tr
(
M

(1)
f f (1)f (1)′

)
− tr(Ψ

(λ)f (2)f (2)′)

tr(M
(2)
f f (2)f (2)′)

tr
(
M

(2)
f f (1)f (1)′

)
= tr

(
Ψ(λ)f (1)f (1)′

)
− tr(Ψ(λ)f (1)f (1)′) = 0,
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which holds because tr
(
M

(2)
f f (1)f (1)′

)
= 0. Similarly, we can prove that tr

(
Θ(λ)f (2)f (2)′

)
= 0

and, hence, tr(Θ(λ)E(∆yi∆y
′
i)) = tr

(
Θ(λ)Γi

)
. Also, note that tr

(
Θ(λ)Γi

)
= tr

(
Ψ(λ)Γi

)
because tr

(
M

(j)
f Γi

)
= 0, by the construction of M (j)

f , for j = 1, 2. By the construction of

Ψ(λ), we have tr
(
Ψ(λ)Γi

)
= tr(Λ′Q(λ)Γi). Taking together the above results, we have that

p lim
N

[
tr(Θ(λ)Γ̂)− tr(Λ′Q(λ)Γ̄)

]
= 0.

The rest of the proof follows similar steps to those of the proof of Theorem 1. Following

analogous steps to the above, we can prove the results of Theorem 7 for model M̃2.
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8 Tables

Table 1: Values of kHT and kKT for model M1
kHT kKT

λ\T 8 10 15 20 8 10 15 20
0.25 3.18 4.12 6.11 7.75 1.85 1.86 1.96 2.10
0.50 2.93 3.62 5.32 6.99 2.12 2.23 2.34 2.39
0.75 3.18 3.81 5.78 7.75 1.85 2.04 2.09 2.10
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Table 2: Values of slope parameters k∗HT and k
∗
KT for model M1

λ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
k∗HT 0.433 0.394 0.360 0.338 0.332 0.338 0.360 0.394 0.433
k∗KT 0 0 0 0 0 0 0 0 0
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Table 3: Values of kKT with ui,t = εi,t + θεi,t−1
Panel A: Model M1
T T0 θ = −0.8 θ = −0.5 θ = 0.0 θ = 0.5 θ = 0.8
8 2 −1.40 −0.63 1.58 2.71 2.89

4 0.25 0.61 1.89 2.86 3.04
6 1.28 1.36 1.58 1.66 1.68

10 2 −1.62 −0.69 1.65 2.60 2.73
5 0.07 0.56 2.12 3.05 3.21
7 0.82 1.10 1.82 2.12 2.16

15 3 −1.55 −0.48 1.81 2.50 2.58
7 −0.41 0.36 2.31 3.10 3.21
11 0.52 1.01 1.95 2.20 2.23

20 5 −1.52 −0.31 2.00 2.61 2.68
10 −0.54 0.38 2.38 3.02 3.10
15 0.33 1.07 2.00 2.22 2.24

Panel B: Model M2
8 4 0.08 0.070 0 −0.09 −0.11
10 5 0.20 0.15 0 −0.12 −0.14

7 0.66 0.46 0 −0.21 −0.24
15 3 0 0 0 0 0

7 0.47 0.32 0 −0.13 −0.15
11 0.75 0.53 0 −0.20 −0.23

20 5 0.17 0.11 0 −0.03 −0.04
10 0.70 0.45 0 −0.15 −0.17
15 0.80 0.54 0 −0.17 −0.20
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Table 4: Values of k̄HT and k̄KT
Panel A: Model M̃1
λ\T kHT kKT

12 15 20 12 15 20
0.25 3.50 4.84 6.45 1.30 1.56 1.81
0.50 3.06 4.09 5.70 1.32 1.58 2.01
0.75 3.55 4.67 6.60 1.31 1.56 1.84

Panel B: Model M̃2
0.35 0 0 0 1.15 1.59 2.23
0.50 0 0 0 1.00 1.51 2.20
0.65 0 0 0 1.05 1.55 2.22
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Table 5: Simulated size and power of the HT and KT tests for ui,t ∼ NIID(0, σ2)
Model M1 Model M2

N 100 300 1000 TV 100 300 1000 TV
T = 8 λ = 0.25 c = 0 HT 0.048 0.060 0.059 0.050 0.047 0.040 0.051 0.050

KT 0.054 0.050 0.050 0.050 0.056 0.062 0.057 0.050
c = 1 HT 0.775 0.853 0.894 0.938 0.076 0.068 0.065 0.050

KT 0.352 0.428 0.474 0.583 0.087 0.073 0.069 0.050
λ = 0.5 c = 0 HT 0.054 0.055 0.053 0.050 0.054 0.056 0.052 0.050

KT 0.048 0.052 0.052 0.050 0.050 0.060 0.050 0.050
c = 1 HT 0.768 0.828 0.866 0.901 0.065 0.060 0.046 0.050

KT 0.487 0.546 0.608 0.682 0.073 0.061 0.060 0.050
λ = 0.75 c = 0 HT 0.064 0.055 0.051 0.050 0.057 0.053 0.047 0.050

KT 0.063 0.055 0.051 0.050 0.060 0.057 0.057 0.050
c = 1 HT 0.889 0.906 0.926 0.938 0.061 0.065 0.052 0.050

KT 0.375 0.453 0.490 0.583 0.102 0.080 0.062 0.050
T = 10 λ = 0.25 c = 0 HT 0.059 0.053 0.053 0.050 0.055 0.050 0.042 0.050

KT 0.058 0.049 0.047 0.050 0.056 0.062 0.058 0.050
c = 1 HT 0.900 0.960 0.973 0.993 0.095 0.070 0.068 0.050

KT 0.288 0.384 0.458 0.585 0.108 0.087 0.074 0.050
λ = 0.5 c = 0 HT 0.057 0.046 0.047 0.050 0.052 0.047 0.054 0.050

KT 0.063 0.050 0.051 0.050 0.060 0.058 0.061 0.050
c = 1 HT 0.878 0.927 0.957 0.976 0.070 0.063 0.054 0.050

KT 0.451 0.527 0.603 0.720 0.090 0.073 0.055 0.050
λ = 0.75 c = 0 HT 0.056 0.060 0.053 0.050 0.060 0.047 0.045 0.050

KT 0.052 0.048 0.044 0.050 0.069 0.052 0.051 0.050
c = 1 HT 0.940 0.968 0.976 0.985 0.083 0.069 0.059 0.050

KT 0.339 0.456 0.541 0.653 0.092 0.078 0.064 0.050

65



Table 6: Simulated size and power of the KT test for model M1 with ui,t = εi,t + θεi,t−1.
T 8 10
N 100 300 1000 TV 100 300 1000 TV
θ = −0.8 λ = 0.25 c = 0 0.047 0.049 0.053 0.050 0.058 0.056 0.048 0.050

c = 1 0.060 0.057 0.063 0.001 0.047 0.051 0.054 0
λ = 0.50 c = 0 0.047 0.056 0.053 0.050 0.050 0.045 0.060 0.050

c = 1 0.052 0.054 0.054 0.082 0.054 0.058 0.068 0.058
λ = 0.75 c = 0 0.056 0.053 0.059 0.050 0.049 0.055 0.047 0.050

c = 1 0.054 0.061 0.049 0.358 0.049 0.046 0.047 0.205
θ = −0.5 λ = 0.25 c = 0 0.052 0.053 0.044 0.050 0.049 0.058 0.044 0.050

c = 1 0.070 0.0102 0.086 0.011 0.089 0.086 0.108 0.009
λ = 0.50 c = 0 0.050 0.047 0.048 0.050 0.046 0.046 0.053 0.050

c = 1 0.093 0.104 0.125 0.151 0.078 0.100 0.118 0.140
λ = 0.75 c = 0 0.045 0.055 0.055 0.050 0.049 0.054 0.055 0.050

c = 1 0.073 0.075 0.100 0.391 0.072 0.080 0.097 0.293
θ = 0.5 λ = 0.25 c = 0 0.047 0.041 0.057 0.050 0.054 0.054 0.041 0.050

c = 1 0.375 0.477 0.580 0.858 0.278 0.391 0.505 0.830
λ = 0.50 c = 0 0.050 0.044 0.044 0.050 0.062 0.051 0.050 0.050

c = 1 0.678 0.769 0.825 0.888 0.681 0.789 0.856 0.921
λ = 0.75 c = 0 0.046 0.049 0.042 0.050 0.053 0.050 0.058 0.050

c = 1 0.544 0.644 0.652 0.509 0.580 0.693 0.783 0.683
θ = 0.8 λ = 0.25 c = 0 0.055 0.052 0.056 0.050 0.056 0.043 0.055 0.050

c = 1 0.403 0.512 0.598 0.894 0.273 0.411 0.481 0.861
λ = 0.50 c = 0 0.047 0.046 0.060 0.050 0.049 0.058 0.050 0.050

c = 1 0.769 0.830 0.875 0.919 0.752 0.825 0.895 0.941
λ = 0.75 c = 0 0.045 0.052 0.053 0.050 0.051 0.058 0.054 0.050

c = 1 0.632 0.696 0.739 0.514 0.654 0.780 0.823 0.698
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Table 7: Simulated size and power of the KT test for model M2 with ui,t = εi,t + θεi,t−1
T 8 10
N 100 300 1000 TV 100 300 1000 TV
θ = −0.8 λ = 0.50 c = 0 0.047 0.040 0.045 0.050 0.044 0.047 0.052 0.050

c = 1 0.047 0.050 0.056 0.059 0.046 0.048 0.060 0.075
λ = 0.75 c = 0 0.051 0.048 0.045 0.050

c = 1 0.058 0.066 0.072 0.164
θ = −0.5 λ = 0.50 c = 0 0.049 0.050 0.057 0.050 0.057 0.055 0.049 0.050

c = 1 0.057 0.054 0.050 0.057 0.061 0.051 0.074 0.068
λ = 0.75 c = 0 0.054 0.046 0.050 0.050

c = 1 0.093 0.077 0.089 0.119
θ = 0.5 λ = 0.50 c = 0 0.048 0.054 0.042 0.050 0.050 0.060 0.053 0.050

c = 1 0.054 0.048 0.043 0.041 0.066 0.044 0.047 0.038
λ = 0.75 c = 0 0.051 0.054 0.052 0.050

c = 1 0.071 0.052 0.038 0.031
θ = 0.8 λ = 0.50 c = 0 0.052 0.051 0.052 0.050 0.053 0.060 0.055 0.050

c = 1 0.047 0.046 0.036 0.039 0.057 0.043 0.032 0.036
λ = 0.75 c = 0 0.060 0.059 0.049 0.050

c = 1 0.057 0.041 0.029 0.029
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Table 8: Simulated size and power of the HT and KT tests for M̃1 and M̃2, with ui,t ∼ NIID(0, σ2)

Model M̃1 Model M̃2
N 100 300 1000 TV 100 300 1000 TV
T = 12 λ = 0.25 c = 0 HT 0.055 0.053 0.052 0.050 0.052 0.047 0.053 0.050

KT 0.056 0.056 0.052 0.050 0.057 0.055 0.051 0.050
c = 1 HT 0.432 0.477 0.515 0.67 0.074 0.059 0.053 0.050

KT 0.227 0.267 0.296 0.366 0.233 0.269 0.301 0.313
λ = 0.5 c = 0 HT 0.052 0.056 0.049 0.050 0.054 0.052 0.052 0.050

KT 0.053 0.048 0.053 0.050 0.044 0.049 0.051 0.050
c = 1 HT 0.380 0.439 0.459 0.55 0.064 0.055 0.059 0.050

KT 0.234 0.277 0.302 0.354 0.169 0.192 0.200 0.264
λ = 0.75 c = 0 HT 0.057 0.054 0.049 0.050 0.050 0.051 0.050 0.050

KT 0.057 0.056 0.053 0.050 0.049 0.044 0.049 0.050
c = 1 HT 0.508 0.539 0.557 0.69 0.069 0.060 0.060 0.050

KT 0.279 0.309 0.334 0.384 0.175 0.188 0.194 0.278
T = 15 λ = 0.25 c = 0 HT 0.052 0.056 0.044 0.050 0.053 0.057 0.054 0.050

KT 0.054 0.052 0.058 0.050 0.056 0.052 0.056 0.050
c = 1 HT 0.604 0.623 0.644 0.92 0.093 0.078 0.064 0.050

KT 0.252 0.292 0.346 0.458 0.299 0.336 0.381 0.483
λ = 0.5 c = 0 HT 0.053 0.056 0.053 0.050 0.048 0.050 0.049 0.050

KT 0.058 0.049 0.054 0.050 0.050 0.061 0.047 0.050
c = 1 HT 0.518 0.556 0.602 0.81 0.082 0.063 0.062 0.050

KT 0.299 0.336 0.381 0.482 0.241 0.282 0.323 0.449
λ = 0.75 c = 0 HT 0.060 0.058 0.050 0.050 0.050 0.052 0.055 0.050

KT 0.058 0.061 0.050 0.050 0.053 0.052 0.050 0.050
c = 1 HT 0.616 0.640 0.652 0.90 0.084 0.071 0.062 0.050

KT 0.284 0.324 0.375 0.466 0.242 0.273 0.290 0.462
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Table 9: Simulated size and power of the HT and KT tests when T is large and ui,t ∼ NIID(0, σ2)
N/T 10/100 10/200 10/300 10/50 20/50 50/50 TV

Model M1
λ = 0.25 c = 0 HT 0.088 0.089 0.092 0.080 0.067 0.055 0.05

KT 0.040 0.032 0.036 0.038 0.046 0.053 0.05
c = 1 HT 0.140 0.135 0.148 0.138 0.122 0.109 0.10

KT 0.033 0.031 0.032 0.042 0.049 0.056 0.05
λ = 0.5 c = 0 HT 0.075 0.074 0.077 0.067 0.062 0.055 0.05

KT 0.038 0.038 0.036 0.048 0.050 0.054 0.05
c = 1 HT 0.131 0.131 0.124 0.111 0.095 0.096 0.09

KT 0.041 0.032 0.032 0.050 0.053 0.055 0.05
λ = 0.75 c = 0 HT 0.091 0.086 0.097 0.082 0.068 0.057 0.05

KT 0.037 0.028 0.031 0.040 0.048 0.050 0.05
c = 1 HT 0.146 0.143 0.157 0.134 0.115 0.108 0.10

KT 0.036 0.033 0.029 0.044 0.051 0.055 0.05
Model M2
λ = 0.25 c = 0 HT 0.080 0.077 0.085 0.069 0.067 0.065 0.05

KT 0.038 0.034 0.034 0.044 0.050 0.056 0.05
c = 1 HT 0.077 0.080 0.084 0.081 0.069 0.059 0.05

KT 0.033 0.028 0.029 0.046 0.056 0.056 0.05
λ = 0.5 c = 0 HT 0.074 0.070 0.070 0.065 0.058 0.058 0.05

KT 0.046 0.037 0.038 0.056 0.052 0.051 0.05
c = 1 HT 0.062 0.075 0.071 0.068 0.060 0.061 0.05

KT 0.044 0.036 0.046 0.054 0.054 0.056 0.05
λ = 0.75 c = 0 HT 0.075 0.085 0.077 0.080 0.067 0.060 0.05

KT 0.042 0.033 0.032 0.052 0.052 0.057 0.05
c = 1 HT 0.076 0.082 0.083 0.078 0.068 0.051 0.05

KT 0.042 0.033 0.030 0.047 0.052 0.050 0.05
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