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Abstract 

At-line sampling by solid phase microextraction (SPME) followed by GC-MS analysis was 

investigated as a fast analytical method to identify and quantify the compounds evolved 

during intermediate pyrolysis of biomass. A 75 µm carboxen/polidimethylsiloxane 

(CAR/PDMS) coated fiber in retracted configuration was inserted at-line during pyrolysis at 

500 °C with a bench scale fixed bed pyrolyser of different biomass substrates, lignocellulosic 

feedstock, agricultural wastes, animal residues and algal biomass. The molecular composition 

resulting from SPME sampling was compared to the chemical composition of collected 

pyrolysis liquid, which included the aqueous and organic phase (bio-oil). The storage capacity 

of the SPME fiber was tested 48 and 96 hours after sampling under air atmosphere and 

vacuum-packed plastic bags. The SPME-GC-MS profiles could be utilised to gather 

information on the characteristics of pyrolysis process, such as the efficiency of vapour 

condensation. 

 

1. Introduction  

Pyrolysis oil also known as bio-oil is a complex mixture of hundreds of polar and non-polar 

compounds formed during the thermal degradation of the main biomass components. Bio-oil 

composition varies depending on feedstock and process conditions [1-3].  

Bio-oil contains approximately 20% water, 40% GC-detectable compounds, approximately 

15% non-volatile HPLC-detectable compounds and 25% high molecular lignin [4-7]. Bio-oil 

from lignocellulosic biomass is mainly constituted by pyrolysis products originated from 

plant biomolecules (cellulose, hemicellulose, and lignin). Pyrolysis of lignin produces phenols 

and methoxyphenols (guaiacyl and syringyl moieities) while cellulose and hemicellulose give 
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furans, aldehydes, ketones and anhydrous sugars (i.e. levoglucosan and anhydro 

xylopyranose, from cellulose and hemicellulose, respectively). This mixture of polar and non-

polar compounds makes the chemical characterisation extremely difficult and laborious and 

requires the use of several analytical techniques (i.e. GC-MS, HPLC-MS, and GPC) and 

chemical procedures (e.g. derivatisation [8, 9], solvent fractionation [10]) 

The chemical characterisation at a molecular level is often accomplished by direct GC-MS of 

the oil (condensed organic fraction) dissolved in an appropriate solvent after pyrolysis has 

occurred. However, the large variety of constituents ranging from polar hydrophilic to highly 

hydrophobic compounds may render the choice of the appropriate solvent difficult as certain 

solvents are immiscible with certain constituents of the bio-oil. Moreover, the distribution of 

the pyrolysis products in different liquid fractions, generally a bio-oil and an aqueous solution 

is an additional analytical complication. This leads to inefficiencies in the spectrum of 

detectable compounds during GC-MS analysis. Therefore, knowledge of hot pyrolysis 

vapours could be useful to obtain information on the complete composition of the liquids 

before their condensation in the cold traps. A solvent-less technique capable of hot gas phase 

analysis such as solid phase microextraction (SPME) is ideally suited for this purpose. 

Solid phase microextraction is a sample preparation and sampling technique developed by 

Pawlizny in 1990 [11,12] which has been employed on a wide range of analytes and for 

several applications in various research fields, such as environmental chemistry, forensic 

chemistry and pharmaceutical and food industries [13-17]. It allows a fast and solvent-free 

sampling and it is mainly applied coupled with GC-MS or other chromatographic techniques 

[18].  

Previous works have shown SPME can be applied downstream of pyrolysis (Py-SPME) 

evolved by thermal desorption and pyrolysis, which de-couples the thermal conversion 

process and the GC-MS analysis, thus providing information on the actual composition of 

native vapours with simple and solventless technique [9, 16]. Other works showed SPME 

application by derivatisation headspace SPME (D-HS-SPME) followed by GC-MS for 

determination of low molecular mass aldehydes in bio-oil [8]. 

Several studies investigated the application of SPME for direct sampling of gaseous streams 

from thermochemical conversions, showing the potential of this technique for the on-line 

monitoring of plant operations [19-23]. This could be quite useful in the case of a distributed 

biomass/waste conversion schemes based on small scale intermediate pyrolysis where 

continuous quality control checks are necessary to ensure consistent final product. 
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Then, SPME sampling turns out to be a useful method as it is fast, solventless and able to give 

detailed information on the chemical composition of bio-oil. In addition, SPME could be 

coupled with several analytical techniques. Direct SPME-GC-MS analysis can gives 

information on the volatiles and semi volatiles compounds. However, by proper derivatisation 

on headspace, SPME is also able to detect polar compounds (e.g. anhydrous sugars) [9].  

Finally, being the fiber reusable, the costs can be reduced in high sample throughput [24]. 

The aim of this study is to evaluate the SPME sampling directly within the bench scale 

pyrolysis reactor in order to apply the SPME as at-line fast method for the characterisation of 

several pyrolysis products evolved during the pyrolysis process.  

An in-depth literature review revealed that there are no studies using SPME-GC-MS as an 

analytical technique applied to a bench scale pyrolysis in order to evaluate the pyrolysis in 

order to obtain a comprehensive spectrum of pyrolysis vapours formed with detailed 

comparisons made condensate bio-oil post pyrolysis.  

Furthermore, the storage capacity has been tested to evaluate its ability to accurately analyse 

products post experimentation. 

In this study, captured products were stored for periods of 48 and 96 hours in order to 

determine the accuracy of analysis after extended periods of time in storage, determined on a 

qualitative and quantitative. 

 

2. Experimental 

2.1 Feedstock 

A pelletized solid digestate deriving from an anaerobic digestion plant operated by Neue 

Energie Steinfurt GmbH, Germany (NESt) using a mixture of maize silage (62%), cattle 

slurry (17%), pig slurry (17%) and cereals (4%) was used as a feedstock [25].  

Other biomass samples were from woody (pine sawdust), herbaceous (switchgrass, cornstalk) 

[26], microalgae (Spirulina, Arthrospira platensis), animal residues (poultry litter) from a 

local poultry farm and agricultural wastes (olive residues). 

 

2.2 At-line SPME sampling in a bench scale reactor 

The SPME fiber tested was a 75 µm Carboxen/polidimethylsiloxane (CAR/PDMS) coated 

fiber (Supelco) used in retracted fiber configuration. Biomass samples (approximately 6-7 g) 

were pyrolysed using a fixed bed tubular quartz reactor previously described [27] modified 

with the addition of a quartz T-junction for the SPME sampling (Figure 1). 
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The SPME fiber was placed through a tee-joint in quartz upstream of the cold salt-ice trap (ca. 

- 15°C) where the oil was condensed. The pyrolysis experiments were performed at 500°C for 

5 min under nitrogen flow set a 1000 mL min
-1

. At the end of the pyrolysis run the SPME 

fiber was promptly subjected to GC-MS analysis. 

The pyrolysis liquid collected in the cold trap was centrifuged at 3000 rpm for 15 minutes to 

separate the low viscous aqueous phase (AP) from the tarry dark brown bio-oil (BO). The 

yields of the various fractions (char, aqueous phase and bio-oil) were determined by weight 

difference. 

 

2.3 Analysis of pyrolysis liquid 

The chemical composition of pyrolysis liquid was determined by solvent fractionation 

according to the method by Oasmaa and E. Kuoppala [28] slightly modified (ethyl acetate in 

place of ethyl ethers and lower sample amount). 

After the separation into aqueous phase and bio-oil, 1 mL of aqueous phase was taken and 

added 9 mL of water. Then, the mixture was placed in the centrifuge at 3000 rpm for 10 min. 

The water insoluble fraction was determined by weight of the formed precipitate after 

centrifuge. The water soluble fraction was further extracted with 10 mL of ethyl acetate (1:1 

v/v) in a separation funnel and let the solution to settle. The ethyl acetate solution was 

decanted from the bottom and evaporated in a rotary-evaporator at 40°C. Concentration of the 

water soluble-ethyl acetate insoluble fraction was determined by BRIX method [10]. The 

same procedure was applied to the bio-oil using 1 g diluted into 10 mL of water. 

The following fractions were quantified: water solubles, WS, divided into ethyl acetate 

soluble, EAS, (furans, phenols etc.) and insoluble, EAI, (sugars determined by the Brix 

method) and water insoluble, WIS, (pyrolytic lignin, extractives). The water content was 

determined by Karl Fischer titration. 

Bio-oil elemental analysis was performed by combustion using a Thermo Scientific Flash 

2000 series analyzer. 

For bio-oil, GC-MS analysis was performed on 1% solution w/v in acetone/cyclohexane 1/1 

v/v spiked with 0.1 mL internal standard solution (100 mg/L 1,3,5-tri-terz-butylbenzene), for 

the aqueous phase a 10 % solution v/v in acetonitrile spiked with 0.05 mL internal standard 

solution (5000 mg/L butanoic acid, 2-ethyl). 

 

2.4 GC-MS analysis 
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SPME and bio-oil analysis were performed with a 6850 Agilent HP gas chromatograph 

connected to a 5975 Agilent HP quadrupole mass spectrometer (EI 70 eV, at a frequency of 

1.55 scan s
-1 

within the 10-450 m/z range). Analytes were separated by a HP-5 fused-silica 

capillary column (stationary phase poly [5% diphenyl/95% dimethyl] siloxane, 30 m, 0.25 

mm i.d., 0.25 mm film thickness) using helium as carrier gas with the following thermal 

program: 50°C with a hold for 5 min, then ramping up with a heating rate of 10°C min
-1

 until 

325 °C followed by a column cleaning at 325 °C for 10 min. SPME desorption was performed 

at 280°C in the injection port in splitless mode. 

The total sum area of GC detectable compounds was quantified in terms of absolute 

concentration using the internal standard. 

A set of 27 compounds was quantified in terms of percentage relative abundance (% peak area 

to the total area).  

All the experiments were run in duplicate. The precision was assessed by triplicate runs of 

SPME and bio-oil analysis of digestate sample and assumed to be representative of all 

biomass feedstock.  

Percentage relative standard deviations (%RSD) were calculated for each pyrolysis product.  

Aqueous phase analyses were performed with a Varian 3400 gas chromatograph equipped 

with a polar GC column (Agilent Q7221 J&W nitroterephthalic-acid-modified polyethylene 

glycol DB-FFAP 222 30 m, 0.25mm, 0.2 μm) and connected to a Saturn 2000 ion trap mass 

spectrometer (Varian Instruments) using an incident electron energy of 70 eV, in full scan 

acquisition (10-650 m/z). The following thermal program was used: 50°C with a hold for 5 

min, then ramping up with a heating rate of 10 °C min
-1

 until 250 °C followed by a column 

cleaning at 250 °C for 5 min.  

A set of 21 compounds was quantified (% peak area to the total area). 

The precision was assessed by triplicate runs of aqueous phase analysis of digestate sample.  

 

2.5 Ageing tests 

For storage investigations, ageing tests on the SPME fiber were performed after sampling the 

vapours from the pyrolysis of digestate. The experiments were carried out by storing the fiber, 

after sampling, for 48 hours or 96 hours at room temperature (20±1°C) under two different 

storage conditions: under air atmosphere or in vacuum. To get the vacuum the needle 

containing the fiber was placed (without holder) in a plastic bag and vacuum sealed with a 

commercial vacuum sealer system for food (Krups Vacuum sealer Type 383) and finally 

placed into a drawer 
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After the storage period, thermal desorption was applied by GC-MS.  

The GC-MS analyses were performed with the apparatus used for SPME and bio-oil analysis 

previously described in section 2.4. The precision was assessed by triplicate runs for each 

condition. 

 

3. Results and discussion 

3.1. Bulk analysis of pyrolysis liquids 

Bio-oils from several biomass were obtained by means of intermediate pyrolysis at 500 °C for 

5 minutes.  

Elemental analysis, GC-MS and solvent fractionation procedure (Table 1) were performed on 

both the aqueous phase (AP) and bio-oil (BO). Under the pyrolysis conditions, phase 

separation was observed with all tested samples, yielding an organic product with minimal 

water content and a aqueous product characterized by high water content (>40 %). 

Furthermore, the yields of the bio-oil showed high variations between 49 % (Spirulina) and 7 

% (Bark) depending on the original feedstock. [29] 

The digestate sample showed a liquid composition and liquid yield in accordance with that 

obtained by Neumann and coworkers [25] processing the same feedstock on a 2 kg/h 

laboratory scale thermo-catalytic reforming (TCR
®

) reactor [30]. 

It can be observed that the bio-oil contained high carbon percentage comprising between 50.3 

% and 71.8 %. Concerning nitrogen, bio-oil from woody feedstock showed low N percentage 

(less than 1.5%), Olive residues and digestate had a N percentage of 0.9 % and 2.8 %, 

respectively. OP from poultry litter and spirulina showed highest N percentage with 11.4 and 

9.4 %, respectively, according to others works [31, 32].  

The aqueous phases were characterized by high water content, especially the digestate sample 

with 75 %.  

The lower water content was found in spirulina (17%).  

Results from solvent fractionation showed that the water insoluble percentage fraction (WIS) 

is similar to the yield to bio-oil (correlated with R = + 0.97). This suggests that separation of 

organic and a water phase is almost complete in the sample as produced from pyrolysis. [33].  

 

3.2. GC-MS analysis (Bio-oil) 

Table 2 shows the GC-MS qualitative and quantitative results obtained from the direct GC-

MS analysis of several bio-oils from different biomass. Chromatograms of bio-oils (Figs. 2 

and 3) from lignocellulosic biomass (pine sawdust, switchgrass, cornstalk and bark) showed 
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many similarities due to the preponderant lignocellulosic matrix and differences cause by the 

different lignin structure. Chromatograms were meanly featured by lignin pyrolysis products 

such as phenols, methoxy phenols (guaiacols) and dimethoxy phenols (syringols) and by 

cellulose pyrolysis products such as furaldehyde, 1-methyl cyclopente-1-one and 3-methyl 

cyclopentane-1, 2-dione. Switchgrass and cornstalk chromatograms are characterized by high 

relative abundance of phenolic moieties, with 4-vinyl phenol as the most abundant compound, 

in accordance to lignin composition of herbaceous biomass [34]. Instead, pine sawdust 

(softwood) bio-oil shows a preponderance of guaiacyl moieties with low levels of syringyl 

moieities. Bio-oil from bark (hardwood) is dominated by both the moieties, in accordance to 

lignin composition of softwood and hardwood biomasses [35, 36]. 

Poultry litter bio-oil is mainly characterized by fatty acids (34 % palmitic acid and 16% oleic 

acid) from the poultry manure and by phenolic compounds (phenol and guaiacols) from the 

lignocellulosic fraction of the bedding material. Nitrogen containing compounds were also 

detected (4.0% indole, 2.7% hexadecanamide and 2.2 % methyl indole) derived from 

proteinaceous material of manure. 

Olive residue was mainly characterized by oleic acid (22%) and phenolics compounds with 

guaiacol as the most abundant peak (14%) following by 4-vinyl guaiacol (8.5%), syringol 

(8.3%) and trans-isoeugenol (8.9%)  

Spirulina produced bio-oil that contained high percentage of nitrogen containing compounds 

according to others works [37, 38]. The most abundant compounds are indoles such as indole 

(25%) and methyl indole (6%) and phenols such as phenol (25%) GC-MS analysis also 

indicates a striking presence of alkane compounds mainly characterized by heptadecane 

(24%) probably derived from the decarboxylation of palmitic acids.  

 

3.3 GC-MS analysis (Aqueous phase) 

Examples of chromatograms of the aqueous phase are depicted in Figure 4, while Table 3 

shows the relative distribution (% peak area). Acetic acid was clearly detected in the GC polar 

column and represented a relatively abundant pyrolysis product of all the aqueous-phase 

samples. Glyceric acid was also tentatively identified in most of the samples, probably 

derived from sugar fragmentation in Maillard reaction [39]. 

In general, the aqueous phase (AP) contained compounds that were also present in the bio-oil 

(BO) indicating a loss of potential substances, and then a decrease of the relative abundance 

in the bio-oil compared to pyrolysis vapours detected by SPME”. These compounds 

comprised lignin phenols and sugar derivatives (furaldehydes and cyclopentenones) [40, 41]. 
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A notable exception was the olive residue, in which the aqueous phase seemed poor in 

organic compounds.  

3.4 SPME-GC-MS 

Typical chromatograms from SPME at-line sampling of pyrolysis vapours are depicted in 

Figure 2 and Figure 3. Each SPME chromatogram is place side by side with the 

corresponding GC-MS of the bio-oil for direct visual comparison. As expected, SPME 

allowed the detection of highly volatile pyrolysis products that could not be revealed with the 

direct analysis due to the presence of solvent. Volatile pyrolysis products were tentatively 

identified by single ion quantitation on the basis of a previous study [15] as methanol (m/z 

31), acetone (m/z 58), acetic acid (m/z 60), and hydroxyacetone (m/z 43). 

Important similarities can be seen in the elution region of the semi-volatiles of the vapours 

and BO that were featured by the same suite of pyrolysis products. Differences and 

similarities were investigated on a quantitative basis by the relative distribution expressed as 

% peak area of selected compounds (Table 2). Nitrogen containing compounds, fatty acids 

and sterols were not included because of they were not revealed in most of the biomass 

pyrolysates. 

The relative distribution of the selected compounds in vapour phase sampled by SPME and 

those condensed in the BO were plotted in Figure 5 collectively for all the investigated 

biomass samples. A satisfactory linear correlation (R= + 0.81) was found when considering 

all the compounds. Further correlations, grouping the pyrolysis products on the basis of 

chemical families, were evaluated. The pyrolysis products have been divided in phenols and 

cellulose derivatives compounds as the most abundant compounds. The lignin phenols and 

cellulose derivatives compounds (Fig. 5) showed a good correlation (with R coefficient 

respectively of + 0.85 and + 0.82). This finding indicated that the composition of vapours 

determined by SPME sampling provided a reasonably prediction of the composition of the 

condensable bio-oil with regard to the semi-volatile fraction. However, the similarity seems to 

be dependent on the biomass substrate as evident by the linear correlation coefficients 

resulting from each single biomass (last raw of Table 2). Good linear correlations (R > + 0.8) 

were found for pine wood, switchgrass, olive residues and spirulina, while less satisfactory (R 

< + 0.8) were calculated for cornstalk, bark, poultry litter and digestate. 

In general, the observed differences could be explained by lower molecular weight 

compounds (LMW) more abundant in the SPME. This can be due to several factors, a higher 

affinity of the CAR/PDMS fiber towards LMW compounds which are more effectively 

sorbed onto the CAR micro-porous structure [42], incomplete trapping of LMW compounds 
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in the cold traps [20], and distribution of polar LMW compounds (e.g. acetic acid) into 

aqueous phase. 

 

3.5 Fiber storage capacity  

The capacity of the fiber to trap the sorbed pyrolysis products under appropriate conditions 

was investigated in the case of pyrolysis experiments with digestate. The fiber was stored for 

48 and for 96 hours after the sampling before GC-MS analysis. The total peak area of selected 

compounds (Table 2) was reported in Figure 6. Although a decrease in GC detectable 

compounds was observed with ageing the effect was not significant as intense GC traces 

could still be obtained that enabled the identification and quantitation of the main compounds 

(Figure 7).The percentage of the compounds retained by the fiber is higher (66%) when the 

fiber is stored in the vacuum-packed bag for 48 hours, but for longer periods (96 h) or under 

air atmosphere the percentage is around 45%.   

Thus, the analytes remained trapped in the fiber without excessive degradation and 

volatilisation when stored under air and vacuum-packed bags.  

Results obtained are in accordance with those reported by Müller and coworkers [23], who 

have investigated storage capacity of several SPME fibers at different times from 5 minutes to 

24 hours, and at different temperatures (24 °C, 4°C and -70°C) reporting percentages of the 

analytes retained by the fiber (CAR/PDMS) between 30% and 85% after 24 h of storage at 

room temperature. However, significant differences from coating to coating were observed. 

The relative distribution (Fig.7), although rather similar, generally showed, as expected, a 

decrease in the relative abundance of pyrolysis products with LMW (more volatiles) such as 

phenol, 2-methyl phenol and 4-methyl phenol, that decrease by about 40% and 60%, 

respectively, after 48 and 96 h under air atmosphere and by about 53% and 46% respectively 

after 48 and 96 h in vacuum-packed bag. However, at 48 h and 96 h storage under air 

atmosphere, some compounds (above all #1, #3, #8 and #19 which are furaldehyde, 1-methyl 

cyclopenten-1-one, guaiacol and acetosyringone, respectively) showed relative abundance 

higher than those after sampling at 0h. We consider that this behavior could be caused by 

secondary contaminations during the storage under air atmosphere, in accordance with Müller 

et al., [23], who have affirmed that outer environment can produce some contaminations.  

Nevertheless, the feasibility of on-site sampling with a SPME device can be confirmed. In 

addition, SPME could be applied for a simple online monitoring of a small distributed 

pyrolysis plant. 
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4. Conclusions 

The results of this study conducted on eight different kind of biomass substrates demonstrated 

that at-line sampling by solid phase microextraction in a bench scale pyrolysis reactor can 

provide relatively accurate qualitative/semiquantitative analytical information. The chemical 

composition obtained from at-line sampling by SPME of the vapours evolved during 

pyrolysis was similar to that of the resulting pyrolysis liquid. SPME provided additional 

information about the compounds that could be lost by ineffective trapping of the vapours or 

those distributed into the aqueous phase. The similarity depended on the feedstock and in 

general was higher for lignocellulosic biomass. 

This procedure can be proposed as potentially applicable for the online monitoring of 

pyrolysis reactors in the production of bio-oil or biochar, or to predict the composition of tars 

that may contaminate syngas in gasification plants. It was demonstrated that the fiber can be 

stored in tightly closed plastic bags under vacuum for 4 days before GC-MS analysis.This 

possibility could be of interest in those situations where the reactor and laboratory are in 

different places.  

Moreover, SPME sampling could represent a helpful tool for bio-oil sampling/analysis that 

could be employed for monitoring the pyrolysis process avoiding sample collection and 

sample pre-treatment thus reducing laboratory working time. 
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Captions to figures 

Figure 1: Bench scale reactor with the addition of a quartz T-junction for the SPME sampling 

 

Figure 2: Total Ion Chromatograms from direct GC-MS analysis of bio-oil and SPME-GC-

MS of vapours from preparative pyrolysis with a bench scale reactor of pine sawdust, bark, 

cornstalk and switchgrass. Numbers correspond to the products in Table 2. In the curly 

bracket the volatiles products identified: hydroxyacetaldehyde; acetic acid; acetone; 

hydroxyacetone; 3-pentanone 

 

Figure 3: Total Ion Chromatograms from direct GC-MS analysis of bio-oil and SPME-GC-

MS of vapours from preparative pyrolysis with a bench scale reactor of digestate, spirulina, 

poultry litter and olive residues. Numbers correspond to the products in Table 2. In the curly 

bracket the volatiles products identified: hydroxyacetaldehyde; acetic acid; acetone; 

hydroxyacetone; 3-pentanone 

 

Figure4: Total Ion Chromatograms from aqueous phase. Numbers correspond to the products 

in Total Ion Chromatograms from direct analysis of bio-oil and from SPME of vapours 

preparative pyrolysis with a bench scale reactor. Numbers correspond to the products in Table 

3. 

 

Figure 5: All-biomass linear correlation between the relative distribution (% peak area) of 

compounds observed by direct GC-MS analysis bio-oil and from SPME sampling of pyrolysis 

vapours (A: plotting all pyrolysis products; B: plotting phenolic fraction; C: plotting cellulose 

derivatives compounds) 

 

Figure 6: Total GC-peak areas from SPME of vapours from digestate pyrolysis. GC-MS 

performed soon after sampling (0 h) and after 48 and 96 hours storage and under air 

atmosphere and in vacuum packed bag (mean values and standard deviation  (n=3)) 

 

Figure 7: Products distribution from SPME-GC-MS analysis of digestate soon after sampling 

(0h) and after storage 48 and 96 hours in vacuum-packed bags (above) and under air 

atmosphere (below). Numbers in x-axis correspond to the compounds in Table 2 
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Table 1: Pyrolysis at 500 °C/5 min of different biomass feedstock. Yield of the total liquid 

and the bio-oil (BO). GC-MS (absolute concentration of total sum detectable areas). 

Elemental analysis, water content and composition by solvent fractionation of the liquid WS: 

water solubles, divided into: EAS (ethyl acetate soluble) and EAI (ethyl acetate insoluble); 

WIS: water insoluble 

 

                  WS WIS 

parameters → Yield (wt%) Yield BO (wt%) GC ∑area BO (µg mg-1) GC ∑area AP (µg mg-1) C H N Water % EAS EAI 

 
biomass ↓ 

           
digestate 40.2 10.1 194 17 67.2 7.8 2.8 74.7 1.1 14.5 9.3 

pine sawdust 42.2 18.1 83 48 55.6 6.1 0.1 32.8 6.9 32.1 14.8 

cornstalk 34.7 19.2 206 41 53.8 6.1 1.5 38.5 5.4 30.0 10.5 

switchgrass 33.4 9.1 143 43 51.2 6.5 1.1 50.8 4.7 26.4 1.5 

bark  35.1 7.0 222 74 61.5 6.5 0.5 43.3 6.5 31.8 2.0 

olive residues 38.9 28.3 161 24 71.8 2.4 0.9 35.8 4.0 17.5 22.5 

poultry litter 31.0 35.9 131 n.d. 63.4 8.9 11.4 33.5 2.7 19.6 23.2 

spirulina  26.7 48.5 112 24 64.1 8.3 9.4 16.6 4.1 25.6 41.8 
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Table 2: Relative distribution (% peak area) of compounds detected into the bio-oil (BO) after pyrolysis at 500°C and after at-line SPME during 

pyrolysis. In the last row the Pearson correlation coefficient for each biomass is showed. 

  biomass   Pine sawdust Cornstalk Switchgrass Bark Poultry litter Olive residues Spirulina Digestate 

# compound m/z BO SPME  BO  SPME  BO SPME  BO  SPME  BO SPME  BO  SPME  BO SPME  BO SPME  

1 Furaldehyde 96 13.5 9.5 11.5 1.1 47.2 24.7 16.9 1.8 ─ ─ 4.3 11.9 ─ ─ 0.40 3.74 

2 Hydroxypentenone 98 0.6 2.8 6.0 1.4 6.0 3.7 0.2 3.1 0.6 2.0 0.1 0.1 ─ ─ 0.33 1.10 

3 1-methyl cyclopenten-1-one 96 1.4 1.1 1.9 0.8 2.2 0.2 1.5 1.5 ─ ─ 0.5 1.1 ─ ─ 0.50 0.90 

4 Phenol 94 2.4 5.0 10.8 18.4 12.3 10.4 3.6 6.9 10.4 19.8 3.3 2.6 23.0 27.3 8.72 18.62 

5 3-methyl ciclopentane-1,2 dione 112 16.9 7.9 11.1 4.3 11.6 3.3 11.9 7.5 1.7 4.3 2.3 8.4 ─ ─ 1.85 3.20 

6 2-methyl phenol 108 1.2 3.7 2.8 9.1 3.4 3.6 2.7 5.6 4.6 5.3 1.2 1.9 5.6 7.1 2.30 6.93 

7 4-methyl phenol 107 2.2 3.7 2.8 9.3 3.4 0.3 2.7 0.6 ─ ─ 3.0 1.9 ─ ─ 3.65 9.99 

8 Guaiacol 109 22.3 24.3 10.0 5.8 14.3 10.4 18.2 23.2 5.9 5.5 14.2 12.9 ─ ─ 13.09 13.16 

9 4-ethyl phenol  122 0.2 0.5 0.2 1.8 0.2 0.4 0.2 0.4 3.5 14.0 0.0 0.2 ─ ─ 0.66 2.12 

10 4-methyl guaiacol 138 1.4 1.8 0.0 0.4 0.1 0.1 0.8 1.3 0.9 1.3 0.2 0.6 ─ ─ 7.10 1.51 

11 4-vinyl phenol 120 0.3 1.7 14.3 23.2 12.7 15.9 0.4 1.4 ─ ─ 2.3 0.3 ─ ─ 8.94 6.48 

12 4-ethyl guaiacol 137 12.2 14.3 4.1 3.4 6.1 5.0 10.2 10.9 ─ ─ 1.2 7.2 ─ ─ 8.16 4.33 

13 4-vinyl guaiacol 150 12.2 10.2 7.5 7.6 10.7 9.2 9.1 9.0 2.8 3.9 8.3 6.4 ─ ─ 14.36 7.68 

14 Syringol 154 0.3 1.2 9.9 4.9 9.0 4.4 1.2 5.2 2.3 1.9 8.5 0.8 ─ ─ 10.20 7.80 

15 Trans-isoeugenol 164 12.4 10.5 0.5 0.8 1.1 1.4 7.8 8.2 1.7 1.0 8.9 5.5 ─ ─ 3.38 1.72 

16 Syringaldehyde 182 0.0 0.5 1.3 1.0 1.8 1.5 3.6 2.6 ─ ─ 7.3 2.6 ─ ─ 3.97 1.72 

17 4-vinyl syringol 180 0.6 0.3 2.0 2.0 2.0 2.1 3.7 3.0 ─ ─ 5.3 2.6 ─ ─ 4.80 3.44 

18 Methoxyeugenol 194 0.0 0.6 1.4 2.2 1.6 2.5 3.9 3.7 0.7 1.1 6.0 2.8 ─ ─ 4.73 3.12 

19 Acetosyringone  181 0.0 0.3 1.5 1.1 1.1 0.5 1.2 0.6 ─ ─ 0.1 0.9 ─ ─ 1.15 1.45 

20 Palmitic acid 256 0.0 0.4 0.2 1.2 0.2 0.4 0.1 3.4 34.8 13.8 1.1 0.0 6.2 7.5 0.85 0.98 

21 Oleic acid 264 ─ ─ ─ 0.2 ─ ─ ─ ─ 16.0 4.2 21.9 28.8 ─ ─ 0.18 0.00 

22 Indole 117 ─ ─ ─ ─ ─ ─ ─ ─ 4.0 0.8 ─ ─ 25.1 24.0 1.40 2.30 

23 Methyl indole 131 ─ ─ ─ ─ ─ ─ ─ ─ 2.2 0.8 ─ ─ 6.3 5.7 1.00 1.50 

24 Heptadecane 57 ─ ─ ─ ─ ─ ─ ─ ─ 1.0 5.0 ─ ─ 24.2 14.4 ─ ─ 

25 Hexadecanamide 72  ─ ─ ─ ─ ─ ─ ─ ─ 2.7 2.4 ─ ─ 9.6 14.1 ─ ─ 

26 Cholesterol 386 ─ ─ ─ ─ ─ ─ ─ ─ 3.4 2.0 ─ ─ ─ ─ ─ ─ 

27 Sitosterol 414 ─ ─ ─ 0.3 ─ ─ ─ ─ 1.0 1.9 ─ 0.7 ─ ─ 0.72 ─ 

Pearson correlation coeff R=+0.92 R= + 0.63 R= +0.92 R= + 0.70 R= +0.56 R= + 0.81 R= +0.86 R= + 0.66 
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Table 3: Relative distribution (% peak area) of compounds detected into the aqueous phase 

(AP) after pyrolysis at 500°C 

#  compound Pine sawdust Cornstalk Switchgrass Bark Poultry litter Olive residues Spirulina Digestate 

1 d-(+)-Glyceric acid 20.7 26.1 16.7 10.3 - - - 13.6 

2 Acetic acid 24.7 23.4 19.9 45.0 42.5 - 67.4 31.7 

3 Furaldehyde 5.6 5.1 15.0 3.9 - - - 1.2 

4 3-methyl cyclopenten-1-one 1.2 1.5 1.1 0.8 2.4 - 1.9 1.9 

5 5-methyl furaldehyde 1.4 0.7 1.8 0.7 - - - 0.0 

6 Furfuryl alcohol 6.5 8.5 6.4 2.9 38.0 - - 7.8 

7 3-methyl cyclopenten-1,2-dione 5.6 6.1 5.8 3.7 5.4 - - 9.9 

8 Guaiacol 6.0 5.4 5.4 5.0 2.3 - - 7.5 

9 3-ethyl-2-cyclopenten-1-one 1.1 2.1 1.3 0.8 5.1 - - 3.3 

10 4 -methyl guaiacol 6.3 0.9 1.7 5.2 - - - 0.6 

11 Phenol 1.5 5.1 4.2 1.7 4.3 - 20.0 5.4 

12 4-ethyl guaiacol 1.6 1.2 1.8 1.8 - - - 0.6 

13 2-ethyl phenol 1.3 0.9 1.1 1.0 - - - 0.3 

14 Vinyl guaiacol 2.5 1.9 2.3 1.0 - - - 0.9 

15 Syringol 2.4 5.2 5.1 3.6 - - - 10.6 

16 Trans-Isoeugenol 3.4 1.7 1.9 3.5 - - - 1.6 

17 5-hydroxymethyl furfural 2.2 1.1 4.0 1.2 - - - - 

18 Vanilin 1.7 2.3 2.5 2.0 - - - 2.0 

19 Propyl guaiacol 2.1 - 0.5 1.4 - - - - 

20 Coniferyl alcohol 2.4 0.9 1.1 2.0 - - - 1.3 

21 4-(ethoxymethyl)-2-guaiacol - - 0.6 2.7 - - - - 
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Highlights 

• At-line sampling by solid phase microextraction in a bench scale pyrolysis reactor 
• SPME vapours evolved during pyrolysis was similar to the resulting pyrolysis liquid 

• Application for the monitoring of pyrolysis reactors in the production of bio-oil 

• Fiber can be stored in tightly closed plastic bags for 4 days before GC-MS analysis 


