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 Abstract 

Autoimmune diseases affecting the liver are mainly represented by autoimmune 

hepatitis (AIH), primary biliary cirrhosis (PBC) and primary sclerosing 

cholangitis (PSC).  The characteristic morphologic patterns of injury are a 

chronic hepatitis pattern of damage in AIH, destruction of small intrahepatic bile 

ducts in PBC and periductal fibrosis and inflammation involving larger bile ducts 

in PSC. The factors responsible for initiation and perpetuation of the injury in all 

the three autoimmune liver diseases are not understood completely, but are 

likely to be environmental triggers on the background of genetic variation in 

immune regulation. In this review, we summarize the current understanding of 

the mechanisms underlying the breakdown of self-tolerance in autoimmune liver 

diseases.  
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Introduction 

Autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and primary 

sclerosing cholangitis (PSC) are the three major forms of autoimmune liver 

disease, which differ in the pattern of inflammation, clinical phenotype and the 

focus of autoimmune injury (1). In AIH, the targets of autoimmune injury are 

hepatocytes, leading to the histological picture of predominant interface 

hepatitis. In PBC and PSC the autoimmune injury affects cholangiocytes; however 

in PBC, small, interlobular bile ducts are targeted, causing the typical appearance 

of non-suppurative destructive cholangitis (2), and in PSC, the medium-sized 

intra- and/or extra-hepatic bile ducts are affected, causing concentric and 

obliterative fibrosis and multifocal bile duct stricturing (3). Notably, the 

cholangiopathies can also be characterized by varying degrees of interface 

hepatitis and inflammatory bile duct lesions can also occur in some AIH patients 

(4). Moreover, all of the three major autoimmune liver diseases are associated 

with bowel disease; PBC with celiac disease, and most strikingly AIH and in 

particular PSC with inflammatory bowel disease (IBD) (5). The common 

characteristic the three autoimmune liver diseases share is that unchecked 

inflammation will cause progressive liver fibrosis eventually leading to cirrhosis 

(3).  

 

AIH, PBC and PSC are disorders involving a complex interaction between genetic 

and environmental factors. The factors that initiate and perpetuate inflammation 

in these diseases are poorly understood, but are likely to be environmental 

triggers on the background of genetic defects in immune regulation, allowing 

persistent inflammation and breakdown of self-tolerance (6). Herein, we 

summarize the current understanding of the pathogenic mechanisms involved in 

liver injury in autoimmune liver diseases. 
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Genetics 

Epidemiologic studies have revealed a strong heritability of PSC and PBC 

conditions. A strong genetic predisposition is evident in PSC, with first-degree 

relatives having a 9- to 39- fold increased risk to develop the disease (7). 

Similarly, 6% of PBC patients have a first-degree relative that also suffers from 

PBC (8), and studies in monozygotic twins have demonstrated a 63% 

concordance of PBC disease (9). Familial risk of AIH has not been rigorously 

studied, but there is also a likely clustering of autoimmune diseases in families 

(10, 11).  

 

In the last decade, there have been major efforts in Europe, North America and 

Japan to establish large, well-characterized patient cohorts for high-throughput 

genetic studies of PBC and PSC, and to a lesser extent of AIH. Four genome-wide 

association studies (GWAS) and two iCHIP-association studies of PBC (12-18) 

have been published. Two GWAS of PSC followed by a number of replication 

studies undertaken in large, independent cohorts (19-25) and an iCHIP 

association study, have also been reported (26). A GWAS of AIH in European and 

Japanese cohorts are underway and results from these studies will be reported 

by 2014 (27). These high-throughput genetic studies have highlighted the shared 

genetic basis of these complex and diverse autoimmune diseases. GWAS analyses 

have clearly demonstrated that the major component of the genetic architecture 

of PBC and PSC is within the HLA region; similar findings are expected for AIH. 

Additional non-HLA risk loci in both PSC and PBC appear to be enriched for gene 

products involved in innate or acquired immune responses, which are consistent 

with an autoimmune component to the pathogenesis.  

HLA and non-HLA associated loci 

HLA associations 

In PSC, an association with the HLA complex on chromosome 6p21 has been well 

documented. Key susceptibility haplotypes include HLA-B*08 and DRB1*03:01 

alleles, and particularly HLA-DRB1*1501-DQB1*0602, HLA-DRB1*1301-

DCB1*0603, and HLA-A1-B8-DRB1*0301-DQB1*0201 (28, 29). A strong 

protective influence of the DRB1*04-DQB1*0302 and DRB1*0701-DQB1*0303 
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haplotypes has been also reported (30). The fact that PSC can re-occur after liver 

transplantation suggests that the target organ has common or genetic features 

that predispose to the immune attack (6). In European populations, PBC is 

associated with the risk haplotypes, DRB1*08:01-DQA1*04:01-DQB1*04:02 and 

DRB1*04:04-DQB1*03:02, and the protective haplotypes DRB1*11:01-

DQA1*05:01-DQB1*03:01 and DRB1*15:01-DQA1*01:02-DQB1*0602 (31). 

 

In Europe and North America, susceptibility to AIH type 1 is conferred by the 

possession of DRB1*03:01 and DRB1*04:01, and protection with the allele 

DRB1*15:01 (30). In Chinese, Japanese and Mexican populations, type I AIH (see 

below) susceptibility is linked to DRB1*04:04 and DRB1*04:05, whereas in Latin 

American populations, is linked to DRB1*13:01 (32, 33). Susceptibility to AIH 

type 2 (see below) is conferred by the possession of alleles DRB1*03, DRB1*07 

and DQB1*02:01 (34).  

Non-HLA associations 

To date, 27 non-HLA risk loci for PBC (13-18) and 12 genome-wide significant 

non-HLA risk loci for PSC (19, 20, 25, 26) have been identified. In PBC, candidate 

genes are potentially involved in regulation of the immune system, from the 

development and differentiation of the myeloid cell compartment (SPIB, IRF5, 

IRF8, and IL-7R) to antigen presentation and T cell differentiation (HLA class II, 

CD80, IL-12A, IL-12RB, TYK2, STAT4, SOCS1), up to B cell function and 

differentiation to plasma cells (SPIB, IRF8, PLC-L2, IKZF3, CXCR5) (35).  

 

The strong association of PSC with IBD suggests a common pathway for liver and 

gut inflammation, and this overlap is further reflected by the presence of shared 

non-HLA genetic risk loci (36). The non-HLA findings in PSC to some extent 

indicate that the proposed hypotheses on PSC pathogenesis related to 

autoimmune mechanisms (IL2 and IL2RA), bile acid toxicity (GPBAR1) and 

mechanisms related to the concomitant IBD (IL2/IL21, ILR2A, CARD9, MST1, 

Fut2, SIK2) might operate in concert to cause the disease (37).  
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Epigenetics 

 
A plethora of information derived from genomic data has contributed in our 

slightly better understanding of these complex autoimmune liver diseases. 

Although they are necessary, they are still insufficient to explain the 

development of disease. Studies on DNA methylation in monozygotic twins 

discordant for PBC have shown for example a possible differential expression of 

two X-linked genes (PIN4, CLIC2) that are diversely methylated (38).  

Environmental Factors 

The development of autoimmune diseases requires a complex interaction of 

genetic and environmental factors. Some of these factors are highlighted by 

identification of concordance in identical twins or in individuals with karyotype 

abnormalities and predisposition to autoimmunity (39). A recent report of an 

expert panel workshop of the National Institutes of Health on the mechanisms of 

environmental influences on human autoimmunity is noteworthy (40, 41).  

Antibiotics, smoking, caffeine and hormones 

Studies have identified several environmental factors as potential predisposing 

and several as protective against the development of autoimmune liver diseases. 

Examples include the use of antibiotics, which has been identified as a risk factor 

in AIH (42), and urinary tract infections, vaginal infections, cigarette smoking 

and frequent use of nail varnish that have been identified as potential risk factors 

in PBC  (8, 43). An increased risk for PBC with the use of hormonal replacement 

therapy (43) has been reported, although other studies have shown a protective 

association with oral contraceptive use (9), a finding in keeping with the age of 

onset being close to menopause. In PSC, hormonal factors are reported to 

influence the disease, since fewer female PSC patients reported ever use of 

hormonal contraception, than control subjects (44). In PSC smoking and coffee 

consumption have been proposed to be protective against development of 

disease (44-46).  
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Molecular mimicry 

One of the mechanisms that have been suggested to play an important role in 

initiation and/or exacerbation of autoimmune diseases is molecular mimicry, 

whereby a foreign antigen shares sequence or structural similarities with self-

antigens . Type 2 AIH is defined by antibodies to liver-kidney microsomal type 1  

(anti-LKM1) and/or antibodies to liver cytosol (anti-LC1). The LKM1 

autoantibodies recognize conformational epitopes on cytochrome P450 IID6 

(CYP2D6), but they also cross-react with homologous regions of HCV, HSV and 

CMV, further suggesting a potential “multi-hit” mechanism for the generation of 

these antibodies (47).   It can be speculated that multiple exposures to common 

viral pathogens, may render the immune system permissive by priming a cross-

reactive subset of T cells, in a genetically susceptible host. Depending on the level 

of exposure and the degree of genetic susceptibility, a minority of recurrently 

infected individuals may progress to autoimmune disease.  

 

In PBC the dominant autoepitope is the E2 subunit of the pyruvate 

dehydrogenase complex  (PDC-E2) recognized by the antimitochondrial 

antibodies (AMA). PDC-E2 has a conserved sequence across all species, from 

eubacteria to mammals, thus it is not surprising that AMA cross-reacts with a 

number of microbes. E. coli has proteins closely resembling the PDC-E2 (48), and 

several experiments have demonstrated that serum from PBC patients, and 

particularly AMA, reacts with E. coli sequences (49). Mycoplasma expresses 

similar proteins (PDC-E1a and PDC-E1b) on its cells surface, and immune 

reactivity to M. pneumonia antigens has been observed in large numbers of 

patients when compared with controls (50). The Novosphingobium 

aromaticivorans, a ubiquitous xenobiotic-metabolizing Gram-negative bacterium, 

is the best microbial candidate yet for the induction of PBC (51).  

 

Xenobiotics 

Another source of antigenic mimicry is xenobiotics, foreign compounds that may 

either alter or complex to defined self or non-self proteins, causing the native 

protein to change its molecular structure and inducing an immune response 

(52). Studies in PBC have elegantly demonstrated that the PDC-E2 lipoyl domain 
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is highly vulnerable to modifications by environmental xenobiotics. Notably, 

such chemicals include widely used compounds in perfumes, lipstick and food 

flavorings. 2-nonynoic acid, a cosmetic component, is such a xenobiotic able to 

chemically modify PDC-E2, resulting in induction of autoimmune response and 

initiation of an AMA response (53). Moreover, acetaminophen or similar drugs 

can cause electrophilic modification of lipoic acid in PDC-E2, facilitating the loss 

of tolerance and development of PBC (54). 

Autoantibodies 

AIH is an archetypal autoimmune condition, with a female:male disease 

incidence ratio of 7:1,  and presence of autoantibodies and autoreactive T cells. 

AIH is classified based on its serology into two types: type I AIH defined by 

antinuclear antibodies (ANA) and/or anti- smooth muscle antibodies (SMA), and 

type 2 AIH defined by liver-kidney microsomal type 1 antibodies (anti-LKM1) 

and/or liver cytosol antibodies (anti-LC1). SMA antibodies are mainly active 

against filamentous actin but the molecular target is not well defined. 

Conversely, the molecular targets of anti-LKM1 and anti-LC1 have been 

characterized as cytochrome P450 IID6 (CYP2D6) and formiminotransferase 

cyclodeaminase (FTCD), respectively (55). The role of autoantibodies in the 

pathogenesis of autoimmune liver damage has been suggested by the finding 

that hepatocytes, isolated from patients with AIH, are coated with 

immunoglobulins and are susceptible to cytototoxicity when exposed to 

autologous Fc receptor bearing mononuclear cells (56). Moreover, CYP2D6 is 

expressed on the surface of hepatocytes, therefore is susceptible to recognition 

by anti-LKM1 autoantibodies; collectively suggesting these autoantibodies could 

be directly involved in the pathogenesis of autoimmune liver damage in AIH type 

2 (57).  

 

In PBC, similar to AIH, there is a high female prevalence (8:1), which has also led 

to the suggestion that X chromosome defects may play a significant role in 

disease, although this has not been easily confirmed or replicated (58). A 

hallmark of PBC patients is the presence of antimitochondrial antibodies (AMA), 

which can be detected in nearly 100% of patients (59). AMA antibodies are 
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directed against members of the 2-oxoacid dehydrogenase complexes (2-OADC) 

that exist in the inner membrane of mitochondria. Among them the major 

autoantigen is the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2). 

In addition to AMA, PBC sera can present other disease-specific autoantibodies, 

particularly anti-nuclear (ANA) antibodies, which react to nuclear pore 

glycoproteins of the inner nuclear membrane, gp210 (60) and p62 (61), with a 

detection rate up to about 30%. These autoantibodies show a higher prevalence 

among AMA-negative PBC patients and seem to correlate with disease severity 

and progression (62). Other PBC-specific nucleoprotein reactants include the 

Sp100-promyelocytic leukemia (PML) autoantigen (63) and anti-centromere 

antibodies (64). 

 

PSC, cannot be a considered a “classical” autoimmune disease, as it occurs with a 

2:1 male predominance and lacks characteristic response to 

immunosuppressants (65). Serum atypical perinuclear antineutrophil 

cytoplasmic antibodies (pANCA) are frequently found in PSC patients (66). The 

pANCA appear to cross react with β-tubulin isotype 5 and the bacterial 

cytoskeletal protein FtsZ, which is expressed by intestinal flora (53)(67). PSC 

patients have a particularly high prevalence of anti-Saccharomyces cerevisiae 

antibodies (ASCA) even in the absence of advanced disease and irrespective of 

IBD phenotype (67). Some autoantibodies detected in PSC also bind to biliary 

epithelial cells (68) and induce expression of TLR4 and TLR9, the activation of 

which results in the secretion of pro-inflammatory cytokines and chemokines 

(69).  

Bacteria, Molecular Patterns, and the Innate Immunity 

The close association of PSC with IBD, mainly with ulcerative colitis (UC) (75% of 

PSC patients have UC and at least, if not more than, 3% of UC patients have PSC 

as a concomitant comorbidity (70, 71), makes plausible the suggestion that PSC 

shares similar pathogenic mechanisms with IBD. The latter results from an 

abnormal innate immune response to antigens of the intestinal flora, which 

further activates the adaptive immune response (72). Similarly in PSC, a 

dysregulated response to pathogen stimulation may contribute to the immune 
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system activation and thus disease initiation, establishment and progression 

(73). Several lines of evidence further support this suggestion: i) the prevalence 

of PSC among UC patients is significantly higher in the patients with total colonic 

involvement, suggesting a strong positive association among intestinal 

inflammation and PSC pathogenesis (70), ii) enteric bacteria such as E. coli and 

Candida are often found in the bile of PSC patients (74) and iii) the expression of 

genes involved in innate immune pathways is significantly increased at the late 

stages of PSC (75). 

 

Enterohepatic circulation brings potential mediators of inflammation, such as 

microbes or metabolites of enteric microbiota (e.g. endotoxins, metabolites), 

from the gut to the hepatic sinusoids, where sinusoidal endothelial cells, Kupffer 

cells, hepatocytes, hepatic stellate cells, dendritic cells (DCs) and monocytes 

through their pattern recognition receptors (PRRs), such as Toll-like receptors 

(TLRs), can recognize and respond to pattern associated molecular patterns 

(PAMPs), causing a pro-inflammatory response that will contribute to repair 

processes (76) (Figure 1). Cholangiocytes (also called biliary epithelial cells) 

express multiple TLRs as well, which upon pathogen recognition can initiate 

signalling cascades that alter their physiology and the extracellular cytokine 

milieu (77). In vitro studies have shown that upon pathogen recognition 

cholangiocytes produce and release pro-inflammatory mediators, TNFα, IL-6 and 

IL-8, promoting further the recruitment and activation of T cells, macrophages, 

neutrophils, NK cells and resident and recruited mesenchymal cells, thus 

initiating biliary repair responses (78). Notably, cholangiocytes from PSC liver 

explants show high TLR expression, nucleotide-binding oligomerization domain, 

MyD88/IRAK complex, TNFα, IFNγ and IL-8 production and a lack of tolerance to 

repeated endotoxin exposure (79). IFNγ and TNFα expression could mediate 

such hyperresponsiveness, since in the absence of these inflammatory 

mediators, PSC cholangiocytes can revert to a phenotype capable of initiating 

endotoxin tolerance (80).   It is evident therefore, that the inflammatory milieu of 

the diseased liver coupled with persistent exposure and response to PAMPs, can 

promote a persistent inflammatory phenotype of cholangiocytes.  
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Cholangiocytes are also exposed to lipopolysaccharide (LPS) and lipoteichoic 

acid. Exposure to LPS may cause disruption of tight junctions in colonic epithelial 

cells, as well as cholangiocytes, via TLR4-dependent mechanisms (81, 82). 

Alterations of these barriers could therefore expose cholangiocytes to a variety 

of substances, such as bile acids, that could eventually promote injury and 

inflammation. In animal models, the disruption of cholangiocyte tight junctions is 

an important step for the development of PSC (83). In particular, mice with 

altered cholangiocyte tight junctions leak bile into the portal tract, which leads to 

an inflammatory response involving T lymphocytes, upregulation of injurious 

cytokines (TNFα, TGFβ and IL-1β), myofibroblast activation and fibrosis (84). 

Interestingly, in patients without PSC, exposure to such PAMPs does not activate 

the innate immune system (80), further highlighting the specificity of the 

disease. 

 

In addition to microorganisms or microbial derived molecules, endogenous 

molecules, including several present in bile, such as products released from 

injured or dying cells (damage-associated molecular patterns, DAMPs) (e.g. 

HMGB1, S100A8/S100A9, and heat shock proteins) can activate TLRs and/or 

DAMP receptors (85). Moreover, other components of bile such as oxysterols, the 

oxygenated derivatives of cholesterol, have been demonstrated to mediate 

inflammatory processes (85). Treatment of cultured cholangiocytes with 

selected oxysterols rapidly activates both cholangiocyte NF-κB and MAPK 

pathways and induces cholangiocyte expression of IL-6 and IL-8 (86). Therefore, 

antigens translocating to the liver via the portal circulation, may act as molecular 

mimics in genetically susceptible individuals to cause an immune reaction that 

could be responsible for initiating PSC. 

 

In addition, a high proportion of PSC patients have non-specific antibodies as 

well as autoantibodies that bind to cholangiocytes (68, 87). These autoantibodies 

have been shown to bind to biliary epithelial cells and activate the innate 

immune system by inducing expression of ERK1/2 transcription factor and 

upregulating TLRs, leading to inflammatory cytokine production (69). The 

autoantibodies are also able to increase expression of IL-6 and adhesion 
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molecules such as CD44, thereby promoting lymphocyte proliferation, 

immunoglobulin production and cell adhesion (68, 69). 

 

During the course of PSC an increased number of NK cells in the peripheral blood 

and in the colonic mucosa has been reported but not in the liver of PSC 

individuals (88). Interestingly, the NK cells present in the PSC liver 

microenvironment have decreased cytolytic activity, likely because of the high 

levels of local TNFα production (89). It has been suggested that this poor 

cytotoxicity of NK cells may be counteracted by induction of TRAIL on activated 

hepatic NK cells and further cell-mediated destruction of cholangiocytes via 

TRAIL-TRAIL receptor 5, which is increased in cholangiocytes of human PSC 

patients (90).  

  

An increased response to pathogen-associated stimuli is also observed in PBC, as 

indicated by higher levels of pro-inflammatory cytokines secreted in vitro by 

monocytes after exposure to microorganisms (91). In PBC, a marked increase in 

the frequency and absolute number of NK cells in blood and liver has been 

demonstrated. Isolated NK cells have showed a significant increase in their 

cytotoxic activity and perforin expression, which were associated with increased 

levels of plasma IL-8 and the expression of IL-8R on such cells. In contrast, the 

levels of IFNγ, IL-6 and IL-8 synthesized by NK cells were significantly decreased 

in PBC compared to controls (92). 

 

Adhesion Molecules and Lymphocyte Recruitment 

The recruitment of mucosal lymphocytes, previously activated in the gut, to the 

liver via interaction with ectopically expressed adhesion molecules and 

chemokines, has emerged as an important step in the pathogenesis of PSC (93). 

Expression of the adhesion molecule MAdCAM-1 and chemokine CCL25 is 

normally restricted to the gut; but in PSC, MAdCAM-1 is also found on portal 

endothelium and CCL25 on sinusoidal endothelium, and ~20% of liver-

infiltrating lymphocytes express their cognate receptors α4β7 integrin and CCR9, 

respectively (94, 95).  We have shown that activation of VAP-1, which is 
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constitutively expressed in human liver, and further up-regulated in the 

presence of inflammation, can lead to NF-κB activation in hepatic endothelial 

cells and in the presence of pro-inflammatory TNFα, in the expression of 

MAdCAM-1 (96), thereby promoting the recruitment of α4β7 + mucosal effector 

cells to the liver (Figure 1). Notably, VAP-1 can catabolize a broad range of 

substrates, and several gut commensals and enteric pathogens such as 

Bacteroides fragilis, Salmonella typhimurium, Yersinia enterocolitica, E. coli and 

Clostridium perfringens, secrete other branched chained amines which may be 

putative substrates of VAP-1, thus providing another potential link between the 

microbiota, mucosal immunity and the pathogenesis of PSC (97). 

 

Most of CCR9+ cells are IFNγ producing long-lived memory cells (CD45RA-CCR7-

CD11ahi) (94). Apart from CCL25, PSC patients also show altered expression of 

CCL28, CXCL12 and CXCL16 chemokines. CCL28 and CXCL12 trigger α4β7-

mediated adhesion of human lymphocytes to MAdCAM-1 in vitro (98, 99), and 

CCL28 can also activate α4β1 integrin thus increasing its adhesion to VCAM-1, 

which is primarily expressed in the portal and sinusoidal endothelial cells of the 

liver, and further upregulated during development of PSC. Once lymphocytes 

have entered the liver, mucosal lymphocytes may use other chemokines such as 

CXCL12 and CXCL16 to localize to biliary epithelium where they can destroy bile 

ducts. Notably, some of the recruited α4β7+ T cells may undergo local 

differentiation to express αΕβ7 integrin providing another pathway to bind 

biliary epithelium (95). Previous studies have demonstrated the inability of 

human hepatic DCs and stellate cells to induce α4β7 integrin and CCR9 

expression on T cells, which clearly shows that the ability to imprint naïve 

lymphocytes with gut tropism is restricted to intestinal CD103+DCs (100). In a 

recent murine study, hepatic endothelial cells, which also possess the ability to 

present antigen, were able to prime naïve T cells and induce α4β7 and CCR9 

expression on CD4+ T cells in a retinoic acid dependent manner (101).  

 

AIH can co-exist with IBD (102), and ~60% of patients with chronic AIH also 

demonstrate MAdCAM-1 expression on portal vessels (95). MAdCAM-1 can also 

be detected on the portal and sinusoidal vessels in some patients with PBC and is 
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associated with a high frequency of circulating and intrahepatic CD8+ effector-

memory cells expressing the gut-homing integrin α4β7, which respond to the 

PBC-specific autoantigen, pyruvate dehydrogenase E2 (PDC-E2) (103). Serum 

from PBC patients cross-reacts with mucosal antigens and immune responses 

against intestinal microbes may be promoted by the finding of increased 

intestinal permeability and defective barrier function in PBC (104). This has 

further led to the suggestion that PBC may also be triggered by exposure to 

entero-bacterial antigens (105).  

 

T and B lymphocytes and Adaptive Immunity 

The interface hepatitis in AIH is characterized by a striking infiltrate of 

lymphocytes, plasma cells and monocytes/macrophages, suggestive of an 

autoaggressive cellular immune attack playing a key role in the pathogenesis of 

AIH. Studies have revealed a predominance of aβ T cells (106), with the majority 

of them being CD4 helper T cells and a sizeable minority being CD8 cytotoxic 

suppressor T cells. NK cells, monocytes/macrophages, γδ T cells and B 

lymphocytes are also detected (107). A considerable number of cells producing 

IL-17, which is a potent pro-inflammatory cytokine, are also present in the AIH 

inflammatory infiltrate (108). Reduced numbers of NKT cells are detected in AIH 

patients, especially during active disease, and these cells produce less 

immunoregulatory cytokine IL-4 (109). IL-4 is a potent inhibitor of Th17 

development therefore impairment of the IL-4 pathway may be critical in 

favouring a pro-inflammatory milieu in which Th17 cells thrive.  

 

The PBC liver is heavily infiltrated by CD4+ and CD8+ T lymphocytes (110); both 

CD4 and CD8 lymphocytes can be purified from biopsy samples of PBC patients 

and both subsets recognize epitopes of PDC-E2 (111). A predominant type-I 

cytokine pattern with high levels of IFNγ, IL-5, IL-6, IL-10, IL-12 and IL-15 in the 

blood and liver of PBC patients has been demonstrated (112). The portal tracts 

in PBC are rich in chemokines CXCL10, CXCL9 and CX3CL1, which are responsible 

for recruiting CD4 and CD8 T cells that bear their cognate receptors CXCR3 (for 

CXCL9 and CXCL10) and CX3CR1, respectively. Although both T cell subsets seem 
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to recognize similar sequences within the same epitope of the lipoyl domain, 

supporting a common etiological trigger (110), it is believed that CD8+ T cells 

play a role in the degeneration and death of cholangiocytes that aberrantly 

express PDC-E2 (113). Moreover, an increase in specific CTLs in the liver 

compared to the peripheral blood has been reported, which supports the role of 

these cytotoxic cells in the evolution of bile duct injury in PBC (114). Using 

recombinant fragments of PDC-E2 it has been demonstrated that there is a 

sequence overlap in the PDC-E2 specific T and B cell epitopes (115). Recently, 

high frequencies of CD8+ effector-memory cells expressing the gut-homing 

integrin α4β7 have been detected in the peripheral blood of PBC patients (103). 

These T cells were shown to accumulate around the portal area and respond 

specifically to the MHC class I epitope of PDC-E2. However, there does not 

appear to be an association of PBC and IBD, aside from occasional case report 

(116). 

 

In PSC, a mixed inflammatory cell infiltrate consisting of lymphocytes, plasma 

cells, neutrophils (particularly intense around bile ducts), natural killer cells (in 

portal infiltrates), Kupffer cells and perisinusoidal macrophages is detected (117, 

118). However, the majority of mononuclear cells in the portal infiltrates are T 

lymphocytes (119) that produce high levels of TNFα, supporting PSC as a 

predominantly Th1-mediated disease (89). An increased proportion of γδ+ T 

cells in PSC patients has been also observed, with these cells expressing CD45RO 

and IL-2, suggestive of an activated memory phenotype (120). 

 

Th17 cells have been linked to PBC, AIH and PSC (108, 121-123). Activated Th17 

cells secrete IL-17, IL-21 and TNFα, which promote inflammation via the 

recruitment of leukocytes, including neutrophils, and also participate in 

epithelial repair by secreting IL-22. Th17 cells are abundant in the intestinal 

lamina propria where they are induced by commensal bacteria and provide 

protection against invading pathogens (124). In mice, peripheral Th17 cells can 

be redirected from the periphery to the small intestine via CCR6-CCL20 

interactions; in humans CCL20 is expressed on inflamed bile ducts, thus 

suggesting that the same chemokine pathway might promote accumulation of 
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Th17 cells in the inflamed liver (125). CD161 expression by human T cells 

correlates with IL-17 secretion and CD161+ T cells include Th17 CD4+ T cells, 

CD8+ Tc17 cells and IL-17 producing MAIT cells (126). The implications of the 

Th17 biliary microenvironment in PBC have been recently emphasized (127). 

 

In AIH, preliminary studies indicate circulating and intrahepatic Th17 are 

numerically expanded and that the expression of Th17 cytokines (IL-17, IL-23, 

IL-6 and IL-1β) is significantly increased within the liver of AIH patients 

compared to chronic hepatitis B (CHB); serum levels of IL-17 and IL-23 are also 

reported to be significantly elevated in patients with AIH, than in CHB and 

healthy controls (108). IL-17 induces IL-6 expression via the MAPK signalling 

pathway in hepatocytes, which in turn may further stimulate Th17 cells, 

triggering a positive feedback loop (108). It is believed that an inflamed 

microenvironment, especially at the site of damage appears to favour phenotypic 

and functional conversion of Tregs into Th17-like effector cells (128). 

 

Katt and colleagues (122) have recently demonstrated a very elegant study in 

which they showed bacterial RNA within the portal tracts of PSC patients but not 

in patients with chronic HCV or AIH controls. In PSC patients but not in PBC, 

stimulation of PBMCs with heat-inactivated bacteria led to a marked induction of 

Th17 responses. In particular, stimulation of PBMCs with inactivated C albicans 

led to the highest expression of IL-17A in up to 30% of CD4+ T cells, and more 

Th17 cells were found to co-express IFNγ after stimulation with E faecalis or C 

Albicans. Very interestingly, IL-17A expressing lymphocytes were found localized 

around bile ducts in PSC patients. Notably, cholangiocytes express the receptors 

for IL-17A and upon stimulation with this cytokine they produce IL-1β, IL-6 and 

IL-23 pro-inflammatory cytokines, which in turn can promote the survival of 

Th17 cells, but also induction of periductular fibrosis (129, 130). Interestingly, 

polymorphisms on the genes CARD9 and REL, which encode for molecules 

involved in Th17 cell differentiation and transduction of signals received by TLR 

and dectin-1/bacterial and fungal PAMPs, have been recently identified from 

GWAS analyses as non-MHC loci associated with PSC (22). 
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Notably, Tregs and Th17 cells share the same CD4 progenitor, which in the 

presence of TGFβ only develops into Tregs, while in the presence of TGFβ and IL-

6 differentiates into Th17 cells (131). To note development of Th17 cells is 

suppressed by IFNγ and IL-4. A decreased reactivity of CD4+CD25high natural 

regulatory T cells appears to contribute to a number of human autoimmune 

diseases (132). Defects in the number and function of intrahepatic and 

peripheral blood T regulatory cells have been demonstrated in some studies in 

AIH and PBC although other studies report no functional deficit (123, 133, 134). 

 

In AIH, Tregs are numerically decreased and compared to healthy controls, 

CD4+CD25high cells have a lower in vitro ability to expand and to control 

CD4+CD25- T cell proliferation (135). Additional functional studies have 

demonstrated the inability of AIH Tregs to regulate IFNγ production by CD4 and 

CD8 T cells, and their impaired capability to control activation of monocytes, 

which are abundantly present in the intrahepatic inflammatory infiltrate (136). 

Other studies, however, have reported no differences in the frequency and 

function of CD127-CD4+CD25high Tregs in AIH compared to healthy subjects 

(134).  

 

A relative reduction of Tregs compared with healthy controls has been detected 

in PBC, as the ratio of hepatic Tregs over hepatic CD8+ cells in PBC patients was 

lower than that in patients with chronic hepatitis C (137). Moreover, 

observations have shown a reduced ratio of intrahepatic Tregs to effector CD8+ 

and Th17 cells (123, 137). Taken together these findings certainly suggest that a 

lack of functional Tregs contributes to a breakdown in self-tolerance. 

 

A reduction in the frequency of peripheral blood Treg cells, and in intrahepatic 

Foxp3+ cells has also been detected in PSC patients, with an apparent impaired 

suppressive capacity (138).  

Transporter Defects, Defective Bile Acid Secretion and Cholestasis 

Bile is a complex mixture of bile acids, bilirubin, cholesterol, phospholipids and 

proteins, which even under normal conditions can be toxic to the cells; thus 
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several protective mechanisms have been developed to protect cholangiocytes 

from injury (139). Bile acids that would induce apoptosis and necrosis to 

cholangiocytes normally form mixed micelles with phosphatidylcholine and 

cholesterol to prevent bile acid toxicity (6). Impairment of transporters that are 

responsible for maintaining the bile acid/phospholipid ratio (MDR3 or BSEP) or 

bicarbonate excretion and hydration of bile (CFTR or AE2) can potentially lead to 

toxic bile formation and damage of cholangiocytes (140) (141) (84) (142).  

Variants and functional mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR) have been described in patients with PSC (142). 

Bile stasis, a frequent phenomenon in PSC, may also lead to toxic bile formation 

leading to exacerbation of bile duct injury (6).  

 

In PBC, reduced expression of the chloride-bicarbonate anion exchanger 

AE3/SLC4A2, the sodium-hydrogen exchanger NHE/SLC9A3, and the inositol 

1,4,5-triphosphate receptor has been demonstrated (143-145). The expression 

of MRP4, molecule involved in basolateral export, is induced 3-fold in PBC. As the 

condition progresses, sodium-taurocholate cotransporting polypeptide (NTCP) 

and bile salt export pump (BSEP) (key transporters for hepatic bile acid uptake 

and excretion) are increased and expression of organic anion transporting 

polypeptide 2 (OATP2) is decreased (146, 147). These adaptive mechanisms may 

be an effort to prevent accumulation of toxic bile acids in chronic cholestasis, and 

a possible target for future therapeutic strategies e.g. Farnesoid X receptor 

agonists. 

Mechanisms of injury 

The mechanisms underlying the breakdown of self-tolerance in autoimmune 

diseases have not been fully elucidated, though there is mounting evidence that a 

defect in homeostatic processes, that normally keep the response to self-antigens 

under control, is involved. PBC is a disease of small bile ducts, affecting the lining 

epithelial cells, the cholangiocytes. In PBC, these cholangiocytes show irregular 

shape and arrangement with infiltration of mononuclear cells. Bile ducts are 

eventually lost and cholestasis becomes chronic. It still remains unclear what are 

the exact factors that lead to the development of biliary specificity, albeit a 
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combination of cholangiocyte apoptosis, cellular senescence and autophagy 

might be involved (148).  

 

Apoptosis of cholangiocytes has been described as a potential contributing factor 

in the pathogenesis of cholangiopathies (149). In PBC, the small rather than the 

large bile duct cholangiocytes are more susceptible to apoptosis. In most cells in 

the human body that undergo apoptosis, the mitochondrial PDC-E2-autoantigen 

undergoes covalent modification by glutathione. However, in PBC, 

cholangiocytes undergoing apoptosis fail to bind glutathione to the lysine-lipoyl 

residue of the dehydrogenase complex, thus preserve the antigenic epitope as it 

is (150), and subsequently translocate intact, immunologically active PDC-E2 to 

apoptotic bodies, creating an “apotope” (151). In PBC, this apotope is recognized 

by circulating AMA autoantibodies and the resulting AMA-autoantigen complex 

may then stimulate the innate immune system in genetically susceptible 

individuals. Interactions between apotopes, macrophages, and serum can lead to 

a potent production of injurious cytokines such as TNFα, which can exacerbate 

apoptosis of neighbouring cells (90). The intact PDC-E2 in apoptotic fragments 

can be also taken up by local antigen-presenting cells and transferred to regional 

lymph nodes for the priming of the cognate T cells. Recent reports have shown 

that apoptotic cholangiocytes can be phagocytosed by neighbouring 

cholangiocytes in PBC, consequently providing an additional source of 

autoantigens (152). Cholangiocytes express intact PDC-E2 and MHC and respond 

to cytokines that induce their apoptosis, thus they are vulnerable to ongoing 

attack (Figure 2). Therefore, cholangiocytes have been implicated as effector 

cells in the loss of immune tolerance via the impaired phagocytic clearance of 

apotopes (153). This may explain the efficacy of UDCA (ursodeoxycholic acid), 

which acts by decreasing biliary apoptotic rate, sustaining bile flow, and 

enhancing apotope clearance (154). Transgenic mice expressing PDC-E2 on the 

surface of cholangiocytes do not develop spontaneous hepatobiliary lesions, thus 

is unlikely that aberrant PDC-E2 alone is pathogenic (155).  

 

Similar to apoptosis, permanent withdrawal from the cell cycle (i.e. senescence) 

functions as a protective mechanism to remove damaged cells from the 
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population. The accumulation of senescent cholangiocytes has been identified in 

both PBC and PSC (156, 157). In PBC, cholangiocytes show increased expression 

of the markers of cell senescence such as senescence-associated beta-

galactosidase (SA-βgal), p16INK4A, p21Waf1/Cip1. Furthermore, a significant 

decrease in telomere length has been observed in cholangiocytes lining damaged 

bile ducts and bile ductules in PBC (158). The exact mechanism of how cellular 

senescence contributes to duct loss in PBC is incompletely understood. After 

cellular senescence occurs in injured cholangiocytes they are not replaced by 

normal cells (158) but they are transitioning to a “senescence-associated 

secretory phenotype” (SASP), characterized by the robust secretion of 

chemokines (CX3CL1, CXCL8, CCL2), cytokines (IL-6, IL-1), growth factors and 

matrix metalloproteinases (MMPs) that function in repair/remodelling and 

recruiting of immune cells (159) (Figure 2). Cellular senescence is also seen in 

ductular reaction, which is thought to harbour hepatic stem cells (HSCs) in PBC 

(156). Therefore the inability of senescent HSCs to proliferate may thus fail to 

replace damaged cholangiocytes, thereby exacerbating bile duct loss. 

Interestingly, chronic liver allograft rejection, which is characterized by bile duct 

loss akin to PBC, also shows similar biliary epithelial senescence (160). An 

increase in the number of senescent cells in PSC patients compared to the IBD 

and control groups has been also observed (161). 

 

Abnormal autophagy may also result in autoimmune disease, whereby 

autophagy-related processing of self-proteins provides a source of 

immunostimulatory molecules and autoantigens. Upregulated autophagy has 

been reported in the damaged bile ducts in PBC, the initiation of autophagy being 

associated with reduced stress-induced cellular senescence (162). 

 

In AIH patients there is significant evidence for innate immunity as being the 

initial trigger that precipitates the immunopathology, much like the Con A mouse 

models.  This is critical as it suggests a very rapid onset and perhaps a short 

latency time between an environmental exposure and induction of pathology. 

Monocytes/macrophages represent a major component of the portal/periportal 

cellular infiltrate in AIH. Studies have reported that monocytes in peripheral 
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circulation of AIH patients have a vigorous spontaneous migration, which cannot 

be further augmented by migration-inducing stimuli (136). Moreover, 

monocytes in AIH show a higher TNFα over IL-10 production and an elevated 

TLR4 expression, which suggest a more pro-inflammatory phenotype. 

Interestingly, the finding of a marked monocyte activation during active disease, 

a time when also CD4 and CD8 T cell autoimmune responses are at their highest 

in terms of proliferation and IFNγ production, suggests a monocyte participation 

in the pathogenesis of liver damage in AIH, possibly promoted by autoreactive 

cells belonging to the adaptive arm of the immune system (136). An increase in 

γδ+ T cells is also detected in AIH, which show an inverted Vδ1/Vδ2 ratio and a 

higher IFNγ and granzyme B production, the latter being correlated to 

biochemical indices of liver damage, suggesting a prevailing effector over 

regulatory function for these cells in this condition (109). It should be noted that 

in the case of PBC while innate immunity may be critical in the early phases, 

there appears to be a significant delay between the appearance of autoantibodies 

and the development of clinical symptoms. Therefore, in AIH it is believed that 

innate immune cells play a role in the loss of immune tolerance and further 

perpetuation of the autoimmune attack. Of note, a successful adaptive response, 

whether a normal immune response or an autoimmune response requires innate 

immunity. Break of tolerance in AIH can terminate a previously unresponsive 

state of liver-related autoantigens and further presentation of such self-antigenic 

peptides to uncommitted T helper (Th0) lymphocytes by HLA class II molecules 

on APCs, such as macrophages, DCs and B lymphocytes. This renders Th0 

lymphocytes to become activated; in the presence of IL-12 they differentiate into 

Th1 cells, or in the presence of IL-4 into Th2 cells, further initiating a series of 

immune reactions determined by the cytokines they produce. Th1 cells 

predominantly secrete IL-2 and IFNγ, the latter being the main orchestrator of 

tissue damage because of its ability to stimulate cytotoxic lymphocytes (CTL), 

enhance HLA class I molecule expression on APCs and of HLA class II molecules 

on hepatocytes (163) and activate monocytes/macrophages, which in turn 

release IL-1 and TNFα. The induction of HLA class II on hepatocytes, enables 

them to present the autoantigen to Th1 cells and hence further perpetuate the 

autoimmune process. The function of Th1 cells is counterbalanced by the Th2 
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cells, which arise in the presence of IL-4 and mainly produce IL-4, IL-10 and IL-

13. These cytokines induce also the maturation of B cells into plasma cells, with 

consequent production of autoantibodies. If regulatory cells are numerically 

deficient and/or impaired to perform their suppressor function, these effector 

responses are perpetuated with ensuing persistent liver cell destruction by the 

direct action of CTL, cytokine release by Th1 cells and monocytes/macrophages, 

complement activation and engagement of NK cells by the autoantibodies bound 

to the hepatocyte surface (Figure 3) (164).  

Animal Models 

There are several murine models that simulate features of human PBC, including 

spontaneous models such as the NOD.c3c4 mouse, mice depleted of dnTGF on a 

CD4 promoter, and mice with knocked out gene for IL-2 R (IL-2Rα KO mice) 

(165-168).  

 

Research on the pathogenesis of AIH has been hampered by the lack of animal 

models reproducing faithfully the human condition. Recent studies have focused 

on animal models of AIH type 2, since the autoantigen is well defined (169). 

C57BL/6 female mice are immunised with a plasmid containing the antigenic 

region of human CYP2D6, the target of anti-LKM1, and formiminotransferase 

cyclodeaminase, the target of anti-liver cytosol-1, an additional marker for AIH 

type 2 (107). Another model of AIH type 2 uses CYP2D6 transgenic mice and 

aims at breaking tolerance with an adenovirus-CYP2D6 vector (170). However, a 

model mimicking closely AIH in humans is still missing.  

 

A reliable and reproducible single animal model for PSC is still needed. A 

classification scheme for animal models has been described by Pollheimer et al 

(65). In the existent PSC animal models, cholangitis is induced by enteric bacteria 

cell wall components, infectious agents (such as Cryptosporidium parvum), 

biliary obstruction, chemicals (such as lithocholic acid), knock out genes such as 

Mdr2 or Cftr (in mice) or primary biliary and endothelial cell injury (65). Mice 

injected with death receptor 5 agonists have also provided insight into apoptosis 

in cholestatic liver disease (90).  
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Concluding Remarks 
 

The mechanisms responsible for the pathogenesis of autoimmune liver diseases 

are still poorly understood. Evidence suggests that all three autoimmune 

diseases are the result of a complex interaction between genetic and 

environmental factors. Given the plethora of genetic susceptibility loci that have 

been identified in PBC and PSC in particular, efforts now are needed to translate 

genetic risk into true biology.  This when combined with understanding 

environmental triggers/microbiome influences, and patterns of immune 

homeostasis, should provide better insights into the mechanisms of disease such 

that new rational therapies can be applied in the future.   
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Figure Legends 

Figure 1. Mechanisms of tissue injury in PSC. (a) Enterohepatic circulation 

brings potential mediators of inflammation, such as microbes or metabolites of 

enteric microbiota from the gut to the hepatic sinusoids, where sinusoidal 

endothelial cells (SECs), Kupffer cells (KC), hepatocytes, hepatic stellate cells 

(HSCs), dendritic cells and monocytes (M) through their pattern recognition 

receptors (PRRs), such as Toll-like receptors (TLRs), can recognize and respond 

to pattern associated molecular patterns (PAMPs). Biliary epithelial cells (BECs) 

express multiple TLRs, which (b) upon pathogen recognition produce TNFα, IL-6 

and IL-8, in order to (c) promote recruitment and activation of T cells, 

monocytes/macrophages (M), neutrophils (N) and natural killer cells (NK) that 

will initiate biliary repair responses. (d) Endogenous molecules released from 

injured or dying cells (damage-associated molecular patterns, DAMPs, heat 

shock proteins) can activate TLRs and/or DAMP receptors (DAMP R). 

Components of bile such as oxysterols, can activate cholangiocytes to express IL-

6 and IL-8. (e) Exposure of cholangiocytes to LPS may cause disruption of tight 

junctions exposing cholangiocytes to a variety of substances, such as bile acids, 

that could eventually promote injury and inflammation. (f) Autoantibodies 

against biliary epithelial cells can activate the immune system by upregulating 

TLRs, increasing expression of IL-6 and adhesion molecules such as CD44 that 

could thereby promote lymphocyte proliferation, Ig production and cell 

adhesion. (g) TNFα-rich microenvironment can induce the loss of CD28 

expression from T cells, leading to accumulation of CD28-ve T cells, which are 

able to release TNFα and IFNγ, perforin and granzyme B, that act upon biliary 

epithelial cells inducing activation and death. (h) PSC hepatic NK cells have 

decreased cytolytic activity, likely because of the high levels of local TNFα 

production. (i) Activation of vascular adhesion protein 1 (VAP-1) in the liver, in 

the presence of pro-inflammatory TNFα, can induce expression of MAdCAM-1, 

thereby promoting the recruitment of α4β7+  mucosal effector cells to the liver. 

(j) Bacterial RNA has been detected within the portal tracts of PSC patients; 

activation of PSC PBMCs with heat-inactivated bacteria has led to a marked 

induction of Th17 responses. (k) Th17 cells have been found around bile ducts in 

PSC patients. In humans, CCL20 is expressed on inflamed bile ducts, thus able to 



 42 

recruit CCR6+ Th17 cells. Cholangiocytes express the IL-17R and upon 

stimulation with IL-17A cholangiocytes produce IL-1β, IL-6 and IL-23 pro-

inflammatory cytokines, which (l) promote the survival of Th17 cells, but also 

stimulate fibroblasts to induce periductular fibrosis.  (m) Increased senescence 

has been reported in PSC patients compared to IBD and control groups.  

 

Figure 2. Mechanisms of tissue injury in PBC. (a) The portal tracts in PBC are 

rich in chemokines CXCL10, CXCL9 and CX3CL1, which are responsible for 

recruiting CD4 and CD8 T cells, as well as NK cells, that bear their cognate 

receptors CXCR3 (for CXCL9 and CXCL10) and CX3CR1, respectively. (b-e) 

Autoantigenic stimuli provided by bacterial mimics of the PDC-E2 autoepitope, 

xenobiotically modified PDC-E2 or “spillage” of native mitochondrial 

autoantigens derived from biliary epithelial apoptotic cells, can be presented by 

APCs via MHC class II to autoreactive CD4+ T cells. (f) CD4+ T cells in turn can 

activate (g) CD8 cytotoxic T lymphocytes able to damage biliary epithelial cells. 

(h) Tregs that normally restrain the activated autoreactive T cells are reduced in 

PBC.  (i) Activation of PDC-E2 specific B cells leads to their differentiation into 

plasma cells and production of anti-mitochondrial antibodies (AMA). (j) 

Interactions between BEC apotopes, macrophages, and serum AMA can lead to 

potent production of injurious cytokines such as TNFα, which can exacerbate 

apoptosis of neighboring cells and recruitment of immune cells. (k) In PBC, high 

frequencies of NK cells compared to healthy controls have been detected. 

Hepatic macrophages previously primed with TLR3,-4 ligands, can induce 

activation of NK cells and thus enhance their cytotoxicity against BECs. (l) It has 

been suggested that the NK cell-mediated lysis of BECs is associated with the 

TRAIL-R5-TRAIL pathway. (m) In PBC, cholangiocytes show increased 

expression of the markers of cell senescence such as senescence-associated beta-

galactosidase (SA-βgal), p16INK4A, p21Waf1/cip1. After cellular senescence occurs in 

injured cholangiocytes they are not replaced by normal cells but they are 

transitioning to a “senescence-associated secretory phenotype” (SASP), 

characterized by the robust secretion of chemokines (CX3CL1, CXCL8, CCL2), 

cytokines (IL-6, IL-1), growth factors and matrix metalloproteinases (MMPs) that 

function in repair/remodelling and recruiting of immune cells. 
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Figure 3. Mechanisms of tissue injury in AIH. (a) Significant evidence suggests 

innate immunity as being the initial trigger that precipitates the 

immunopathology in AIH patients. Monocytes from peripheral circulation of AIH 

patients show a vigorous spontaneous migration, with high TNFα over IL-10 

production and elevated TLR4 expression, suggesting a highly pro-inflammatory 

phenotype. NK cells have been also detected in the interface hepatitis, and are 

responsible for antibody-mediated cellular toxicity. γδ T cells are also elevated in 

AIH; cells that pursue antigenic targets on the hepatocyte without prior 

sensitization or after presentation by nonclassical MHC, and show high IFNγ and 

granzyme B production, further suggesting a prevailing effector over regulatory 

function. (b) Loss of tolerance in AIH can terminate a previously unresponsive 

state of liver-related autoantigens and further presentation of such self-antigenic 

peptides to uncommitted T helper lymphocytes (Th0) by antigen presenting cells 

(APCs). The Th0 lymphocytes exposed to the antigen presented by an HLA class 

II molecule on APC, becomes activated; in the presence of IL-12 Th0 differentiate 

into a Th1 cells, whereas in the presence of IL-4 into Th2 cells. (c) Th1 cells 

predominantly secrete IL-2 and IFNγ, the latter being able to stimulate cytotoxic 

lymphocytes (CTL), which are antigen-specific and release cytokines within the 

liver that promote hepatocyte death. Th1 cells also enhance HLA class I molecule 

expression on APCs and HLA class II molecule on hepatocytes, and activate 

monocytes/macrophages, which in turn release IL-1 and TNFα.  The induction of 

HLA class II on hepatocytes enables them to present the autoantigen to Th1 cells, 

and further perpetuate the autoimmune response. (d) Th2 cells, which arise in 

the presence of IL-4, mainly produce IL-4, IL-10 and IL-13 cytokines, (e) which 

induce the maturation of B cells into plasma cells. The clonal expansion of 

plasma cells results in excess production of immunoglobulins, which then bind to 

normal membrane constituents of the hepatocytes, and induce complement 

activation, engagement of NK cells and hepatocyte death. (f) Intrahepatic Th17 

cells are numerically expanded in AIH, where they release IL-17, IL-23, IL-6 and 

IL-1β. IL-17 induces IL-6 expression in hepatocytes, which in turn may further 

stimulate Th17 cells, thus triggering a positive feedback loop. (g) Studies have 

reported that Tregs are numerically decreased and functionally defective in AIH, 
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although others have shown that the frequency and function of AIH Tregs is not 

impaired. (h) Reduced frequencies of NKT cells in AIH patients have been 

reported, which produce less immunoregulatory IL-4, a potent inhibitor of Th17 

cell development.  
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