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Abstract 
 
Objective: We examined whether interindividual differences in habitual sleep 
patterns, quantified as the cumulative habitual total sleep time (cTST) over a 2-w 
period, were reflected in waking measurements of intranetwork and internetwork 
functional connectivity (FC) between major nodes of three intrinsically connected 
networks (ICNs): default mode network (DMN), salience network (SN), and central 
executive network (CEN). 
Design: Resting state functional magnetic resonance imaging (fMRI) study using 
seed-based FC analysis combined with 14-d wrist actigraphy, sleep diaries, and 
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subjective questionnaires. Data were statistically analyzed using multiple linear 
regression.   
Setting: Fourteen consecutive days of wrist actigraphy in participant’s home 
environment and fMRI scanning on day 14 at the Birmingham University Imaging 
Centre.   
Participants: N = 33 healthy adults, mean age 34.3, standard deviation = +/- 11.6 y. 
Interventions: None.  
Measurements: Seed-based FC analysis on ICNs from resting-state fMRI data and 
multiple linear regression analysis performed for each ICN seed and target. cTST 
was used to predict FC (controlling for age). 
Results: cTST was specific predictor of intranetwork FC when the mesial prefrontal 
cortex (MPFC) region of the DMN was used as a seed for FC, with a positive 
correlation between FC and cTST observed. No significant relationship between FC 
and cTST was seen for any pair of nodes not including the MPFC. Internetwork FC 
between the DMN (MPFC) and SN (right anterior insula) was also predicted by 
cTST, with a negative correlation observed between FC and cTST. 
Conclusion: This study improves understanding of the relationship between 
intranetwork and internetwork functional connectivity of ICNs in relation to habitual 
sleep quality and duration. The cumulative amount of sleep that participants 
achieved over a 14-d period was significantly predictive of intranetwork and inter-
network FC of ICNs, an observation that may underlie the link between sleep status 
and cognitive performance. 
 
Key words: central executive network, DMN, salience network, functional 

connectivity, fMRI, habitual total sleep time, sleep, sleep quality. 

 

 

 

 

 

 

 

INTRODUCTION 

Sleep is crucial for maintaining normal cognitive performance1–8 but the precise 

mechanisms by which the processes that occur during sleep affect waking function 

remain to be clarified. It is increasingly recognized that functional connectivity (FC) of 

intrinsically connected networks (ICNs) is crucial for the maintenance of proper 

function in healthy individuals9–11and that specific disruptions to intranetwork and 
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inter-network FC are widespread in neurological and neuropsychiatric disorders.12,13 

Modification of the activity and FC of ICNs has also consistently been observed 

during the descent into sleep14–18 and following sleep deprivation19–24 with the main 

emphasis having been placed on the default mode network (DMN). The DMN is 

likely to be particularly important in understanding the link between sleep and waking 

brain function not only because of its general link with maintenance of 

consciousness25 but also its importance in a range of cognitive domains, which are 

known to be affected by prolonged wakefulness, including memory,26–28 attention,29 

and emotion processing.26  

In parallel with these investigations of FC, studies utilizing chronic partial sleep 

deprivation, which more closely resembles everyday life situations than total sleep 

deprivation, have reported dose-dependent deficits in cognitive performance.2,4,5 The 

common finding is that the less sleep subjects obtain due to sleep restriction (e.g., 

subjects restricted to 3, 5, or 7 h of time in bed compared to control subjects, who 

spent 8 h in bed for up to 7 d) the more cognitive performance is impaired.2,4,5 Given 

that ICNs underpin waking function and are affected by prolonged wakefulness,19–

21,24 one possibility is that sleep is needed to maintain the brain’s intrinsic functional 

architecture, normalizing the FC of ICNs to sustain the high level of regionally 

appropriate FC that is necessary for waking function. This would suggest that shorter 

habitual sleep over a prolonged period could have a cumulative effect on FC, which 

may subsequently result in subtle deficits in higher cognition. However, to date there 

has been no investigation of whether habitual sleep patterns measured over a 

prolonged period relate to waking FC. This is important because even a small 

amount of sleep restriction over a prolonged period can have measureable negative 

consequences on waking behavioral performance4 and self-imposed short sleep 

durations are becoming increasingly common and represent a considerable public 

health burden.30–32 Understanding whether differences in habitual sleep patterns 

relate to FC thus has considerable practical implications. We examined this issue by 

comparing habitual cumulative total sleep time (cTST), assessed over a 2-w period 

with wrist actigraphy and sleep diaries, with waking FC of three of the most important 

ICNs for higher level cognitive function (the DMN, the salience network (SN), and the 

central executive network (CEN).  
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The DMN encompasses the posterior cingulate and precuneus (PCC), mesial 

prefrontal (MPFC) and bilateral inferior parietal (IPC) cortices, with the mesial 

temporal structures (MTL) and the hippocampal regions also sometimes included, 

although less consistently.33 Originally identified as a set of regions that are 

consistently deactivated when attention is directed externally,34,35 its general 

importance has subsequently been underscored by its relationship with a wide range 

of cognitive tasks.34–37 Further investigations have also revealed specific roles of the 

anterior and posterior portions of the DMN,38-40 indicating that although it is certainly 

a coherent network the individual nodes can have differentiated functions, as well as 

a specific relationship to task-positive regions.10,41  

A number of studies have investigated ICN FC during sleep,15–17,42,43 and alterations 

have been noted during wakefulness, following full or partial sleep deprivation24,44,45 

and in relation to self-reported sleep duration on the night prior to a waking scan.46 

These studies indicate that integrity of the DMN is a sensitive marker of sleep status 

and prior sleep history. 

Although the importance of DMN functional integrity for the maintenance of normal 

brain function is clear, it is only one of many ICNs ranging from those encompassing 

primary sensory regions (e.g., visual, auditory, somatomotor) to higher level 

networks such as the CEN and the SN. Given previous behavioral observations8 it 

would be expected that, in addition to the DMN, the higher-level CEN and SN would 

be most affected by sleep, rather than the sensory networks.  

The human brain switches from intrinsic thoughts and self-referential activity 

involving regulation by the DMN, to task positive cognitive activity involving 

regulation by the CEN.47,48 This switching between networks is thought to be 

regulated by the right anterior insula (RAI) of the SN, which acts as a control hub 

between the DMN and CEN and regulates states of consciousness in response to 

salient events.49 These three ICNs therefore act in concert to maintain a normal level 

of brain function.  

In the current awake, resting-state functional magnetic resonance imaging (fMRI) 

study, we first aimed to investigate whether the strength of intranetwork FC of the 

DMN, SN, and CEN covaried with the cumulative effect of normal habitual sleep 

time. Second, because the SN is involved in the regulation of activity between the 
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DMN and CEN, we also aimed to investigate how between-subject FC variability in 

internetwork connectivity of the SN, CEN, and the DMN was related to subjects’ 

habitual sleep time. The motivation for examining these networks is that they are 

closely linked with the higher cognitive functions, which are mainly affected by sleep 

deprivation.1–7 A better understanding of how sleep affects ICN FC may help to shed 

light on the link between sleep and the functions these networks support, in 

particular cognition and conscious behavior, as well as the neurobiological 

underpinnings of individual differences in susceptibility to sleep deprivation. Although 

the link between individual variability in behavioral performance and sleep history 

has been extensively studied,50 an explicit understanding of susceptibility to sleep 

loss requires a detailed knowledge of individual differences in the resilience of the 

brain networks that are responsible for waking function. In addition, as a marker of 

sleep deprivation, FC of ICNs is particularly attractive because it is not under 

conscious control and may provide an unbiased measure of sleep history.   

We had two hypotheses: (1) Longer habitual cumulative total sleep times will be 

reflected by increases in the intranetwork FC between the major nodes of the DMN, 

SN, and CEN measured during wakefulness. (2) Longer habitual cumulative total 

sleep times will be reflected by network specific increases and decreases in 

internetwork FC between the DMN, SN, and CEN. 

 

METHODS AND MATERIALS 

Subjects 

Data were acquired from 37 healthy adults (right handed, 17 female, age 20–59 y, 

mean age (+/- standard deviation [SD])=35.0+/-11.7 y) using a 3 Tesla Philips 

Achieva MRI scanner at Birmingham University Imaging Centre (BUIC), University of 

Birmingham. Participants had no history of neurophysiological, neuropsychological, 

or neurological illness. Written informed consent was obtained from all participants, 

and the study was approved by the University of Birmingham Research Ethics 

Committee. The data from four subjects were subsequently excluded (corrupted data 

for one subject, erratic sleep patterns for the second, illness around the time of 

scanning for the third and fourth), meaning that the final dataset that was analyzed 
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consisted of 33 participants (right handed, 17 female, age 20–59 y, mean age (+/-

SD)= 34.2+/-11.6 y). 

 

Sleep Patterns and Questionnaires 

Subjects were asked to maintain their normal sleep patterns for the duration of the 

study. Habitual sleep patterns were assessed for a 14-d period using sleep diaries 

and wrist actigraphy (Actiwatch 2, Philips Respironics Ltd, Cambridge, UK). The 

Actiwatch measures the amplitude as part of the sampling process with the minimum 

and maximum measures being +/- 128. These values are referred to as counts. The 

number of counts is proportional to the intensity of movement. The highest count 

value for each sampling period (which consists of 1/32 of a second) was taken for 

each 1-sec interval and the sum of the captured counts form the individual 1-sec 

intervals making up the 1-min epoch provided the total count score. The epoch was 

the period defined for logging captured activity data. Actigraphs were set at a 

medium sensitivity of 1-min epochs, and a total count score of 40 or more was used 

to signify that the subject was awake. Use of actigraphy in sleep disordered 

patients51 has shown that medium or high sampling rate sensitivities provide data for 

total sleep time (TST) per night in close agreement with polysomnography (PSG). 

Subjects were asked to press a button on the Actiwatch when they settled for bed 

and again on awakening to start their day. These times were defined as a sleep 

opportunity, and were used to carry out the actigraph analysis using Philips 

Respironics Actiwatch2 software. Participants also completed the following 

questionnaires: Pittsburgh Sleep Quality Index (PSQI),52 Epworth Sleepiness Scale 

(ESS),53 Depression, Anxiety and Stress Scale-21 (DASS),54 and Karolinska 

Sleepiness Scale (KSS).55 These questionnaires were administered immediately 

prior to or following the scanning session, with the exception of the KSS, which was 

administered verbally immediately upon exiting the scanner. Each of the 

questionnaires resulted in a single score per subject, whereas TST was determined 

from the actigraphy and defined as the sleep time for each sleep opportunity and 

compared with sleep diary data for consistency.51,56 Habitual TST was calculated as 

cumulative TST (cTST, sum of TST over the entire 2-week period).  

Image Acquisition and Preprocessing 
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Subjects underwent a single resting-state fMRI session in the early afternoon during 

which they were instructed to lie still in the scanner and relax with eyes open. All 

participants confirmed that they remained awake and alert through the scanning 

session. Each subject underwent one resting-state fMRI scan of 12 min duration, 

with the following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 35 

ms, flip angle = 80°, voxel size 3 × 3 × 4 mm, 32 slices giving whole brain coverage. 

A standard T1-weighted anatomical scan (1-mm isotropic voxels) was acquired to 

facilitate image co-registration.  

Preprocessing of the fMRI data was performed using the FMRIB Software Library 

(FSL, http://www.fmrib.ox.ac.uk/fsl).57 The following procedures were applied: motion 

correction using MCFLIRT58 slice timing correction, spatial smoothing using a 

gaussian kernel (FWHM = 6 mm) and a high-pass filter cut off at 100 sec (f > 0.01 

Hz). 

Defining Regions of Interest  

Regions of interest (ROI) representing the nodes of the DMN, CEN, and the SN were 

created from data from a separate cohort of 55 subjects from a previous study59 28 

male, age 25 ±4 y). This allowed an objective identification of the canonical DMN, 

CEN, and SN that was independent from the subjects investigated in the current 

study. These subjects underwent a 6-min waking resting state fMRI scan with 

identical imaging parameters, also at BUIC. Using FSL 4.1.8 data were motion 

corrected, spatially smoothed (5 mm), registered to Montreal Neurological Institute 

(MNI) standard space, temporally concatenated across subjects and decomposed 

into 20 spatially independent components with MELODIC.60 This low dimensionality 

was used to facilitate identification of the ICNs in single components and to avoid 

individual ICNs being split into their constituent nodes, which would have made 

unambiguous detection more difficult. For each of the DMN, CEN and SN in turn a 

single independent component was identified by visual inspection based on spatial 

similarity to previous reports.61 The group-level Z-statistical maps were then 

thresholded at Z = 4, and individual ROIs were defined for the following ICN nodes: 

DMN (PCC, MPFC, left and right IPC, left and right MTL; CEN (left and right DLPFC, 

left and right IPL); and SN (left and right AI and the ACC). The left and right 

hippocampal regions (HP) were identified independently from the FSL atlas. These 
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group-space ROIs were then registered to individual subject’s fMRI data. We 

focused on these ROIs as they have been consistently reported as constituting 

robust regions of the DMN15,41 CEN11,44,61 and the SN.11,62 Figure 1 shows the spatial 

arrangement of these ROIs and Table 1 gives the center voxel MNI coordinates for 

these regions. 

 

Figure 1 here. 

Table 1 here. 

 

Measuring DMN, CEN, and SN FC 

Following previous methodology63 we used seed-based FC analysis performed 

according to standard methods64 using in-house MATLAB code (Mathworks, Natick, 

MA, USA). Using FSL, the preprocessed functional data were further filtered (0.009 < 

f < 0.08Hz) and single voxel coordinates taken from each subject's individual 

functional scan to extract signal time courses from white matter and ventricles. The 

white matter and ventricular signals, the global brain signal, and the motion 

parameters were then removed from the voxelwise data using linear regression. 

ROIs were defined from nodes of group ICA and the ROI/node maps were 

transformed from MNI space to individual space using FSL. Individual subject ROIs 

were created as 3 × 3 × 3 voxel cubes centred on the single maximum Z-statistic 

voxel for each group ROI. The mean fMRI timeseries within each ROI was then 

correlated with the fMRI timeseries of all other brain voxels. This produced a whole-

brain map of Pearson correlation coefficients, which allowed FC between regions of 

the DMN, SN, and CEN to be assessed and quantified. FC was defined by averaging 

the voxelwise correlation coefficients within each target ROI.  

The 15 ROIs described previously were used in turn as the seed to measure the 

strength of FC to all other DMN, SN, and CEN ROIs for the intranetwork and inter-

network analysis.  

Statistical Analysis 
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We investigated the relationship between individual sleep variables and both 

intranetwork and internetwork FC. Multiple linear regression analysis (SPSS Inc, 

Chicago, IL, USA) was performed for each DMN, SN, and CEN seed and target ROI, 

with cTST as the criterion variable and including FC and age as predictor variables. 

We controlled for false discovery rates (FDR) due to multiple measures by using the 

Benjamini-Hochbergh procedure65 as used in previous studies.49 The FDR P value 

adjustment method involved ranking the P values in order with the smallest P value 

being assigned rank 1, the second rank 2 and the largest rank N. Then each P value 

was multiplied by N and divided by its assigned rank to give the adjusted P. In order 

to restrict the FDR to 0.05 significance, all adjusted P values of less than or equal to 

0.05 were regarded as significant.65 All P values reported in the Results section are 

FDR corrected.  

 

RESULTS  

Table 2 summarizes the demographic, habitual sleep, and questionnaire data for the 

participants. All subjects were within normal limits and no evidence of depression, 

anxiety, excessive daytime sleepiness or fatigue was found (Table 2). Mean cTST 

was also within normal limits (7.65+/- 1.85 h). 

 

Table 2 here.  

 

Intranetwork FC Analysis 

cTST and Intranetwork FC of the DMN 

Table 3 shows the significant regression analysis results for the relationship between 

cTST and intranetwork DMN FC using the MPFC as seed ROI. This analysis 

indicated that cTST only predicted DMN FC when the MPFC was used as the seed 

ROI. No significant relationship between FC and cTST was seen for any pair of 

nodes not including the MPFC (see additional supplementary material for all non-



 

 

 10  

 

significant results, and Figure S1 for average group FC between the MPFC and 

other nodes of the DMN). 

 

Table 3 here. 

For all pairs of ROIs that demonstrated significant (P < 0.05 FDR corrected) partial 

correlations to the seed region, the strength of FC between the DMN seed regions 

and the MPFC increased with cTST. 

 

cTST and Intranetwork FC of the SN and CEN 

cTST was not a significant predictor of intra-network FC for the SN or the CEN (P > 

0.61; see supplementary material for nonsignificant results).  

 

Internetwork FC Analysis 

cTST and Internetwork FC of the DMN and SN 

cTST was a significant predictor of the DMN-SN internetwork FC using the MPFC as 

the seed region. Specifically, FC between the MPFC and right anterior insula (RAI) 

was significantly predicted by cTST. A significant negative correlation was found 

(Table 4). cTST demonstrated a significant regression model when the RAI was 

used as the seed region for SN-DMN internetwork FC and an uncorrected P value of 

0.034 was found, but this did not survive FDR correction (Table 5). Figures S2 and 

S3 demonstrate the average group inter-network FC between the DMN and SN.   

 

Table 4 here.  

Table 5 here. 
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cTST and Internetwork FC of the CEN 

cTST was not a significant predictor of either DMN-CEN or SN-CEN internetwork FC 

(see supplementary material).  

 

DISCUSSION 

This study examined the effect of habitual sleep patterns on the awake, resting-state 

FC of intrinsically connected networks. We focused on the DMN, SN, and CEN as 

these networks are most closely linked with the higher cognitive functions that have 

been shown to be most affected by sleep deprivation.1–7 Our main finding was that 

the cumulative amount of sleep that participants achieved over the 14-day period 

preceding fMRI scanning was significantly predictive of intranetwork and inter-

network FC of the DMN and SN, but not the CEN.  

The study had two hypotheses. The first suggested that individual differences in 

sleep patterns, quantified as the cumulative total sleep time over 14 d (cTST), would 

be reflected in intranetwork FC strength between the major nodes of the DMN, SN, 

and CEN measured during wakefulness. Multiple linear regression demonstrated 

that this was at least partially the case. In terms of the DMN, FC of the MPFC was 

significantly correlated with cTST. This result was specific to the MPFC, with only 

pairwise connections involving the MPFC as the seed showing a relationship 

between DMN FC and cTST (see Table 3). No association between SN or CEN 

intranetwork FC and sleep was found.  

The specificity of the relationship between MPFC FC and sleep status is consistent 

with previous imaging and behavioural investigations. For example, it has been 

demonstrated that sleep deprivation causes reduced intra-DMN FC strength of the 

MPFC20,46 to the PCC and posterior nodes of the DMN, whereas self-reported sleep 

duration on the night prior to scanning has also been linked with MPFC FC.46 

Behaviorally, a similar specificity has been observed, with sleep deprivation 

preferentially impairing cognitive performance on tasks involving the prefrontal 

cortex.1,3 Although we did not test cognitive performance, it is reasonable to 

postulate that experimentally induced sleep deprivation leads to deficits in higher 

cognitions via its effect on intranetwork and internetwork FC of ICNs. The implication 
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from our results is that these observations are generalizable to habitual sleep 

patterns in healthy individuals, and by quantifying FC of the MPFC we provide a 

mechanism by which habitual sleep status and cognition are linked. The fact that 

cTST is specifically linked to MPFC-DMN FC, but not FC within the SN or CEN, is a 

novel observation. The SN and CEN have been linked with salience and attentional 

processes, which might be expected to be related to cTST, but our results suggest 

the importance of internetwork FC in mediating the effects of cTST on these 

processes, as discussed in more detail in the next paragraphs. 

Our second hypothesis was that internetwork connectivity of the DMN, SN, and CEN 

would be altered in relation to habitual sleep status. This issue has not been 

previously examined, and the basis of this hypothesis is that for optimal brain 

performance it is not only crucial that ICNs are internally connected, but they must 

be able to interact with each other in a consistent and coherent manner. This 

hypothesis was again partially confirmed, with connectivity between the DMN and 

SN dependent on cTST. Specifically, FC between the MPFC of the DMN and the 

RAI of the SN demonstrated a significant negative correlation with cTST (Table 4). It 

has been shown that when responding to an unexpected event in the environment 

the internally focused mode of operation supported by the DMN needs to be 

inhibited, and that this is achieved by an increase in RAI activity which in turn allows 

the brain to quickly switch to a controlled mode of operation which is tightly coupled 

to external events.11,41,49 We have shown for the first time that a reduction in cTST is 

associated with an increase in the FC between RAI (SN) and the MPFC of the DMN 

(Table 4). It is possible that this represents an attempt to maintain the appropriate 

level of RAI activity needed to sustain alertness and ensure the effectiveness in 

network switching from intrinsic thoughts to external executive functioning. It is 

thought that the RAI is involved in the regulation of dynamic changes between the 

DMN and CEN,11,48 networks known to have competitive interactions.49 Our results 

suggest that short habitual sleep durations disrupt right AI connectivity to the DMN 

and hence the ability to switch between internal and external modes, which may 

have an effect on widespread cognitive and behavioral domains. Future work will 

need to address this question with neuropsychological testing, but existing 

behavioral literature would support the association between working memory and 



 

 

 13  

 

attention and sleep status, albeit generally from the more extreme case of sleep 

deprivation or restriction.66 

One factor that complicates the interpretation of this observation is that the DMN and 

SN are anticorrelated. A negative correlation with cTST therefore suggests that 

longer habitual sleep durations are related to more negative DMN-SN FC. It has 

been demonstrated that the use of global signal regression (GSR) as we have done 

negatively biases correlation measures.67 At best this can manifest as a shifting of all 

correlations to lower values, including negative values. However, at worst it can 

result in a distortion of the underlying connectivity, which can fundamentally alter 

interregional correlations within a group, as recently demonstrated.68,69 This makes it 

difficult to draw detailed conclusions regarding the relationship between negative 

inter-ICN FC (i.e., DMN-SN) and behavioral metrics, but will also affect positive 

values because of the overall shift of the distribution. While intended to reduce the 

impact of non-neuronal signal contributions, the global signal has at least a 

component that is of neuronal origin, and is correlated with both local field potentials 

in primates70 and electroencephalographic vigilance measures in humans.71 The 

global signal is affected by sleep72 and sleep deprivation,73 and therefore the 

inclusion of GSR in such studies, as well as in the context of habitual sleep durations 

as we have investigated, could be seen as a way of compensating for the overall 

shift in baseline that occurs with these changes in brain state. As discussed by Yeo 

et al.,73 by employing GSR changes in FC relative to, rather than including, changes 

in overall brain signal are being assessed. Although the approach we have taken 

may mask the effect of habitual sleep time on the global brain signal, including the 

global signal, may mask the more specific regional changes that were our focus.73,74 

Especially given the neuronal contribution to the global signal and the potential 

information it contains about overall brain state, the effect of habitual sleep patterns 

on the global signal is a potentially interesting future question in its own right. For 

studies interested in regional changes in FC, as we have examined, it may be 

prudent to rely on more conservative alternatives to GSR such as CompCor,75 as 

well as initiating more advanced investigations of the impact of GSR76 and better 

assessments of the physiological nuisance variables that GSR is intended to 

mitigate. 
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Our results demonstrated some relatively strong lateralization effects in the 

relationship between FC and habitual sleep duration, particularly in relation to the 

MPFC to hippocampi and IPC (Table 3). It has been suggested that hippocampal FC 

is dependent on previous task history as well as the details of rest conditions,77 with 

the laterality of hippocampal FC moderating connectivity patterns within and between 

networks. Similarly, the LIPC has previously been reported to show weak and 

fluctuating functional connectivity within the DMN compared to that of the RIPC.15,63 

A magnetoencephalography study by Pasquale et al.78 also found that the LIPC 

demonstrated a marked cross correlation with the dorsal attention network. In both of 

these cases there is therefore the suggestion that homologous left and right regions 

have distinct functions, including integration between networks. The significance of 

these lateralization effects in relation to variations in habitual sleep duration and their 

behavioral consequences remains to be clarified.  

A recent study has suggested that a substantial proportion of waking resting-state 

fMRI scans may be confounded by participants entering early stages of sleep in 

even relatively short waking scan.79 Although the effect of this observation on the 

field generally remains to be clarified, it could be argued that in our study participants 

with shorter habitual sleep times might be more likely to fall asleep during the 

scanning session. Our cohort consisted of healthy control subjects adhering to their 

normal sleep routine, who verbally indicated that they had not slept during the 

session, and our questionnaire data demonstrated no evidence of abnormal levels of 

daytime sleepiness (ESS score 4.93 ± 1.07, mean ± SD). In addition, their responses 

to the KSS indicated a good level of alertness immediately upon exiting the scanner 

(2.13 ± 0.21, mean ± SD, indicating a self-assessment of ‘very alert’, compared to a 

value of 6 indicating ‘some level of sleepiness’). Although subjective ratings cannot 

be taken as completely reliable, the available evidence is therefore supportive of our 

resting state data being composed at least predominantly of wakefulness, and as we 

have pointed out, the changes to FC that we have observed are consistent with 

those seen in response to explicit sleep deprivation. However, future studies would 

need to record EEG data concurrently with the fMRI to allow unambiguous sleep 

staging, and thereby address this issue. 

Our approach of investigating multiple ICNs and the interactions between them in 

relation to habitual variation in sleeping patterns has the potential to provide a more 
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detailed mechanistic explanation for why some cognitive functions are affected by 

sleep status, whereas others are not, as well as for the individual differences that are 

seen in the effects of sleep deprivation. It would also be interesting to address the 

issue of how differences in cumulative TST link with sleep debt. In this study, we did 

not record information about participants’ preferred amount of sleep, so we are not 

able to distinguish between those who achieved that amount versus those who did 

not. Future studies might examine whether the changes to FC in subjects who are 

not achieving their preferred amount of sleep are different to those who are, 

independently of how much sleep that represents.  

Overall, this study is the first to address the question of how interactions within and 

between the major ICNs are related to variations in habitual sleep durations. These 

effects are not global, but specific to certain connections between certain pairs of 

nodes. In particular, the MPFC node of the DMN has FC that is related to cTST, 

whereas connections between the DMN and SN are also associated with cTST. 

Future work will need to address the behavioural implications of these observations 

to determine whether they underlie the known cognitive and behavioural effects 

associated with short sleep durations.66  
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Figure caption: 
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ntrinsically connected network identification displayed on Montreal Neurological 

Institute standard brain scans. (A) Default mode network. (B) Salience network.
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Tables: 

 

 

 

 

 

                

Table 1 - MNI = Montreal Neurological Institute. 

Montreal Neurological Institute coordinates for the center voxel for each node/region 

of interest for the three networks investigated (default mode network, salience network, 

and central executive network). 

 

Regions of interest/nodes for all networks MNI coordinates(mm) 

 X (center) Y (center) Z (center) 

Posterior cingulate cortex (PCC) 0 -52 34 

Mesial prefrontal cortex (MPFC) 0 52 6 

Left inferior parietal cortex (LIPC) -52 -68 38 

Right inferior parietal cortex (RIPC) 52 -68 38 

Left mesial temporal  lobe (LMTL) -64 -10 -18 

Right mesial temporal  lobe (RMTL) 52 2 -30 

Left hippocampus (LHC) -28 -18 -14 

Right hippocampus (RHC) 26 -18 -14 

Right anterior insula (RAI) 

Left anterior insula (LAI) 

36 

-40 

24 

16 

2 

2 

Anterior cingulate cortex (ACC) 0 26 30 

Left dorsal lateral prefrontal cortex (LDLPFC) -42 34 24 

Right dorsal lateral prefrontal cortex (RDLPFC) 42 44 24 

Left inferior parietal lobule (LIPL) -54 -64 24 

Right inferior parietal lobule (RIPL) 56 -66 26 
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Table 2 - Summary data: 
Demographics, questionnaires, mean total habitual sleep 

time (TST), cumulative habitual total sleep time (cTST) over 

14 days.     

Demographics (n = 33)                      Mean              SD 
Age                                                       34.2               11.6 

Questionnaires     
Epworth 3.94 0.79 
Karolinska 1.16 0.41 
Fatigue 12.36 0.98 
PSQI 2.31 1.65 
Depression 1.58 2.74 
Anxiety 1.35 0.92 
Stress 3.61 2.73 
      
Actigraphy     
Mean TST (h) 7.65 1.85 
cTST (h) 97.57 13.52 

 
 
 
 
 
 

Table 3 - Significant results of the regression analysis between habitual 
cumulative total sleep time (dependent variable) and default mode network 
(mesial prefrontal cortex seed) intranetwork connectivity. 

Model B Std. Error ββββ    t P Corrected P Zero-order R 

(Constant) 103.33 5.63  18.33 < 0.01   

LIPC -41.83 35.80 -0.27 -1.16 0.25 0.40 0.11 

LMTL 27.67 34.59 0.17 0.80 0.43 0.57 0.37 

LHP -51.20 22.10 -0.69 -2.31 0.02+ 0.05* 0.30 

PCC 61.44 24.64 0.73 2.49 0.02+ 0.05* 0.46 

RIPC 13.21 25.31 0.13 0.52 0.60 0.64 0.48 

RMTL 82.22 28.68 0.56 2.86 <.01+ 0.05* 0.54 

RHP 19.44 41.33 0.11 0.47 0.64 0.64 0.26 

Age -0.34 0.18 -0.30 -1.81 0.08 0.16 -0.04 
     Model significance: R2 = 0.57, F = 4.25, P = < 0.01 (+significant uncorrected P < 0.05) 
    (
*
Significant false discovery rate corrected P < 0.05) 

 
LHP = Left hippocampus; LIPC =  left inferior parietal cortex; LMTL =  left mesial temporal  lobe; PCC 
= posterior cingulate cortex ; RHP = Right hippocampus   ; RIPC =   right inferior parietal cortex; 
RMTL =   right mesial temporal  lobe. 
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Table 4 - Significant results of the regression analysis between habitual 
cumulative total sleep time (dependent variable) and default mode network 
(mesial prefrontal cortex seed) internetwork connectivity with the salience 
network.     

 
Model B Std. error ββββ    t P Corrected P Zero-order R 

(Constant) 100.69 7.38  13.63 <0.01   

Age 0.09 0.17 0.08 0.55 0.58 0.58 -0.04 

ACC -21.55 26.36 -0.12 -0.81 0.42 0.56 -0.12 

LAI 36.62 22.52 0.25 1.62 0.11 0.31 0.11 

RAI -57.77 15.54 -0.59 -3.71 <.01+ <0.01
* 

-0.51 
     Model significance: R2 = 0.58, F = 3.76, P = 0.01 (+significant uncorrected P < 0.05) 
    (
*
Significant false discovery rate corrected P < 0.05) 

 
ACC = anterior cingulate cortex; LAI =  left anterior insula; RAI =  right anteriror insula. 
 
 

Table 5 - Significant regression analysis model between habitual cumulative 

total sleep time (dependent variable) and salience network (RAI seed) 

internetwork connectivity with the default mode network. On false discovery 

rate correction of the P values in the model the RAI-mesial prefrontal cortex 

functional connectivity association with cumulative total sleep time were found 

to be nonsignificant. 

Model B Std. error ββββ    t P Corrected P Zero-order R 

(Constant) 114.39 14.03  8.15 <0.01   

Age -0.49 0.35 -0.38 -1.38 0.18 0.46 -0.02 

LIPC 14.03 32.57 0.07 0.43 0.67 0.67 -0.09 

LMTL 27.62 42.04 0.18 0.65 0.51 0.58 0.50 

LHP -95.29 81.34 -0.25 -1.17 0.25 0.46 0.08 

MPFC -15.41 6.02 -0.61 -2.55 0.01+ 0.17 -0.47 

PCC 30.55 35.60 0.29 0.85 0.40 0.52 -0.25 

RIPC 20.84 24.88 0.27 0.83 0.41 0.52 0.30 

RMTL 51.27 44.16 0.31 1.16 0.25 0.46 0.30 

RHP 122.52 78.16 0.36 1.56 0.13 0.46 0.09 
     Model significance: R2 = 0.49, F = 2.25, P = 0.05 (+significant uncorrected P < 0.05) 
 
LHP = Left hippocampus ; LIPC =  left inferior parietal cortex; LMTL =  left mesial temporal lobe; 
MPFC =  mesial prefrontal cortex; PCC =  posterior cingulate cortex; RHP =  ; RIPC =  right inferior 
parietal cortex; RMTL =  right mesial temporal lobe.  
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