UNIVERSITY OF BIRMINGHAM

Research at Birmingham

Lack of Evidence for Regional Brain Volume or **Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis**

Klauser, Paul; Zhou, Juan; Lim, Joseph K W; Poh, Joann S; Zheng, Hui; Tng, Han Ying; Krishnan, Ranga; Lee, Jimmy; Keefe, Richard S E; Adcock, R Alison; Wood, Stephen; Fornito, Alex; Chee, Michael W L

DOI 10.1093/schbul/sbv012

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard): Klauser, P, Zhou, J, Lim, JKW, Poh, JS, Zheng, H, Tng, HY, Krishnan, R, Lee, J, Keefe, RSE, Adcock, RA, Wood, SJ, Fornito, A & Chee, MWL 2015, 'Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study', Schizophrenia bulletin. https://doi.org/10.1093/schbul/sbv012

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This is a pre-copyedited, author-produced PDF of an article accepted for publication in Schizophrenia Bulletin following peer review. The version of record 'Klauser, Paul, et al. "Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study." Schizophrenia bulletin (2015)' is available online at: http://dx.doi.org/10.1093/schbul/sbv012.

Checked October 2015

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Schizophrenia Bulletin

OXFORD

UNIVERSITY PRESS

Draft Manuscript for Review. Please review online at http://mc.manuscriptcentral.com/oup/szbltn

Lack of evidence for regional brain volume or cortical thickness abnormalities in youths at clinical high risk for psychosis: findings from the Longitudinal Youth at Risk Study (LYRIKS)

Journal:	Schizophrenia Bulletin
Manuscript ID:	SZBLTN-ART-14-0446.R2
Manuscript Type:	Regular Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Klauser, Paul; The University of Melbourne and Melbourne Health, Melbourne Neuropsychiatry Centre, Department of Psychiatry; Monash University, Monash Clinical and Imaging Neuroscience, School of Psychological Sciences & Monash Biomedical Imaging Zhou, Juan; Duke-National University of Singapore Graduate Medical School, Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program Lim, Joseph; Duke-National University of Singapore Graduate Medical School, Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program Poh, Joann S.; Duke-National University of Singapore Graduate Medical School, Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program Poh, Joann S.; Duke-National University of Singapore Graduate Medical School, Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program Zheng, Hui; Duke-National University of Singapore Graduate Medical School, Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program Tng, Han Ying; Duke-National University of Singapore Graduate Medical School, Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program Krishnan, Ranga; Duke-National University of Singapore Graduate Medical School, Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program Krishnan, Ranga; Duke-National University of Singapore Graduate Medical School, Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program Keseerch Division; Duke-National University of Singapore Graduate Medical School, Office of Clinical Sciences Keefe, Richard; Duke University, Department of Psychiatry and Behavioral Sciences Adcock, R. Alison; Duke University, Center for Cognitive Neuroscience Wood, Stephen; The University of Melbourne and Melbourne Health, Melbourne Neuropsychiatry Centre, Department of Psychiatry; University of Birmingham, School of Psychology Fornito, Alex; The University of Melbourne and Melbourne Health, Melbourne Neuropsychiatry Centre

University, Monash Clinical and Imaging Neuroscience, School of Psychological Sciences & Monash Biomedical Imaging Chee, Michael; Duke-National University of Singapore Graduate Medical School, Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program schizophrenia, early psychosis, magnetic resonance imaging, voxel-based Keywords: morphometry, surface-based morphometry **SCHOLARONE**[™] Manuscripts

	ARMS Subjects (SD)	Healthy Controls (SD)	Difference (<i>n</i> value)
Count	<u>(52)</u> 69	32	(p (uluc)
Age	21.52 (3.49)	22.97 (3.94)	0.07
Gender			0.15
Male %	68	53	
Female %	32	47	
Handedness			0.64
Right-handed %	84	91	
Left-handed %	7	3	
Ambidextrous %	9	6	
Ethnicity			0.13
Chinese %	67	56	
Malay %	23	16	
Indian %	6	19	
Other %	4	9	
Education			
PSLE	196.3 (47.75)	206.1 (31.34)	0.48
Baseline clinical scores			
CAARMS positive	16.33 (7.35)	-	
GRD %	30	-	
APS %	81	-	
BLIPS %	7	-	
CDSS	5.42 (4.61)	-	
BAI	20.74 (11.16)	-	
Comorbidities			
Depression and/or anxiety %	48	0	
Past history SUD			
Alcohol %	6	3	0.56
Illicit drug %	3	0	0.33
Brain volumes			
VBM - ICV (ml)	1502.18 (141.05)	1448.24 (118.67)	0.59
SBM - ICV (ml)	1465.61 (146.64)	1410.48 (152.81)	0.31
SBM - Total GM (ml)	685.71 (55.49)	663.55 (47.09)	0.79
SBM - Total WM (ml)	470.84 (52.12)	460.79 (47.80)	0.38
Hippocampi (ml)	8.73 (0.76)	8.72 (0.61)	0.09
Ventricles (ml)	14.91 (6.88)	12.60 (5.54)	0.22

2	1	Title
3 4 5	2	Lack of evidence for regional brain volume or cortical thickness abnormalities in youths at clinical
6 7	3	high risk for psychosis: findings from the Longitudinal Youth at Risk Study (LYRIKS).
8 9	4	
10 11 12	5	Running title
13 14	6	Volume and surface analysis in risk-for-psychosis
15 16	7	
17 18 19	8	Authors
20 21	9	Paul Klauser* ^{1,2} , MD., Ph.D.; Juan Zhou* ³ , Ph.D.; Joseph K.W. Lim ³ , B. Eng (Hons); Joann S.
22 23	10	Poh ³ B. Psych (Hons); Hui Zheng ³ , M. Eng.; Han Ying Tng ³ , B.Psych.(Hons); Ranga Krishnan ³ ,
24 25 26	11	M.B.Ch.B.; Jimmy Lee ^{4,5} , M.B.B.S, M.Med; Richard S.E. Keefe ⁶ , Ph.D.; R. Alison Adcock ^{6,7} ,
27 28	12	M.D., Ph.D.; Stephen J. Wood ^{1,8} , M.A., Ph.D.; Alex Fornito ^{1,2} , Ph.D., Michael W.L. Chee ³ ,
29 30	13	M.B.B.S., FRCP (Edin)
31 32	14	*Equal contribution
33 34 35	15	¹ Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and
36 37	16	Melbourne Health, Australia. ² Monash Clinical and Imaging Neuroscience, School of Psychological
38 39	17	Sciences & Monash Biomedical Imaging, Monash University, Clayton, Australia. ³ Center for
40 41	18	Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National
42 43 44	19	University of Singapore Graduate Medical School, Singapore. ⁴ Department of General Psychiatry 1
45 46	20	& Research Division, Institute of Mental Health, Singapore, ⁵ Office of Clinical Sciences, Duke-
47 48	21	National University of Singapore Graduate Medical School, Singapore. ⁶ Department of Psychiatry
49 50	22	and Behavioral Sciences, Duke University, Durham, NC, USA. ⁷ Center for Cognitive
51 52 52	23	Neuroscience, Duke University, Durham, NC, USA. ⁸ School of Psychology, University of
55 55	24	Birmingham, Edgbaston, UK.
56 57	25	
58 59 60	26	

Corresponding author

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
10	
19	
∠∪ 21	
21 22	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51	
52	
53	
55	
56	
57	
57	
50	
60	
50	

28	Dr. Juan Zhou, Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Program,
29	Duke-NUS Graduate Medical School, 8 College Road, #06-33, Singapore 169857, Singapore.
30	Phone: +65 66012392; fax: +65 6221 8625; email: <u>helen.zhou@duke-nus.edu.sg</u>
31	
32	Abstract word count
33	212
34	Text body, Acknowledgements and Legends word count
35	4'133
36	
37	
38	
39	

40 Abstract

There is cumulative evidence that young people in an "at risk mental state" (ARMS) for psychosis show structural brain abnormalities in fronto-limbic areas, comparable to, but less extensive than those reported in established schizophrenia. However, most available data come from ARMS samples from Australia, Europe and North America while large studies from other populations are missing. We conducted a structural brain magnetic resonance imaging (MRI) study from a relatively large sample of 69 ARMS individuals and 32 matched healthy controls recruited from Singapore as part of the Longitudinal Youth At-Risk Study (LYRIKS). We used two complementary approaches: a voxel-based morphometry (VBM) and a surface-based morphometry (SBM) analysis to extract regional gray and white matter volumes (GMV and WMV) and cortical thickness (CT). At the whole brain-level, we did not find any statistically significant difference between ARMS and healthy controls (HC) groups concerning total GMV and WMV or regional GMV, WMV and CT. The additional comparison of two regions of interest, hippocampal and ventricular volumes, did not return any significant difference either. Several characteristics of the LYRIKS sample like Asian origins or the absence of current illicit drug use could explain, alone or in conjunction the negative findings and suggest that there may be no dramatic volumetric or cortical thickness abnormalities in ARMS.

- 58 Keywords
- 59 magnetic resonance imaging
- 60 voxel-based morphometry
- 61 surface-based morphometry
- 62 early psychosis
- 63 schizophrenia

64 Introduction

Adolescents and young adults in the putative prodrome of psychotic illness – variously labeled as being at "ultra high risk" (UHR), "clinical high risk" (CHR), or in an "at risk mental state" (ARMS) – experience distressing sub-threshold psychotic symptoms and have a 30-43% risk of transition to psychosis over a 36 month-period ¹. These individuals are typically identified through clinical assessment of help-seeking individuals who present (i) attenuated or (ii) brief and intermittent psychotic symptoms, or (iii) a decrease in global functioning combined with a genetic risk for psychosis ^{2,3}.

Structural MRI brain studies have featured prominently in attempts to identify biomarkers of
ARMS. In general, this work has shown baseline grey matter volume (GMV) reductions in frontal,
temporal and limbic areas of ARMS individuals ⁴⁻¹⁰. Though the results of ARMS MRI research,
typically obtained in small samples, are heterogeneous and contradictory ^{11,12}, many of the
identified brain changes are similar to those seen in patients with established schizophrenia ^{13,14}.
Some GMV reductions, particularly in fronto-limbic areas, have been confirmed to be statistically
robust through meta-analysis ¹⁵ and multi-centre investigations ¹⁶.

In parallel to GMV findings, only four whole-brain studies compared cortical thickness between ARMS individuals and controls and their results were divergent. One study reported cortical thinning in several brain regions, including frontal, temporal and limbic areas ¹⁷ while three studies did not report any cortical thinning significant at the whole-brain level in a larger sample of ARMS individuals when compared at baseline with healthy controls (HC) ¹⁸⁻²⁰.

Fewer studies have investigated alterations of white matter volume (WMV) in ARMS but their findings are consistent with what has been reported for GMV. They reported smaller WMV in fronto-temporo-limbic areas ^{5,6,21} as well as a global reduction of WM growth over time ²² in ARMS compared to HC.

88 While baseline comparisons between ARMS and HC are useful for identifying putative
89 biomarkers of young people in need of care, the majority of ARMS individuals do not transition to

90	frank psychosis (ARMS-NT), spurring attempts to identify ARMS individuals at incipient risk of
91	psychosis onset (ARMS-T). At the whole-brain level, gray matter differences associated with
92	transition to psychosis have been localized in the same fronto-temporo-limbic regions that also
93	distinguish the overall ARMS group (regardless of transition) from HC ^{4,6,23,24} . More precisely,
94	baseline GMV reductions in ARMS-T when compared to ARMS-NT were especially consistent in
95	the fronto-insular and superior temporal regions ¹⁵ .
96	All these studies recruited ARMS samples from North America, Europe and Australia. There
97	are few structural brain MRI studies performed in ARMS samples from Asia and all were
98	conducted in small cohorts ^{17,25,26} . Nevertheless, establishing consistency across different ethnic
99	groups represents a critical step in the development of any putative biomarkers.
100	An additional advantage of such research in Asian countries is the very low prevalence of
101	cannabis and other drug use ²⁷ . Substance use is more frequent in patients with psychotic disorders
102	in Western countries ²⁸ and could be a problematic confound for ARMS research in Western
103	populations ^{29,30} . Substance use, and cannabis in particular, have been associated with structural
104	changes in at-risk populations ³¹⁻³⁴ .
105	We used both voxel-based (VBM) and surface-based (SBM) morphometry analyses to run a
106	comprehensive and not regionally biased whole-brain investigation of baseline GMV, WMV, and
107	cortical thickness (CT) alterations in a relatively large sample of 69 ARMS individuals with
108	minimum antipsychotics or substance use recruited from Singapore as part of the Longitudinal
109	Youth At-Risk Study (LYRIKS) ³⁵ . Given the good statistical power offered by our large sample
110	size, we hypothesized that we should reproduce some of the grey and white matter volume and
111	cortical thickness alterations in the frontal and temporal lobes as reported by previous whole-brain
112	studies.

113 Methods and Materials

Participants

Our sample comprised 75 ARMS subjects and 40 HC between 14 and 29 years old, matched for age, gender, handedness and educational level. The participants were part of the Longitudinal Youth At-Risk Study (LYRIKS), in Singapore. ARMS subjects were recruited from programs targeted at identifying individuals at-risk for developing psychosis run by the Institute of Mental Health, and from various community mental health agencies. Details of the recruitment strategy were previously reported ³⁶. In brief, we adopted an active approach of recruiting individuals from various psychiatric clinics and community mental health agencies, and a passive approach of self-referrals from print and social media advertisements. ARMS subjects met inclusion criteria for the prodromal state of schizophrenia in accordance to the comprehensive assessment of at-risk mental states (CAARMS)³. CAARMS assessments were performed by experienced psychometricians that were trained at ORYGEN in Melbourne. Inter-rater reliability was established and monthly supervisions were conducted throughout the study period to guarantee diagnostic validity. At-risk participants had no history of psychiatric, neurological or serious medical disorders, or mental retardation; and were not on antipsychotic medications. We excluded anyone with a current substance abuse as defined by the DSM-IV. Six AMRS subjects and 1 HC had a past history of substance use disorder (Table 1). 6 ARMS subjects and 8 HC were excluded from the original sample due to the use of a different T1-weighted structural MRI sequence (n=10) or the presence of gross structural abnormalities or movement artifacts (n=4). The demographics and clinical information of the remaining 69 ARMS and 32 HC are detailed in Table 1. Out of 69 ARMS subjects, 33 had a concomitant diagnostic of depression and/or anxiety and 37 were medicated with antidepressants, mostly selective serotonin reuptake inhibitor (SSRI, n=28), but also non-SSRI (n=7) or both SSRI and non-SSRI in association (n=2). During 28-month follow-up, 7 ARMS subjects converted to psychosis and 13 withdrew from the study, leaving a final sample of 56 ARMS-NT and 7 ARMS-T at baseline.

2

3
4
5
6
7
8
a
10
11
12
12
13
14
10
10
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 17
41 18
-10 /0
-+3 50
50
51
52 50
ວ ວ
54
55
56
57
58
59

139 Additional exclusion criteria for controls were: (i) history of severe head injury, (ii) personal 140 history of psychotic disorder, (iii) and personal history of other neuropsychiatric disorder. Controls 141 did not have any family history of neuropsychiatric disorders, except, three controls had a first-142 degree relative with a history of depression, two had a second-degree relative with history of 143 schizophrenia (n=1) or depression (n=1). In both the ARMS and HC groups, Primary School 144 Leaving Examination (PSLE) scores, which are the result of a standardized multidisciplinary test of 145 scholastic achievement, were used as a measure of educational level. Written informed consent was 146 provided by all participants aged 21 and above or from a legally acceptable representative for 147 participants under 21 with participant's assent. Ethics approval for this study was provided by the 148 National Healthcare Group's Domain Specific Review Board.

149

150 **Image acquisition**

151 T1-weighted structural MRI data were obtained from a 3T Siemens Trio Tim scanner 152 (Siemens, Erlangen, Germany) at the Center for Cognitive Neuroscience, Duke-NUS Graduate 153 Medical School, Singapore. The principal sequence relevant to this study was a T1-weighted 3-D 154 magnetization-prepared rapid-acquisition gradient echo (MPRAGE) sequence optimized for grey-155 white matter contrast. It was identical to that used by the Alzheimer's Disease Neuroimaging Initiative ADNI consortium 37 . Parameters were as follows: TR = 2300 ms, TE = 2.98 ms, TI = 900 156 157 ms, flip angle = 9° , BW = 240 Hz / pixel, FOV = 256×240 mm, Matrix = 256×240 ; resulting 158 voxel dimensions: $1.0 \times 1.0 \times 1.0$ mm, acquisition time 5 min 03 sec. Parallel imaging was used to 159 improve the signal-to-noise ratio instead of shortening the scan time. We obtained a single high-160 quality image instead of averaging two or more rapidly acquired images. Images were inspected for 161 motion artifact at the time of acquisition and scanning was repeated as necessary. Images were 162 reviewed for any gross pathological findings.

163

60

164 Voxel-based morphometry

2	
2	
3	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
20	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
00	
39	
40	
41	
42	
12	
43	
44	
45	
46	
17	
40	
48	
49	
50	
51	
50	
ວ∠ =	
53	
54	
55	
50	
00	
57	
58	
59	
60	
111	

165	Every scan was visually checked to exclude the presence of artifacts or gross anatomical
166	abnormalities that could impact image pre-processing. Voxelwise analyses of brain GMV and
167	WMV differences were conducted using the DARTEL (Diffeomorphic Anatomical Registration
168	Through Exponentiated Lie Algebra) procedure ³⁸ implemented in SPM8
169	(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) running under MATLAB 2009b
170	(http://www.mathworks.com.au/products/matlab/). Briefly, each participant's T1-weighted
171	anatomical scan was segmented into distinct tissue compartments (i.e. GMV and WMV) and
172	spatially normalized via a non-linear algorithm using a unified procedure ³⁸ . A study-specific
173	template was then generated by normalizing each participant's segmented grey or white matter
174	image to a common space. Native-space grey or white matter images were then spatially normalized
175	to this template. Jacobian modulation of voxel intensities was employed to preserve grey or white
176	matter volumes. The images were smoothed with an 8 mm full-width-half-maximum Gaussian
177	kernel prior to statistical analysis.
178	The General Linear Model (GLM) was used to test for group differences in volume at each
179	voxel, as implemented in Randomise (http://fsl.fmrib.ox.ac.uk). All results were corrected for
180	multiple comparison type I error with a non-parametric cluster-size based procedure ^{39,40} . A voxel-

181 wise threshold was initially set to 0.001 to compromise between sensitivity to spatially extended vs.

182 focal and intense differences. Then, a cluster-size threshold was calculated via permutation testing

183 (10,000 permutations). We compared baseline GMV and WMV between ARMS group and HC

184 group, while covarying for age, gender, intracranial volume (ICV), handedness and ethnicity.

185

186 Surface-based morphometry

187 The semi-automated cortical thickness measurements were performed using FreeSurfer v5.1.0
188 (http://surfer.nmr.mgh.harvard.edu/; Martinos Imaging Centre, Charlestown MA), as described by
189 Dale, Fishl and colleagues ^{41,42}.

190	The white (i.e., gray-white matter boundary) and pial (gray-cerebrospinal fluid boundary)
191	surfaces were visually inspected and edited, where necessary, using standard procedures
192	(http://surfer.nmr.mgh.harvard.edu/fswiki/Edits), blind to diagnostic status. Surfaces for each
193	participant were registered to a study specific template and smoothed using a Gaussian kernel of 25
194	mm prior to group analysis.
195	We used a GLM implemented in Freesurfer to estimate group differences in cortical thickness
196	at each vertex of the cerebral surface while controlling for the effect of age, gender, handedness,
197	and ethnicity. Right and left hemispheres were tested separately. False Discovery Rate (FDR) p <
198	0.05 was used for multiple comparison correction.
199	
200	Volume-of-interests measurements
201	We derived five volume-of-interests measurements from the Freesurfer analysis: total
202	intracranial volume (ICV), total GMV, total WMV, hippocampal volume, and ventricular volume.
203	ICV was calculated using a validated method described elsewhere ⁴³ . Total ventricular volume was
204	defined as the total volume of lateral ventricles, third ventricle, fourth ventricle, and fifth ventricle.
205	Statistical analyses were performed with the Statistical Package for the Social Sciences,
206	version 21 (SPSS 21.0, IBM Corp. Armonk, NY, USA). Differences in cerebral volume were tested
207	using one-way analysis of covariance (ANCOVA) with age, gender, handedness, ethnicity, and ICV
208	as covariates.
209	
210	
	9
	 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

2 3	211	Results
4 5	212	Demographics and volume-of-interest differences
6 7	213	There was no group difference in sociodemographics (age, gender, handedness, ethnicity, and
8 9 10	214	educational level) or past history of substance use disorder (Table 1). No group difference in
10 11 12	215	intracranial volume (ICV), total GMV, total WMV, hippocampal volume or ventricular volume
13 14	216	between ARMS and HC was observed (Table 1).
15 16	217	
17 18 10	218	GMV and WMV differences between ARMS subjects and healthy controls
19 20 21	219	We found no regional GMV or WMV differences between ARMS and HC (i.e., voxel-wise
22 23	220	clustering-forming threshold of p<0.001 and p < 0.05 corrected at the cluster level). Lowering the
24 25	221	initial voxel-wise cluster-forming threshold to $p < 0.01$ did not return significant group differences
26 27	222	either ($p < 0.05$ corrected at the cluster level).
28 29 30	223	At a voxel-wise threshold of $p < 0.001$ and $k > 10$ voxels (uncorrected at the cluster level), we
31 32	224	found one cluster of increased GMV on the right precentral gyrus ($k = 88$ voxels, t peak = 3.64,
33 34	225	MNI = 4, 9, 44) and a second cluster of decreased GMV on the right frontal inferior gyrus (k = 17)
35 36	226	voxels, t peak = 3.58, MNI = 46, 15, 21) in ARMS when compared to HC.
37 38 30	227	
40 41	228	Cortical thickness differences between ARMS subjects and healthy controls
42 43	229	We found no regional cortical thickness differences between ARMS and HC at $p < 0.05$ (FDR
44 45	230	corrected). At a voxel-wise cluster-forming threshold of $p < 0.001$ (uncorrected at the cluster level)
46 47 48	231	we found one cluster of increased cortical thickness on the right frontal pole in ARMS when
40 49 50	232	compared to HC ($k = 230$ vertices, t peak = 3.78, MNI = 21, 69, -2).
51 52	233	
53 54	234	Conversion to psychosis
55 56	235	We found no significant difference between HC and ARMS-T, or between ARMS-T and
57 58 59 60	236	ARMS-NT concerning GMV, WMV, cortical thickness or VOI analyses based on the same set of 10

1

2

thresholds. For the VBM analysis, lowering the initial voxel-wise cluster-forming threshold to p <

To investigate structural differences that could be related to anxio-depressive disorders and

0.01 (p < 0.05 corrected at the cluster level) did not return significant group differences either.

that affect a large proportion of AMRS individuals, we compared GMV, WMV, CT and VOI

between ARMS with a concomitant diagnostic of depression and/or anxiety (n = 33) and ARMS

without (n = 36). We found no significant differences. An additional comparison of GMV, WMV,

CT, and VOI between ARMS individuals with antidepressant (n = 37) and those without (n = 32)

Comorbid depression and anxiety disorders.

3	220
4 5	238
6 7	239
8 9	240
10 11	241
12 13	242
14 15 16	243
17 18	244
19 20	245
21 22	246
23 24	247
25 26 27	
28	
29 30	
31 32	
33 34	
35 36	
30 37	
38 39	
40 41	
42	
43 44	
45 46	
47 48	
49	
50 51	
52 53	
54 55	
56	
57 58	
59 60	

46 found no significant difference either.
47

Discussion

Although there is evidence for the involvement of frontal, temporal and limbic areas in ARMS for psychosis, the sample size of previous studies is often modest and findings mainly concern ARMS samples from Western countries. In this study, we examined brain structural changes in a large sample of 69 ARMS subjects recruited in Singapore, and for which potential biases introduced by drug use, including antipsychotics and cannabis, were well controlled. Comparison of regional GMV, WMV, and CT as well as ventricular and hippocampal volumes between ARMS individuals and HC revealed no significant differences. The further analysis of the same structures between ARMS-T and ARMS-NT as well as between ARMS-T and HC did not return any positive result either.

Regional reductions of GMV in ARMS subjects are the most common findings in wholebrain VBM studies ^{15,44}. Only 3 whole-brain VBM studies reported negative findings but their ARMS sample was either unusually young (12-18 years old) 20,22 or small (n=14) 26 . Concerning CT, only one previous study ¹⁸ used the same preprocessing technique (Freesurfer), while three others ^{17,19,20} used a different algorithm: CLASP ⁴⁵ or voxel-based cortical thickness ⁴⁶. Their findings were divergent, reporting either extended ¹⁷ or no CT differences at the whole-brain level ¹⁸⁻²⁰ in ARMS subjects when compared to HC at baseline. Our results are consistent with the absence of cross-sectional difference between ARMS subject and HC at the whole-brain level reported by the three largest studies ^{18,19,22}. Additional comparison of hippocampal volumes between ARMS and HC showed no significant difference as well. Reduced hippocampal volume is a frequent finding from region-of-interest studies in ARMS samples ⁴⁷⁻⁵¹ and has been shown to be statistically significant at the whole-brain level in one VBM study⁴, although some inconsistences have also been reported ^{52,53}. The higher sensitivity of manual tracing methods to detect volumetric changes in medial temporal structures could explain our inability to replicate hippocampal volume reduction often reported by manually traced region-of-interest studies in ARMS samples. However,

Schizophrenia Bulletin. For Peer Review Only

Freesurfer automated segmentation performance has been shown to produce volumetric data that were very close to those obtained with the "gold standard" manual tracing method 54 . The sensitivity of our analyses did not improve when specifically comparing ARMS-T with HC or ARMS-NT. However, these additional group comparisons were clearly underpowered due to the small number of subject in the ARMS-T group (n = 7). A recent well powered study has also reported the absence of structural abnormalities in ARMS-T when compared to ARMS-NT at the whole brain level ¹⁹. There was lack of evidence on the structural differences between ARMS-T and ARMS-NT or HC at the baseline.

The absence of relationship between clinical high-risk status (regardless of later transition or non-transition to psychosis) and brain structure might be attributed to unique characteristics of LYRIKS. Understanding the local pathways to care for the ARMS subjects is an important area of work, and efforts are currently underway. In a previous publication, we found that LYRIKS sample, was comparable to other samples from the UK or Australia concerning social and clinical profiles ³⁵. Accordingly, clinical characteristics reported in Table 1 (i.e., CAARMS ratings, grouping and comorbidities) are also comparable to those from OASIS and PACE samples ⁵⁵, although the rate of conversion to psychosis (i.e., 10% at 28-month) is probably among the lowest reported ¹. However, ethnicity differences might be contributing to the negative findings as most participants in the LYRIKS sample have Asian origins. Another interesting difference could be the relative lack of drug use, including cannabis and/or antipsychotics in our sample. Half the ARMS individuals were pharmacologically treated for depression and/or anxiety and both the medication and the affective disorder could potentially impact brain structure. Last, the relatively conservative whole-brain approach could explain divergences with other region-of-interest studies. These four points are developed below.

Ethnicity

It is widely recognized that the expression of psychotic symptoms varies among ethnic groups ^{56,57}. Although these disparities seem more related to psychosocial inequalities than to ancestry differences ⁵⁸, it raised the idea that ethnical differences could be instructive regarding the pathogenesis of schizophrenia ⁵⁹. Accordingly, a structural MRI study reported an effect of ethnicity on gray-matter findings following a first episode of psychosis ⁶⁰. These neuroimaging findings should be interpreted with caution regarding the modest sample size and the abundance of possible confounds, nevertheless, they suggest that some neuroanatomical features of psychosis could be specific to the ethnic group under investigation. In general, it is not very likely that our negative findings are attributable to the ethnical characteristics of our sample alone. Nevertheless, a different genetic background may modify the susceptibility of the brain to different etiological factors ⁶¹ and could impact the neuroanatomical correlates of the pathophysiological process. Drugs Singapore has the second lowest annual prevalence of cannabis-use worldwide (0.005 in 2006)⁶² and no participant in our sample reported current illicit drug use. While most neuroimaging studies in ARMS excluded subjects with current and/or past substance abuse and/or dependence regarding the DSM or the International Classification of Diseases (ICD), they possibly included cannabis users as long as they did not fulfill the criteria for abuse of dependence. Only few studies specified the proportion of cannabis users in their sample but the reported rate can be as high as 35 % for current use 9,63 and up to 70% for a history of cannabis use 10 . In these previous studies, the prevalence of cannabis use did not statistically differ between ARMS subjects and controls, suggesting that neuroimaging findings were not driven by cannabis use only. Nevertheless, this does not exclude the possibility that cannabis use could act as a risk-modifying factor by interacting with other risk factors like genetics and have more dramatic consequences in the group of ARMS than in healthy controls ^{64,65}. Accordingly, three recent studies in early psychosis have shown that the amount of grey matter loss in the cingulate cortex was either positively correlated with

Page 17 of 28

324

1

cannabis-use ^{34,66} or restricted to cannabis-users only ⁶⁷. Moreover, the hippocampus is rich in

2	
3	
1	
-	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
71 10	
40	
49	
50	
51	
52	
53	
54	
55	
50	
30	
5/	
58	
59	

60

336

325	endocannabinoid receptors and hippocampal volume reduction has been strongly associated with
326	cannabis use in a recent meta-analysis ⁶⁸ , suggesting that the absence of hippocampal atrophy in our
327	sample may be partly related to the relative lack of cannabis use.
328	Antipsychotics are another potential confounding factor because they have been shown to
329	alter GMV in schizophrenia after both continued ⁶⁹ and short-term treatment ⁷⁰ administration. In
330	this study, we can exclude the potential influence of antipsychotic treatment on our results as only 3
331	subjects received a very small dose (< 15mg week of haloperidol equivalent). However, the absence
332	of antipsychotic use is unlikely to explain our negative findings, given the results of a recent meta-
333	analysis indicating an effect of antipsychotics on GMV in the opposite direction (i.e., antipsychotics
334	reverse the GMV reductions associated with a greater risk of transition to psychosis) ¹⁵ .
335	

Affective comorbidity

337 Approximately half of ARMS individuals in our sample had a comorbid depressive and/or anxious disorder, a proportion that is comparable with other ARMS samples ⁵⁵. Disentangling 338 339 emerging psychosis with concomitant mood disturbances from depression or anxiety with 340 attenuated psychotic symptoms is challenging from both a clinical and neuroanatomical point of 341 view. Similarly to psychosis, affective disorders may also show neuroanatomical features within medial prefrontal and medial temporal structures ⁷¹ and this could represent an important source of 342 343 confound for neurostructural findings in ARMS. Accordingly, a recent study showed that comorbid 344 depression and anxiety may contribute to GMV reduction in the anterior cingulate cortex in ARMS ⁷². In our sample, we did not find any effect of comorbid depression and/or anxiety or 345 346 antidepressant treatment on regional GMV, WMV, CT or VOI. However, we cannot exclude that antidepressant treatment may have interfered with the natural course of ARMS individuals ^{73,74}. 347 348 349 Whole-brain analysis

Schizophrenia Bulletin. For Peer Review Only

 Page 18 of 28

350	We made the initial choice of a whole-brain analysis because it is a common and well
351	accepted statistical approach for both VBM and SBM analyses. Moreover, in the context of an
352	excess of significance in the neuroimaging literature ^{75,76} , the whole-brain approach limits the risk
353	of publication bias toward positive findings that is thought to be partially responsible for the lack of
354	reliable biomarkers in psychiatry despite intense research in neuroimaging ⁷⁷ . Indeed, region-of-
355	interest studies are directed towards regions that can be easily anatomically delimited or regions of
356	theoretical importance, which intrinsically depend on results from previous studies, thereby
357	inflating the risk of confirmation bias. We completed the initial whole-brain approach with the
358	individual analysis of two VOIs (i.e. ventricles and hippocampus) that are commonly implicated
359	among structural findings in psychosis but are the best assessed individually, using volumetric
360	information from the subcortical segmentation in Freesurfer. Instead of running additional region-
361	of-interest analyses in the hypothesized fronto-temporal and limbic regions, we examined the group
362	difference using $p < 0.001$ uncorrected, at the voxel or the vertex level for both the VBM and SBM
363	analyses respectively. In the context of the literature, neither the direction of the trend (i.e.,
364	increased GMV or CT), nor the location of the clusters (i.e. precentral gyrus, frontal pole) advocate
365	in favor of true differences between ARMS and HC. For inclusion of these data in a meta-analysis,
366	GMV, WMV or CT for a specific region are available on request to the corresponding author (J.Z).
367	Our results might also be limited by the cross-sectional design of the study. Cannon and
368	colleagues have recently reported greater GM loss over time in several frontal areas of ARMS-T
369	when compared to ARMS-NT or HC, although they observed no CT differences between all 3
370	groups when compared cross-sectionally at baseline ¹⁸ .
371	Last, our analysis was limited to anatomical changes in gray and white matter segments. Two
372	functional MRI studies in the same ARMS sample have previously reported alterations in task-
373	based activations ⁷⁸ as well as abnormalities in functional-connectivity at rest ⁷⁹ when compared to
374	HC. This suggests that, in our sample, (1) there might be very little structural change in ARMS or
375	(2) VBM and SBM analyses may not be sensitive to detect subtle structural differences. Functional

http://www.schizophreniabulletin.oupjournals.org

1 2	376	or diffusion MRI studies might reveal more insights on the pathophysiology changes in youths at
3 4 5	377	high clinical risk for psychosis.
5 6 7	378	
8 9	379	Conclusion
10 11	380	Taken together, this comprehensive cross-sectional analysis of regional volumes and cortical
12 13	381	thickness was conducted in a relatively large sample of ARMS subjects, mainly free of possibly
14 15 16	382	important confounds including antipsychotic medication and substance abuse. Only few whole
17 18	383	brain studies have examined brain structural changes in an ARMS sample of comparable size,
19 20	384	particularly in Asian populations ⁸⁰ . We found no evidence of regional GMV, WMV or CT
21 22	385	differences between ARMS and HC, ARMS-T and HC or ARMS-T and ARMS-NT at baseline.
23 24 25	386	The small number of ARMS transitioning to psychosis and the absence of longitudinal analysis of
25 26 27	387	brain changes over-time are clear limitations, especially in light of recent findings suggesting
28 29	388	progressive structural changes in ARMS despite the absence of baseline differences with HC ¹⁸ .
30 31	389	Nevertheless, our negative findings suggest that there may be no dramatic alterations of regional
32 33	390	brain volumes or cortical thickness in ARMS when the incidence of possible confounds is limited.
34 35 26	391	
30 37		
38 39		
40		
41		
42		
43		
45		
46		
47		
48		
49		
50 51		
52		
53		
54		
55		
56		
57		
58		
59 60		
00		4

392 Funding

- 393 The Singapore Translational and Clinical Research in Psychosis was supported by the National
- 394 Research Foundation Singapore under the National Medical Research Council Translational and
- 395 Clinical Research Flagship Program (Grant No.: NMRC/TCR/003/2008).
- 396 This study was also supported by Duke-NUS Graduate Medical School Signature Research
- 397 Program funded by Ministry of Health, Singapore.
- 398 Paul Klauser was supported by the Swiss National Science Foundation (ID 139872).

400 Acknowledgements

401 We thank the research staff involved in recruiting and assessing the participants in this study.

1 2 2	402	Ref	erences
3 4 5	403	1.	Fusar-Poli P, Bonoldi I, Yung AR et al. Predicting psychosis: meta-analysis of transition
6 7	404		outcomes in individuals at high clinical risk. Arch Gen Psychiatry 2012; 69:220-229.
8 9	405	2.	Miller TJ, McGlashan TH, Rosen JL et al. Prodromal assessment with the structured interview
10 11	406		for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater
12 13 14	407		reliability, and training to reliability. Schizophr Bull 2003; 29:703-715.
15 16	408	3.	Yung AR, Yuen HP, McGorry PD et al. Mapping the onset of psychosis: the Comprehensive
17 18	409		Assessment of At-Risk Mental States. Aust NZJ Psychiatry 2005; 39:964-971.
19 20	410	4.	Borgwardt SJ, Riecher-Rossler A, Dazzan P et al. Regional gray matter volume abnormalities
21 22 22	411		in the at risk mental state. Biol Psychiatry 2007; 61:1148-1156.
23 24 25	412	5.	Meisenzahl EM, Koutsouleris N, Gaser C et al. Structural brain alterations in subjects at high-
26 27	413		risk of psychosis: a voxel-based morphometric study. Schizophr Res 2008; 102:150-162.
28 29	414	6.	Koutsouleris N, Schmitt GJ, Gaser C et al. Neuroanatomical correlates of different
30 31	415		vulnerability states for psychosis and their clinical outcomes. Br J Psychiatry 2009; 195:218-
32 33 34	416		226.
35 36	417	7.	Fusar-Poli P, Broome MR, Woolley JB et al. Altered brain function directly related to
37 38	418		structural abnormalities in people at ultra high risk of psychosis: longitudinal VBM-fMRI
39 40	419		study. J Psychiatr Res 2011; 45:190-198.
41 42	420	8.	Fusar-Poli P, Crossley N, Woolley J et al. Gray matter alterations related to P300
43 44 45	421		abnormalities in subjects at high risk for psychosis: longitudinal MRI-EEG study. Neuroimage
46 47	422		2011; 55:320-328.
48 49	423	9.	Smieskova R, Allen P, Simon A et al. Different duration of at-risk mental state associated
50 51	424		with neurofunctional abnormalities. A multimodal imaging study. Hum Brain Mapp 2012;
52 53	425		33:2281-2294.
54 55 56	426	10.	Stone JM, Day F, Tsagaraki H et al. Glutamate dysfunction in people with prodromal
57 58	427		symptoms of psychosis: relationship to gray matter volume. Biol Psychiatry 2009; 66:533-
59 60			10

1 2	428		539.
3 4 5	429	11.	Wood SJ, Pantelis C, Velakoulis D, Yucel M, Fornito A, & McGorry PD. Progressive changes
5 6 7	430		in the development toward schizophrenia: studies in subjects at increased symptomatic risk.
, 8 9	431		Schizophr Bull 2008; 34:322-329.
$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 33\\ 34\\ 536\\ 37\\ 38\\ 90\\ 41\\ 42\\ 20\\ 33\\ 34\\ 56\\ 37\\ 38\\ 90\\ 41\\ 22\\ 33\\ 34\\ 56\\ 37\\ 38\\ 39\\ 40\\ 41\\ 22\\ 33\\ 34\\ 56\\ 37\\ 38\\ 39\\ 40\\ 41\\ 22\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 22\\ 32\\ 36\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 22\\ 32\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36$	432	12.	Pantelis C, Yucel M, Bora E et al. Neurobiological markers of illness onset in psychosis and
	433		schizophrenia: The search for a moving target. Neuropsychol Rev 2009; 19:385-398.
	434	13.	Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, & Bullmore E. The anatomy of first-
	435		episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J
	436		Psychiatry 2008; 165:1015-1023.
	437	14.	Fornito A, Yucel M, Patti J, Wood SJ, & Pantelis C. Mapping grey matter reductions in
	438		schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry
	439		studies. Schizophr Res 2009; 108:104-113.
	440	15.	Fusar-Poli P, Borgwardt S, Crescini A et al. Neuroanatomy of vulnerability to psychosis: a
	441		voxel-based meta-analysis. Neurosci Biobehav Rev 2011; 35:1175-1185.
	442	16.	Mechelli A, Riecher-Rossler A, Meisenzahl EM et al. Neuroanatomical abnormalities that
	443		predate the onset of psychosis: a multicenter study. Arch Gen Psychiatry 2011; 68:489-495.
	444	17.	Jung WH, Kim JS, Jang JH et al. Cortical thickness reduction in individuals at ultra-high-risk
	445		for psychosis. Schizophr Bull 2011; 37:839-849.
	446	18.	Cannon TD, Chung Y, He G et al. Progressive Reduction in Cortical Thickness as Psychosis
43 44 45	447		Develops: A Multisite Longitudinal Neuroimaging Study of Youth at Elevated Clinical Risk.
46 47	448		Biol Psychiatry 2015; 77:147-157.
48 49 50 51	449	19.	Tognin S, Riecher-Rossler A, Meisenzahl EM et al. Reduced parahippocampal cortical
	450		thickness in subjects at ultra-high risk for psychosis. Psychol Med 2014; 44:489-498.
52 53	451	20.	Ziermans TB, Durston S, Sprong M et al. No evidence for structural brain changes in young
54 55 56	452		adolescents at ultra high risk for psychosis. Schizophr Res 2009; 112:1-6.
57 58	453	21.	Koutsouleris N, Gaser C, Patschurek-Kliche K et al. Multivariate patterns of brain-cognition
59 60			20

1 2	454		associations relating to vulnerability and clinical outcome in the at-risk mental states for
3 4 5 6 7 8 9 10 11	455		psychosis. Hum Brain Mapp 2012; 33:2104-2124.
	456	22.	Ziermans TB, Schothorst PF, Schnack HG et al. Progressive structural brain changes during
	457		development of psychosis. Schizophr Bull 2012; 38:519-530.
	458	23.	Dazzan P, Soulsby B, Mechelli A et al. Volumetric Abnormalities Predating the Onset of
12 13	459		Schizophrenia and Affective Psychoses: An MRI Study in Subjects at Ultrahigh Risk of
14 15 16	460		Psychosis. Schizophr Bull 2012; 38:1083-1091.
17 18	461	24.	Pantelis C, Velakoulis D, McGorry PD et al. Neuroanatomical abnormalities before and after
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	462		onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 2003;
	463		361:281-288.
	464	25.	Jung WH, Jang JH, Shin NY et al. Regional Brain Atrophy and Functional Disconnection in
	465		Broca's Area in Individuals at Ultra-High Risk for Psychosis and Schizophrenia. PLoS One
	466		2012; 7:e51975.
	467	26.	Nakamura K, Takahashi T, Nemoto K et al. Gray Matter Changes in Subjects at High Risk for
	468		Developing Psychosis and First-Episode Schizophrenia: A Voxel-Based Structural MRI
35 36	469		Study. Front Psychiatry 2013; 4:16.
36 37 38 39 40	470	27.	Dargan PI, & Wood DM. Recreational drug use in the Asia Pacific region: improvement in
	471		our understanding of the problem through the UNODC programmes. J Med Toxicol 2012;
41 42 42	472		8:295-299.
43 44 45	473	28.	Koskinen J, Lohonen J, Koponen H, Isohanni M, & Miettunen J. Rate of cannabis use
46 47	474		disorders in clinical samples of patients with schizophrenia: a meta-analysis. Schizophr Bull
48 49	475		2010; 36:1115-1130.
50 51	476	29.	Malchow B, Hasan A, Fusar-Poli P, Schmitt A, Falkai P, & Wobrock T. Cannabis abuse and
52 53 54	477		brain morphology in schizophrenia: a review of the available evidence. Eur Arch Psychiatry
55 56	478		<i>Clin Neurosci</i> 2013; 263:3-13.
57 58	479	30.	Rapp C, Bugra H, Riecher-Rossler A, Tamagni C, & Borgwardt S. Effects of cannabis use on
59 60			21

Schizophrenia Bulletin. For Peer Review Only

1

2	480		human brain structure in psychosis: a systematic review combining in vivo structural
3 4 5	481		neuroimaging and post mortem studies. Curr Pharm Des 2012; 18:5070-5080.
5 6 7	482	31.	Habets P, Marcelis M, Gronenschild E, Drukker M, & van Os J. Reduced cortical thickness as
, 8 9	483		an outcome of differential sensitivity to environmental risks in schizophrenia. Biol Psychiatry
10 11	484		2011; 69:487-494.
12 13	485	32.	Welch KA, McIntosh AM, Job DE et al. The impact of substance use on brain structure in
14 15	486		people at high risk of developing schizophrenia. Schizophr Bull 2011; 37:1066-1076.
16 17 18	487	33.	Welch KA, Stanfield AC, McIntosh AM et al. Impact of cannabis use on thalamic volume in
19 20	488		people at familial high risk of schizophrenia. Br J Psychiatry 2011; 199:386-390.
21 22	489	34.	Rapp C, Walter A, Studerus E et al. Cannabis use and brain structural alterations of the
23 24	490		cingulate cortex in early psychosis. Psychiatry Res 2013;
25 26	491	35.	Lee J, Rekhi G, Mitter N et al. The Longitudinal Youth at Risk Study (LYRIKS)an Asian
27 28 20	492		UHR perspective. Schizophr Res 2013; 151:279-283.
29 30 31	493	36.	Mitter N, Nah GQ, Bong YL, Lee J, & Chong SA. Longitudinal Youth-At-Risk Study
32 33	494		(LYRIKS): outreach strategies based on a community-engaged framework. Early Interv
34 35	495		Psychiatry 2014; 8:298-303.
36 37	496	37.	Jack CR, Bernstein MA, Fox NC et al. The Alzheimer's disease neuroimaging initiative
38 39 40	497		(ADNI): MRI methods. Journal of Magnetic Resonance Imaging 2008; 27:685-691.
40 41 42	498	38.	Ashburner J. A fast diffeomorphic image registration algorithm. <i>Neuroimage</i> 2007: 38:95-
43 44	499		113.
45 46	500	39	Friston KI Worsley KI Frackowiak RSI Mazziotta IC & Evans AC Assessing the
47 48	500	57.	significance of focal activations using their spatial extent Human Brain Manning Hum Brain
49 50	502		Mann 1003. 1.210 220
51 52 52	502	40	Nichols TE & Holmes AD Nonparametric permutation tests for functional neuroimaging: a
53 54 55	503	40.	neimon with examples. <i>Hum Prain Mann</i> 2002: 15:1-25
56 57	504	41	primer with examples. <i>Hum Brain Mapp</i> 2002; 15:1-25.
58 59 60	303	41.	Date Aivi, Fischi B, & Sereno IVII. Cortical surface-based analysis. I. Segmentation and

2	506		surface reconstruction. Neuroimage 1999; 9:179-194.
3 4 5 6 7 8 9	507	42.	Fischl B, Sereno MI, & Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and
	508		a surface-based coordinate system. Neuroimage 1999; 9:195-207.
	509	43.	Buckner RL, Head D, Parker J et al. A unified approach for morphometric and functional data
10 11	510		analysis in young, old, and demented adults using automated atlas-based head size
12 13	511		normalization: reliability and validation against manual measurement of total intracranial
14 15 16	512		volume. Neuroimage 2004; 23:724-738.
17 18	513	44.	Fusar-Poli P, Radua J, McGuire P, & Borgwardt S. Neuroanatomical Maps of Psychosis
19 20	514		Onset: Voxel-wise Meta-Analysis of Antipsychotic-Naive VBM Studies. Schizophr Bull
21 22	515		2012; 38:1297-1307.
23 24 25	516	45.	Lee JK, Lee JM, Kim JS, Kim IY, Evans AC, & Kim SI. A novel quantitative cross-validation
25 26 27 28 29 30 31 32 33 34	517		of different cortical surface reconstruction algorithms using MRI phantom. Neuroimage 2006;
	518		31:572-584.
	519	46.	Hutton C, De Vita E, Ashburner J, Deichmann R, & Turner R. Voxel-based cortical thickness
	520		measurements in MRI. Neuroimage 2008; 40:1701-1710.
35 36	521	47.	Hurlemann R, Jessen F, Wagner M et al. Interrelated neuropsychological and anatomical
37 38	522		evidence of hippocampal pathology in the at-risk mental state. Psychol Med 2008; 38:843-
39 40	523		851.
41 42	524	48.	Phillips LJ, Velakoulis D, Pantelis C et al. Non-reduction in hippocampal volume is
43 44 45	525		associated with higher risk of psychosis. Schizophr Res 2002; 58:145-158.
46 47	526	49.	Witthaus H, Mendes U, Brune M et al. Hippocampal subdivision and amygdalar volumes in
47 48 49	527		patients in an at-risk mental state for schizophrenia. J Psychiatry Neurosci 2010; 35:33-40.
50 51	528	50.	Wood SJ, Yucel M, Velakoulis D et al. Hippocampal and anterior cingulate morphology in
52 53 54	529		subjects at ultra-high-risk for psychosis: the role of family history of psychotic illness.
55 56	530		Schizophr Res 2005; 75:295-301.
57 58	531	51.	Wood SJ, Kennedy D, Phillips LJ et al. Hippocampal pathology in individuals at ultra-high
59 60			

Schizophrenia Bulletin. For Peer Review Only

1

2	532		risk for psychosis: a multi-modal magnetic resonance study. Neuroimage 2010; 52:62-68.
3 4 5	533	52.	Buehlmann E, Berger GE, Aston J et al. Hippocampus abnormalities in at risk mental states
5 6 7	534		for psychosis? A cross-sectional high resolution region of interest magnetic resonance
8 9	535		imaging study. J Psychiatr Res 2010; 44:447-453.
10 11	536	53.	Velakoulis D, Wood SJ, Wong MT et al. Hippocampal and amygdala volumes according to
12 13	537		psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia,
14 15 16	538		first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 2006; 63:139-
17 18	539		149.
19 20	540	54.	Morey RA, Petty CM, Xu Y et al. A comparison of automated segmentation and manual
21 22	541		tracing for quantifying hippocampal and amygdala volumes. Neuroimage 2009; 45:855-866.
23 24 25	542	55.	Fusar-Poli P, Nelson B, Valmaggia L, Yung AR, & McGuire PK. Comorbid Depressive and
25 26 27	543		Anxiety Disorders in 509 Individuals With an At-Risk Mental State: Impact on
28 29	544		Psychopathology and Transition to Psychosis. Schizophr Bull 2014; 40:120-131.
30 31	545	56.	Bresnahan M, Begg MD, Brown A et al. Race and risk of schizophrenia in a US birth cohort:
32 33	546		another example of health disparity? Int J Epidemiol 2007; 36:751-758.
34 35 36	547	57.	Fearon P, Kirkbride JB, Morgan C et al. Incidence of schizophrenia and other psychoses in
37 38	548		ethnic minority groups: results from the MRC AESOP Study. Psychol Med 2006; 36:1541-
39 40	549		1550.
41 42	550	58.	Hjern A, Wicks S, & Dalman C. Social adversity contributes to high morbidity in psychoses
43 44 45	551		in immigrantsa national cohort study in two generations of Swedish residents. Psychol Med
45 46 47	552		2004; 34:1025-1033.
48 49	553	59.	Cohen CI, & Marino L. Racial and ethnic differences in the prevalence of psychotic
50 51	554		symptoms in the general population. Psychiatr Serv 2013; 64:1103-1109.
52 53	555	60.	Morgan KD, Dazzan P, Morgan C et al. Differing patterns of brain structural abnormalities
54 55 56	556		between black and white patients with their first episode of psychosis. Psychol Med 2010;
57 58	557		40:1137-1147.
59 60			

Page 27 of 28

1			
2	558	61.	Ajnakina O, Borges S, Di Forti M et al. Role of Environmental Confounding in the
4 5	559		Association between FKBP5 and First-Episode Psychosis. Front Psychiatry 2014; 5:84.
6 7	560	62.	UNODC. World Drug Report 2008. 2008;
8 9	561	63.	Smieskova R, Fusar-Poli P, Aston J et al. Insular volume abnormalities associated with
10 11	562		different transition probabilities to psychosis. Psychol Med 2012; 42:1613-1625.
12 13	563	64.	Caspi A, Moffitt TE, Cannon M et al. Moderation of the effect of adolescent-onset cannabis
14 15	564		use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase
10 17 18	565		gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry 2005;
19 20	566		57:1117-1127.
21 22	567	65.	Di Forti M, Iyegbe C, Sallis H et al. Confirmation that the AKT1 (rs2494732) genotype
23 24	568		influences the risk of psychosis in cannabis users. Biol Psychiatry 2012; 72:811-816.
25 26 27	569	66.	Rais M, van Haren NE, Cahn W et al. Cannabis use and progressive cortical thickness loss in
27 28 29	570		areas rich in CB1 receptors during the first five years of schizophrenia. Eur
30 31	571		Neuropsychopharmacol 2010; 20:855-865.
32 33	572	67.	Szeszko PR, Robinson DG, Sevy S et al. Anterior cingulate grey-matter deficits and cannabis
34 35	573		use in first-episode schizophrenia. Br J Psychiatry 2007; 190:230-236.
36 37 28	574	68.	Rocchetti M, Crescini A, Borgwardt S et al. Is cannabis neurotoxic for the healthy brain? A
39 40	575		meta-analytical review of structural brain alterations in non-psychotic users. Psychiatry Clin
41 42	576		Neurosci 2013; 67:483-492.
43 44	577	69.	Ho BC, Andreasen NC, Ziebell S, Pierson R, & Magnotta V. Long-term antipsychotic
45 46	578		treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen
47 48 49	579		Psychiatry 2011; 68:128-137.
50 51	580	70.	Girgis RR, Diwadkar VA, Nutche JJ, Sweeney JA, Keshavan MS, & Hardan AY. Risperidone
52 53	581		in first-episode psychosis: a longitudinal, exploratory voxel-based morphometric study.
54 55	582		Schizophr Res 2006; 82:89-94.
56 57 58	583	71.	Klauser P, Fornito A, Lorenzetti V et al. Cortico-limbic network abnormalities in individuals
59 60			
			25

1 2	584		with current and past major depressive disorder. Journal of Affective Disorders 2015; 173:45-
3 4 5	585		52.
6 7	586	72.	Modinos G, Allen P, Frascarelli M et al. Are we really mapping psychosis risk?
8 9	587		Neuroanatomical signature of affective disorders in subjects at ultra high risk. Psychol Med
10 11	588		2014; 1-11.
12 13	589	73.	Fusar-Poli P, Valmaggia L, & McGuire P. Can antidepressants prevent psychosis? Lancet
14 15 16	590		2007; 370:1746-1748.
17 18	591	74.	Cornblatt BA, Lencz T, Smith CW et al. Can antidepressants be used to treat the
19 20	592		schizophrenia prodrome? Results of a prospective, naturalistic treatment study of adolescents.
21 22	593		J Clin Psychiatry 2007; 68:546-557.
23 24 25	594	75.	Ioannidis JP. Excess significance bias in the literature on brain volume abnormalities. Arch
25 26 27	595		Gen Psychiatry 2011; 68:773-780.
28 29	596	76.	Fusar-Poli P, Radua J, Frascarelli M et al. Evidence of reporting biases in voxel-based
30 31	597		morphometry (VBM) studies of psychiatric and neurological disorders. Hum Brain Mapp
32 33	598		2014; 35:3052-3065.
34 35 36	599	77.	Borgwardt S, Radua J, Mechelli A, & Fusar-Poli P. Why are psychiatric imaging methods
37 38	600		clinically unreliable? Conclusions and practical guidelines for authors, editors and reviewers.
39 40	601		Behav Brain Funct 2012; 8:46.
41 42	602	78.	Yaakub SN, Dorairaj K, Poh JS et al. Preserved working memory and altered brain activation
43 44 45	603		in persons at risk for psychosis. Am J Psychiatry 2013; 170:1297-1307.
45 46 47	604	79.	Dandash O, Fornito A, Lee J et al. Altered Striatal Functional Connectivity in Subjects With
48 49	605		an At-Risk Mental State for Psychosis. Schizophr Bull 2014; 40:904-913.
50 51	606	80.	Jung WH, Borgwardt S, Fusar-Poli P, & Kwon JS. Gray matter volumetric abnormalities
52 53	607		associated with the onset of psychosis. Front Psychiatry 2012; 3:101.
54 55 56	608		
57 58			
59 60			

2	609
4 5	610
6 7	611
8 9	612
10 11 12	613
12 13 14	614
15 16	615
17 18	616
19 20 21	617
21 22 23	618
24 25	619
26 27	620
28 29 30 31 32 33 4 5 36 37 39 40 41 42 43 44 50 51 52 53 54 55 56 57 58 59	621

⁴ 610 **Table 1. Demographic, clinical and anatomical characteristics of participants**

611 APS, attenuated psychotic symptoms; BAI, Beck anxiety inventory; BLIPS, brief limited

612 intermittent psychotic symptoms; CAARMS, comprehensive assessment of at-risk mental

613 states; CDSS, Calgary depression scale for schizophrenia; GRD, genetic risk and

614 deterioration syndrome; GM, grey matter; ICV, intracranial volume; PSLE, primary school

- 615 leaving examination; SBM, surface-based morphometry; SUD, substance use disorder;
- 616 VBM, voxel-based morphometry; WM, white matter; Percentages were rounded to the
- 617 nearest integer. All ARMS and control subjects belong to the three major ethnicities in
- 618 Singapore (Chinese, Malay and Indian), except two ARMS (Javanese and Eurasian) and two
- 619 controls (Javanese and Israeli).

Figure legends