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The probability of connectivity in a hyperbolic model of

complex networks

Michel Bode∗ Nikolaos Fountoulakis∗ Tobias Müller†

January 8, 2016

Abstract

We consider a model for complex networks that was introduced by Krioukov et al. [11].
In this model, N points are chosen randomly inside a disk on the hyperbolic plane accord-
ing to a distorted version of the uniform distribution and any two of them are joined by
an edge if they are within a certain hyperbolic distance. This model exhibits a power-law
degree sequence, small distances and high clustering. The model is controlled by two
parameters α and ν where, roughly speaking, α controls the exponent of the power-law
and ν controls the average degree.

In this paper we focus on the probability that the graph is connected. We show
the following results. For α > 1

2 and ν arbitrary, the graph is disconnected with high
probability. For α < 1

2 and ν arbitrary, the graph is connected with high probability.
When α = 1

2 and ν is fixed then the probability of being connected tends to a constant
f(ν) that depends only on ν, in a continuous manner. Curiously, f(ν) = 1 for ν ≥ π while
it is strictly increasing, and in particular bounded away from zero and one, for 0 < ν < π.

1 Introduction

In this paper we will study a random graph model that was introduced recently by Krioukov
et al. in [11]. The aim of that work was the development of a geometric framework for
the analysis of properties of the so-called complex networks. This term summarizes a large
class of networks that emerge in a range of human activities which includes social networks,
scientific collaborator networks as well as computer networks, such as the Internet, and the
power grid – see for example [1]. These are networks that consist of a very large number
of heterogeneous nodes (nowadays social networks such as the Facebook or the Twitter have
billions of users), and they are locally sparse. This means that the number of neighbours of
a typical node (also called the degree of the node) is much smaller than the total number of
nodes in the network. However, this is not the case for all nodes. In fact, there are nodes
that have a number of neighbours that is much larger than that of a typical node. These
are the hubs of the network and in fact most of the typical nodes are within a small distance
from them, keeping the distance between most pairs of nodes small. This phenomenon has
come to be known as the small world effect. The existence of hubs is made possible by the
distribution of the degrees. Measurements on several examples of networks suggest that this
follows a power law – see [1] and the references therein. That is, the fraction of nodes of
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degree k scales like k−γ , where γ is the exponent of the power law and in most cases this has
been measured to be less than 3.

The basic hypothesis of Krioukov et al. [11] is that hyperbolic geometry underlies these
networks. In particular, the power law degree distribution is in fact the expression of an
underlying hyperbolic geometry. They defined an associated random graph model, which we
will describe in detail shortly, and analysed some of its typical properties. More specifically,
they observed a power law degree sequence as well as clustering properties. These character-
istics were later verified rigorously by Gugelmann et al. [6] as well as by the second author [5]
and Candellero and the second author [3] (the last work is on a different, but closely related
model).

In a companion paper [2] we study the largest component of the random graph model
introduced by Krioukov et al. [11]. In this work, we will focus on the probability that the
graph is connected.

1.1 The Krioukov-Papadopoulos-Kitsak-Vahdat-Boguñá model

We start by recalling some facts about the hyperbolic plane H. The hyperbolic plane is an
unbounded surface of constant negative curvature −1. There are several ways to represent
it in two dimensions, including the half-plane model, the Beltrami-Klein disk model and the
Poincaré disk model. In the Poincaré disk model, we equip the unit disk D := {(x, y) ∈
R2 : x2 + y2 < 1} with the metric determined1 by the differential form ds2 = 4 dx2+dy2

(1−x2−y2)2 .

A readable introduction to hyperbolic geometry can for instance be found in the book of
Stillwell [13]. In this paper we find it helpful to draw pictures in the native model of H. This
is obtained from the Poincaré disk model by multiplying each point (x, y) ∈ D by a scalar
that equals the ratio of the distance to the origin in the hyperbolic metric, over the distance
to the origin in the euclidean metric (in the case of the origin itself we define this ratio to
equal one). In other words, the native model is obtained from the Poincaré disk model via

the map p 7→ 2 tanh−1(‖p‖)
‖p‖ p. This produces a model of H that fills all of R2. It lacks many

of the properties that make the classical models of H elegant to work with, but it does allow
us to see more detail in visualizations of the graph model we are about to introduce. To the
best of our knowledge the native model was first introduced by Krioukov et al. [11].

Basic facts about H that we will rely on heavily in the paper are that in H a disk of radius
r (i.e. the set of points at hyperbolic distance at most r to a given point) has area equal to
2π(cosh(r) − 1) and circumference length equal to 2π sinh(r). Another important fact that
we will rely on in the paper is the hyperbolic cosine rule. It states that if A,B,C are distinct
points on the hyperbolic plane, and we denote by a the distance between B,C, by b the
distance between A,C, by c the distance between A,B and by γ the angle (at C) between
the shortest AC- and BC-paths, then cosh(c) = cosh(a) cosh(b)− cos(γ) sinh(a) sinh(b).

We are now ready to introduce the model we will be studying in this paper. We call it the
Krioukov-Papadopoulos-Kitsak-Vahdat-Boguñá-model, after its inventors. For convenience
we will abbreviate this to KPKVB-model throughout the rest of the paper. The model has
three parameters: the number of vertices N , which we think of as large, and α, ν > 0 which
we think of as fixed. Given N, ν, α, we compute R := 2 log(N/ν). We now select N points
independently at random from the disk of radius R centred at the origin O, which we denote
by DR, according to the following probability distribution. If the random point u has polar

1This means that the length of a curve γ : [0, 1]→ D is given by 2
∫ 1

0

√
(γ′1(t))

2+(γ′2(t))
2

1−γ21 (t)−γ
2
1 (t)

dt.
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coordinates (r, θ), then θ, r are independent, θ is uniformly distributed in (0, 2π] and the
cumulative distribution function of r is given by:

Fα,R(r) =


0 if r < 0,

cosh(αr)−1
cosh(αR)−1 if 0 ≤ r ≤ R,

1 if r > R

(1)

Note that when α = 1, then this is simply the uniform distribution on DR.
An alternative way to view this distribution is as follows. It can be seen that the above

probability distribution corresponds precisely to the polar coordinates of a point taken uni-
formly at random from the disk of radius R around the origin in the hyperbolic plane of
curvature2 −α2. (We however treat these points as points of the ordinary hyperbolic plane.)
The set of N points we have thus obtained will be the vertex set of our random graph and
we denote it by VN . The KPKVB-random graph, denoted G(N ;α, ν), is formed when we
join each pair of vertices, if and only if they are within (hyperbolic) distance R. Note this
is precisely the radius of the disk DR that the points live on. Figure 1 shows an example of
such a random graph on N = 1000 vertices.

Figure 1: Simulation of the KPKVB-model with N = 1000, α = .51, ν = .2, depicted in the
native model of the hyperbolic plane.

We should also mention that later in their paper, Krioukov et al. [11] in fact also defined
a generalisation of this model (the model we study in this paper corresponds to the zero-
temperature version of that one).

2That is the natural analogue of the hyperbolic plane, in which the Gaussian curvature equals −α2 at every
point. One way to obtain (a model of) the the hyperbolic plane of curvature −α2 is to multiply the differential
form in the Poincaré disk model by a factor 1/α2.
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Let us remark that edge-set of G(N ;α, ν) is decreasing in α and increasing in ν in the
following precise sense. We remind the reader that a coupling of two random objects X,Y is
a common probability space for a pair of objects (X ′, Y ′) whose marginal distributions satisfy
X ′=d X,Y ′=d Y .

Lemma 1.1 ([2]) Let α, α′, ν, ν ′ > 0 be such that α ≥ α′ and ν ≤ ν ′. For every N ∈ N,
there exists a coupling such that G(N ;α, ν) is a subgraph of G(N ;α′, ν ′).

The proof can be found in our companion paper [2] on the largest component of the KPKVB-
model.

We mention that Krioukov et al. in fact had an additional parameter in their definition of
the model. However, it turns out that this parameter is obsolete in the following sense. Every
probability distribution (on labelled graphs) that is defined by some choice of parameters in
the model with one extra parameter coincides with the probability distribution G(N ;α, ν) for
some N,α, ν. See [2] (Lemma 1.1) for more details.

Krioukov et al. [11] focus on the degree distribution of G(N ;α, ν), showing that when
α > 1

2 this follows a power law with exponent 2α + 1. They also discuss clustering on a
smooth version of the above model. Their results have been verified rigorously by Gugelmann
et al. [6]. Note that when α = 1, that is, when the N vertices are uniformly distributed in
DR, the exponent of the power law is equal to 3. When 1

2 < α < 1, the exponent is between
2 and 3, as is the case in a number of networks that emerge in applications such as computer
networks, social networks and biological networks (see for example [1]). When α = 1

2 then the
exponent becomes equal to 2. This case has recently emerged in theoretical cosmology [10].
In a quantum-gravitational setting, networks between space-time events are considered where
two events are connected (in a graph-theoretic sense) if they are causally connected, that is,
one is located in the light cone of the other. The analysis of Krioukov et al. [10] indicates
that the tail of the degree distribution follows a power law with exponent 2.

As observed by Krioukov et al. [11] and rigorously proved by Gugelmann et al. [6], the
average degree of the random graph can be “tuned” through the parameter ν : for α > 1

2 ,
the average degree tends to 2α2ν/π(α− 1

2)2. Also, recently Kiwi and Mitsche [9] showed that
for α < 1 the diameter is polylogarithmic in N .

1.2 The probability that G(N ;α, ν) is connected

This paper focuses on the connectivity of G(N ;α, ν). A straightforward consequence of the
results on the degree sequence [6], is that the graph is a.a.s. disconnected whenever α > 1

2
(since there will then be vertices of degree zero). Here and in the rest of the paper, the
abbreviation a.a.s. stands for asymptotically almost surely, meaning “with probability tending
to one as N tends to infinity”. As we will show here, the probability that the graph is
connected becomes bounded away from zero exactly when α crosses 1

2 . Let us also remark
that the case α ≤ 1

2 is a “dense” regime in the sense that the average degree of G(N ;α, ν) is
no longer constant, but grows with N . The main result of our paper is as follows.

Theorem 1.2 Let α, ν > 0 be arbitrary. Then the following hold

(i) If α > 1
2 then G(N ;α, ν) is a.a.s. disconnected;

(ii) If α < 1
2 then G(N ;α, ν) is a.a.s. connected.
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(iii) If α = 1
2 then

lim
N→∞

P(G(N ;α, ν) is connected ) = f(ν),

where f : (0,∞)→ (0, 1] is a continuous function satisfying (a) f(ν) = 1 for all ν ≥ π;
(b) f(ν) is strictly increasing for 0 < ν < π; and (c) lim

ν↓0
f(ν) = 0.

This result highlights a strikingly different behaviour from all the other random graph
models in the literature as far as we are aware, due the curious behaviour in part (iii). When
α = 1/2 then the limiting probability of connectedness is bounded away from zero and one
for all 0 < ν < π, while it equals one for ν ≥ π.

We also remark that, as we will see in the proof, unlike in the cases of the binomial
random graph and Gilbert random graph (or random geometric graph), the probability of
being connected is not simply governed by the presence of isolated vertices. In these two well-
studied models, isolated vertices are in a sense that can be made precise the “last obstructions
to connectivity”. In contrast, in the KPKVB model the probability of being connected is
governed by the presence or absence of a small “covering set”. That is, a group of points C
near the center of DR with the property that every point of DR is within distance R of some
point of C.

Overview of the proof and the structure of the paper

In the next section, we spell out the short proofs of parts (i) and (ii) of Theorem 1.2. As
mentioned earlier, part (i) follows directly from one of the main results in [6]. It turns out
that when α ≤ 1/2 the probability that the graph is connected can be well approximated
by the probability that there exists a set of points with small radii such that all of the disk
DR is covered by the disks of radius R around each of the points. We will call such a set of
points a cover. In the case when α < 1/2 it is relatively easy to show that a cover exists with
probability 1 − o(1). In the case when α = 1/2 determining the probability of the existence
of a cover is much more involved. It turns out that this probability can be described in terms
of a time-inhomogeneous branching process with infinitely many types.

In the next section we give the quick derivations of parts (i) and (ii) of Theorem 1.2.
In Section 3, we review and extend some classical results on multitype branching processes
that will be needed in the sequel. In Section 4, we describe an auxiliary random process that
will help us to derive expressions for the probability of the graph being connected in the case
when α = 1/2. Finally, in Section 5, we derive part (iii) of Theorem 1.2 from the results in
Section 4.

2 Proof of Theorem 1.2: parts (i) and (ii)

Part (i) is a direct corollary of Theorem 2.2 in [6], since this theorem implies that when α > 1
2

there are isolated vertices a.a.s.
For Part (ii) of Theorem 1.2 we argue as follows. Let us fix an arbitrary ν > 0 and

0 < α < 1
2 . We partition the disk of radius one around the origin into eight equal slices

Si := {(r, θ) : 0 ≤ r ≤ 1, (i− 1)π/4 ≤ θ ≤ iπ/4}, i = 1, . . . , 8. Now we let E denote the event
that each Si contains at least one point. See Figure 2 for a depiction of the event E. Note
that we have
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P(E) ≥ 1− 8 ·
(

1− cosh(α)−1
8(cosh(αR)−1)

)N
≥ 1− 8 exp

[
−N · cosh(α)−1

8(cosh(αR)−1)

]
≥ 1− exp[−Ω(e(1/2−α)R)]
= 1− o(1),

where the asymptotics are as N → ∞ (and hence also R → ∞). In the third line we have
used that N = νeR/2 and cosh(αR) ∼ 1

2e
αR as N →∞.

Figure 2: The event E, depicted in the native model of the hyperbolic plane. The shaded
area shows the disk of radius R around the point on the right.

It remains to show that the event E implies that the graph is connected. To see this,
suppose that E holds and let u = (r, θ) ∈ DR be arbitrary. Then there is a point v = (r′, θ′) ∈
VN with |θ′ − θ| ≤ π/4. Let us write u′ := (R, θ) and v′ := (1, θ′). Now observe that

cosh(1) cosh(R)− cos(|θ′ − θ|) sinh(1) sinh(R) ≤ cosh(1) cosh(R)− cos(π/4) sinh(1) sinh(R)

∼
(
(12 −

1
4

√
2)e+ (12 + 1

4

√
2)e−1

)
cosh(R),

where we used that coshR ∼ sinhR as R → ∞ in the last line. Since (12 −
1
4

√
2)e + (12 +

1
4

√
2)e−1 < 1, it follows from the hyperbolic cosine rule that distH(u′, v′) ≤ R provided that

N is sufficiently large. We now need the following geometric fact, a proof of which can be
found in our companion paper [2].

Lemma 2.1 [[2], Lemma B.1] Suppose that p′ = (r′, θ), q′ = (s′, ϑ) are two points in the
hyperbolic plane satisfying distH(p′, O),distH(q′, O), distH(p′, q′) ≤ R and let p = (r, θ), q =
(s, ϑ) with r ≤ r′, s ≤ s′. Then distH(p, q) ≤ R.
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In our case, this last lemma gives that also distH(u, v) ≤ R, provided N is sufficiently large.
As u ∈ DR was arbitrary, it follows that – when N is sufficiently large – the event E implies
that every point of DR is within distance R of a point of V ∩B(0, 1). Hence, if E holds then
the graph is certainly connected – in fact it will have diameter at most three.

This shows that when 0 < α < 1
2 and ν > 0 the graph is a.a.s. connected as claimed in

part (ii) of Theorem 1.2. We now proceed with the proof of part (iii).

3 Multitype Galton-Watson processes

In preparation for the proof of part (iii) of Theorem 1.2, we will review and adapt a classical
result on Galton-Watson branching processes with finitely many types. If there are t < ∞
types, then such a process is described by a sequence Z0, Z1, . . . of random vectors, where
Zn := (Z1

n, . . . , Z
t
n) denotes the vector of the number of particles (individuals) of each type

in the n-th generation. In each generation, each of the particles replaces itself with a random
set of “children”, independently of all other particles and the previous history of the process
and according to a probability distribution that does not depend on the generation (but it
typically does depend on the type of the particle). We denote

p(i; z1, . . . , zt) := P(Z1 = (z1, . . . , zt)|Z0 = ei).

Here and in the rest of the paper ei denotes the i-th standard basis vector, i.e. the vector
with a one in the i-th coordinate and zeroes everywhere else. That is, p(i; z1, . . . , zt) is the
probability that a particle of type i fathers z1 children of type 1, z2 children of type of type
2, and so on until type t. We will say that “extinction” occurs if Zn = (0, . . . , 0) for some n.
Otherwise we say “survival” occurs.

We also set

mij := E(Zj1 |Z0 = ei).

That is, mij is equal to the expected number of children of type j of a particle of type i; and
we write M := (mij)1≤i,j≤t for the “matrix of first moments”. Let us also remark that, for

every k ∈ N and 1 ≤ i, j ≤ t we have (Mk)ij = E(Zjk|Z0 = ei) (the expected number of type-j
particles in the k-th generation if we start with a single particle of type i). We say that the
process is positive regular if there exists a k ∈ N such that every entry of Mk is positive. By
the Perron-Frobenius theorem a positive regular matrix has a real, positive eigenvalue ρ that
is larger in absolute value than all other eigenvalues (see for instance [7], Chapter II, Section
5, page 37). A multitype Galton-Watson process is called singular if each particle has exactly
one child (with probability one). Otherwise it is nonsingular.

A proof of the following standard result can for instance be found in the book by Harris [7]
(Theorem 7.1, Chapter II, page 41), who attributes it to Sevast’yanov [12] and independently
Everett and Ulam [4].

Theorem 3.1 Consider a positive regular, non-singular multitype Galton-Watson process
with finitely many types, and let ρ denote the largest eigenvalue of its first moment matrix
M . Then the following hold:

(i) If ρ ≤ 1 then P(extinction|Z0 = ei) = 1 for all types 1 ≤ i ≤ t;

(ii) If ρ > 1 then P(extinction|Z0 = ei) < 1 for all types 1 ≤ i ≤ t.

7



If Z0, Z1, . . . is as in Theorem 3.1 and ρ is the largest eigenvalue of M then we say the
process is subcritical if ρ < 1, we say it is critical if ρ = 1 and we say it is supercritical if ρ > 1.

The following straightforward observation will be used in the sequel. For completeness we
spell out a short proof.

Lemma 3.2 Suppose that Z0, Z1, . . . is a positive regular, nonsingular, supercritical Galton
Watson process with t < ∞ types. Then there exists another t-type Galton-Watson process
Y0, Y1, . . . such that

(i) pY (i; z1, . . . , zt) = 0 if pZ(i; z1, . . . , zt) = 0;

(ii) pY (i; z1, . . . , zt) < pZ(i; z1, . . . , zt) if pZ(i; z1, . . . , zt) > 0 and (z1, . . . , zt) 6= (0, . . . , 0);

and Y is positive regular, nonsingular and supercritical.

Proof: Let us fix a 0 < δ < 1, to be made specific later, and let us define the offspring
distributions of Y by:

pY (i; z1, . . . , zt) =

{
(1− δ) · pZ(i; z1, . . . , zt) if (z1, . . . , zt) 6= (0, . . . , 0),

pZ(i; 0, . . . , 0) + δ · (1− pZ(i; 0, . . . , 0)) if (z1, . . . , zt) = (0, . . . , 0).
.

It is easy to see that this way Y is nonsingular and that mY
ij = (1 − δ)mZ

ij . So in particular
Y is also positive regular, and the largest eigenvalue of its first moment matrix satisfies
ρY = (1− δ)ρZ . Hence we can choose δ so that ρY > 1, in which case Y is as required. �

Let us say that a Galton-Watson process Z0, Z1, . . . stochastically dominates a process
Y0, Y1, . . . if there is a coupling such that Zin ≥ Y i

n for all n ∈ N and all types i. (Note that
if the two processes do not have the same number of types then we can formally add types
to the one with fewer types and redefine the offspring distributions in such a way that no
particle ever gives birth to a child of the new types.) It is for instance easily seen that the
process Y from the previous lemma is stochastically dominated by the original process Z.

We say that explosion occurs, if the total number of particles grows without bounds. In
other words,

{explosion} =
{

lim
n→∞

(
Z1
n + · · ·+ Ztn

)
=∞

}
.

If Z0, Z1, . . . is as in Theorem 3.1 above, then Theorem 6.1 on page 39 of [7] states that
for every vector z = (z1, . . . , zt) other than the all-zero vector there are only finitely many
generations n for which Zn = z (with probability one). This has the following immediate
corollary.

Theorem 3.3 If Z0, Z1, . . . is a positve regular, nonsingular multitype Galton-Watson pro-
cess with finitely many types, then

P(extinction|Z0 = z) + P(explosion|Z0 = z) = 1,

for every initial state z.
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It is natural to also consider multitype Galton-Watson processes with countably many
types. In this case the state of the i-th generation is of course a random vector Zi =
(Z1

i , Z
2
i , . . . ) of countably many nonnegative numbers. We define p(i; z1, z2, . . . ) and mij

analogously to the case of finitely many types. For t ∈ N, the t-restriction of a Galton-
Watson process Z0, Z1, . . . with countably many types is the t-type Galton-Watson process
Y0, Y1, . . . with offspring distributions given by:

pY (i; z1, . . . , zt) :=

{
pZ(i; z1, . . . , zt, 0, 0, . . . ) if (z1, . . . , zt) 6= (0, . . . , 0),

1−
∑

(z1,...,zt)6=(0,...,0) pY (i; z1, . . . , zt) if (z1, . . . , zt) = (0, . . . , 0).

That is, the probability that a particle of type i in the Y process of a z1 children of type 1,
z2 children of type 2 and so on up to type t, is the probability the a particle of type i under
the Z process has exactly these children and none of type bigger than t. We can think of the
t-restricted process as a version of the old process where a particle and its potential children
die during labour if at least one of the potential children has a type > t.

Observe that the original process stochastically dominates the t-restricted process.

Lemma 3.4 Suppose Z0, Z1, . . . is a multitype Galton-Watson process with countably many
types, that satisfies the following conditions:

(i) There exists a c > 1 such that, for every i ∈ N, we have
∑∞

j=1 j ·mij ≥ c · i;

(ii) For every i ∈ N and j ≤ 2i we have mij > 0;

(iii) Whenever p(i; z1, z2, . . . ) > 0 we have
∑∞

j=1 j · zj ≤ 2i. (for every i ∈ N, z1, z2, · · · ≥ 0);

(iv) We have

lim
i→∞

∑
z1,z2,···≥0,

zi+1+zi+2+···>0

p(i; z1, z2, . . . ) = 0.

(That is, the probability that a particle of type i has at least one child of a strictly larger
type is small for large i.)

Then there exists a t ∈ N such that the t-restricted process is positive regular, nonsingular
and supercritical.

Proof: Observe that, by condition (ii), the t-restricted process is positive regular and non-
singular for every t ≥ 1. Let ε > 0 be arbitrary, to be determined later. By condition (iv),
there exists a t0 such that the probability that a particle of type i ≥ t0 has a child of type
greater than i amongst its children is at most ε. That is:∑

z1,z2,···≥0,
zi+1+zi+2+···>0

p(i; z1, z2, . . . ) < ε (for all i ≥ t0).

We now set t := 2t0. Then we have that∑
z1,z2,···≥0,

zt+1+zt+2+···>0

p(i; z1, z2, . . . ) = 0 if i < t0,
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by condition (iii) of the lemma. And, if t0 ≤ i ≤ t then we have:∑
z1,z2,···≥0,

zt+1+zt+2+···>0

p(i; z1, z2, . . . ) ≤
∑

z1,z2,···≥0,
zi+1+zi+2+···>0

p(i; z1, z2, . . . ) < ε. (2)

Let M = (mij)i,j≥1 denote the matrix of first moments of the original process, and let
M ′ = (m′ij)1≤i,j≤t denote that of the t-restricted process. We have that, for every 1 ≤ i ≤ t:

t∑
j=1

j ·m′ij ≥
∞∑
j=1

j ·mij − ε · 2i ≥ (c− 2ε)i,

using conditions (i), (iii) of the lemma and (2). Thus, if we chose ε small enough so that
c′ := c − 2ε > 1, then we see that if v := (1, 2, . . . , t) then (M ′)kv ≥ (c′)kv coordinatewise.
Since (c′)k grows without bounds, it follows that M ′ must have an eigenvalue that is strictly
larger than one in absolute value. So in particular (invoking Perron-Frobenius) the eigenvalue
of largest absolute value is a real number strictly larger than one. This concludes the proof
of the lemma. �

In a time-inhomogeneous multitype Galton-Watson process, the offspring distibutions de-
pend on n, the generation. We now denote by pn(i; z1, z2, . . . ) := P(Zn+1 = (z1, z2, . . . )|Zn =
ei) the probability that a particle of type i, in generation n, fathers exactly zj children of
type j (for j = 1, 2, . . . ).

Lemma 3.5 Suppose that Z0, Z1, . . . is a time-inhomogeneous multi-type Galton-Watson pro-
cess with countably many types such that the limits

lim
n→∞

pn(i; z1, z2, . . . ) =: p(i; z1, z2, . . . ),

exist for all i ∈ N and z1, z2, · · · ≥ 0. Suppose further that the limits p belong to a (time-
homogeneous) multitype Galton-Watson process satisfying the conditions of Lemma 3.4. Then

lim inf
n→∞

P(explosion|Zn = e1) > 0.

Proof: Let Z ′0, Z
′
1, . . . denote the Galton-Watson process belonging to the limiting probabili-

ties p(i; z1, z2, . . . ) and let us pick t according to Lemma 3.4 with respect to Z ′. Let Y0, Y1, . . .
denote the t-restricted process.

Let X0, X1, . . . denote a process that Lemma 3.2 provides if we apply it to Y0, Y1, . . . .
Let I := {(z1, . . . , zt) 6= (0, . . . , 0) : pX(i; z1, . . . , zt) > 0}. Observe that I is finite, so that
there is an n such that pn+m(i; z1, . . . , zt, 0, 0, . . . ) ≥ pX(i; z1, . . . , zt), for all m ≥ 0 and all
(z1, . . . , zt) ∈ I. This means that Zn, Zn+1, . . . stochastically dominates X0, X1, . . . , if we
condition on Zn = X0 = e1. So in particular:

lim inf
n→∞

P(Z explodes|Zn = e1) ≥ P(X explodes|X0 = e1) > 0.

This concludes the proof of the lemma. �
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4 An auxiliary coverage process

In this section, we consider an auxiliary random process that is closely related to the KPKVB
random graph with α = 1/2. In the rest of the paper, P = Pν will be a Poisson process on
the entire hyperbolic plane with intensity function:

g
(
r, θ
)

= gν
(
r, θ
)

:= (ν/4π) · sinh(r/2), (3)

where (r, θ) represents a point of H in polar coordinate notation. We let Pν(.) denote the
associated probability measure. Eν(.) denotes the expected values of random variables over
the probability space. We say that an event E(N) is realized with high probability (w.h.p.),
if Pν(E(N))→ 1 as n→∞.

We set

γ(r) = γλ(r) := λ · arccos
(cosh(r)− 1

sinh(r)

)
, (4)

where λ > 0 is a parameter. We will see in the proof of Lemma 5.2 that if two points
x1 = (r1, θ1), x2 = (r2, θ2) ∈ DR have |θ1 − θ2|2π ≤ γ(r1) with λ < 1, then x1 and x2 are
within distance R (provided N is large). Here and in the rest of the paper we use the notation
xr := min(x, r − x) for r > 0 and x ∈ [0, r]. Let us remark that γ(r) is strictly decreasing
in r. (This can be easily seen from the facts that arccos(.) is strictly decreasing and that
(cosh(r)− 1)/ sinh(r) = 1− 2

er+1 is strictly increasing.) Let us say that an angle ϑ ∈ [0, 2π)
is covered by a point (r, θ) ∈ H if

|ϑ− θ|2π ≤ γλ(r).

We say that a set A ⊆ H is a cover if every angle is covered by some point of A. For s > 0,
we denote by Cs(λ) the event that P ∩ BH(O, s) is a cover. The event C(λ) will denote that
Cs(λ) is realized for some (finite) s <∞. Note that C(λ) =

⋃
s>0 Cs(λ). We now define:

Ψ(ν, λ) := Pν(C(λ)). (5)

As we will see, f(ν) := Ψ(ν, 1) has the properties claimed in Theorem 1.2 and the probability
that G(N ; 1/2, ν) is connected tends to f(ν) as N →∞. The following theorem is crucial for
the proof of part (iii) of Theorem 1.2.

Theorem 4.1 The function Ψ defined in (5) has the following properties:

(i) Ψ(ν, λ) is continuous in both parameters;

(ii) Ψ(ν, λ) = 1 if ν · λ ≥ π;

(iii) Ψ(ν, λ) is strictly increasing in ν for 0 < ν < π/λ;

(iv) For every fixed λ > 0 we have limν↓0 Ψ(ν, λ) = 0.

The remainder of this section is devoted to the rather involved proof of this theorem. We
will split the proof up into a sequence of lemmas.

Lemma 4.2 Ψ(ν, λ) > 0 for all ν, λ > 0.
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Proof: Let us set m := min{4, d4/λe}, and let E be the event that each of the 2m sets
[0, π/m)× [0, 1], . . . , [(2m− 1)π/m, 2π)× [0, 1] contains at least one point of P. The expected
number of points of P in each of these sets is 1

2m ·
∫ 2π
0

∫ 1
0 g(r, θ)drdθ = (ν/2m)·(cosh(1/2)−1).

It is easily checked that arccos((cosh(1) − 1)/ sinh(1)) > π/4, so that γ(r) > λπ/4 for
all r ≤ 1. We claim the event E implies C(λ). To see this, suppose E is realized and
pick an arbitrary angle θ ∈ [0, 2π). By symmetry, we can assume without loss of generality
θ ∈ [0, π/m). Since E holds, there is a point (r, ϑ) ∈ P ∩ [0, π/m) × [0, 1]. We find that
|θ − ϑ|2π < π/m ≤ λπ/4 < γ(r). Thus, the event E indeed inplies C(λ).

We therefore have

Ψ(ν, λ) ≥ Pν(E) =
(

1− e−(ν/m)·(cosh(1/2)−1)
)m

> 0,

as required. �

Lemma 4.3 For all a, b, λ > 0 we have Ψ(a+ b, λ) ≥ Ψ(a, λ) + (1−Ψ(a, λ)) ·Ψ(b, λ).

Proof: Since Pa+b can be seen as a superposition of Pa and Pb for every a, b > 0 (see for
instance [8]), the probability that C(λ) occurs in Pa+b is at least the probability that it occurs
in Pa plus the probability that is does not occur in Pa and it occurs in Pb. �

Note that the previous two lemmas show that Ψ(ν, λ) is strictly increasing in ν whenever
Ψ(ν, λ) < 1.

Corollary 4.4 If ν, λ > 0 are such that Ψ(ν, λ) < 1 then Ψ is strictly increasing in ν at
(ν, λ).

It will be helpful to consider a process where we reveal P in “discrete steps”. For n ∈ N
let us denote

rn := n · 2 ln 2. (6)

Let us denote Bn := P ∩ BH(0, rn) and An := Bn \ Bn−1. (Bn is the set of points of P with
radii at most rn and A is the set of points with radii between rn−1 and rn.)

Before we continue, it will be helpful to derive some asymptotics. Observe that

cosh(r)− 1

sinh(r)
= 1− 2e−r

(
1− e−r

1− e−2r

)
. (7)

Recall that cos(y) = 1 − y2/2 + O(y4). This implies that if y = arccos(1 − x) then y =√
2x ·

(
1 +O(x2)

)
. Combining this with (7) gives:

γ(r) = λ · arccos

(
cosh(r)− 1

sinh(r)

)
= 2λe−r/2(1 +O(e−r)) as r →∞. (8)

Let us also recall that γ(r) is strictly decreasing in r. (As (cosh(r)−1)/ sinh(r) = 1−2/(er+1)
is strictly increasing and arccos(.) is strictly decreasing.) Using equation (8) we can now derive
the following.
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Lemma 4.5 For every fixed ν, λ > 0 we have that

Eν |{p ∈ An : p covers the angle 0}| = (1 +O((1/4)n)) · (νλ/π) · ln 2,

and
Pν(An does not cover 0) = (1 +O((1/4)n)) · (1/2)νλ/π,

where the O(.)-notation refers to n→∞.

Proof: If µn denotes the expected number of points in An that cover the angle 0, then

µn =

∫ 2π

0

∫ rn

rn−1

1{|θ|2π<γ(r)} · g(r, θ)drdθ

=

∫ rn

rn−1

2γ(r) · g(r, θ)dr

=

∫ rn

rn−1

4λ(1 +O(e−r))e−r/2 · (ν/4π) · sinh(r/2)dr

=

∫ rn

rn−1

4λ(1 +O(e−r))e−r/2 · (ν/4π) · (1 +O(e−r))
1

2
er/2dr

= (1 +O(e−rn)) · (νλ/2π)

∫ rn

rn−1

1 dr

= (1 +O(4−n)) · (νλ/π) · ln 2.

(9)

Here we used that sinh(x) = (1+O(e−x))· 12e
x for large x. This proves the first statement of the

lemma. The second statement follows immediately from the fact that Pν(An covers 0) = e−µn .
�

Lemma 4.6 We have γ(rn) > λ · 2−n, for all n ∈ N.

Proof: It suffices to prove that

ϕ(r) := er/2 · γ(r)/λ = er/2 · arccos

(
cosh(r)− 1

sinh(r)

)
,

is strictly larger than one for all r ≥ r1 = 2 ln 2. Observe that cos(y) ≥ 1− y2/2 for all y ∈ R.
This implies that if y = arccos(1− x) then y ≥

√
2x. Combining this with (7) shows that

ϕ(r) ≥ er/2 · 2e−r/2
(

1− e−r

1− e−2r

)1/2

= 2

(
1− e−r

1− e−2r

)1/2

≥ 2
√

1− e−r ≥
√

3 > 1,

using that r ≥ 2 ln 2 for the penultimate inequality. �

Lemma 4.7 For every ν, λ > 0 there exists a c = c(ν, λ) > 0 such that

Pν
[
An covers [0, λ2−n)

]
≥ c,

(i.e., the probability that [0, λ2−n) is covered in its entirety by the points of P with radii
between rn−1 and rn is at least c) for all n ∈ N.
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Proof: It follows from Lemma 4.6 and the monotonicity of γ(r) that if (r, θ) covers 0 and
furthermore θ ∈ [0, π) and r ≤ rn then (r, θ) in fact covers all of [0, λ2−n). It follows that

Pν
[
An covers [0, λ2−n)

]
≥ 1

2
·Pν
[
An covers 0

]
=

1

2
·
(

1− (1 +O((1/4)n)) · (1/2)νλ/π
)

= Ω(1),

using Lemma 4.5. �

Let us write Un ⊆ [0, 2π) for the set of angles not covered by the points of Bn. Then Un
clearly consists of a finite number of intervals. Let U long

n ⊆ Un denote the union of all intervals
of length at least λ2−n, and let U short

n := Un \ U long
n denote the union of all intervals strictly

shorter than λ2−n.
We now also define

Ln = Ln(λ) := length(Un) · λ−1 · 2n, Llong
n = Llong

n (λ) := length(U long
n ) · λ−1 · 2n,

Lshort
n = Lshort

n (λ) := length(U short
n ) · λ−1 · 2n. (10)

The λ is omitted when it is clear from the context.
That is, Ln denotes total length of Un, multiplied by λ−12n and Llong, Lshort are defined
analogously. We let N short

n denote the number of components of U short
n (i.e. the number of

intervals of length strictly less than λ2−n), and we set

Yn := N short
n + Llong

n . (11)

Recall that if (En)n is a sequence of events then we say the event “En almost always” holds
if En holds for all but finitely many n. In other words {En almost always} = lim inf Em =⋃
n

⋂
m>nEm. We can for instance write

{C(λ)} = {Ln = 0 almost always} = {Yn = 0 almost always}.

Also recall that we say that the event “En infinitely often” holds if En holds for infinitely
many n. In other words {En infinitely often} =

⋂
n

⋃
m>nEm.

Lemma 4.8 For every ν, λ,K > 0 we have Pν(Yn > K almost always) = 1−Ψ(ν, λ).

Proof: Observe that Pν(Yn = 0 almost always) = Ψ(ν, λ). Let us also observe that, for every
K > 0:

Pν(Yn = 0 almost always)+Pν(Yn ∈ (0,K] infinitely often)+Pν(Yn > K almost always) = 1.

Hence, it suffices to show that Pν(Yn ∈ (0,K] infinitely often ) = 0 for every K > 0. Observe
that if Yn = y, then Un can be covered by at most 2dye intervals of length λ2−n. By
Lemma 4.7, and positive correlation, there exists a c > 0 such that for all y > 0:

Pν(Yn+1 = 0|Yn = y, Yn−1 = yn−1, . . . , Y1 = y1) ≥ c2dye, (12)

for all n ∈ N and all y, y1, . . . , yn−1 > 0. Now let N1 be the (random) n ∈ N for which
Yn ∈ (0,K] for the first time. Similarly, let Ni be the i-th index n for which Yn ∈ (0,K].
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(Here we set Ni = ∞ if Yn ∈ (0,K] for less than i indices n.) It follows from (12) that
Pν(Ni+1 <∞|Ni <∞) ≤ 1− c2dKe =: x. But then we also have that, for every M ∈ N:

Pν(Yn ∈ (0,K] infinitely often ) ≤ Pν(Ni <∞ for all 1 ≤ i ≤M)

= Pν(N1 <∞) ·
∏M−1
i=1 Pν(Ni+1 <∞|Ni <∞)

≤ 1 · xM−1.

Sending M →∞ shows that Pν(Yn ∈ (0,K] infinitely often) = 0, as required. �

Lemma 4.9 If I ⊆ Un is an interval then I ∩ Un+1 consists of less than
⌊
length(I)
λ2−n

⌋
+ 1

intervals.

Proof: Notice that, if the interval I is cut into k+1 disjoint, non-empty intervals byAn+1 then
there must be k points (ρ1, θ1), . . . , (ρk, θk) ∈ An+1 such that the intervals (θi−γ(ρi), θi+γ(ρi))
are disjoint and completely contained in I. Hence we must have that

length(I) >
k∑
i=1

2γ(ri) ≥ 2kγ(rn) > kλ2−n,

using Lemma 4.6. The lemma follows. �

Corollary 4.10 If I ⊆ Un is an interval of length at most λ2−n then I∩Un+1 is either empty
or a single interval.

Another relatively obvious, but key, observation is the following.

Lemma 4.11 If I, J ⊆ [0, 2π) are two sets such that |x− y|2π ≥ 2γ(rn) for all x ∈ I, y ∈ J ,
then I ∩ Am and J ∩ Am are independent for all m > n.

Proof: This follows immediately from the fact that a point of radius bigger than rn cannot
simultaneously cover two angles that are more than 2γ(rn) apart, and the fact that Pν ∩ A
and Pν ∩B are independent if A,B ⊆ H are disjoint. �

Lemma 4.12 For every ν, λ,K > 0 we have Pν(Llong
n > K infinitely often) = 1−Ψ(ν, λ).

Proof: Recall that Ψ(ν, λ) = Pν(Ln = 0 almost always), so that Pν(Ln > 0 almost always) =

1 − Ψ(ν, λ). It thus suffices to show that Pν(Ln > 0 and Llong
n < K almost always) = 0, for

every K > 0. Suppose that, on the contrary, for some K > 0 it holds that

Pν(Ln > 0 and Llong
n < K almost always) > 0.

By Lemma 4.8 it must then also be the case that Pν(Yn > K ′ and Llong
n < K almost always) >

0, for every constant K ′. And, since Yn = N short
n + Llong

n , we must then also have that
Pν(N short

n > K ′ and Llong
n < K almost always) > 0, for every constant K ′. Let us remark

that, if En almost always holds, then there is a (random) N such that En holds for all
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n ≥ N . Hence, to prove the lemma it suffices to show that for every K > 0 there exists a
K ′ = K ′(K) > 0 such that Pν(N short

n > K ′ and Llong
n < K for all n ≥ n0) = 0, for all n0 ∈ N.

Let K > 0 thus be arbitrary. Let c = c(ν, λ) be as provided by Lemma 4.7, and let us
choose K ′ such that K ′ > 8K/c and

P(Bi(a, c) > ac/2) ≥ 2/3,

for all a ≥ K ′. (The existence of such a K ′ follows for instance from the Chebyschev bound.)

Observe that, by Lemma 4.9, if Llong
n ≤ K then the long components (intervals) of gen-

eration n will split into no more than 2K components in generation n + 1. On the other
hand, the short intervals of generation n each disappear with probability ≥ c and if they
don’t disappear then they cannot split into two or more intervals by Lemma 4.9.

This shows that for all a ≥ K ′, b ≤ K we have

Pν(N short
n+1 < (1− c/4)N short

n |N short
n = a, Llong

n = b) ≥ 2/3.

(To see this note that, with probability 2/3, no more than (1− c/2)a short intervals survive
to the next generation, while the long intervals generate at most 2b ≤ 2K < K ′ · c/4 ≤ ac/4
short ones.)

On the other hand, if N short
n = a and Llong

n ≤ K then a (deteministic) upper bound is
N short
n+1 ≤ a+ 2K ≤ (1 + c/4)N short

n .

Let us now fix arbitrary n0 ∈ N, a0 > K ′, b0 ≤ K. If N short
n0

= a0, L
long
n0 = b0 and

N short
n > K ′, Llong

n ≤ K for all n ≥ n0 then, for every m ≥ 2 log(K ′/a0)/ log(1− c2/16), there
are more than m/2 indices n ≤ i ≤ n+m− 1 such that N short

i+1 > (1− c/4)N short
i . (Otherwise

we would have that N short
m < ((1− c/4)(1 + c/4))m/2 · a0 = (1− c2/16)m/2 · a0 < K ′.) Thus,

we have

Pν(N short
n > K ′, Llong

n ≤ K for all n ≥ n0|N short
n0

= a0, L
long
n0

= b0) ≤ lim
m→∞

P(Bi(m, 1/3) ≥ m/2) = 0.

(The last inequality follows for instance from the weak law of large numbers.) Since n0, a0, b0
were arbitrary, it follows that

Pν(N short
n > K ′ and Llong

n < K for all n ≥ n0) = 0 for all n0 ∈ N,

as required. �

Lemma 4.13 If ν · λ = π then there exists a constant C = C(ν, λ) such that EνLn ≤ C for
all n.

Proof: For every ν, λ > 0, we have that

EνLn = 2n · λ−1 ·
∫ 2π

0
Pν(the angle θ is covered by Bn)dθ

= 2n · λ−1 · 2π · Pν( the angle 0 is covered by Bn).

Hence, when ν · λ = π, we have
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EνLn = 2n · λ−1 · 2π · exp

[
−

n∑
i=1

(1 +O((1/4)i)) · ln 2

]
= 2n · 2π · exp[−n ln 2 +O(1)] = O(1),

using Lemma 4.5. �

Lemma 4.14 Let ν · λ ≤ π and suppose that Ψ(ν, λ) < 1 then EνLn →∞ as n→∞.

Proof: It follows from Lemma 4.12 that Pν(Ln > K infinitely often ) = 1 − Ψ(ν, λ), for
every constant K > 0. Let us thus pick a K (to be made explicit later), and let N be the
(random) first index n such that Ln > K. (Here N = ∞ if no such n exists. Note N < ∞
with probability 1 − Ψ(ν, λ) > 0.) Let n0 be such that Pν(N < n0) > (1 − Ψ(ν, λ))/2. By
conditioning on the value of N , we find that for n ≥ n0:

ELn ≥
∑n0

m=0 E(Ln|N = m)Pν(N = m)
≥

∑n0
m=0K · 2n−m · λ−1 · exp[−

∑n
i=m+1(1 +O((1/4)i)) · (νλ/π) · ln 2] · Pν(N = m)

=
∑n0

m=0K · 2n−m · λ−1 · exp[−(n−m) · (νλ/π) · ln 2 +O(1)] · Pν(N = m)

= Ω
(
K ·

∑n0
m=0 2(n−m)(1−νλ/π)Pν(N = m)

)
= Ω (K ·

∑n0
m=0 Pν(N = m))

= Ω(K · (1−Ψ(ν, λ))/2).

Sending K →∞ proves the lemma. �

It follows immediately from Lemmas 4.13 and 4.14 that:

Corollary 4.15 If νλ = π then Ψ(ν, λ) = 1.

This last corollary of course also implies that Ψ(ν, λ) = 1 for all ν · λ ≥ π.

Lemma 4.16 For every ν, λ > 0 with ν · λ < π there exists an η0 = η(ν, λ) such that for
every 0 < η < η0 we have

lim inf
n→∞

Pν
(
[0, η · 2−n) ⊆ Un+1|[0, η · 2−n) ⊆ Un

)
> 1/2.

Proof: Let µn denote the expected number of points (r, θ) ∈ An that cover 0, and let µ̃n
denote expected number of points (r, θ) ∈ An that cover some point of [0, η · 2−n). Then we
have, similar to the proof of Lemma 4.5:

µ̃n =
∫ rn
rn−1

(η · 2−n + 2γ(r)) · g(r, θ)dr

= η
∫ rn
rn−1

2−n · (1 +O(e−r)) · (ν/4π) · er/2dr + µn
= (1 + o(1)) · ((ην/8π) + (νλ/π) · ln 2),

(13)

reusing the computations (9) in the second line. Since νλ < π we can choose η > 0 such that
(ην/8π) + (νλ/π) · ln 2 < ln 2. In that case we have

lim inf
n→∞

Pν
(
[0, η · 2−n) ⊆ Un+1|[0, η · 2−n) ⊆ Un

)
= lim inf

n→∞
e−µ̃n > 1/2,
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as required. �

For the remainder of the section, we fix η > 0 such that the conclusion of the last lemma
holds. Let us now consider the following random process. We start by dissecting [0, 2π) into
intevals [0, η) , [η, 2η) , . . . , [2π − η, 2π) of length η. (We assume without loss of generality that
η = 2π

k , for some k.) Each of these intervals “survives” if none of its points is covered by
points of P of radius at most r1. In each subsequent “generation”, we split the surviving
intervals in two, and these survive if none of their points are covered by a point of P of
radius between rn−1 and rn. This does produce a kind of branching process, but with the
unfortunate property that the offspring of different intervals in generation n are not always
independent (e.g., if two intervals share an endpoint then their offspring are dependent, or
more generally if they are close enough for a point of radius bigger than rn to cover a point
in each of the two intervals.)

To deal with this problem, we group the surviving intervals into “particles” consisting
of (maximal) sequences of intervals each sharing an endpoint with the next. The type of a
particle will be the number of intervals it consists of. See Figure 3 for a depiction.

Figure 3: Depiction of the “particles” of the process.

Note that, in generation n, the gap between different particles is at least 2 ·γ(rn). So no point
of radius > rn can cover points in two different particles of generation n. This implies that
the offspring distributions are independent.

Thus, we have defined a time-inhomogeneous multitype Galton-Watson process Zλ0 , Z
λ
1 , . . .

with countably many types. Again, we drop the superscript if it is clear from the context.
Let pn(i; z1, z2, . . . ) denote the probability that a particle of type i in generation n produces
z1 children of type 1, z2 children of type 2 and so on. (Note that strictly speaking we would
also need to introduce types for the case when Un = [0, 2π) in which case there is one particle
that “wraps around”. This situation however does not occur as soon as there is at least one
point with radius ≤ rn. So this is not a real issue. We leave it to the reader to check that the
proofs below can be adapted to work also with this more proper but also more cumbersome
definition of the process.)

Lemma 4.17 For every i, z1, z2, . . . the limits

p(i; z1, z2, . . . ) := lim
n→∞

pn(i; z1, z2, . . . ),

exist.

Proof: Let us fix i, z1, z2, . . . , and let En denote the event that [0, i·η·2−n) is split into a groups
of intervals of length 2−(n+1) in the required way by An, i.e. among [0, η · 2−(n+1)), . . . , [(2i−
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1) · η · 2−(n+1)) there are z1 intervals such that none of their points are covered by An but
some point in each of the neighbouring intervals were covered, and so on.

Let An ⊆ H denote the set of all points (r, θ) with rn−1 < r ≤ rn and θ ∈ (−10 ·λ ·2−n, (i ·
η+ 10λ) · 2−n); and let Wn := |P ∩An| denote the number of points of P that fall inside An.
By (8), for large enough n, whether or not En holds will only depend on the points of P that
fall inside An. We have

pn(i; z1, z2, . . . ) = Pν(En) =
∞∑
t=0

Pν(En|Wn = t)Pν(Wn = t). (14)

Let us observe that

EWn =

∫
An

g(r, θ)drdθ = 2−n · (i · η + 20λ) · (ν/2π) · 2(cosh(rn/2)− cosh(rn−1/2))

= 2−n · (i · η + 20λ) · (ν/2π) · (ern/2 + e−rn/2 − ern−1/2 + e−rn−1/2)
= (1 + o(1)) · (i · η + 20λ) · (ν/π).

It follows also that Wn converges in distribution to a Po
(
(i · η + 20λ)−1 · (ν/π)

)
-distributed

random variable. Therefore, in the light of (14), in order to prove that pn(i; z1, z2, . . . )
converges, it suffices to prove that the conditional probability Pν(En|Wn = t) converges for
every fixed t ∈ N. Let us thus fix a t ∈ N.

Observe that if we condition on W = t then P ∩ A behaves like t i.i.d. random vectors
X1 = (ρ1, θ1), . . . , Xt = (ρt, θt) with common probability density:

g̃(ρ, θ) =
g(ρ, θ)∫

A g(r′, θ′)dr′dθ′
= (1 + on(1)) · (i · η + 20λ)−1 · eρ/2,

where we used that g(ρ, θ) = (ν/4π) sinh(ρ/2) = (1 +O(e−ρ)) · (ν/4) · eρ/2.
For notational convenience we write Ij := [j ·η ·2−(n+1), (j+1) ·η ·2−(n+1)). For 0 ≤ j < 2i

and 1 ≤ s ≤ t we set F j,sn := {(ρs, θs) covers a point of Ij} and for J ⊆ {0, . . . , 2i − 1} ×
{1, . . . , t} we define

F Jn :=

 ⋂
(j,s)∈J

F j,sn

 ∩
 ⋂

(j,s)6∈J

(F j,sn )c

 .

I.e., the event F Jn prescribes precisely which of the t points covers which of the 2i intervals.
Clearly there is some family of sets J ⊆ 2{0,...,2i−1}×{1,...,t} such that

Pν(En|Wn = t) = Pν

(⋃
J∈J

F Jn

)
=
∑
J∈J

Pν(F Jn ).

It thus suffices to prove that the probabilities Pν(F Jn ) converge. Let us thus fix some J ⊆
{0, . . . , 2i− 1} × {1, . . . , t}. Setting

ϕjn(ρ, θ) :=

{
1 if θ ∈

(
j · η · 2−(n+1) − γ(ρ), (j + 1) · η · 2−(n+1) + γ(ρ)

)
;

0 otherwise.
,
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and ` := −10 · λ · 2−n, u := (i · η + 10λ) · 2−n, we can write

Pν(F Jn )

=

∫ u

`

∫ rn

rn−1

. . .

∫ u

`

∫ rn

rn−1

∏
(j,s)∈J

ϕjn(ρs, θs) ·
∏

(j,s) 6∈J

(1− ϕjn(ρs, θs)) ·
t∏

s=1

g̃(ρs, θs) dρ1dθ1 . . . dρtdθt

=

∫ iη+10λ

−10λ

∫ 2 ln 2

0

. . .

∫ iη+10λ

−10λ

∫ 2 ln 2

0

∏
(j,s)∈J

ϕjn(rn−1 + xs, 2
−n · ϑs)·

∏
(j,s)6∈J

(1− ϕjn(rn−1 + xs, 2
−nϑs)) ·

t∏
s=1

g̃(rn−1 + xs, 2
−nϑs) · 2−t·n dx1dϑ1 . . . dxtdϑt

=

∫ iη+10λ

−10λ

∫ 2 ln 2

0

. . .

∫ iη+10λ

−10λ

∫ 2 ln 2

0

∏
(j,s)∈J

ϕjn(rn−1 + xs, 2
−n · ϑs) ·

∏
(j,s)6∈J

(1− ϕjn(rn−1 + xs, 2
−nϑs))·

(1 + on(1)) · (i · η + 20)−t · e
∑t

s=1(rn−1+xi)/2 · 2−t·n dx1dϑ1 . . . dxtdϑt

=

∫ iη+10λ

−10λ

∫ 2 ln 2

0

. . .

∫ iη+10λ

−10λ

∫ 2 ln 2

0

∏
(j,s)∈J

ϕjn(rn−1 + xs, 2
−n · ϑs) ·

∏
(j,s)6∈J

(1− ϕjn(rn−1 + xs, 2
−nϑs))·

(1 + on(1)) · (i · η + 20)−t · 2−t · e(x1+···+xt)/2 dx1dϑ1 . . . dxtdϑt,

applying the substitutions rs = rn−1 + xs, θs = 2−nϑs in the second line. Let us now define,
for 0 ≤ x ≤ 2 ln 2 and −10λ ≤ ϑ ≤ i · η + 10λ:

ψj(x, ϑ) :=

{
1 if ϑ ∈ (j · η/2− λe−x/2, (j + 1) · η/2 + λe−x/2),
0 otherwise.

It follows from (8) that

lim
n→∞

ϕjn(rn−1 + x, 2−nϑ) = ψj(x, ϑ) almost everywhere.

(Recall that almost everywhere means “for all (x, ϑ) except for a set of Lebesgue measure
zero”.) Using the dominated convergence theorem we can now conclude that

limn→∞ Pν(F Jn ) = (2i · η + 40λ)−t
∫ iη+10λ
−10λ

∫ 2 ln 2
0 . . .

∫ iη+10λ
−10λ

∫ 2 ln 2
0

∏
(j,s)∈J ψ

j(xs, ϑs)·∏
(j,s) 6∈J

(1− ψj(xs, ϑs)) · e(x1+···+xt)/2 dx1dϑ1 . . . dxtdϑt.

The lemma follows. �

Lemma 4.18 The limits p(i; z1, z2, . . . ) from Lemma 4.17 satisfy the conditions of Lemma 3.4.

Proof: Let us first note that the expression
∑

jmij simply counts the expected (total) number

of intervals of length η · 2−(n+1) in the offspring of a type i particle. An uncovered interval I
of length η ·2−n in generation n will get split into two uncovered intervals of length η ·2−(n+1)

in generation n + 1 if no point of An covers a point of I. It thus follows immediately from
the choice of η (cf. Lemma 4.16) that∑

j

mij ≥ lim inf
n→∞

2i · Pν([0, η · 2−n) ∈ Un+1|[0, η · 2−n) ∈ Un) = c · i,
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where c := 2 · lim infn→∞ Pν([0, η · 2−n) ∈ Un+1|[0, η · 2−n) ∈ Un) > 1. This verifies the first
condition of Lemma 3.4.

The third condition follows immediately from the fact that the total length of the offspring
of a particle is never more than the length of the particle.

To see that the second condition holds, it suffices to show that the probability that a
particle of type i gives birth to at least one particle of type j is bounded away from zero

whenever j ≤ i. To this end, let µ
(i)
n denote the expected number of points (r, θ) ∈ An that

cover some angle of [0, j ·η ·2−(n+1)). By an almost verbatim repeat of the computations (13)
we have

µ
(i)
n =

∫ rn
rn−1

(
j · η · 2−(n+1) + 2γ(r)

)
· g(r, θ)dr

= (1 + o(1)) · (j · (ην/4π) + (νλ/π) · ln 2),

Let E denote the event that that An covers no angle of [0, j · η · 2−(n+1)) but some angle of
[0, (j + 1) · η · 2−(n+1)). Since the probability that a particle of type j is born among the
offspring of a type i particle is at least the probability that E holds, we have that

mij ≥ Pν(E)

= lim
n→∞

P(Po(µ(j)n ) = 0) · P(Po(µ(j+1)
n − µ(j)n ) > 0)

= lim
n→∞

(µ(j+1)
n − µ(j)n ) · e−µ

(j+1)
n

= (ην/4π) · e−(j+1)·(ην/4π)+(νλ/π)·ln 2

> 0.

It remains to check that the fourth condition holds. To this end, observe that if we cut an
interval of length i · η · 2−n into four equal parts, then if An covers at least one point in each
part, then the offspring of the original type-I particle will consist of particles of types ≤ i.
Hence, we have:

∑
z1,z2,···≥0,

zi+1+zi+2+···>0

p(i; z1, z2, . . . ) ≤ 1−lim inf
n→∞

(1−e−µ
(bi/4c)
n )4 = 1−

(
1− e−(bi/4c·(ην/4π)+(νλ/π)·ln 2)

)4
.

It is clear that if we send i→∞ then this last expression approaches zero. This proves that
the fourth condition holds, and finishes the proof of the lemma. �

Invoking Lemma 3.5, we have the following immediate corollary.

Corollary 4.19 If ν · λ < π then lim inf
n→∞

Pν(Z explodes |Zn = e1) > 0.

We are now also able to deduce:

Lemma 4.20 If νλ < π then Ψ(ν, λ) < 1.

Proof: Observe that the event that Z explodes is contained in the event that C(λ) does not
occur. By Corollary 4.19 we can pick n ∈ N such that Pν(Z explodes |Zn = e1) > 0. Let E
denote the event that Bn = ∅, i.e. no point of Pν has radius ≤ rn. Then we have that

Pν(E) = exp[−(ν/2) · (cosh(rn/2)− 1)] > 0.
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We have

1−Ψ(ν, λ) = Pν(not C(λ))
≥ Pν(E) · Pν(Z explodes|E)
≥ Pν(E) · Pν(Z explodes|Zn = e1)
> 0,

where the penultimate inequality holds by obvious monotonicity. �

Lemma 4.21 For every λ > 0 it holds that lim
ν↓0

Ψ(ν, λ) = 0

Proof: The proof is very similar to the previous lemma. Let us first observe that for every
fixed n the conditional probability Pν(Z explodes |Zn = e1) is nonincreasing in ν. (This can
for instance be seen by noting that a Poisson process with intensity function gν+δ(r, θ) is
the superposition of one with density function gν and one with density function gδ.) Hence
we can find an n0 ∈ N and c > 0 such that Pν(Z explodes|Zn = e1) ≥ c for all n ≥ n0
and all 0 < ν < 1. Now note that for every K > 0, there exists an n such that among
[0, η · 2−n), . . . , [2π− η · 2−n, 2π) there are at least K intervals that are separated by pairwise
distance of at least 2γ(rn). Fix such an n, and let E denote the event that no point fell inside
Bn.

Then we have

1−Ψ(ν, λ) ≥ Pν(E) ·
(
1− Pν(Z dies out |Zn = e1)

K
)
≥ e−(ν/2)·(cosh(rn/2)−1) · (1− (1− c)K).

Let ε > 0 be arbitrary. By choosing K sufficiently large, we can ensure that (1− c)K < ε. It
follows that

lim sup
ν↓0

Ψ(ν, λ) ≤ 1− lim
ν↓0

e−(ν/2)·(cosh(rn/2)−1) · (1− ε) = ε.

Sending ε to zero finishes the proof. �

Let Lηn = Lηn(λ) denote the total length of all components of Un that have length at least
η · 2−n. As usual, when λ is clear from the context we omit it. A similar proof to that of the
previous lemma also gives the following.

Lemma 4.22 If νλ < π and K > 0 arbitrary then Pν(Lηn > K almost always ) = 1−Ψ(ν, λ).

Proof: Observe that if Lηn > K almost always, then C(λ) certainly does not occur. This
shows that

Pν(Lηn > K almost always ) ≤ 1−Ψ(ν, λ).

Also observe that if Z explodes, then we also have that Lηn > K almost always.
Now let ε > 0 be arbitrary and let us fix a K ′ = K ′(ε,K), to be made precise later. By

Lemma 4.12, we have that Pν(Llong
n > K ′ infinitely often ) = 1 − Ψ(ν, λ). As in the proof

of the previous lemma, we can pick n0, c > 0 such that Pν(Z explodes |Zn = e1) ≥ c for all
n ≥ n0.
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Observe that if Llong > K ′ then we can find a family of at least

M :=

⌈
K ′ · 2−n

η · 2−n + 2γ(rn)

⌉
,

intervals of length η · 2−n in Un that are separated by pairwise distance 2γ(rn). By (8), we
have that M = Ω(K ′).

Now consider the following setup. We let N denote the (random) first integer after n0
for which Llong

n > K ′, where N = ∞ if there is no such N . Note that the event N = n is
independent of P \BH(O; rn). This shows that

Pν(Z explodes) ≥
∑∞

n=n0
Pν(N = n) ·

(
1− Pν(Z dies out|Zn = e1)

M
)

≥
∑∞

n=n0
Pν(N = n) ·

(
1− (1− c)M

)
≥

∑∞
n=n0

Pν(N = n) · (1− ε)
= Pν(N <∞) · (1− ε)
≥ Pν(Llong

n > K ′ infinitely often ) · (1− ε)
= (1− f(ν)) · (1− ε).

Sending ε to zero gives the lemma. �

Let us define

Ψn(ν, λ) := Pν(Crn(λ)).

In other words, Ψn is the probability that Bn is a cover.

Lemma 4.23 Let s > 0 be fixed, but arbitrary. Let F be any event that depends only on
Pν ∩BH(0, s) (i.e. F depends only on the points of radius less than s), and set ϕ(ν) := Pν(F ).
Then ϕ is a continuous function of ν.

Proof: Let Y denote the number of points of P with radius at most s. Then Y is Poisson-
distributed with mean EY = ν · (cosh(s/2)− 1). Let us remark that

at := Pν(F |Y = t),

is independent of ν. (To see this, note that if we condition on Y = t then the points of P
with radius ≤ s behave like an i.i.d. sample X1, . . . , Xt with common density function

h(r, θ) =
g(r, θ)∫ 2π

0

∫ s
0 g(t, β)dtdβ

=
sinh(r/2)

2π · (cosh(s/2)− 1)
.

The function h is clearly independent of ν.) We clearly have

ϕ(ν) =

∞∑
t=0

at · Pν(Y = t).

Let us now fix an arbitrary ε > 0. Set K := 1000 · EνY/ε. By Markov’s inequality we
have Pµ(Y ≥ K) ≤ EµY/K ≤ ε/2, for all µ < 500ν. Hence, for all µ < 500ν we have∣∣∣∣∣ϕ(µ)−

K∑
t=0

at · pt(µ)

∣∣∣∣∣ < ε/2,
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where pt(µ) := Pµ(Y = t) = (µ · (cosh(s/2)− 1))t · e−µ·(cosh(s/2)−1)/t!. Now observe that pt
is a continuous function of µ for every (fixed) t. It follows that there is a δ > 0 such that
if |µ − ν| < δ then |pt(µ) − pt(ν)| < ε/2(K + 1) for all 0 ≤ t < K. Hence we also have
that |ϕ(µ)− ϕ(ν)| < ε whenever |µ− ν| < min(δ, 499ν). This proves that ϕ is continuous as
claimed. �

Corollary 4.24 For every n ∈ N, the function Ψn is continuous in its first parameter, ν.

Lemma 4.25 For every n ∈ N, the function Ψn is continuous in its second parameter, λ.

Proof: Let us fix ν. Let us take λ1 < λ2 and let us write γi(r) = λi arccos
(
cosh(r)−1
sinh(r)

)
for

i = 1, 2. Note that Ψn(ν, λ2) − Ψn(ν, λ1) is precisely the probability of the event E that⋃
(r,θ)∈Bn(θ−γ2(r), θ+γ2(r)) covers all angles, but some angle is not covered by

⋃
(r,θ)∈Bn(θ−

γ1(r), θ + γ1(r)).
Next, let us observe that if E holds then there must exist two points (r, θ), (s, ϑ) ∈ Bn

such that

γ1(r) + γ1(s) < |θ − ϑ|2π < γ2(r) + γ2(s). (15)

(Consider some component I of Un under λ1. The leftmost endpoint of this interval is the
rightmost endpoint of (θ − γ1(r), θ + γ2(r)) for some (r, θ) ∈ Bn. Since C(λ) occurs at λ2, it
must be the case that θ + γ2(r) is inside some interval (ϑ − γ2(s), ϑ + γ2(s)).) From this it
follows that

Pν(E) ≤ (Eν |Bn|)2 · Pν (|θ − ϑ|2π ∈ (γ1(r) + γ1(s), γ2(r) + γ2(s)) ,

where (r, θ), (s, ϑ) are chosen i.i.d. according to the distribution with density g/
∫
BH(O,R)

∫ 2π
0 g.

(We used Palm Theory for counting the number of pairs with this property.)
Now note that the length of the interval (λ1(r) + λ1(s), λ2(r) + λ2(s)) is at most 2(λ2 −

λ1) limx↓0 arccos
(
cosh(x)−1
sinh(x)

)
= (λ2 − λ1) · π. It follows that

Pν(E) ≤ (Eν |Bn|)2 ·
λ2 − λ1

2
.

Thus, by choosing λ1, λ2 such that λ2 − λ1 < 2ε/ (Eν |Bn|)2, we can ensure that |Ψn(ν, λ2)−
Ψn(ν, λ1)| ≤ Pν(E) < ε. This proves that Ψn is indeed continuous in λ. �

Next, we define, for every η,K > 0 and n ∈ N:

Φn,η,K(ν, λ) := Pν(Lηn > K).

By an application of Lemma 4.23, we find that:

Corollary 4.26 Φn,η,K is continuous in its first parameter, ν. (For every η,K > 0 and
n ∈ N.)

Lemma 4.27 Φn,η,K is continuous in its second parameter, λ. (For every η,K > 0 and
n ∈ N.)
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Proof: To begin, we fix ν, λ, η,K > 0 and n ∈ N. Observe that there exists some δ > 0 such
that

Pν(Lηn ≥ K + δ) ≥ Φn,η,K(ν, λ1)− ε/3. (16)

Similarly, we may assume that δ is small enough so that

Pν(Un has a component of length ∈ [η2−n − δ, η2−n + δ]) < ε/3. (17)

(Arguing as in the proof of Lemma 4.25, but now considering pair of points whose distance
is close to γ(r) + γ(s) + η2−n.)

Finally let us pick some λ′ 6= λ, and letX denote the sum
∑

(r,θ)∈Bn 2|λ′−λ| arccos
(
cosh(r)−1
sinh(r)

)
.

(I.e., X is the sum over all points in Bn of the difference in the covered length under the two
choices of the parameter λ.) Using Markov’s inequality, we have that

Pν(X > δ) ≤ EνX
δ
≤ Eν |Bn| · π · |λ′ − λ|/δ < ε/3, (18)

where the last inequality holds for |λ′ − λ| sufficiently small.
Observe that if Lηn ≥ K + δ with respect to λ, there are no components in Un of length

∈ [η2−n−δ, η2−n+δ], and X ≤ δ, then Lηn > K with respect to λ′. Thus, combining (16), (17)
and (18), we have proved the lemma. �

Lemma 4.28 Ψ is continuous.

Proof: Let ν, λ > 0 be arbitrary. We first assume that νλ ≥ π. In this case Ψ(ν, λ) = 1 by
Corollary 4.15. Note that, since C(λ) =

⋃
n Crn(λ), there exists an n such that Ψn(ν, λ) ≥

1− ε/2. Since Ψn is continuous, there is a δ > 0 such that

Ψ(ν ′, λ′) ≥ Ψn(ν ′, λ′) ≥ Ψn(ν, λ)− ε/2 ≥ 1− ε,

for all ν ′ ∈ (ν − δ, ν + δ) and λ′ ∈ (λ− δ, λ+ δ). This shows Ψ is continuous at ν, λ.
Let us then assume that νλ < π. Let us pick ν ′ > ν, λ′ > λ such that still ν ′λ′ < π; and

let n0 ∈ N, c > 0 be such that

Pν′(Zλ
′

explodes |Zλ′n = e1) ≥ c,

for all n ≥ n0. Note that, by obvious monotonicity, this inequality also holds for all ν ′′ <
ν ′, λ′′ < λ′ (here we keep η, used in the definition of the process Z, fixed).

Let ε > 0 be arbitrary and let K = K(ε) be fixed to be made precise later. Since
Ψ(ν, λ) = limn→∞Ψn(ν, λ), we can find an n1 such that |Ψn(ν, λ) − Ψ(ν, λ)| < ε/2 for all
n ≥ n1. Similarly, since

1−Ψ(ν, λ) = Pν(Lηn(λ) > K almost always ) = lim
n→∞

Pν(Lηm(λ) > K for all m ≥ n ),

we can fix an n2 such that Φn,η,K(ν, λ) = Pν(Lηn > K) ≥ 1−Ψ(ν, λ)− ε/2 for all n ≥ n2.
Let us now fix n := max{n0, n1, n2} and put ϕ(ν) := Pν(Ln = 0), ψ(ν) = Pν(Zn > K).
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Since both Ψn and Φn,η,K are continuous, we can pick a δ > 0 such that |Ψn(ν ′′, λ′′) −
Ψn(ν, λ)| < ε/2 and |Φn,η,K(ν ′′, λ′′) − Φn,η,K(ν, λ)| < ε/2 for all ν ′′ ∈ (ν − δ, ν + δ) and
λ′′ ∈ (λ− δ, λ+ δ). We assume without loss of generality that δ < min(λ′ − λ, ν ′ − ν).

Now note that if Lηn(λ) > K then there are at least

M :=

⌈
K · η · 2−n

η · 2−n + 2γ(rn)

⌉
= Ω(K),

intervals of length at least η ·2−n that are contained in Un and that are separated by pairwise
distance 2γ(rn). It follows that, for all ν ′′ ∈ (ν − δ, ν + δ) and λ′′ ∈ (λ− δ, λ+ δ), we have

Pν′′(Lηm(λ′′) > K almost always|Lηn(λ′′) > K) ≥ 1− Pν′′(Z(λ′′) dies out |Zn(λ′′) = e1)
M

≥ 1− (1− c)M
≥ 1− ε/2,

where the last inequality holds provided we chose K sufficiently large (which we can assume
without loss of generality). We thus get that

1−Ψ(ν ′′, λ′′) = Pν′′,λ′′(not C(λ))
≥ Pν′′,λ′′(Z explodes |Lηn > K)Φn,η,K(ν ′′, λ′′)
≥ (1− ε/2) · (1−Ψ(ν, λ)− ε/2)
≥ 1−Ψ(ν, λ)− ε,

for all ν ′′ ∈ (ν − δ, ν + δ) and λ′′ ∈ (λ− δ, λ+ δ). In other words, Ψ(ν ′′, λ′′) ≤ Ψ(ν, λ) + ε for
all ν ′′ ∈ (ν − δ, ν + δ) and λ′′ ∈ (λ− δ, λ+ δ). On the other hand we have

Ψ(ν ′′, λ′′) ≥ Ψn(ν ′′, λ′′) ≥ Ψ(ν, λ)− ε,

for all ν ′′ ∈ (ν − δ, ν + δ) and λ′′ ∈ (λ− δ, λ+ δ), by choice of n and δ. We have seen that Ψ
is continuous at (ν, λ) as required. �

We have already proved Theorem 4.1, but for completeness we collect our findings from
this Section in an explicit proof.

Proof of Theorem 4.1: That Ψ is continuous was just established in the previous lemma.
That Ψ(ν, λ) = 1 when νλ ≥ π was established in Corollary 4.15. That Ψ is strictly increasing
at every point (ν, λ with νλ < π follows from Corollary 4.4 together with Lemma 4.20. That
limν↓0 Ψ(ν, λ) = 0 was established in Lemma 4.21. �

5 The proof of part (iii) of Theorem 1.2

Here we finally prove the remaining part of Theorem 1.2, making use of Theorem 4.1

Lemma 5.1 Let P = Pν be as defined earlier. For every ε > 0 there is a coupling such that
Pν−ε ∩BH(O;R) ⊆ VN ⊆ Pν+ε ∩BH(O;R) w.h.p. as N →∞.

Proof: Let X1, X2, . . . be an infinite supply of i.i.d. points distributed according to (1).
Then we can set V = {X1, . . . , XN}. Now let Z1=d Po((1− δ)N), Z2=d Po((1 + δ)N) and set
Vi := {X1, . . . , XZi} for i = 1, 2. It follows from the Chebyschev inequality that
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Pν(Z1 ≤ N ≤ Z2) = 1− o(1).

Put differently, this proves that V1 ⊆ VN ⊆ V2 w.h.p.
Now observe that V1 is a Poisson process with intensity function:

h1(r, θ) = (1− δ)N · (1/2π) · (1/2)·sinh(r/2)cosh(R/2)−1 · 1{r≤R}
= (1− δ)νeR/2 · (1/2π) · (1/2)·sinh(r/2)cosh(R/2)−1 · 1{r≤R}
= (1− δ + o(1)) · (ν/4π) · sinh(r/2) · 1{r≤R}.

So, provided we chose δ = δ(ε) sufficiently small, we have h1(r, θ) ≥ gν−ε(r, θ)1{r≤R} for all
r, θ if N is sufficiently large (where g is the density of P defined in (3)). Similarly the density
h2 of V2 satisfies h2 ≤ gν+ε1{r≤R} for N sufficiently large. The statement follows. �

Lemma 5.2 For every ν > 0 we have lim inf
N→∞

P(G(N ; 1/2, ν) is connected ) ≥ Ψ(ν, 1).

Proof: Let us pick a δ > 0 such that Ψ(ν − δ, 1 − δ) > Ψ(ν, 1) − ε/3. For convenience we
write µ := ν− δ, λ := 1− δ. Next, let us pick s > 0 such that Pµ(Cs(λ)) ≥ Ψ(µ, λ)− ε/3. This
is possible as Cs ⊆ Cs′ for s < s′, so Pµ(Cs(λ)) is nondecreasing in s with limit Pµ(C(λ)) =
Ψ(µ, λ). Let us consider the coupling from the previous lemma. Taking N sufficiently large,
we can assume that the probability that it fails is at most ε/3 and that s < R/2. (Recall that
R = R(N) depends on and is growing with N .)

We claim that, if Cs(λ) occurs with respect to µ, and the coupling succeeds (i.e. Pµ ∩
BH(O,R) ⊆ VN ), then the graph G(N ; 1/2, ν) will be connected. To see this suppose that
Cs(λ) occurs with respect to µ, and pick an arbitrary point Xi = (ρi, θi) ∈ VN . There is some

point Xj = (ρj , θj) ∈ VN with ρj ≤ s such that |ρi − ρj |2π < γ(ρj) = λ · arccos
(
cosh(ρj)−1
sinh(ρj)

)
.

We claim that Xi and Xj must have distance less than R. To see this, note first that we are
done when ρi ≤ R/2 (using as ρj ≤ s < R/2 and the triangle inequality). By the hyperbolic
cosine rule we have that the distance between Xi and Xj is less than R if and only if

|θi − θj |2π < arccos

(
cosh(ρi) cosh(ρj)− cosh(R)

sinh(ρi) sinh(ρj)

)
.

Now notice that

arccos
(
cosh(ρi) cosh(ρj)−cosh(R)

sinh(ρi) sinh(ρj)

)
≤ arccos

(
cosh(ρi) cosh(ρj)−cosh(ρi)

sinh(ρi) sinh(ρj)

)
= arccos

(
cosh(ρi)
sinh(ρi)

· cosh(ρj)−1sinh(ρj)

)
.

Recall that (cosh(r) − 1)/ sinh(r) = 1 − 2e−r + o(e−r) and note that cosh(ρi)/ sinh(ρi) =
1+O(e−2ρi) = 1+O(e−R). Using Taylor’s expansion arccos(x+y) = arccos(x)−y/

√
1− x2+

O(xy2/(1− x2)3/2), we see that

arccos
(
cosh(ρi)
sinh(ρi)

· cosh(ρj)−1sinh(ρj)

)
= arccos

(
cosh(ρj)−1
sinh(ρj)

+O(e−R)
)

= arccos
(
cosh(ρj)−1
sinh(ρj)

)
+O(eρj−R).

Using equations (7) and (8), we find that

arccos

(
cosh(ρi)

sinh(ρi)
· cosh(ρj)− 1

sinh(ρj)

)
= (1 + o(1)) · arccos

(
cosh(ρj)− 1

sinh(ρj)

)
.
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Since |θi − θj |2π ≤ γ(ρj) = (1− δ) · arccos
(
cosh(ρj)−1
sinh(ρj)

)
, we do find that Xi, Xj have distance

at most R (for N sufficiently large).
This shows that, provided Cs(λ) occurs with respect to µ and the coupling succeeds

(i.e. Pµ ∩ BH(O,R) ⊆ VN ), then every vertex of G(N ; 1/2, ν) will be at distance less that R
from some vertex of radius < R/2. So the graph will have diameter at most three, and in
particular it will be connected. That is, we have shown

lim inf
N→∞

P(G(N ; 1/2, ν) is connected ) ≥ Pµ(Cs(λ))− P(the coupling fails) ≥ Ψ(ν, 1)− ε.

Sending ε to zero proves the lemma. �

Lemma 5.3 For every ν > 0 we have lim sup
N→∞

P(G(N ; 1/2, ν) is connected ) ≤ Ψ(ν, 1).

Proof: If ν > π then there is nothing to prove as Ψ(ν, 1) = 1. Let us thus suppose that
ν < π so that Ψ(ν, 1) < 1. Reformulating, it suffices to show that

lim inf
N→∞

P(G(N ; 1/2, ν) is NOT connected ) ≥ 1−Ψ(ν, 1).

Pick a δ > 0 such that Ψ(ν + δ, 1 + δ) ≤ Ψ(ν, 1) + ε/2 and write µ := ν + δ, λ := 1 + δ. Let K
be large but fixed, to be made more precise later; and let η = η(µ, λ) be as in Lemma 4.16.
By Lemma 4.22, there exist an n0 ∈ N such that, for all n ≥ n0:

Φn,η,K(µ, λ) = Pν(Lηn > K) ≥ 1−Ψ(µ, λ)− ε/2.

Now let n := bR/2 ln 2c − 1, and let F denote the event that Lηn > K (with respect to µ, λ).
Given that F holds, we can pick M = Ω(K) intervals I1, . . . , IM ⊆ Un of length η2−n such that
the angle between a point in Ii and a point in Ij is at least 1000 ·2−n (for all 1 ≤ i 6= j ≤M).
Now let Fi denote the event that there is exacltly one point X` = (ρ`, θ`) ∈ VPoi such that 1)
R − ε < ρ` ≤ R and θ` ∈ Ii and 2) there is no point of Xm = (ρm, θm) ∈ Pµ with ρm > rn
and θm within angle 10 · 2−n of one of the endpoints of Ii. Observe that

Pν(Fi|F ) = P(Po(µ1) = 1)P(Po(µ2) = 0) = Θ(1),

where µ1 := η · 2−n · (ν/4π) · (cosh(R/2) − cosh((R − ε)/2)) and µ2 := 20 · 2−n · (ν/4π) ·
(cosh(R/2) − cosh(rn/2)) − µ1. (That both µ1, µ2 are Θ(1) follows from the fact that
cosh(R/2), cosh((R − ε)/2), cosh(rn/2) = Θ(2n).) Note also that the event Fi-s are inde-
pendent (given F ). Hence we have

P
(⋃

Fi|F
)
≥ 1− (1−Θ(1))M > 1− ε/2,

provided we chose K sufficiently large.
We now claim that, if F and some Fi hold, then there is a point Xj ∈W := Pµ∩BH(O;R)

that is at distance > R from all other points in W (namely the sole vertex Xj = (ρj , θj)
with angle in θj ∈ Ii and radius ρj > R − δ). To see this, let Xk = (ρk, θk) ∈ W be an
arbitrary other point. If ρk > rn we have |θj − θk|2π > 10 · 2−n. On the other hand, we have
distH(Xj , Xk) ≤ distH(X ′j , X

′
k) where X ′j = (rn, θj), X

′
k = (rn, θk) by Lemma 2.1. Hence, by
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the hyperbolic cosine rule distH(Xj , Xk) ≤ R only if the difference in angle |θj − θk|2π is at
most

arccos

(
cosh2(rn)− cosh(R)

sinh2(rn)

)
= arccos

(
1−O(e−rn)

)
= (1+o(1))2e−rn/2 = (1+o(1))·2−(n−1).

It follows distH(Xj , Xk) > R.
Now suppose that ρk < rn. Since θj ∈ Un it follows that

|θj − θk|2π > (1 + δ) arccos

(
cosh(rk)− 1

sinh(rk)

)
.

Now observe that, for distH(Xj , Xk) < R to hold, the angle between them can be at most

arccos
(
cosh(rj) cosh(rk)−cosh(R)

sinh(rj) sinh(rk)

)
, by the hyperbolic cosine rule. Since rj ∈ (R − ε,R) we have

that cosh(rj) = (1 +O(ε)) cosh(R) and sinh(rj) = (1 +O(ε)) cosh(R). This also gives that

cosh(rj) cosh(rk)− cosh(R)

sinh(rj) sinh(rk)
= (1 +O(ε) · cosh(rk)− 1

sinh(rk)
.

Using Taylor’s expansion arccos(x+ y) = arccos(x) +O(y/(1− x2)1/2), we now find

arccos
(
cosh(rj) cosh(rk)−cosh(R)

sinh(rj) sinh(rk)

)
= arccos

(
cosh(rk)−1
sinh(rk)

)
+O(εe−rk/2)

= (1 +O(ε)) · arccos
(
cosh(rk)−1
sinh(rk)

)
.

(Using that (cosh(rk) − 1)/ sinh(rk) = 1 − O(e−r). It follows that distH(Xj , Xk) > R, as
claimed. Hence if (

⋃
Fj) ∩ F has been realized, then at least one point of W will have

distance larger than R to all other points of W .
We wish now to deduce that in such a case, G(N ; 1/2, ν) will have an isolated vertex, but

as it happens VN is a strict subset of W . To get around this problem, we use the coupling
from Lemma 5.1, and symmetry. Suppose that (

⋃
Fj) ∩ F holds, and choose a point Xj

of distance > R to all other points (uniformly at random from all such points, say). By
symmetry considerations, under the coupling from Lemma 5.1 the probability that Xj is also
a point of Pν−δ is ν−δ

ν+δ = 1−O(δ). Putting everything together, we find that

P(G(N ; 1/2, ν) has an isolated vertex) ≥ P (
⋃
Fi|F )Pν(F )−O(δ)− P(coupling fails)

≥ (1− ε/2) · (1−Ψ(µ, λ)− ε/2)−O(δ)− o(1)
≥ (1− ε/2) · (1−Ψ(ν, 1)− ε)−O(δ)− o(1).

Sending ε, δ to zero gives the lemma. �

To conclude, let us point out that Theorem 4.1 implies that f(ν) := Ψ(ν, 1) has the
properties described in Theorem 1.2(iii).

References

[1] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Rev. Mod.
Phys., 74(1):47–97, January 2002.

29



[2] M. Bode, N. Fountoulakis, and T. Müller. On the largest component of a hyperbolic
model of complex networks. Electronic Journal of Combinatorics, to appear. Available
from http://www.math.uu.nl/~Muell001/Papers/BFM_giant.pdf.

[3] E. Candellero and N. Fountoulakis. Clustering in random geometric graphs on the hy-
perbolic plane. Internet Mathematics, to appear. Available from http://arxiv.org/

abs/1309.0459.

[4] C. J. Everett and S. Ulam. Multiplicative systems in several variables, I. Los Alamos
Scientific Laboratory, LA-683, 1948.

[5] N. Fountoulakis. On a geometrization of the Chung - Lu model for complex networks.
Journal of Complex Networks, 2015. to appear.

[6] L. Gugelmann, K. Panagiotou, and U. Peter. Random hyperbolic graphs: Degree se-
quence and clustering. In Proceedings of the 39th International Colloquium Conference
on Automata, Languages, and Programming - Volume Part II, ICALP’12, pages 573–585,
Berlin, Heidelberg, 2012. Springer-Verlag.

[7] T. E. Harris. The theory of branching processes. Die Grundlehren der Mathematischen
Wissenschaften, Bd. 119. Springer-Verlag, Berlin, 1963.

[8] J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in Probability. The
Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications.

[9] M. A. Kiwi and D. Mitsche. A bound for the diameter of random hyperbolic graphs. In
Robert Sedgewick and Mark Daniel Ward, editors, Proceedings of the Twelfth Workshop
on Analytic Algorithmics and Combinatorics, ANALCO 2015, San Diego, CA, USA,
January 4, 2015, pages 26–39. SIAM, 2015.

[10] D. Krioukov, M. Kitsak, R.S. Sinkovits, D. Rideout, D. Meyer, and M. Boguñá. Network
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