
 
 

Prediction of inter-particle capillary forces for non-
perfectly wettable granular assemblies
Harireche, Ouahid; Faramarzi, Asaad; Alani, Amir M.

DOI:
10.1007/s10035-015-0581-1

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Harireche, O, Faramarzi, A & Alani, AM 2015, 'Prediction of inter-particle capillary forces for non-perfectly
wettable granular assemblies', Granular Matter, vol. 17, no. 5, pp. 537-543. https://doi.org/10.1007/s10035-015-
0581-1

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/s10035-015-0581-1

Checked Jan 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185485129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10035-015-0581-1
https://research.birmingham.ac.uk/portal/en/publications/prediction-of-interparticle-capillary-forces-for-nonperfectly-wettable-granular-assemblies(a715afc0-b57b-4923-8f8a-e3b48c1ceeec).html


1 

 

Prediction of inter-particle capillary forces for 1 

non-perfectly wettable granular assemblies 2 

Ouahid Harireche (Email: O.Harireche@gre.ac.uk) 3 
Department of Civil Engineering, Faculty of Engineering & Science, University of Greenwich, 4 
Central Avenue, Chatham Maritime, Kent, ME4 4TB, United Kingdom 5 
 6 

Asaad Faramarzi (Corresponding Author, Email: A.Faramarzi@bham.ac.uk) 7 

School of Civil Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, 8 

United Kingdom 9 

 10 
Amir M. Alani (Amir.Alani@uwl.ac.ul) 11 
School of Computing and Technology, University of West London, London W5 2PA, 12 
United Kingdom  13 

 14 

Abstract 15 

At a moisture content that corresponds to the so-called pendular regime, granular assemblies are 16 

subjected to the development of inter-particle capillary forces. These forces provide a tensile 17 

resistance at the particle level, which results into a cohesion shear strength at the macroscopic 18 

scale.  Granular assemblies with non-perfectly wettable particles show a non-zero contact angle 19 

between the liquid bridge and the particle surface. It is worth mentioning that such an angle is an 20 

intrinsic property of the particle pair in contact and the liquid bridge. Its value has a significant 21 

effect on the magnitude of the capillary force and its behaviour as a function of the particle 22 

separation distance. This study is mainly motivated by the large range of values of the contact 23 

angle observed experimentally. In this paper, the governing equations for non-perfectly wettable 24 

granular assemblies in the pendular regime are first developed using the toroidal approximation. 25 

A robust numerical procedure is then proposed to solve these equations. Experimental validation 26 

of the numerical model shows that the capillary forces are predicted with a very good accuracy. 27 

The influence of the contact angle on the predicted inter-particle capillary force is also discussed. 28 

Keywords 29 
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1 Introduction 34 

Since the fundamental theories on capillary cohesion developed by Haines [1, 2] and 35 

Fisher [3, 4] and further developments by later scholars such as Carman [5], Rose [6] and 36 

Mason and Clark [7], investigations on the magnitude and stability of capillary forces are 37 

still of interest in various fields. To date, the particular case of equal size particles has 38 

received much more attention, especially in various attempts to develop theoretical 39 

predictions of capillary forces. For instance, the study by Lian et al. [8] was limited to this 40 

particular context, although stability and non-perfectly wettable particles have been 41 

taken into consideration. A work undertaken by Willet et al. [9] provided an interesting 42 

experimental basis for validation, although no control of the contact angle was 43 

performed in these experiments, which were conducted with remarkable care to 44 

maintain perfect surface condition of the tested particles. Willet et al. [9] performed 45 

numerical predictions of capillary forces for equal sized particles. They also extended 46 

their approach to unequal size particles using Derjaguin approximation. Schwarze et al. 47 

[10] implemented a simple liquid bridge model, based on Willet et al. [9] approximate 48 

model, into a software package based on discrete element method (DEM) in order to 49 

simulate shear cell experiments. More recently, Harireche et al. [11] proposed a toroidal 50 

approximation of capillary forces for polydisperse granular assemblies. Their model was 51 

successfully validated for a wide range of particle polydispersity against the 52 

experimental data obtained by Willet et al. [9]. However, the framework they proposed 53 

was limited to perfectly wettable particles. In the present work, the toroidal model 54 

proposed by Harireche et al. [11] is extended to non-perfectly wettable granular 55 

assemblies. This study is particularly motivated by the wide range of values of the 56 

contact angle observed experimentally. In the present paper, the toroidal model is first 57 

presented in the general context of non-perfectly wettable particles.  Governing 58 

equations are developed within the frame of a normalised geometry and are valid for 59 

any particle-pair and liquid bridge configuration. A robust numerical procedure is then 60 

proposed to solve the resulting non-linear system, which consists of five equations. The 61 

five unknowns characterise the particle pair and liquid bridge geometry and the 62 

equations must be solved for given values of the contact angle, liquid volume and 63 

particles’ separation distance. 64 
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2 A toroidal model for non-perfectly wettable 65 

particles 66 

2.1 Normalised geometry of particle-pair and liquid bridge 67 

The toroidal approximation of the liquid bridge assumes the meridian profile of the 68 

liquid-air interface to have a circular shape. In the present study, the contact angle  is 69 

considered as an intrinsic property of the particle pair and liquid bridge and is assumed 70 

to be independent of the separation distance d (Fig. 1). The particle-pair consists of two 71 

grains PA and PB of spherical shape with radii RA and RB (RA ≥ RB).  72 

In order to obtain relations that are independent of the geometry and configuration of 73 

the particle pair, all length measures are normalised with respect to the radius RA of the 74 

largest particle and we denote r the ratio of particle radii. 75 

A

B

R

R
r           (1) 76 

The normalised geometry of a non-perfectly wettable (≠0) particle-pair and liquid 77 

bridge is illustrated in Figure 1. In this normalised geometry, the half-filling angles are 78 

denoted  and  respectively and d is the inter-particle separation distance. The circular 79 

arc representing the profile of the liquid bridge has a centre  with coordinates  and  80 

in the rectangular system of coordinates with origin at the centre A of particle PA. The 81 

circle used to model the meridian profile of the liquid bridge crosses the two particles. 82 

The tangents to the liquid surface and to the particle surface at the intersection point 83 

make an angle, which is referred to as the contact angle and is denoted as . According 84 

to the Toroidal approximation, the external radius of curvature  of the liquid bridge is 85 

constant. The internal radius of curvature has a minimum value,  i at the 86 

bridge neck.  87 

Denoting wV  the liquid volume in the liquid bridge, the non-dimensional expression of 88 

this volume is 89 

 3
*

A

w
w

R

V
V                       (2) 90 
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Harireche et al. [11] derived two limit configurations which present lower and upper 91 

bounds to the normalised liquid volume. These two limit configurations define a 92 

maximum value, max and a minimum value, min for the external radius of curvature. 93 

These values are only valid for the perfectly wettable case but, as will be seen later, they 94 

are important to the solution procedure of the general problem. Expressions of these 95 

maximum and minimum radii of curvature max and min have been obtained in 96 

Harireche et al. [11]. 97 

2.2 Normalised capillary force 98 

Fisher [3] derived an expression where the capillary force F is the sum of two forces due 99 

to surface tension and matric suction su. In the present model, the capillary force is 100 

obtained at the bridge neck where the scaled internal radius of curvature is i. 101 

    uiAiAc sRRF
2

2                     (3) 102 

The method adopted here evaluates the solution at the bridge neck and is referred to as 103 

the“gorge” method. This method has been proven to provide the most accurate 104 

estimate of the capillary force, compared to the evaluation of this force at the three-105 

phase contact line, for example. This conclusion has been verified by Lian et al., [8]. 106 

The matric suction is expressed in terms of surface tension and curvature radii of the 107 

liquid bridge, according to the so-called Laplace-Young equation below: 108 











iAA

u
RR

s



11

                    (4) 109 

The normalised capillary force is denoted *

cF and its magnitude at the bridge neck is 110 

defined by combining equations (3) and (4). 111 

 



*

cF                      (5) 112 

The capillary force at the bridge neck is given by 113 

*

cAc FRF                        (6) 114 
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2.3 Fundamental equations governing particle pair, liquid bridge and 115 

capillary force 116 

In the general context of non-perfectly wettable particle-pair (Fig. 1) the liquid bridge 117 

geometry and hence, the magnitude of the capillary force, is affected by the five 118 

parameters:  , , , ,  . For a given normalised liquid volume, a normalised 119 

separation distance and a contact angle, these parameters are uniquely determined by 120 

the following five conditions: 121 

sin)( Axy ;  cosAx                      (7) 122 

sin)( rxy B  ; cosrLxB                      (8) 123 

where rdL 1 is the normalised distance between particles’ centres. 124 

AAxy tan)('  ;  


 
2

A                   (9) 125 

BBxy tan)('  ;  


 
2

B                 (10) 126 

***
cos

cos

2

wBA

rL

VVVdxy 







 


                  (11) 127 

where *

AV and *

BV  are the volumes of the spherical caps on particle PA and particle PB 128 

respectively (Fig. 2).  129 

 22* 3
6

II
I

I hy
h

V 


;  BAI ,                 (12) 130 

)( AA xyy  , )( BB xyy  , cos1Ah , )cos1(  rhB              (13) 131 

Conditions (7) and (8) correspond to the expressions of the coordinates of points A and 132 

B where the extended arc representing the liquid bridge profile crosses the two 133 

particles’ circular contours (Fig. 1). Conditions (9) and (10) correspond to the required 134 

contact angle  at points A and B. Condition (11) corresponds to the required normalised 135 

liquid volume. Note that all these conditions are expressed in the normalised geometry. 136 

After evaluating the integral term in equation 11, this equation can be rewritten under 137 

the form: 138 

  ***)()( wBAAvBv VVVxFxF                  (14) 139 
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Where 140 















y

x
yxxxxFv




 arctan))(())(()(

3

1
)( 2223    (15) 141 

If not impossible, an analytical solution to the non-linear system of equations 7-10 and 142 

14 would be very difficult to obtain. Such a solution has not been attempted in the 143 

present work; we rather propose the numerical procedure described in the next section. 144 

3 Numerical procedure for the calculation of the 145 

capillary force 146 

For a given configuration of the particle-pair, defined by the parameters r  and d and a 147 

contact angle , the present numerical approach provides an approximation of the 148 

capillary force, Fc developed by a liquid bridge of normalised liquid volume *

wV . 149 

Equations 7-10 and 14 can be cast under the form: 150 

0)( Xaf , 5,...,1a                   (16) 151 

Where 152 

),,,,( BA

T xxX                   (17) 153 

Note that for convenience, we use 
Ax and 

Bx as primary unknowns instead of the half-154 

filling angles  and  . Functions if can be easily identified. For completeness, these 155 

functions are provided in appendix 1. The Jacobian matrix of system (16) is defined by 156 

b

a
ab

X

f
J




                    (18) 157 

and is provided in appendix 2. 158 

For a given contact angle , the interval ],0[  is divided into N-1 increments ],[ 1nn  , 159 

1,...,1  Nn such that 01  and the contact angle increment, nn   1 is 160 

constant. At the first increment, the calculation process starts with a trial solution X(1) 161 

that corresponds to 01  . Such a solution can be obtained using the secant procedure 162 

proposed by Harireche et al. [11]. It is important to note that for this first step where the 163 

contact angle is zero, the liquid bridge profile corresponds to the perfectly wettable 164 
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case. In this particular case the circle representing the liquid bridge in the normalised 165 

geometry is tangent to the particle pair. Such a circle is uniquely determined by the 166 

radius, which can be used as the primary unknown in this particular case.  167 

The solution X(2) at   12
is then calculated using a Newton-Raphson iterative 168 

process starting from X(1) as an initial guess. Once convergence is achieved, iterations for 169 

the next contact angle increment start with X(2) as the initial guess. The algorithm 170 

provided in appendix 3 outlines the main steps in the calculation procedure. 171 

4 Validations and discussion 172 

Predictions based on the theoretical procedure presented in previous sections have 173 

been compared to the experimental data provided by Rabinovich et al. [12]. In these 174 

experiments, capillary forces were measured between glass spheres 38 -70 m in 175 

diameter (Fig. 3). White mineral oil of “sharpening stone” grade was used to form the 176 

liquid bridge between the two spheres. In all experiments the smaller sphere has a 177 

radius of 19 m and the contact angle is 10⁰. The liquid surface tension is 27.5 mN/m. In 178 

experiments 1, 2 and 3 the radius of the larger sphere has values 35 m, 32.5 m and 179 

27.5 m, respectively. The liquid volume has values 2×108 nm3, 12×108 nm3 and 36×108 180 

nm3, respectively. Figure 3 shows a very good agreement between the measured 181 

capillary forces and those predicted by the model developed in this study. As mentioned 182 

by Rabinovich et al. [12], there are maxima in the magnitude of the capillary force 183 

present at small separation distances (less than 10 nm), which are not clearly seen on 184 

the experimental data reproduced in Figure 3 because of the large scale of the abscissa. 185 

According to these authors, these maxima are believed to be due to contact angle 186 

hysteresis. The same phenomenon has been reported by Willet et al. [13].For 187 

comparison predictions by the proposed analytical expressions in Rabinovich et al. [12] 188 

are also depicted in Figure 3 (dashed lines). It is evident that this expression has 189 

overestimated the capillary force in all three cases and the proposed model in this study 190 

is in a better agreement with the experimental data particularly for curves (1) and (2).        191 

It should be noted that Rabinovich et al. [12] have used “fitting values” for surface 192 

tension within the range 24-28 mN/m instead of the constant value of 27.5 mN/m. This 193 

fitting range corresponds to a percentage error of 10%. In the present work, for a fair 194 

comparison, a constant value of surface tension of 27.5 mN/m is used to calculate 195 
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capillary forces in both models for the three experiments (Fig. 3). Furthermore, since the 196 

analytical expression proposed by Rabinovich et al. [12] does not take into account for 197 

polydisperse assemblies, an effective particle radius is used in the calculations.    198 

5 Parametric study of the developed model 199 

In order to investigate the effect of the contact angle on the inter-particle capillary 200 

force, we carry out a set of qualitative simulations using the model developed in this 201 

study. To this effect, the combining effects of the contact angle with separation 202 

distance, liquid volume, and the ratio of particle radii, on the capillary force are 203 

considered.  204 

5.1 Effect of contact angle and separation distance on capillary force  205 

A particle pair with radii 2.381 and 1.588 mm (r = 0.667) and an inter-particle liquid with 206 

a surface tension of 51006.2  N/mm and a volume of 21032.1 wV  mm3 is 207 

considered. The effect of contact angle on the inter-particle capillary force is shown in 208 

Figure 4. The figure shows that by increasing the contact angle, the capillary force is 209 

reduced; a similar trend to those reported in Willet et al. [9]. It is interesting to note that 210 

such effect is much more pronounced at small separation distances and is significantly 211 

reduced as the capillary bridge rupture distance is approached. 212 

5.2 Effect of contact angle and liquid volume on capillary force 213 

In this section we consider same particle pair as in section 5.1 above. The inter-particle 214 

liquid is also assumed to have same properties as in section 5.1. Two different contact 215 

angles (0 and 40 degrees) and two different scaled liquid volumes (V*w = 0.0001 and V*w 216 

= 0.001), making a total of four simulation scenarios, are considered. Figure 5 shows the 217 

results of these simulations. It is clear from this figure that while the initial capillary 218 

force is governed by the contact angle, the rate at which the inter-particle force 219 

decreases for an increasing separation distance depends on the liquid volume. In all 220 

cases the cubic root of the liquid volume provides a very good approximation of the 221 

rupture distance regardless of the contact angle values. 222 

5.3 Effect of contact angle and ratio of particle radii on capillary force 223 
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Figure 6 shows the model predictions for three different ratios of particle radii, each at 224 

two different contact angles. This figure shows that, regardless of the contact angle, the 225 

capillary force increases as the ratio of particle radii increases. The difference in capillary 226 

force for different ratios of particle radii fades away as the separation distance 227 

increases. However there is a clear difference between force-separation curves 228 

corresponding to contact angles of 0° and 40°. This shows the importance and influence 229 

of contact angle on the capillary force. For instance, at  a very small separation distance, 230 

the capillary force corresponding to r = 1 for a zero contact angle is more than four times 231 

bigger than the same radii ratio but a contact angle of forty.  232 

6 Concluding remarks 233 

By extending the toroidal approximation to non-perfectly wettable particles, the current 234 

model covers a wide range of soil mineral grains and liquids. Cases such as perfectly 235 

wettable granular assemblies and equal size particles are also recovered as special cases. 236 

The numerical approach developed in the present paper can be easily implemented and 237 

used to generate solutions for various particle-pair and liquid bridge configurations. The 238 

numerical procedure has been built on the special case of perfectly wettable particles 239 

for which a robust secant method has been proposed by Harireche et al. [11]. Such a 240 

special case is used to start an iterative process where the contact angle is divided into 241 

small increments within which Newton-Raphson typical iterations are performed until 242 

convergence is achieved. The current model has been validated against the 243 

experimental data provided by Rabinovich et al. [12]. The case where the contact angle 244 

with each particle is different has not been taken into consideration in the present 245 

paper. However, as can be seen from conditions (9) and (10), different values of the 246 

angle  would need to be considered in these two equations and appropriately reflected 247 

in the expressions of functions 3f and 
4f and in the components aJ3 and aJ4 (a=1,…,5) 248 

of the Jacobian matrix. 249 

Disclosures 250 

This study is not supported by any financial support or funding.  251 
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Expressions of functions af , 5,...,1a , involved in equations 7-10 and 14. 288 

222

1 )()()(   AA yxf X  289 

222

2 )()()(   BB yxf X  290 

syscxcsf AA  )()()(3 X  291 

scsLysccLxcssLf BB  )()()()(4 X  292 

  ***

5 )()()( wBAAvBv VVVxFxFf X  293 

In the expressions above, )(xFv , BAIVI ,,*  and 
*

wV are defined by (15), (12) and (2), 294 

respectively. The parameters c and s correspond to )cos( and )sin( , respectively. 295 

 296 

Appendix 2 297 

Expression of the components of the Jacobian matrix defined by equation 18. 298 

 2211 
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y

x
J ;  012 J ;  AxJ  213 ;  AyJ  214
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y

xL
J

B

B 22222 

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
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 
  ;  BxJ  223 ;  ByJ  224

; 300 

225 J ; 301 

   
A
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y

x
sccsJ  31 ; 032 J ; AA cysxJ 33 ; AA sycxJ 34 ; 302 

035 J ; 303 

041 J ;     cssL
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xL
sccLJ

B

B 
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

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42 ; LscysxJ BB 43 ; 304 

LcsycxJ BB 44 ; 045 J ; 305 

051 J ; 052 J ;    453  ABAB yyyyJ ; 306 

       












































A

A

B

B
ABAABB

y

x

y

x
yyyxyxJ arctanarctan2

54307 

  












































A

A

B

B
AB

y

x

y

x
xxJ arctanarctan2255

. 308 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 

 

Appendix 3 309 

Algorithm for the numerical procedure to solve equations 7-10 and 14. 310 

(1) Obtain )1(
X using the secant procedure proposed in Harireche et al. [11] and set 311 

)1()0(
XX   312 

(2)  Set increment counter to zero: 0inc  313 

(3) Perform a new increment: 1 incinc  314 

(4)  Set iteration counter to zero: 0i  315 

(5)  Perform a new iteration: 1 ii  316 

(6)  Obtain X by solving: )()( )1()1(
5

1





 i

ab

i

b

ab fXJ XX , 5,...,1a  317 

(7) Obtain )()( )1()(
XXX  i

a

i

a ff , 5,...,1a  318 

(8) Check convergence: TolF ; where ))(),...,(( )(

5

)(

1

iiT ff XXF   and Tol is 319 

typically 10-6. 320 

(9)  If (convergence) Then set )()0( i
XX  and Go to (3) 321 

              Else Goto (5) 322 

(10) END 323 
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Figure captions: 

 

Figure 1.  Normalised geometry of a non-perfectly wettable particle-pair and liquid bridge  

Figure 2.  Liquid bridge: Normalised water volume and spherical caps. 

Figure 3. Model validation against the experiments and analytical expression reported by 

Rabinovich et al. (2005) for a contact angle,  = 10°. 

  Experiment (1): RA=35m, Vw=2×108 nm3,  

Experiment (2): RA=32.5m, Vw=12×108 nm3,   

Experiment (3): RA=27.5m, Vw=36×108 nm3.   

Figure 4. Effect of various contact angles on inter-particle capillary force (Vw=1.32×10-2 mm3, 
51006.2  N/mm, RA = 2.381 mm and RB = 1.588 mm) 

Figure 5. Scaled capillary force as a function of the scaled separation distance for values of the 

contact angle,  = 0° and  = 40° and scaled liquid volumes, V*w = 0.0001 and V*w = 

0.001 (
51006.2  N/mm, RA = 2.381 mm and RB = 1.588 mm). 

Figure 6. Scaled capillary force as a function of the scaled separation distance for values of the 

contact angle,  = 0° and  = 40° and ratios of particle radii, r = 1/2 , r = 2/3 and r = 1 

(Vw=1.32×10-2 mm3, 
51006.2  N/mm). 
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(Created with Microsoft Excel) 
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