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Abstract 

For many years developing haematopoietic cells have been strictly compartmentalised into a 

rare population of multi-potent self-renewing haematopoietic stem cells (HSC), multi-potent 

haematopoietic progenitor cells (MPP) which are undergoing commitment to particular 

lineage fates, and recognisable precursor cells which mature towards functional blood and 

immune cells. A single route to each end-cell type is prescribed in the ‘classical’ model for 

the architecture of haematopoiesis. Recent findings have led to the viewpoint that HSCs and 

MPPs are more versatile than previously thought. Underlying this are multiple routes to a 

particular fate and cells having clandestine fate options even when they have progressed some 

way along a pathway. The primary role of cytokines during haematopoiesis has long been 

seen to be regulation of the survival and proliferation of developing haematopoietic cells. 

Some cytokines now clearly have instructive actions on cell-fate decisions. All of this leads to 

a new way of viewing haematopoiesis whereby versatile HSC and MPP are directed towards 

lineage outcomes via cytokine regulated cell-fate decisions. This means greater flexibility to 

the shaping of haematopoiesis. 

Keywords: Haematopoiesis, cell-fate decisions, cytokines, cell differentiation, leukaemia 

Abbreviations: ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; Bas, 

basophil; CLP, common lymphoid progenitor; CMP, common myeloid progenitor; CSC, 

cancer stem cell; DC, dendritic cell; DN, double-negative; DP, double-positive; Eos, 

eosinophil; Eo/B-CFU, eosinophil and basophil progenitor; Epo; erythropoietin; EPLM, 

Early Progenitors with Lymphoid and Myeloid potential; Ery, erythroid; FLT3, Fms-like 

tyrosine kinase 3 receptor; G-CSF, granulocyte colony-stimulating factor; GM-CFU, 

granulocyte/macrophage colony-forming unit; GM-CSF, granulocyte/macrophage colony-

stimulating factor; GMP, granulocyte and monocyte progenitor; HSC, haematopoietic stem 

cell; IL, interleukin; IL-7R, interleukin-7 receptor; LIC, leukaemia initiating cell; LMPP, 
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Lymphoid-primed Multipotent Progenitors; LSK, lineage markers
-
, Sca-1

+
, c-Kit

+
 population 

of bone marrow cells; LT-HSC, long-term reconstituting haematopoietic stem cell; Ly, 

lymphoid; MC, mast cell; M-CSF, macrophage colony-stimulating factor; Meg, 

megakaryocyte; MegE; megakaryocyte/erythroid; MEP, megakaryocyte and erythroid 

progenitor; Mon, monocyte; MPP, multi-potent haematopoietic progenitor cells; My, 

myeloid; Neut, neutrophil; NK, natural killer cell; SCF, stem cell factor; SLAM, signalling 

lymphocyte activation molecule; ST-HSC, short-term reconstituting haematopoietic stem 

cell; TCR, T-cell receptor; TGF-1, transforming growth factor-1; Tpo, thrombopoietin; 

TSP, thymus-settling progenitor; vWF, von-Willebrand factor;  



  
Page 4 

 
  

Introduction 

The haematopoietic stem cell (HSC) gives rise to a wide range of blood and immune cell 

types. The generation of large numbers of each cell type is a complex and tightly regulated 

process that is ultimately governed by commitment of rare, and generally quiescent, HSCs to 

pathways of cell differentiation. These cells, which reside within the bone marrow in adult 

mammals, are the apex of the haematopoietic hierarchy. HSCs, which can self-renew, give 

rise to multi-potent progenitor cells (MPPs) which undergo decision-making, expansion and 

differentiation, via recognisable lineage precursors, to give rise to the final compartment of 

functional cells. Since the early 1980s the end cell types have been viewed as two families; 

lymphoid that includes B and T lymphocytes and natural killer (NK) cells and myeloid 

consisting of the rest of the blood and immune cells. Commensurate with this has been the 

identification of progenitors of each family; namely the common lymphoid progenitor (CLP) 

(1) and common myeloid progenitor (CMP) (2). This lymphoid/myeloid dichotomy is the 

basis of a long standing model for the architecture of haematopoiesis which also encompasses 

single routes of differentiation towards individual fates (3). Over the past 15 years, the above 

strict architecture has become less black and white. HSCs and haematopoietic progenitor cells 

(HPCs) are now viewed as more versatile and developing HSCs/HPCs less rigorously 

compartmentalised. 

Cell heterogeneity and versatility during haematopoiesis 

Heterogeneity of haematopoietic stem cells 

HSCs are better described in mouse than in human and mouse HSCs can be purified to 

homogeneity to a greater extent (4). There are differences between mouse and human HSCs, 

and between foetal and adult HSCs. Human HSCs are isolated for transplantation on the basis 

of expression of the cell surface molecule CD34. By contrast, a single mouse CD34
low/- 

HSC 
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reconstitutes haematopoiesis long-term in a lethally irradiated mouse (5, 6). Matsuoka and co-

workers observed that HSCs of bone marrow, liver, and spleen from foetal and neonatal mice 

express CD34, whereas HSCs are enriched in the CD34
-
 fraction and MPPs are CD34

+
 in 

mice older than 10 weeks (7). Albeit, the principles of haematopoiesis derived from human 

and mouse studies, including of foetal and adult cells, are substantially similar. 

The description of HSCs, and isolation by fluorescence activated cell sorting, relies on the 

presence and absence of a range of cell surface molecules. Studies of HSCs in the mouse have 

the advantage that HSCs can be rigorously defined during purification as cells that repopulate 

long-term (LT-HSC) and short term (ST-HSC) the entire haematopoietic system. A cardinal 

aspect of HSCs is they do not express markers that are associated with the various 

haematopoietic cell lineages (Lin
-
), including, for example, CD3 (T lymphocytes), B220 (B 

lymphocytes), CD11b (monocytes/macrophages), Ly-6G (neutrophils), and TER-119 

(erythroid cells). HSCs and MPPs express the two molecules c-Kit, a mast/stem cell growth 

factor receptor and tyrosine kinase, and Sca-1, a phosphatidylinositol-anchored membrane 

protein. LT-HSC and ST-HSC reside in the Lin
-
, Sca-1

+
, c-Kit

+
 population of bone marrow 

cells, termed LSK.  

Originally the Weissman group sub-divided the LSK compartment on the basis of expression 

of Thy-1.1 and the Flt3 (fms-like) tyrosine kinase, a type 3 receptor kinase (3, 8). The loss of 

a low level of expression of Thy-1.1 and gain of expression of Flt3 was observed to correlate 

with a loss of the capacity of HSCs to self-renew (Figure 1). LT-HSCs were isolated from 

adult bone marrow as LSK Flt3
-
, and transplantation of LSK Flt3

+
 cells resulted in short-term 

multi-lineage reconstitution. However, foetal liver HSCs are contained within the Flt3
+
 and 

Flt3
-
 LSK cells. MPPs are Thy1

-
Flt3

+
. In 2005, Yang and co-workers combined LSK markers 

with CD34 and Flt3. The definitions provide by the Jacobsen group, which are commonly 
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used, are: LT-HSC as LSK CD34
-
Flt3

-
, ST-HSC as LSK CD34

+
 Flt3

-
, and MPPs as LSK 

CD34
+ 

Flt3
+ 

(Figure 1) (9).  

Recently, the signalling lymphocyte activation molecule (SLAM) family of membrane 

receptors (CD150, CD48, CD229 and CD244) has been used to describe subpopulations of 

HSCs and MPPs (Figure 1). Kiel and co-workers purified HSCs and MPPs as CD150
+
CD48

-

CD244
-
 and CD150

-
CD48

-
CD244

+
, respectively. Lineage restricted progenitors can be 

identified by acquired expression of CD48, and are CD150
-
CD48

+
CD244 (10). Adding 

CD229 to the panel of SLAM, CD34 and LSK markers led Oguro and co-workers to propose 

HSC-1 and HSC-2 populations, which have different lineage biases, and three populations of 

MPPs (Figure 1). CD229
-
 HSC-1 are cells that rarely divide and are myeloid-biased as 

revealed by transplantation studies. CD229
+
 HSC-2 cells divide more frequently and are 

lymphoid-biased (10). Contrary to the findings of the Morrison group, the level of expression 

of CD150 has also been used to distinguish myeloid- and lymphoid-biased HSCs. Ema and 

co-workers have observed that myeloid-biased HSCs are enriched in the CD150
high/med

CD34
-

LSK population and lymphoid-biased HSCs are enriched in CD150
low/-

CD34
-
LSK population. 

These workers have proposed that these two populations of cells overlap with LT-HSCs and 

ST-HSCs, respectively (11). 

As mentioned above and for many years, the two compartmentalising properties of HSCs are 

their capacities to reconstitute the entire haematopoietic system and to self-renew. Oguro in 

summarising the sub-populations of hematopoietic stem and progenitor cells distinguished 

using SLAM markers provides a scheme whereby the self-renewal potential of HSC-1 is long-

term, of HSC-2 is long to intermediate, of MPP-1 is intermediate to transient, and of MPP2 

and 3 is transient (10). Oguro also described haematopoietic progenitor cells (HPC-1 and 2) 

which do not self-renew. In essence, the boundary between HSCs and MPPs as to the property 

of self-renewal is blurred, and a distinction between HSCs and MPPs is perhaps somewhat 
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redundant. Both these cell types might best be viewed, and classified, as a continuum of 

haematopoietic progenitor cells that reduce their capacity to self-renew as they mature. 

Strict multi-potency does not always go hand in hand with self-renewal as to the identification 

of HSCs with lineage biases. As mentioned above, the CD34
-
LSK population of bone marrow 

cells, which engraft mice including secondary hosts, has been divided into myeloid-biased 

HSCs and lymphoid-biased HSCs. In addition to expressing a higher level of CD150, 

myeloid-biased HSCs exclude Hoechst 33342 more effectively than lymphoid-biased HSC, 

and these two HSC sub-types are differentially regulated by transforming growth factor-1 

(TGF-1) (12). There is additional heterogeneity within the CD150
high

CD34
-
LSK population 

of cells, as revealed by engraftment of single cells in irradiated mice.  In primary hosts some 

single cells readily gave rise to myeloid cells and cells that were able to engraft a secondary 

host. Some single cells produced few myeloid cells in primary hosts and cells which when 

transferred to secondary hosts give rise progressively to multiple lineages (13). Furthermore, 

CD41 and CD86 expression on HSCs has been reported to distinguish myeloid-biased and 

lymphoid-biased cells, respectively (14, 15). As mice age there are quantitative differences in 

lineage biases in the HSC population. The data support a model whereby myeloid-biased 

HSCs have clonally expanded, while lymphoid-biased HSCs exhaust themselves due to their 

more extensive proliferative nature (16). 

Recently Jacobsen’s group have described a platelet-biased LT-HSC that expresses von-

Willebrand factor (vWF) (17). Transplantation of single vWF
+
 HSCs into irradiated hosts 

resulted in reconstitution biased towards platelets and myeloid cells. vWF
- 
HSCs gave rise to 

a lymphoid-biased reconstitution. vWF
+
 HSCs require thrombopoietin (Tpo) for their 

maintenance as these cells were significantly reduced in number in Tpo
-/-

 mice. vWF
+
 HSCs 

give rise to vWF
-
 HSCs, and vWF

-
 HSCs were not able to give rise to vWF

+
 HSCs. This led 



  
Page 8 

 
  

the Jacobsen group to propose that platelet-biased HSCs are the apex of the haematopoietic 

hierarchy. 

Heterogeneity of haematopoietic progenitor cells 

In the ‘classical’ lymphoid/myeloid dichotomy model of haematopoiesis the sets of potentials 

observed for different types of progenitors align themselves to developmental progression 

along each arm of the dichotomy. However, this is not the case for all of the progenitors that 

have been described to date. At odds with an irrevocable commitment of HSCs to either a 

lymphoid or myeloid pathway is the early description of a progenitor in mouse foetal liver 

with just the potentials for B lymphoid and macrophage differentiation (18). This cell was 

later shown to be present in adult bone marrow (19). A further finding that contradicts the 

notion that HSCs make an immediate and irrevocable decision to commit to either the 

lymphoid or myeloid pathways of differentiation is the identification of cells with lymphoid 

potentials and an incomplete set of myeloid potentials. These cells are Early Progenitors with 

Lymphoid and Myeloid potential (EPLM), that can give rise to T and B lymphocytes, NK 

cells, dendritic cells (DCs), and macrophages,(20) and Lymphoid-primed Multipotent 

Progenitors (LMPP), that have little potential for megakaryocyte or erythroid development 

whilst retaining other potentials.(21) 

Progenitor cells that contradict a lymphoid/myeloid dichotomy led us to propose the pair-wise 

model of haematopoiesis (22-24). This model does not assume lineage branching patterns nor 

prescribe a single preferred route to a particular end-cell fate. Instead mature cell fates are 

shown to be near-neighbours within a continuum of lineage fates (Figure 2). As HSCs mature 

towards a specific dominant cell fate, fates that are distantly related to this fate are lost first 

and more closely related fates remain possible as latent fates. The model envisages versatility 

of HSCs and MPPs, as to allowing an end-cell type to be reached by more than one route (see 
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also below). Mapping of transcription factor usage and the responsiveness of progenitors to 

growth factors supports the proposed close relationships between cell lineages (22-24).  

A number of progenitor cells have been described that have different sets of potentials. The 

various combinations of lineage potentials that exist within progenitors are also reflected in a 

number of different cell lines [reviewed in (27)]. Figure 3 shows that the different 

combinations of differentiation capabilities described for normal progenitors can be mapped 

to the pair-wise model. Of particular importance to placing cell lineages close to one another 

in the continuum are progenitor cells that have just two differentiation capacities. In other 

words, the continuum infers that only certain bi-potentialities are permissible. For example, a 

cell with the potential for megakaryocyte and T cell differentiation should not exist, and has 

not been described to date. Bi-potent progenitor cells can be placed within the model with the 

exception of a bi-potent B lymphocyte/macrophage cell (18, 19). Whether this cell can give 

rise to DCs has not been studied. 

Already there is a considerable variety of stem cells, with differing biases, and progenitor 

cells, with differing sets of potentials. The latter in turn give rise to end cell types which can 

be divided into numerous sub-types, for example, as is the case for T helper cells and DCs. 

The full extent of the heterogeneity of progenitor cell populations, and their mature progeny, 

is very much contingent on the extent to which new and existing cell surface markers can be 

used to define new sub-populations. It is highly likely that progenitor cells with multiple 

lineage options and which we presently view as a homogeneous population of cells will be 

divided into cells with lineage biases in various directions.  

Versatility of haematopoietic progenitor cells 

The pair-wise model allows developmental pathways to be flexible. One aspect of this is 

HSCs and their progeny using more than one route to a particular end-cell type. This principle 
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was demonstrated by deriving DCs ex vivo from cells purified as CLPs and CMPs. When the 

transcription profiles of the two DC populations were compared they were found to be the 

same (26). Ishikawa and co-workers concluded that the developmental program of human 

DCs operates independently of the pathways for myeloid and lymphoid cells. 

Alongside new findings there has been a plethora of new models for the architecture of 

haematopoiesis. Some of the models depict multiple routes towards granulocytes and 

monocytes. For example, a model provided by Jacobsen considers the possibilities of these 

myeloid cells arising from ST-HSC/MPP via: (i) CMP and GMP; (ii) LMPP giving rise to 

GMP; and (iii) LMPP giving rise to a granulocyte/monocyte/T lymphocyte progenitor (32) 

which in turn gives rise to GMP. In a model proposed by Katsura the two routes towards 

myeloid cells are HSCs veering towards: (i) a cell with the potentials for myeloid, erythroid 

and megakaryocyte development; and (ii) a cell with the potentials for myeloid and lymphoid 

development (33). Ye and Graf compared the production of mature cell types to flows along 

branches of a tree with a major branch giving rise to platelets, erythroid cells, granulocytes 

and monocytes in equal measure and a separate branch giving rise largely to granulocytes and 

monocytes (34). Of course, it is difficult to exclude the possibility that all the above routes to 

myeloid cells occur to some degree. 

Precise tracking of a progenitor, as defined by a set of markers, giving rise to the next 

progenitor, also verified by markers, and so on to an end cell type(s) is an impossible task. 

However, examination of the sets of options available to various progenitors, as defined by 

appropriate markers, and which progenitors are or are not able via loss of a fate option(s) to 

give rise to one another allows configuration of multiple routes to certain end-cell types. As 

described by Jacobsen and c-workers, HSCs can give rise to neutrophils and monocytes 

through LMPP and CMP intermediates. Figure 4 shows different possible routes downstream 

of LMPP and CML towards neutrophils. These include potential pathways through an 
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eosinophil/granulocyte/monocyte progenitor (35) and/or GM-CFUs. The routes are in keeping 

with the pair-wise model as to their close proximity. Similarly, there are multiple potential 

pathways towards monocytes via CMP, an eosinophil/granulocyte/monocyte progenitor and 

GM-CFU, and via LMPP, EPLM and a monocyte/dendritic cell progenitor (30). In foetal 

liver, a myeloid/B biased progenitor is a further intermediary to myeloid cells (36). A caveat 

to all of this is the extent to which routes are used in vivo. However, the point of interest is the 

inherent flexibility of pathways available to progenitors. It is noteworthy  that the ability of 

precursor cells to follow alternative developmental pathways to give rise to the same cell 

phenotype was described for cell lineages in the embryo of the leech as early as 1987 (37). 

One aspect underpinning versatility is that progenitor cells retain fate options even after they 

have progressed some way along a pathway. Thymus-settling progenitors (TSP) have the 

potential to give rise to myeloid cells, dendritic cells, NK cells, and B lymphocytes in addition 

to T lymphocytes. TSPs give rise to Double-negative (DN) 1 early thymocyte progenitors 

(ETP) which give rise to DN2 cells. DN2 cells have lost the potential for differentiation 

towards B lymphocytes, but when cultured in the right environment generate myeloid, 

dendritic cells, and NK cells (38-40). These clandestine potentials are lost as DN2 cells 

progress to the DN3 stage of development. 

Some cytokines have instructive actions on cell-fate decisions 

Early glimpses to the instructive action of cytokines  

A long-standing debate is whether the commitment of HSCs to fate options occurs in a cell-

autonomous and stochastic, or is driven (in an ordered way) by instructive signals from the 

local environment (41-44). Cytokines are the pivotal external factors that impart 

environmental signals to control haematopoietic cell development. They have multiple actions 

that can be viewed as either instructive, by directing HSCs/MPPs towards a specific lineage, 
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or permissive, by selectively allowing cells committed to a particular lineage to survive and/or 

proliferate (45, 46). For many years, a permissive role of cytokines has been favoured. A very 

recent and complete turn about in our understanding of the control of haematopoiesis is the 

notion that cytokines instruct decision-making (47, 48). 

Information to support an instructive role for cytokines has been available for quite some 

time. In 1982 Metcalf and Burgess concluded that granulocye/macrophage colony-stimulating 

(GM-CSF) factor and macrophage colony-stimulating factor (M-CSF) can “irreversibly 

commit the progeny of GM-CFC respectively to granulocyte and macrophage production” 

(49). When paired daughter cells of GM-CFU were split and one cultured in GM-CSF and the 

other in M-CSF some of the cells underwent irreversible commitment to the granulocyte and 

macrophage pathways, respectively. This occurred during completion of the first cell division 

and within 24 hours. Later in 1991 Metcalf again concluded that colony-stimulating factors 

have the ability to influence lineage commitment (50). Metcalf examined the relative 

frequencies of lineage committed progenitors when blast cell colonies were established from 

normal bone marrow cells in combinations of G-CSF, GM-CSF, and multi-CSF. The relative 

frequency of granulocyte progenitors was increased when cultures were established in the 

combination of GM-CSF or multi-CSF with stem cell factor (SCF). 

In 2000, Kondo and co-workers provided more evidence to support the notion that cytokines 

can convert the fate of lymphoid-committed progenitors (47). The interleukin (IL)-2 and GM-

CSF receptors were exogenously expressed in CLPs, which normally gives rise exclusively to 

T lymphocytes, B lymphocytes and NK cells. This resulted in cell-fate conversion to the 

myeloid lineage. The use of mutants of the beta-chain of the IL-2 receptor revealed that 

signals for the granulocyte and monocyte differentiation pathways are provoked by different 

cytoplasmic domains of the IL-2 receptor. Kondo and co-workers also showed that primitive 

HSCs express low to moderate levels of the receptors for GM-CSF and M-CSF. Hence, there 
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is the possibility that HSCs are receptive to the instructive actions of these growth factors. 

Kondo and co-workers concluded from all of the above that down-regulation of cytokine 

receptors that drive myeloid cell development is a critical step in commitment of cells to 

lymphoid development. 

Recent studies confirm an instructive action of cytokines  

A number of studies have now shown that cytokines have an instructive action on cell-fate 

decisions. M-CSF, G-CSF and erythropoietin (Epo) instruct monocytic, neutrophilic and 

erythroid fates, respectively. In 2009, Rieger and co-workers confirmed that M-CSF and G-

CSF provided instructive cues by monitoring individual hematopoietic progenitors in culture. 

Using bioimaging techniques and a LysM-GFP reporter system to detect differentiation and 

cell death, the group observed that individual GMPs adopted monocytic or neutrophilic fates 

in the presence of M-CSF or G-CSF, respectively (48). More recently, Mossadegh-Keller and 

co-workers made us of PU.1-GFP reporter mice to show that M-CSF drives expression of 

myeloid-associated genes in some LT-HSCs. In vivo M-CSF stimulated expression of PU.1
+
. 

HSCs generated increased numbers of GMPs in the spleen and peripheral myeloid cells at the 

expense of cells undergoing megakaryocyte, erythroid and lymphoid development when 

compared to non-primed PU.1
-
 HSCs (51). Epo induces priming of erythroid lineage-

associated genes in LT-HSCs and in vivo skews the potential of these cells towards an 

erythroid fate (52). An increase in serum Epo levels in mice led to the expansion of 

committed erythroid and megakayocyte and erythroid progenitors (MEP) in the bone marrow, 

whereas megakaryocyte progenitors, pre-GMP, and LMPP populations were decreased. 

An instructive action of Flt3 ligand in determining cell fate 

One of the cytokines that is essential to cell survival and proliferation during early 

haematopoiesis is the ligand for Flt3 (53, 54). Flt3 ligand (Flt3L) was described two decades 
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ago (53), and is the only known ligand for Flt3. Upon ligand binding, the Flt3 receptor 

dimerizes and initiates signalling that involve STAT5a, ERK1/2 and PI3K (55). Flt3 is an 

important area of research since mutations in Flt3 were among the first ones discovered in 

acute myeloid leukaemia (AML) [reviewed in (56)]. Presently, there is substantial interest in 

elucidating the instructive role of Flt3L. 

Flt3 expression occurs during haematopoiesis at the non-self-renewing ST-HSC stage of 

development (57). In fact, Flt3 up-regulation relates to the loss of self-renewal capacity (58). 

This may just be a coincidence or Flt3/Flt3L provokes the loss of self-renewal capacity by an 

as yet unknown mechanism. Thereafter, MPP express Flt3 as do several downstream 

progenitors with myeloid and/or lymphoid potential, while the MEP is Flt3 (57). As lineage 

options become more restricted Flt3 expression is down-regulated with the exception of DCs 

(59).  

Importantly, Flt3L exerts a role by interacting with other cytokines such as IL-7 or SCF (60, 

61). For example, IL-7 and Flt3L stimulate lymphoid development in a coordinated manner 

which occurs in a narrow window during which cells express both receptors. In the case of in 

vitro cultures of haematopoietic progenitor cells, such as ETP, CLP or EPLMs, and in the 

presence of IL-7, Flt3L provides an additive anti-apoptotic effect while stimulating 

proliferation (62, 63) [and our observations]. This additive effect is reported to result from 

parallel activation of the IL-7 receptor (IL-7R) and Flt3 via separate signalling pathways 

converging to activate Stat5 (61). 

Mice with targeted gene disruption of Flt3 (64)
 
or its ligand (65)

 
have provided precise 

information about the actions of Flt3/Flt3L. These mice present defects in the developmental 

potential of myeloid/lymphoid progenitors as well as reduced numbers of B cells, DCs and 

NK cells(64, 65). Tsapogas and co-workers have provided evidence to support the notion that 

Flt3L is instructive to cell decision-making. These workers generated a Flt3L transgenic 
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(Flt3L-Tg) mouse that expresses human Flt3L (66). Flt3L-Tg mice have a tremendous 

expansion of haematopoietic progenitors in the bone marrow. Of all the progenitor 

populations analysed, the only progenitor that was decreased was the MEP. As such, the Flt3-

Tg mice have decreased platelet counts and developed anaemia. Previous studies had reported 

that expression of Flt3 after the ST-HSC stage leads to a reduction of megakaryocyte and 

erythrocyte potentials (21). Also, a significant reduction in MEP progenitors was observed by 

day 3 when wild type mice were injected with recombinant Flt3L (67). Considering this rapid 

response, it is likely that the reduction in MEP numbers was a consequence of a Flt3L 

threshold response in upstream Flt3
+
 progenitors, rather than a space restriction within the 

bone marrow caused by the over-proliferation of other progenitors. It was proposed that 

upstream Flt3
+
 progenitors develop towards lymphoid/myeloid lineages upon receiving Flt3L 

stimulation above a certain threshold level and develop towards the Meg/E lineage if this 

threshold level was not reached. In other words, an increased level of Flt3L guides the 

development of cells towards the lymphoid/myeloid fates at the expense of the Meg/E fates 

(Figure 5). This provides an explanation of the megakaryocyte/erythrocyte developmental 

defect in the Flt3L-Tg mice. The exact mechanism by which Flt3L exerts an instructive action 

remains to be elucidated and whether this occurs at the CLP/EPLM level is of considerable 

interest. 

Cytokines play different roles at various developmental stages 

This is best illustrated by consideration of the actions of IL-7 at various stages of B and T 

lymphocyte development [reviewed in (68-70)]. These include promoting cell survival and 

proliferation and facilitating decision-making during differentiation (Figure 6). IL-7 was 

described in 1988 (71). In mice, deficiencies in IL-7 or the receptor lead to impairment of B 

and T lymphopoiesis (72-74). IL-7 is not required for B lymphopoiesis in humans, as 

deficiencies in IL-7 result in an apparent normal B cell development (70). However, the B 
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cells could be the result of foetal development since they can be cultured in vitro in the 

absence of IL-7 while postnatal B cells seem to be IL-7 dependent (75). 

CLPs express IL-7R, which provides a criterion used to isolate these cells (1). CLP are 

dramatically reduced in IL-7 deficient mice (76), indicating this cell is critically dependant on 

IL-7. EPLM express the IL-7R (20). A strong proliferative action of IL-7 is seen when CLPs 

and EPLMs, sorted from mouse bone marrow, are cultured on OP9 stromal cells and treated 

with IL-7 (76) [and our own observations]. Furthermore, these cells are able to differentiate to 

the next B cell developmental stage, the pro-B (pre-B1), indicating that IL-7 acts as a 

differentiation factor at the CLP/EPLM level. In keeping with this notion is that CLP cells are 

unable to reach the pro-B (pre-B1) stage in γc 
-/-

, IL-7Rα 
-/-

 or IL-7
-/-

 mice, and instead arrest 

at an uncommitted level (77). These data suggest an instructive role for IL-7. This appears to 

occur via IL-7-induced STAT5 signalling which regulates the expression levels of EBF (76, 

78). In turn, EBF activates transcription of Pax5 (79, 80)
 
leading to expression of CD19. This 

cell surface marker indicates that cells have gained the pro-B phenotype and commitment to 

the B cell lineage (81, 82). 

The pro-B (pre-B1) stage is also sensitive to the action of IL-7. Foetal and bone marrow pro-B 

(pre-B1) cells can be cultured in vitro in the presence of IL-7 and stromal cells for long 

periods of time (more than 4 months) (83). The survival action of IL-7 appears to be exerted 

via expression of the gene encoding the anti-apoptotic protein Mcl-1 (84). Moreover, there is 

evidence to suggest that IL-7 facilitates differentiation of pro-B (pre-B1) cells into 

cytoplasmic µ immunoglobulin (Ig) heavy chain expressing large pre-B2 cells (85, 86)
 
[and 

our own unpublished observation]. IL-7 is not instructive, since cells differentiate irrespective 

of the presence of IL-7 (85, 86). Instead, the data argue for a permissive role of IL-7, in 

promoting survival and proliferation, during the pro-B (pre-B1)/large pre-B2 transition. 

However, some groups have reported that STAT5-mediated IL-7 signalling controls 
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chromatin accessibility and the rearrangement of distal VH genes at the Igh locus (87-89). 

This is exemplified by a significant decrease in distal VH rearrangements in B220
+
 IgM

-
 bone 

marrow B lymphocytes of IL7R-/- and Stat5-/- deficient mice (87, 89). By contrast, Malin has 

argued there is no substantial difference in the distal VH rearrangement genes seen for STAT5 

deficient, IL-7R mutant and control pro-B (pre-B1) cells (84). Finally, as to the pre-B1/pre-B2 

transition, it has been reported that IL-7 acts to prevent premature rearrangements of the Igκ 

via binding of IL7-mediated STAT5 to the Igκ intronic enhancer (iEκ) (84, 90). 

The large pre-B2 is the last stage in B cell development that is sensitive to the action of IL-7. 

The proliferation of these cells is improved by the presence of IL-7 (91). However, IL-7 acts 

as an anti-differentiation factor towards immature B cells by blocking the rearrangement of 

the light chain loci (84, 90, 91). Upon withdrawal of IL-7 from the culture, cells undergo Igκ 

recombination and differentiation into IgM positive cells (21, 84, 92, 93). At this stage, as a 

consequence of the pre-B cell receptor signalling, IL-7R is down-regulated and the later 

stages of the B cell development are unresponsive to IL-7 (91, 94)
 
[reviewed in (95)]. 

During T lymphocyte development, the thymus is seeded by ETP (96) and there is a general 

agreement that these cells can give rise to multiple lineages. In humans, the ETP retain 

lympho-myeloid potentials and can generate separate lymphoid- and myeloid-primed 

progenitors. Lymphoid–restricted progenitors seem to be the main thymus colonizers in the 

mouse (97), though several in vitro studies suggest these cells have myeloid potentials (62, 

98). IL-7Rα is a direct target of Notch1 (99), the master signalling pathway that regulates 

thymopoiesis (100-102). Up-regulation of IL-7R at the ETP stage (103) is a hallmark for 

lymphoid commitment, and IL-7-mediated signalling triggers the first wave of expansion of 

lymphoid-primed progenitors (104, 105). IL-7 is essential to survival and proliferation of 

ETP, and appears to transmit signals for the survival and proliferation of lymphoid-committed 

cells at the expense of the myeloid branch (70). Sustained Notch signalling favours cell 
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development along the T-cell lineage by inducing the transcription of important T lymphocyte 

differentiation factors and blocking the development of cells towards other lineages (103, 

106). IL-7 is also required for the transition of ETP cells to the DN2 stage in vitro (62). 

Moreover, an early block is observed in T lymphocyte development in IL-7 or IL-7R deficient 

mice (107). However, Bcl-2 is sufficient to rescue T lymphocyte development (at least the α/β 

branch of T lymphocytes), thus confirming a permissive role for IL-7 during the early 

thymopoiesis (108). 

IL-7Rα chain expression increases progressively until the DN2 stage, coinciding with the first 

massive cellular expansion, and then steadily decreases. DN2 cells with high IL-7R 

expression levels are diverted to the γδ T cell lineage, at least in mice (109), and IL-7R 

signalling controls accessibility to the T cell receptor (TCR)γ locus and its rearrangement 

(110). Thus, IL-7 plays an instructive role in this developmental process and Bcl-2 is unable 

to rescue the development of γδ T cells (108, 111). The cells with reduced IL-7R expression 

and/or limited IL-7 availability progress to the DN3 stage. The proliferation of these cells is 

still IL-7 dependent (108, 111). However, a diminished IL-7R signalling seems necessary for 

DN2 mouse thymocytes to up-regulate Bcl11b, a transcription factor that is essential to the T 

cell lineage (112). Thereafter, upon successful rearrangement of the TCRβ chain and 

subsequent pre-TCR expression, IL7-R is down-regulated, and cells move to the DN4 stage 

(113, 114). Here, at the β selection checkpoint, there is a second wave of expansion that is 

controlled by Notch1 signalling and pre-TCR expression (62). As such, the DN3 to DP 

transition is IL-7 independent. However, the continued presence of IL-7 in in vitro cultures 

blocks differentiation and DP cells are generated only upon IL-7 removal. In this case, IL-7 is 

acting as an anti-differentiation factor (62, 115). This highlights the importance of the IL-7R 

signalling suppression during the DP transition, which is guaranteed by SOCS-1 (113). After 

the DP selection stage, IL-7R surface expression levels are restored and IL-7 signalling seems 

to be required for the DP to single positive CD8 transition [reviewed in (116)]. In keeping 
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with this, Park and co-workers reported differentiation of single positive CD8 cells (CD8
+
) 

and RUNX-3 transcription factor up-regulation in transgenic TCR mice expressing a 

transgene derived IL-7Rα chain in an IL-7 over-expressed environment (117). Finally, IL-7 is 

required for homeostatic expansion of naïve CD8
+
 and CD4

+
 T cells (118, 119). 

In the context of the role of IL-7 in lymphopoiesis and in particular the flexibility of the 

hematopoietic process, the effect of pregnancy on hematopoiesis and lymphopoiesis is worthy 

of a mention. Pregnancy is certainly a physiological process in which there is an increase in 

blood volume and the bone marrow responds by increasing erythropoiesis (119). 

Lymphopoiesis is also affected and two mechanisms account for the reduced B lymphopoiesis 

observed in pregnancy. Firstly, early B progenitor cells are sensitive to the increased levels of 

sex steroids in pregnancy (120) and secondly, in mice, IL-7 production and availability 

dramatically decrease (121). Not only is the bone marrow affected during pregnancy, but the 

maternal thymus also undergoes dramatic involution (122). Both B and T lymphopoiesis 

return to pre-pregnancy levels following parturition and weaning. A full explanation of these 

associated phenomena is not currently available and is certainly worthy of further 

investigation. 

Implications of heterogeneity and versatility to leukaemia 

A Darwinian viewpoint on leukaemia 

A widely held viewpoint is that many leukaemias and cancers arise in a stem cell, termed 

leukaemia initiating cells (LIC) and cancer stem cells (CSC), respectively (123-127). These 

cells, which have an inherent capacity to self-renew, sustain the tumour cell population. A 

LIC/CSC origin of leukaemias/cancers is important to putting into practice a cancer stem cell-

based therapeutic to cure patients. To add to the difficultly of designing therapies to eliminate 

LIC/CSC, Greaves has proposed a Darwinian viewpoint on the nature of CSC which pays 
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attention to the dynamics of the cancer (128, 129).  Studies of single acute lymphoblastic 

leukaemia (ALL) cells have revealed that the leukaemia ‘stem’ cells are genetically diverse. 

Greaves has likened the complex and branching clonal architecture of ALL ‘stem’ cells to 

Darwin’s evolutionary tree-like divergence diagram which was drawn in 1837.  To add to the 

Darwinian analogy, as the leukaemia evolves, in an almost entirely clinically silent manner, 

cells acquire gene copy number alterations. The cytokine TGF- has been proposed to exert a 

selective Darwinian advantage to expand particular clones from the diverse population of 

LICs. In essence, this is similar to ‘natural selection’ as described by Darwin. 

Often what we discover from studies of cancer cells, and ascribe to these cells, turns out to be 

a feature of normal cells. A simple example is that the common ALL-associated antigen 

(CD10) was first described as a candidate leukaemia-specific antigen (130). In fact, CD10 is 

expressed by rare B cell progenitor cells and the presence on ALL cells was telling us 

something about the origin of common ALL (131). So, might we view normal haematopoiesis 

as a Darwinian process that is driven by selective pressures, namely cytokines, acting on an 

inherent diversity that is sufficient to generate the various types of blood and immune cells. In 

essence, inherent cell heterogeneity must have been the template to the evolution of the wide 

variety of immune cells that exist in higher mammals. 

Are leukaemia stem cells as versatile as their normal counterpart? 

An important question that arises from the above considerations is: Are LICs as versatile as 

normal HSCs in terms of their capacity to access routes to end-cell types? There is evidence 

to suggest that LICs are less versatile in this regard [reviewed in (132, 133)], as exemplified 

by erythroleukaemia (acute myeloid leukaemia (AML) FAB-M6) and pre-B/pro-B/common 

acute lymphoblastic leukaemia (ALL). The cells that sustain these leukemias appear to have 

become directed to generate cells of a particular cell type. An accumulation of erythroid 

precursors and myeloblasts in AML FAB-M6 reveals a disease origin in a cell with multi-
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lineage potential (134, 135). However, the partial differentiation of the leukaemic blast cells is 

restricted to certain pathways as to characterisation of disease sub-sets as myeloblast-rich 

(FAB-M6A), proerythroblast-rich (FAB-M6B) and myeloblast- and proerythroblast-rich 

(FAB-M6C) (135). 

In the case of childhood ALL, including pre-B ALL, pro-B ALL, and common ALL (c-ALL), 

there are arguments to support a disease origin in either a cell that is committed to B 

lymphocyte development (136, 137)
 
or a cell that is more stem cell-like (138). The former 

notion is a long held viewpoint. In favour of the latter cellular origin is that c-ALL-derived 

cells lacking the B-lineage markers CD10 and CD19 and expressing the stem cell marker 

CD34 can give rise to c-ALL and pre-B ALL when transplanted into mice (138). The 

argument about the precise ‘target’ cell that is transformed in childhood ALL could be set 

aside as versatility of lineage options extends to progenitor cells, as illustrated by the 

cytokine-mediate redirection of CLPs to the myeloid lineage (47). Strikingly, the blast cells 

that accumulate in the blood and bone marrow in childhood ALL are restricted to B-lineage 

development. 

Genomic stability and pluripotency of haematopoietic stem cells. 

There is now good evidence to support the notion that growth factors can instruct the lineage 

potentials of stem and progenitor cells. This leads to an interesting question which is how do 

HSCs establish and, as so required for steady state haematopoiesis, maintain pluripotency. 

How a network of factors might participate to control HSC identity and commitment ability to 

drive HSC contributions to homeostasis and adaption to inflammatory conditions is as yet 

unclear. 

Presumably to maintain HSC pluripotency there is the requirement to control genomic 

stability. In part, this means controlling intrinsic DNA repair machinery. As mentioned above 
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vWF
+
 HSCs require Tpo for their maintenance. This growth factor also plays a role in 

regulating the genomic stability of HSCs. De Lavel and colleagues have shown that the 

efficiency of DNA-Protein Kinase-dependent DNA repair, in response to DNA damage, is 

increased by Tpo (139). Tpo-induced activation of ERK and NF-B in HSCs is important to 

damage repair (140). As to a role of Tpo in ensuring chromosomal integrity, the plot thickens 

regarding the roles growth factors play. 

As eluded above, why might LIC/CSC be less versatile in regard to lineage options than their 

normal counterparts? One possibility is global genomic instability that might underlie clonal 

evolution curtails the availability of lineage options. However this doesn’t seem to be the 

case. Global instability is unusual for AML (141). For both AML and pro-B ALL a very small 

number of mutations are required to generate the leukaemia (142). Genomic instability is a 

feature of the chronic phase of chronic myeloid leukaemia, resulting in BCR-ABL-1 

mutations that encode resistance to the tyrosine kinase inhibitors (e.g. imatinib) used to treat 

the disease. Importantly, instability has been postulated to occur in primitive leukaemia 

progenitor cells in patients who haven’t been treated with tyrosine kinase inhibitors. And, it 

has been suggested that the instability is due to high levels of DNA damage, by reactive 

oxygen species, and inefficient/unfaithful repair of DNA double-strand breaks leading to 

chromosomal aberrations (143).  

As to all of the above, genomic stability and instability, as linked to effective DNA repair, are 

important to the behaviour of normal stem/progenitor cells and LIC, respectively. As yet we 

do not know whether LICs/CICs are as or less versatile in terms of lineage options than their 

normal counterparts. Selective instability in LICs/CICs in genomic elements encoding 

controls (e.g. transcription factors and signalling molecules) that play roles in lineage 

decision-making might restrict the versatility of LIC/CIC. For normal stem and progenitor 
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cells the versatility nature of the pair-wise model provides an appropriate template for the 

persuasive action of growth factors to shape haematopoiesis. 
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Figure legends 

Figure 1. Identification of haematopoietic stem and progenitor cells in adult bone marrow 

 The loss and gain of cell surface molecules is used to delineate sub-populations of 

haematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). Weissman subdivides 

the Lineage markers
-
, Sca-1

+
, c-Kit

+
 (LSK) population of bone marrow cells on the basis of 

expression of Flt3 and Thy1.1. Jacobsen makes use of CD34 and Flt3 expression. Signalling 

lymphocyte activation molecule (CD150, CD48, CD229 and CD244) markers are used to 

subdivide LSK cells in the model proposed by Morrison. Flt3, fms-like tyrosine kinase; LT-

HSC, long-term reconstituting haematopoietic stem cells; ST-HSC, short-term reconstituting 

haematopoietic stem cells.  

Figure 2. A pair-wise model of haematopoiesis 

 A fate choice continuum with an invariant series of pair-wise developmental relationships 

between haematopoietic cells fates is derived from the nature of the sets of potentials of 

various haematopoietic progenitor cells (22-25). These are show as segments of the 

continuum. Dendritic cells (DC) can be derived from common myeloid progenitors (CMPs) 

and common lymphoid progenitors (CLPs), as shown by arrowheads on two of the arcs (26). 

The figure, modified and with permission is from [21] © Macmillan Magazines Ltd. Bas, 

basophil; DC, dendritic cell; Eos, eosinophil; EPLM, early progenitor with lymphoid and 

myeloid potential; Ery, erythroid; HSC, haematopoietic stem cells; LMPP, lymphoid-primed 

multipotent progenitor; MC, mast cell; Meg, megakaryocyte; Mon, monocyte; Neut, 

neutrophil; NK, natural killer cell. 

Figure 3 Mapping of haematopoietic progenitor cells to the pair-wise model  

The set of fates available to various progenitors provide underlie near-neighbour placement of 

lineages in the pair-wise model. Progenitors with commensurate and contiguous lineage 
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potentials are CLP, common lymphoid progenitor (1); CMP, common myeloid progenitor (2); 

DC/Pro-B, dendritic cell and B lymphocyte progenitor (26); Eo/B-CFU, eosinophil and 

basophil progenitor (28); EPLM, early progenitor with lymphoid and myeloid potential (20); 

GMP, granulocyte and macrophage progenitor (27); LMPP, lymphoid-primed multipotent 

progenitor (21); MEP, megakaryocyte and erythrocyte progenitor (29); Mon/B/DC?, 

monocyte, B lymphocyte and dendritic cell? progenitor(18, 19); Mon/DC, monocyte and 

dendritic cell progenitor (30) and NK/T, natural killer cell and T lymphocyte progenitor (31); 

HSC, haematopoietic stem cell; Ly, lymphoid bias; Meg, megakaryocyte bias; My, myeloid 

bias. 

Figure 4 Alternative developmental routes towards neutrophils  

The sets of potentials available to known oligopotent progenitors are used to construct 

possible routes. The red arrows are routes delineated from studies of the progeny of 

progenitors and the blue dash arrows are putative routes. For abbreviations see the legend to 

Figure 3. 

Figure 5 Instructive action of Flt3 ligand in determining lymphoid/myeloid versus 

megakaryocyte/erythrocyte lineage development  

If the Flt3 ligand signal strength exceeds a certain threshold level cells enter the 

lymphoid/myeloid branch at the expense of the megakaryocyte/erythrocyte lineage. HSC, 

haematopoietic stem cell; MPP, multipotent progenitor. 

Figure 6. IL-7 action during various stages of murine B and T lymphocyte development  

The progressive stages of B lymphocyte development (A) and T lymphocyte development (B) 

are shown. The green cells represent stages responsive to the survival and proliferative action 

of IL-7. Pro-differentiation and anti-differentiation actions are also shown.* Indicates that the 

IL-7 pro-differentiation action could be instructive. For other stage transitions more evidence 
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is needed to conclude an instructive action. DN, double-negative; DP, double-positive; 

EPLM, early progenitor with lymphoid and myeloid potentials; ETP, early thymocyte 

progenitor.  
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